TW201834681A - Klebsiella pneumoniae capsule polysaccharide vaccines - Google Patents

Klebsiella pneumoniae capsule polysaccharide vaccines Download PDF

Info

Publication number
TW201834681A
TW201834681A TW106134175A TW106134175A TW201834681A TW 201834681 A TW201834681 A TW 201834681A TW 106134175 A TW106134175 A TW 106134175A TW 106134175 A TW106134175 A TW 106134175A TW 201834681 A TW201834681 A TW 201834681A
Authority
TW
Taiwan
Prior art keywords
immunogen
capsular polysaccharide
vaccine
cps
klebsiella
Prior art date
Application number
TW106134175A
Other languages
Chinese (zh)
Other versions
TWI771328B (en
Inventor
王錦堂
吳世雄
吳宗益
Original Assignee
國立臺灣大學
中央研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=64796984&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW201834681(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 國立臺灣大學, 中央研究院 filed Critical 國立臺灣大學
Publication of TW201834681A publication Critical patent/TW201834681A/en
Application granted granted Critical
Publication of TWI771328B publication Critical patent/TWI771328B/en

Links

Abstract

The invention provides various immunogens comprising a repeat unit of saccharide of Klebsiella pneumoniae CPS, which has a formula selected from the group consisting of Formulae (I) to (VI) as described herein. Also provided are vaccines comprising one or more immunogens selected from Formula (I) to (VI) and methods of eliciting an immune response against a Klebsiella pneumoniae and preventing infection of Klebsiella pneumoniae by using an immunogen of the invention.

Description

克雷伯氏肺炎桿菌莢膜多醣接合疫苗  Klebsiella pneumoniae capsular polysaccharide conjugate vaccine  

本發明涉及疫苗領域。具體地,本發明涉及一種抗克雷伯氏肺炎桿菌感染的疫苗,其包含克雷伯氏肺炎桿菌的莢膜多醣寡醣單元的接合物。 The invention relates to the field of vaccines. In particular, the invention relates to a vaccine against Klebsiella pneumoniae infection comprising a conjugate of a capsular polysaccharide oligosaccharide unit of Klebsiella pneumoniae.

克雷伯氏肺炎桿菌係一種引起人體各種疾病的重要病原體。最近,由克雷伯氏肺炎桿菌引起的社區獲得性細菌性肝膿瘍(PLA)已經成為一種全球性的疾病。在患有克雷伯氏肺炎桿菌的細菌性肝膿瘍(PLA)中,死亡率為10%,而在具有轉移性腦膜炎的細菌性肝膿瘍(PLA)中,死亡率則提高為30-40%。轉移性腦膜炎的存活者通常具有嚴重的神經學後遺症,而轉移性眼內炎通常會影響眼睛導致眼盲。除了引起細菌性肝膿瘍(PLA)之外,克雷伯氏肺炎桿菌也已經被證實會引起侵入性感染,導致在其它部位的膿瘍(例如腎、脾、腦、前列腺),壞死性筋膜炎和嚴重的菌血症肺炎。 Klebsiella pneumoniae is an important pathogen causing various diseases in the human body. Recently, community-acquired bacterial liver abscess (PLA) caused by Klebsiella pneumoniae has become a global disease. In bacterial liver abscess (PLA) with Klebsiella pneumoniae, the mortality rate is 10%, while in bacterial liver abscess (PLA) with metastatic meningitis, the mortality rate is increased to 30-40. %. Survivors of metastatic meningitis usually have severe neurological sequelae, and metastatic endophthalmitis usually affects the eye causing blindness. In addition to causing bacterial liver abscess (PLA), Klebsiella pneumoniae has also been shown to cause invasive infections, leading to abscesses in other areas (eg kidney, spleen, brain, prostate), necrotizing fasciitis And severe bacteremia pneumonia.

研究報告指出,引起PLA的菌株最常見的莢膜類型為K1,第二為K2。除了這些對細菌性肝膿瘍(PLA)的研究外,最近的研究也指出,克雷伯氏肺炎桿菌的K1及K2莢膜類型也會引起其他如壞死性筋膜炎及社區獲得性菌血症肺炎的侵入性感染(Lin YT et al.,BMC infectious diseases 2010,10:307;and Fang CT etal.,Clinical infectious diseases:an official publication of the Infectious Diseases Society of America 2007,45(3):284-293)。 The study reported that the most common type of capsule for the strain causing PLA is K1 and the second is K2. In addition to these studies of bacterial liver abscess (PLA), recent studies have also indicated that K1 and K2 capsule types of Klebsiella pneumoniae can cause other necrotizing fasciitis and community-acquired bacteremia. Invasive infection of pneumonia ( Lin YT et al., BMC infectious diseases 2010, 10: 307; and Fang CT et al., Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 2007, 45(3): 284- 293 ).

此外,克雷伯氏肺炎桿菌也造成了大約10%的院內感染並且對廣譜β-內醯胺類和碳青黴烯類等抗生素抗藥性的提高也係顯著的問題。我們最近的研究指出,莢膜類型K64(38%),K62(13%),K24(8%),KN2(7%)和K28(6%)佔抗碳青黴烯類抗生素的克雷伯氏肺炎桿菌菌株(Carbapenem-Resistant Klebsiella pneumoniae;CRKP)中的72%,在研究中可以觀察到CRKP的莢膜類型有集中的現象。 In addition, Klebsiella pneumoniae causes approximately 10% of nosocomial infections and is also a significant problem for antibiotic resistance to broad-spectrum β-endoamines and carbapenems. Our recent studies indicate that capsular types K64 (38%), K62 (13%), K24 (8%), KN2 (7%) and K28 (6%) account for Klebs anti-carbapene antibiotics. 72% of the strains of Klebsiella pneumoniae (Carbapenem-Resistant Klebsiella pneumoniae ; CRKP), in the study can be observed that the capsule type of CRKP is concentrated.

針對細菌莢膜為設計目標的疫苗,例如用於肺炎鏈球菌的疫苗,通常可以有效對抗由這類具有莢膜的病原體所引起的感染。在1985年曾公開了一種克雷伯氏肺炎桿菌K1莢膜多醣(CPS)疫苗。在1988年有一發明揭示了一種克雷伯氏肺炎桿菌24價的莢膜多糖(莢膜多醣(CPS))疫苗。雖然多年前就曾公開了克雷伯氏肺炎桿菌K1莢膜多醣(CPS)和24價莢膜多醣(CPS)疫苗,但直到目前為止,仍然沒有可用的克雷伯氏肺炎桿菌疫苗。先前的研究表明多醣疫苗僅能誘導缺乏免疫記憶的T細胞的獨立免疫以及缺乏高親和性抗體的產生。因此,一種克雷伯氏肺炎桿菌莢膜多醣(CPS)-蛋白質接合疫苗可以更有效對抗由該細菌所引起的感染。 Vaccines designed for bacterial capsules, such as vaccines for S. pneumoniae, are generally effective against infections caused by such capsular pathogens. A Klebsiella pneumoniae K1 capsular polysaccharide (CPS) vaccine was disclosed in 1985. In 1988, a invention revealed a 24-valent capsular polysaccharide (capsular polysaccharide (CPS)) vaccine against Klebsiella pneumoniae. Although Klebsiella pneumoniae K1 capsular polysaccharide (CPS) and 24-valent capsular polysaccharide (CPS) vaccines have been published many years ago, there is still no Klebsiella pneumoniae vaccine available. Previous studies have shown that polysaccharide vaccines can only induce independent immunity of T cells lacking immune memory and lack of high affinity antibodies. Thus, a Klebsiella pneumoniae capsular polysaccharide (CPS)-protein conjugate vaccine can be more effective against infections caused by the bacterium.

過去的研究指出,K1和K2莢膜多醣(CPS)係由幾個醣重複單元所組成的巨大分子(Yang FL etal.,The Journal of biological chemistry 2011,286(24):21041-21051)。莢膜多醣(CPS)的解聚將提高與蛋白質偶聯的效率。而一些化學試劑,如三氟乙酸,氫氧化銨和乙酸,雖然會降解莢 膜多醣(CPS),卻導致對於免疫反應非常重要的莢膜多醣(CPS)修飾(乙醯化或丙酮化)的喪失。WO20125676A1提供了一種分離的噬菌體,該噬菌體可感染K1克雷伯氏肺炎桿菌菌株並且具有一種專門分解K1莢膜多醣(CPS)的莢膜解聚酶。將可利用此酵素開發一種可有效對抗克雷伯氏肺炎桿菌感染的疫苗。 Past studies have indicated that K1 and K2 capsular polysaccharides (CPS) are giant molecules composed of several sugar repeating units ( YANG FL et al., The Journal of biological chemistry 2011, 286(24): 21041-21051 ). Depolymerization of capsular polysaccharide (CPS) will increase the efficiency of coupling to proteins. Some chemical agents, such as trifluoroacetic acid, ammonium hydroxide and acetic acid, which degrade capsular polysaccharide (CPS), result in capsular polysaccharide (CPS) modification (acetylation or acetone), which is important for immune response. Lost. WO20125676A1 provides an isolated phage which can infect K1 Klebsiella pneumoniae strain and has a capsular depolymerase which specifically decomposes K1 capsular polysaccharide (CPS). This enzyme will be used to develop a vaccine that is effective against Klebsiella pneumoniae infection.

除非另有說明,否則本文係根據常規用法使用技術術語。 Unless otherwise stated, technical terms are used according to conventional usage.

除非上下文另外清楚地指出,否則單數術語“一”、“一個”和“該”皆包括複數指代物。同樣地,除非上下文另有明確指示,否則詞語“或”旨在包括“和”。 The singular terms "a", "an" Likewise, the word "or" is intended to include "and" unless the context clearly indicates otherwise.

本文所使用之縮寫:GlcAp:葡萄醣醛酸;Fucp:岩藻醣;Glcp:葡萄醣;Manp:甘露醣;Rhap:鼠李醣;Galp:半乳醣;GlcUAp:GlcAp:葡萄醣醛酸。 Abbreviations used herein: GlcAp: glucuronic acid; Fucp: fucose; Glcp: glucose; Manp: mannose; Rhap: rhamnose; Galp: galactose; GlcUAp: GlcAp: glucuronic acid.

本文所用之術語“接合物”係指由連接在一起的兩個異源分子組成的組合物,其用於刺激或引發動物中的特異性免疫反應。在一些實施方式中,該免疫反應係指保護性的,其直接使動物更有效地對抗該免疫原性接合物所針對的生物體的感染。該免疫原性接合物的具體實施方式係指疫苗,例如接合疫苗。 The term "conjugate" as used herein refers to a composition consisting of two heterologous molecules joined together for stimulating or eliciting a specific immune response in an animal. In some embodiments, the immune response refers to a protective one that directly renders the animal more effective against infection by the organism to which the immunogenic conjugate is directed. A specific embodiment of the immunogenic conjugate refers to a vaccine, such as a conjugate vaccine.

本文所用之術語“連接物”係指用於可操作地連接兩個不同分子的分子橋的化合物或部分,其中連接物的一端可操作地連接至第一分子,另一端則可操作地連接至第二分子。兩種不同的分子能以逐步的方式連接到連接物上。 The term "linker" as used herein, refers to a compound or moiety used to operatively link a molecular bridge of two different molecules, wherein one end of the linker is operatively linked to the first molecule and the other end is operatively linked to The second molecule. Two different molecules can be attached to the linker in a stepwise manner.

本文所用之術語“疫苗”係指能在受試者中引起預防性或治療性免疫反應的藥物組合物。通常,疫苗會引起對病原體抗原的抗原專一性免疫反應。 The term "vaccine" as used herein refers to a pharmaceutical composition that elicits a prophylactic or therapeutic immune response in a subject. Typically, vaccines cause antigen-specific immune responses to pathogen antigens.

本文所用之術語“寡醣”係指含有兩個或更多個單醣單元的化合物。寡醣被認為具有還原性末端和非還原性末端。 The term "oligosaccharide" as used herein refers to a compound containing two or more monosaccharide units. Oligosaccharides are believed to have reducing ends and non-reducing ends.

本文所用之術語“蛋白質載體”係指與寡醣偶聯或接合的蛋白質,肽或其片段,其可比單獨的寡醣更高程度地加強所得寡醣-蛋白質載體接合物的免疫原性。 The term "protein carrier" as used herein refers to a protein, peptide or fragment thereof that is conjugated or conjugated to an oligosaccharide, which enhances the immunogenicity of the resulting oligosaccharide-protein carrier conjugate to a greater extent than oligosaccharides alone.

本文所用之術語“抗體”涵蓋多克隆和單克隆抗體製劑,亦包括雜交抗體,改變的抗體,F(ab')2片段,F(ab)分子,Fv片段,在噬菌體上分佈的單鏈片段變體(scFv),單結構域抗體,嵌合抗體,人源化抗體及其顯示親本抗體分子的免疫結合特性的功能片段。 The term "antibody" as used herein encompasses both polyclonal and monoclonal antibody preparations, as well as hybrid antibodies, altered antibodies, F(ab')2 fragments, F(ab) molecules, Fv fragments, single-stranded fragments distributed on phage. Variant (scFv), single domain antibody, chimeric antibody, humanized antibody and functional fragments thereof showing the immunological binding properties of the parent antibody molecule.

本文所用之術語“免疫原”係指能夠在哺乳動物中誘導免疫反應的蛋白質或其部分,例如已感染或有感染病原體風險的哺乳動物。免疫原的施用可誘導出針對感興趣病原體的保護性免疫和/或主動免疫。 The term "immunogen" as used herein, refers to a protein or portion thereof that is capable of inducing an immune response in a mammal, such as a mammal that has been infected or at risk of contracting a pathogen. Administration of the immunogen can induce protective immunity and/or active immunization against the pathogen of interest.

本發明係利用與載體分別接合的克雷伯氏肺炎桿菌的分解莢膜多醣(CPS)以產生的莢膜多醣(CPS)接合疫苗。令人驚訝地,本發明之莢膜多醣(CPS)接合疫苗亦可同時誘導具有殺菌活性的莢膜多醣(CPS)抗體。故,本發明之莢膜多醣(CPS)接合疫苗可用於預防克雷伯氏肺炎桿菌造成的侵入性感染。 The present invention utilizes a capsular polysaccharide (CPS) conjugate vaccine produced by decomposing capsular polysaccharide (CPS) of Klebsiella pneumoniae conjugated to a carrier, respectively. Surprisingly, the capsular polysaccharide (CPS) conjugate vaccine of the present invention can also simultaneously induce bactericidal activity of capsular polysaccharide (CPS) antibodies. Therefore, the capsular polysaccharide (CPS) conjugate vaccine of the present invention can be used for the prevention of invasive infection caused by Klebsiella Klebsiella.

本發明提供了包含選自如本文所述的公式(I)至(VI)的克雷伯氏肺炎桿菌莢膜多醣(CPS)的重複單元的各種免疫原。 The present invention provides various immunogens comprising repeating units of Klebsiella pneumoniae capsular polysaccharide (CPS) selected from the formulae (I) to (VI) as described herein.

一方面,本發明提供了包含具有下列公式(I)的克雷伯氏肺炎桿菌K1莢膜多醣(CPS)的三醣的重複單元的免疫原:{→4)-[2,3-(S)-pyruvate]-b-D-GlcAp-(1→4)-a-L-O-Ac-Fucp-(1→3)-b-D-Glcp-(1→}m (I) In one aspect, the invention provides an immunogen comprising a repeating unit of a trisaccharide of Klebsiella pneumoniae K1 capsular polysaccharide (CPS) having the following formula (I): {→4)-[2,3-( S )-pyruvate]-bD-GlcA p -(1→4)-aL- O -Ac-Fuc p -(1→3)-bD-Glc p -(1→} m (I)

其中m為1至4。 Where m is 1 to 4.

在一具體實施方式中,m為2。 In a specific embodiment, m is 2.

本發明發現K1-ORF34多肽可以降解克雷伯氏肺炎桿菌K1莢膜多醣(CPS)。降解後,可以獲得克雷伯氏肺炎桿菌K1莢膜多醣(CPS)的六醣。從K1莢膜多醣(CPS)降解的六醣可被用為針對克雷伯氏肺炎桿菌(Klebsiella pneumoniae)感染的免疫原。K1-ORF34多肽具有如SEQ ID NO:1所示的胺基酸序列。 The present inventors have found that the K1-ORF34 polypeptide can degrade Klebsiella Klebsiella K1 capsular polysaccharide (CPS). After degradation, the hexasaccharide of Klebsiella pneumoniae K1 capsular polysaccharide (CPS) can be obtained. The hexasaccharide degraded from K1 capsular polysaccharide (CPS) can be used as an immunogen against Klebsiella pneumoniae infection. The K1-ORF34 polypeptide has an amino acid sequence as shown in SEQ ID NO: 1.

(SEQ ID NO:1) (SEQ ID NO: 1)

在另一方面,本發明提供了一種免疫原,其包含克雷伯氏肺炎桿菌K2莢膜多醣(CPS)的四醣的重複單元,具有下列公式(II): 其中n為1至4。 In another aspect, the present invention provides an immunogen comprising a repeating unit of a tetrasaccharide of Klebsiella pneumoniae K2 capsular polysaccharide (CPS) having the following formula (II): Where n is 1 to 4.

在一具體實施方式中,免疫原包含一個重複單元(即,n為1)。 In a specific embodiment, the immunogen comprises one repeat unit (ie, n is 1).

本發明發現K2-ORF16多肽可降解克雷伯氏肺炎桿菌K2莢膜多醣(CPS)。降解後,可得到克雷伯氏肺炎桿菌K2莢膜多醣(CPS)的四醣。K2莢膜多醣(CPS)降解後產生的四醣可以用作對抗克雷伯氏肺炎桿菌(Klebsiella pneumoniae)感染的免疫原。因此,本發明提供了分離的多肽或其變體,其具有專一於克雷伯氏肺炎桿菌(Klebsiella pneumoniae)莢膜型K2菌株的莢膜的降解活性,所述K2型菌株選自:(a)包含氨基酸序列SEQ ID NO:2;和(B)一種多核苷酸編碼的多肽,其係為至少在(i)SEQ ID NO:2的多肽編碼序列,或(ii)互補於(i)的全長序列等高嚴格條件下雜交的多核苷酸。在一具體實施方式中,所述K2-ORF16多肽具有如SEQ ID NO:2所示的胺基酸序列。 The present inventors have found that the K2-ORF16 polypeptide can degrade Klebsiella Klebsiella K2 capsular polysaccharide (CPS). After degradation, a tetrasaccharide of Klebsiella pneumoniae K2 capsular polysaccharide (CPS) is obtained. The tetrasaccharide produced by the degradation of K2 capsular polysaccharide (CPS) can be used as an immunogen against Klebsiella pneumoniae infection. Accordingly, the present invention provides an isolated polypeptide or variant thereof having a degrading activity specific to a capsule of Klebsiella pneumoniae capsular type K2 strain selected from: (a a polypeptide comprising the amino acid sequence of SEQ ID NO: 2; and (B) a polynucleotide encoding at least in (i) the polypeptide coding sequence of SEQ ID NO: 2, or (ii) complementary to (i) A polynucleotide that hybridizes under stringent conditions of full length sequence. In a specific embodiment, the K2-ORF16 polypeptide has an amino acid sequence as set forth in SEQ ID NO:2.

(SEQ ID NO:2) (SEQ ID NO: 2)

該多肽的變體係人造的,其係包含SEQ ID NO:2的多肽的一個或多個胺基酸的取代、缺失和/或插入。優選地,胺基酸改變具有較小的影響,即具保留性的胺基酸序列的取代或插入不顯著影響蛋白質的折疊和/或活性,其通常為1至約30個胺基酸的小缺失、小的胺基或羧基末端延伸,例如胺基末端甲硫胺酸的殘基、最多約20至25個殘基的小連接肽或通過改變淨電荷或其他功能,如組胺酸標籤、多聚組胺酸標籤區域、抗原決定位或結合結構域。 A variant of the polypeptide is artificial, which comprises a substitution, deletion and/or insertion of one or more amino acids of the polypeptide of SEQ ID NO: 2. Preferably, the amino acid change has a minor effect, ie the substitution or insertion of a retentive amino acid sequence does not significantly affect the folding and/or activity of the protein, which is typically from 1 to about 30 amino acids. Deletion, small amine or carboxy terminal extension, such as residues of amino terminal methionine, small linker peptides of up to about 20 to 25 residues, or by altering net charge or other functions, such as histidine tags, Polyhistidine tag region, epitope or binding domain.

另一方面,本發明提供了一種免疫原,其包括克雷伯氏肺炎桿菌K64莢膜多醣(CPS)的六醣的重複單元,具有下列公式(III): In another aspect, the invention provides an immunogen comprising a repeating unit of a hexasaccharide of Klebsiella pneumoniae K64 capsular polysaccharide (CPS) having the following formula (III):

其中n為1至4。在一具體實施方式中,n為1。 Where n is 1 to 4. In a specific embodiment, n is one.

在另一方面,本發明提供了一種免疫原,其包括克雷伯氏肺炎桿菌K62莢膜多醣(CPS)的五醣的重複單元,具有下列公式(IV): In another aspect, the invention provides an immunogen comprising a repeating unit of a pentasaccharide of Klebsiella pneumoniae K62 capsular polysaccharide (CPS) having the following formula (IV):

其中n係1至4。在一具體實施方式中,n為2。 Where n is 1 to 4. In a specific embodiment, n is 2.

在另一方面,本發明提供了一種免疫原,其包括克雷伯氏肺炎桿菌K24莢膜多醣(CPS)的五醣的重複單元,具有下列公式(V): In another aspect, the invention provides an immunogen comprising a repeating unit of a pentasaccharide of Klebsiella Klebsiella K24 capsular polysaccharide (CPS) having the following formula (V):

其中n係1至4。在一具體實施方式中,n為1。 Where n is 1 to 4. In a specific embodiment, n is one.

在另一方面,本發明提供了一種免疫原,其包括克雷伯氏肺炎桿菌K28莢膜多醣(CPS)的六醣的重複單元,具有下列公式(VI): In another aspect, the invention provides an immunogen comprising a repeating unit of a hexasaccharide of Klebsiella pneumoniae K28 capsular polysaccharide (CPS) having the following formula (VI):

其中n為1至4,n為1。 Where n is 1 to 4 and n is 1.

在另一方面,本發明提供了一種免疫原,所述免疫原包括克雷伯氏肺炎桿菌KN2莢膜多醣(CPS)的六醣的重複單元,其具有四個六醣和一種己醣醛酸,其分子量約為1027。 In another aspect, the invention provides an immunogen comprising a repeating unit of a hexasaccharide of Klebsiella Klebsiella KN2 capsular polysaccharide (CPS) having four hexoses and a hexuronic acid Its molecular weight is about 1027.

WO20125676A1描述了用於降解K24、K28、K62、K64和KN2的莢膜多醣(CPS)的酵素。 WO20125676A1 describes enzymes for the degradation of capsular polysaccharide (CPS) of K24, K28, K62, K64 and KN2.

在另一方面,本發明提供了包含一種或多種選自公式(I)至(VI)的免疫原的疫苗。 In another aspect, the invention provides a vaccine comprising one or more immunogens selected from the formulae (I) to (VI).

K1、K2、K62、K64、K24和K28的結構醣單元和降解的莢膜多醣(CPS)產物如下。 The structural saccharide units and degraded capsular polysaccharide (CPS) products of K1, K2, K62, K64, K24 and K28 are as follows.

在一具體實施方式中,免疫原與蛋白質載體互相接合。 In a specific embodiment, the immunogen is conjugated to the protein carrier.

在一具體實施方式中,本發明之疫苗係多價疫苗。在一些具體實施方式中,疫苗係包含公式I和公式II之免疫原的K1和K2莢膜多醣(CPS)接合二價疫苗。在另一個實施方式中,該疫苗係包含免疫原I-載體和免疫原II-載體混合物的K1和K2莢膜多醣(CPS)接合的二價疫苗,其中具有公式(I)的免疫原I和具有公式(II)的免疫原II係分別接合至一載體。 In a specific embodiment, the vaccine of the invention is a multivalent vaccine. In some embodiments, the vaccine is a K1 and K2 capsular polysaccharide (CPS) conjugated bivalent vaccine comprising the immunogens of Formula I and Formula II. In another embodiment, the vaccine is a K1 and K2 capsular polysaccharide (CPS) conjugated bivalent vaccine comprising an immunogen I-vector and an immunogen II-carrier mixture, wherein the immunogen I and formula (I) The immunogen II line having the formula (II) is bonded to a vector, respectively.

在一具體實施方式中,疫苗係多價疫苗。在一些具體實施方式中,所述疫苗係包含公式III和公式IV的免疫原的K64和K62莢膜多醣(CPS)接合二價疫苗。在另一具體實施方式中,所述疫苗係K64和K62莢膜多醣(CPS)接合二價疫苗,包括免疫原III-載體和免疫原IV-載體的混合物,其中,具有公式(III)的免疫原III和具有公式(IV)的免疫原IV分別與載體 接合。 In a specific embodiment, the vaccine is a multivalent vaccine. In some embodiments, the vaccine is a K64 and K62 capsular polysaccharide (CPS) conjugated bivalent vaccine comprising an immunogen of Formula III and Formula IV. In another specific embodiment, the vaccine is a K64 and K62 capsular polysaccharide (CPS) conjugated bivalent vaccine comprising a mixture of an immunogen III-vector and an immunogen IV-vector, wherein the immunization with formula (III) The original III and the immunogen IV having the formula (IV) were respectively conjugated to the carrier.

本發明的免疫原可以與載體接合形成接合物。在一具體實施方式中,接合物係一疫苗。在另一具體實施方式中,接合疫苗中的任何一種免疫原比為1:1.4至1:10.2。在一具體實施方式中,所述疫苗包含10%(重量百分比)至90%(重量百分比)的免疫原I-蛋白質載體或免疫原III-蛋白載體及10%(重量百分比)至90%(重量百分比)的免疫原II-蛋白質載體或免疫原IV-蛋白質載體。疫苗優選包含等量的免疫原I-蛋白質載體或免疫原III-蛋白質載體及免疫原II-蛋白質載體或免疫原IV-蛋白質載體。 The immunogen of the invention can be joined to a carrier to form a conjugate. In a specific embodiment, the conjugate is a vaccine. In another specific embodiment, the immunogenic ratio of any one of the conjugate vaccines is between 1:1.4 and 1:10.2. In a specific embodiment, the vaccine comprises from 10% by weight to 90% by weight of the immunogenic I-protein carrier or immunogen III-protein carrier and from 10% by weight to 90% by weight. Percentage of the immunogen II-protein carrier or immunogen IV-protein carrier. The vaccine preferably comprises an equal amount of an immunogen I-protein carrier or an immunogen III-protein carrier and an immunogen II-protein carrier or an immunogen IV-protein carrier.

合適的載體在本領域中係為習知技術,並且可以包括例如蛋白質、肽、脂質、聚合物、樹枝狀大分子、病毒體、類病毒顆粒(VLP)或其組合。在一具體實施方式中,載體係蛋白質載體,包括但不限於細菌類毒素、毒素、外毒素和其無毒衍生物,如鑰孔蟲戚血藍蛋白(KLH)、B型肝炎病毒核心蛋白、甲狀腺球蛋白、白蛋白(BSA)、人血清白蛋白(HSA)和卵清蛋白)、肺炎球菌表面蛋白A(PspA)、肺炎球菌粘附蛋白(PsaA)、結核菌素純化蛋白衍生物(PPD);運鐵蛋白結合蛋白、聚氨基酸、破傷風類毒素、破傷風毒素片段C,白喉類毒素,CRM(無毒白喉毒素突變體),霍亂毒素,金黃色葡萄球菌外毒素或類毒素,大腸桿菌熱不穩定性腸毒素,銅綠假單胞菌外毒素A和細菌外膜蛋白(如腦膜炎奈瑟氏菌血清型B外膜蛋白複合物(OMPC)和外膜3類孔蛋白(rPorB))。 Suitable vectors are well known in the art and may include, for example, proteins, peptides, lipids, polymers, dendrimers, virions, viroid-like particles (VLPs), or combinations thereof. In a specific embodiment, the vector is a protein carrier, including but not limited to a bacterial toxoid, a toxin, an exotoxin, and a non-toxic derivative thereof, such as keyhole limpet hemocyanin (KLH), hepatitis B virus core protein, thyroid gland Globulin, albumin (BSA), human serum albumin (HSA) and ovalbumin), pneumococcal surface protein A (PspA), pneumococcal adhesion protein (PsaA), tuberculin purified protein derivative (PPD) Transferrin binding protein, polyamino acid, tetanus toxoid, tetanus toxin fragment C, diphtheria toxoid, CRM (non-toxic diphtheria toxin mutant), cholera toxin, staphylococcus aureus exotoxin or toxoid, heat-labile Escherichia coli Enterotoxin, Pseudomonas aeruginosa exotoxin A and bacterial outer membrane proteins (eg, Neisseria meningitidis serotype B outer membrane protein complex (OMPC) and outer membrane class 3 porin (rPorB)).

在一具體實施方式中,載體係蛋白質載體。在另一具體實施方式中,所述蛋白質載體係CRM197。CRM197的胺基酸序列如SEQ ID NO:3所示。 In a specific embodiment, the vector is a protein carrier. In another specific embodiment, the protein carrier is CRM197. The amino acid sequence of CRM197 is shown in SEQ ID NO: 3.

(SEQ ID NO:3) (SEQ ID NO: 3)

多醣含有羥基,偶爾會含有羧基和胺基,而蛋白質含有胺基和羧基。本領域已知許多將蛋白質與多醣接合之方法。若蛋白質載體具有兩種或更多種相同的醣類,則醣可以與蛋白質載體的相同分子接合。或者,所述醣類可以分別與蛋白質載體的不同分子(每個蛋白質載體分子僅具有一種與其結合的醣類)分子偶聯。 Polysaccharides contain hydroxyl groups, occasionally containing carboxyl groups and amine groups, while proteins contain amine groups and carboxyl groups. A number of methods for joining proteins to polysaccharides are known in the art. If the protein carrier has two or more of the same saccharides, the saccharide can be joined to the same molecule of the protein carrier. Alternatively, the saccharide may be coupled to a different molecule of the protein carrier (each protein carrier molecule has only one saccharide bound thereto).

根據本領域通常知識者在製藥和獸醫領域中熟知的標準技術,考慮如特定抗原、佐劑(如果有)、特定動物或患者的年齡、性別、體重、種類和狀況以及給藥途徑等因素,可以確定待給予人或動物的本發明所述之疫苗的用量及給藥的方法。 Considerations such as specific antigens, adjuvants (if any), age, sex, weight, type and condition of a particular animal or patient, and route of administration, etc., based on standard techniques well known to those of ordinary skill in the art, in the pharmaceutical and veterinary arts, The amount of the vaccine of the present invention to be administered to a human or animal and the method of administration can be determined.

本發明所述的接合疫苗能以與用於治療或預防的常規方法 學一致的方法給予受試者,例如用於治療或預防來自克雷伯氏肺炎桿菌(Klebsiella pneumoniae)感染的方法。本發明揭示了在足以預防、抑制和/或改善克雷伯氏肺炎桿菌感染的條件下,將可達預防或治療之有效劑量的接合疫苗和/或其它生物活性劑施用於需要這種治療的受試者一段時間。在一些實施方式中,受試者接種本發明之接合疫苗後,成功引起受試者體內針對克雷伯氏肺炎桿菌(Klebsiella pneumoniae)抗原性免疫原的免疫反應。在一些實施方式中,該接受治療之受試者係選自已感染克雷伯氏肺炎桿菌或具有發展克雷伯氏肺炎桿菌感染風險的對象,例如已暴露或有可能暴露於克雷伯氏肺炎桿菌(Klebsiella pneumoniae)環境下的對象。在一重要方面,本發明提供的接合疫苗可以用於預防克雷伯氏肺炎桿菌的感染。 The conjugate vaccine of the present invention can be administered to a subject in a manner consistent with conventional methods for treatment or prevention, for example, for treating or preventing a method of infection from Klebsiella pneumoniae . The present invention discloses the administration of an effective amount of a conjugate vaccine and/or other bioactive agent that is up to prophylaxis or treatment to a condition in need of such treatment, under conditions sufficient to prevent, inhibit, and/or ameliorate the infection of Klebsiella Klebsiella. The subject is a period of time. In some embodiments, upon vaccination of a conjugate vaccine of the invention, the subject successfully elicits an immune response in a subject against an antigenic immunogen of Klebsiella pneumoniae . In some embodiments, the subject to be treated is selected from a subject who has been infected with Klebsiella pneumoniae or has a risk of developing Klebsiella pneumoniae infection, for example, has been exposed or is likely to be exposed to Klebsiella pneumoniae A subject in the environment of Klebsiella pneumoniae . In an important aspect, the conjugate vaccine provided by the present invention can be used to prevent infection by Klebsiella Klebsiella.

本發明之接合疫苗可製備成溶液劑、混懸劑、片劑、丸劑、膠囊、緩釋製劑、粉劑等。抗原和免疫原性組合物可以與生理上可接受的與其相容的載體混合。這些都可以包括水、生理食鹽水、葡萄醣、甘油、乙醇或它們的組合等。該接合疫苗可進一步含有輔助物質,如潤濕劑或乳化劑或pH緩沖劑,以進一步提高效力。接合疫苗的施用可以包括通過各種途徑遞送,例如口服、靜脈內、肌肉內、鼻內、皮下和腹膜內施用。 The conjugate vaccine of the present invention can be prepared into a solution, a suspension, a tablet, a pill, a capsule, a sustained release preparation, a powder, and the like. The antigenic and immunogenic compositions can be combined with a physiologically acceptable carrier compatible therewith. These may include water, physiological saline, glucose, glycerol, ethanol, or a combination thereof. The conjugate vaccine may further contain an auxiliary substance such as a wetting or emulsifying agent or a pH buffer to further enhance the efficacy. Administration of the conjugate vaccine can include delivery by a variety of routes, such as oral, intravenous, intramuscular, intranasal, subcutaneous, and intraperitoneal administration.

在另一方面,本發明提供了通過施用本發明的接合疫苗製備的抗體。 In another aspect, the invention provides an antibody prepared by administering a conjugate vaccine of the invention.

以下實施方式僅用於說明本發明而非限制本發明。除非另有說明,本發明所用的所有百分比都係重量百分比。本發明引用的所有專利,專利申請和文獻參考文獻均以引用的方式併入本文。 The following examples are intended to illustrate and not to limit the invention. All percentages used in the present invention are by weight unless otherwise indicated. All patents, patent applications and literature references cited herein are hereby incorporated by reference.

圖1(A)到(C)顯示純化K2-ORF16蛋白的酵素活性。(A)純化的K2-ORF16蛋白(以箭頭表示)以十二烷基硫酸鈉聚丙烯醯胺凝膠電泳(SDS-PAGE)分離,並利用考馬斯藍染色,其蛋白質大小(千道耳吞)標記在蛋白標準旁邊;(B)當噬菌體1611E-K2-1(左)及其K2-ORF16蛋白(右)分別點在含有克雷伯氏肺炎桿菌(K.pneumoniae)1611E菌株的一覆蓋頂層瓊脂的多孔盤上時,可觀察到具有半透明暈和半透明斑點的清晰斑點;(C)以十二烷基硫酸鈉聚丙烯醯胺凝膠電泳(SDS-PAGE)分離以不同量的K2-ORF16蛋白處理的經萃取的K2莢膜多醣(CPS)並以阿爾西藍染色。 Figure 1 (A) to (C) show the enzyme activity of the purified K2-ORF16 protein. (A) Purified K2-ORF16 protein (indicated by the arrow) was isolated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and stained with Coomassie blue for protein size (thousands of ears) The phage is labeled next to the protein standard; (B) when the phage 1611E-K2-1 (left) and its K2-ORF16 protein (right) are spotted in a cover containing the K. pneumoniae 1611E strain, respectively Clear spots with translucent halo and translucent spots were observed on the porous disk of the top agar; (C) Separated with different amounts by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) K2-ORF16 protein treated extracted K2 capsular polysaccharide (CPS) and stained with Alcian blue.

圖2(A)到(D)顯示以K1-ORF34蛋白分解的K1莢膜多醣(CPS)的質量和毛細管電泳分析。(A)經K1-ORF34裂解的K1莢膜多醣(CPS)的質量分佈並以Bio-Gel P-6 Gel(BIO-RAD #1504130)膠體管柱分離;(B)經K1-ORF34裂解的K1莢膜多醣(CPS)的毛細管電泳;(C)K1莢膜多醣(CPS)片段(分子量:1,145)的串連質譜分析;(D)K1寡醣核磁共振氫譜。 Figures 2(A) to (D) show the mass and capillary electrophoresis analysis of K1 capsular polysaccharide (CPS) decomposed with K1-ORF34 protein. (A) Mass distribution of K1 capsular polysaccharide (CPS) cleaved by K1-ORF34 and isolated by Bio-Gel P-6 Gel (BIO-RAD #1504130) colloidal column; (B) K1 cleavage by K1-ORF34 Capillary electrophoresis of capsular polysaccharide (CPS); (C) tandem mass spectrometry analysis of K1 capsular polysaccharide (CPS) fragment (molecular weight: 1,145); (D) K1 oligosaccharide nuclear magnetic resonance spectroscopy.

圖3(A)到(C)顯示經K2-ORF16蛋白分解的K2莢膜多醣(CPS)的結構分析。(A)K2-ORF16蛋白分解的K2莢膜多醣(CPS)的基質輔助雷射脫附電離-飛行時間質譜(MALDI-TOF)分析;(B)質荷比(m/z)為703的電灑游離-一次質譜分析;以及(C)質荷比(m/z)為1365的電灑游離質譜-質譜聯用分析。 Figures 3 (A) to (C) show the structural analysis of K2 capsular polysaccharide (CPS) decomposed by K2-ORF16 protein. (A) Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) analysis of K2-ORF16 protein-decomposing K2 capsular polysaccharide (CPS); (B) Electricity with a mass-to-charge ratio (m/z) of 703 Sprinkle free-primary mass spectrometry; and (C) mass-to-charge ratio (m/z) of 1365 by electrospray free mass spectrometry-mass spectrometry.

圖4顯示了經K62莢膜解聚酶分解之K62莢膜多醣(CPS)的主要產物結構的串連質譜分析。 Figure 4 shows a tandem mass spectrometric analysis of the major product structure of K62 capsular polysaccharide (CPS) decomposed by K62 capsular depolymerase.

圖5(A)到(C)顯示了K1莢膜多醣(CPS)接合疫苗的安 全性。(A)記錄每次免疫接種K1莢膜多醣(CPS)接合疫苗前一天和後一天的小鼠的體重。(B)記錄每次免疫接種K1莢膜多醣(CPS)接合疫苗前一天和後一天的小鼠的直腸溫度。(C)測定每次免疫接種K1莢膜多醣(CPS)接合疫苗後一周的小鼠的肝(血清轉胺酶(ALT))和腎(血尿素氮(BUN)和肌酸酐)功能。 Figures 5(A) to (C) show the safety of the K1 capsular polysaccharide (CPS) conjugate vaccine. (A) The body weight of the mice one day before and one day after each immunization of the K1 capsular polysaccharide (CPS) conjugate vaccine was recorded. (B) The rectal temperature of the mice one day before and one day after the immunization of the K1 capsular polysaccharide (CPS) conjugate vaccine was recorded. (C) The liver (serum transaminase (ALT)) and kidney (blood urea nitrogen (BUN) and creatinine) functions of mice one week after each immunization with the K1 capsular polysaccharide (CPS) conjugate vaccine were determined.

圖6顯示了接種K1或K2或K62莢膜多醣(CPS)接合疫苗後的小鼠,其會誘導出對抗莢膜多醣(CPS)的抗體。將不同量的K1或K2(2000奈克至7.8125奈克,2倍稀釋)或K62莢膜多醣(CPS)(4000奈克至500奈克,2倍稀釋)轉移到膜上,並以從接種K1或K2或K62莢膜多醣(CPS)接合疫苗的小鼠中獲得的血清(1:1000稀釋)用來做墨點法分析。 Figure 6 shows mice vaccinated with K1 or K2 or K62 capsular polysaccharide (CPS) conjugate vaccines that induce antibodies against capsular polysaccharide (CPS). Different amounts of K1 or K2 (2000 Nike to 7.8125 Ng, 2 fold dilution) or K62 capsular polysaccharide (CPS) (4000 Ng to 500 Ng, 2 fold dilution) were transferred to the membrane and inoculated Serum (1:1000 dilution) obtained in mice vaccinated with K1 or K2 or K62 capsular polysaccharide (CPS) was used for dot analysis.

圖7A到C顯示了K1或K2或K62莢膜多醣(CPS)接合疫苗在小鼠體內的功效。五隻經K1或K2莢膜多醣(CPS)接合疫苗免疫的小鼠,分別以腹腔注射接種1×104菌落形成單位(CFU,colony-forming unit)的克雷伯氏肺炎桿菌NTUH-K2044(A)或NTUH-A4528。接種K1或K2莢膜多醣(CPS)接合疫苗顯著增加了感染克雷伯氏肺炎桿菌NTUH-K2044(P=0.0144,對數等級檢定(log-rank test))或NTUH-A4528(P=0.0023,對數等級檢定(log-rank test))的小鼠的存活率。以5×106菌落形成單位(CFU,colony-forming unit)的K62克雷伯氏肺炎桿菌(C)攻擊五隻接種K62莢膜多醣(CPS)接合疫苗並用環磷醯胺處理以誘導嗜中性細胞減少症的小鼠。K62莢膜多醣(CPS)接合疫苗顯著保護免疫受損的小鼠免於K62克雷伯氏肺炎桿菌的感染(P=0.0448,對數等級檢定(log-rank test))。 Figures 7A to C show the efficacy of a K1 or K2 or K62 capsular polysaccharide (CPS) conjugate vaccine in mice. Five mice immunized with K1 or K2 capsular polysaccharide (CPS) conjugate vaccine were intraperitoneally injected with 1 × 10 4 colony forming units (CFU, K. pneumoniae NTUH-K2044). A) or NTUH-A4528. Vaccination with K1 or K2 capsular polysaccharide (CPS) conjugate vaccine significantly increased infection with K. pneumoniae NTUH-K2044 ( P = 0.0144, log-rank test) or NTUH-A4528 ( P = 0.0023, logarithm Survival rate of mice with log-rank test. Five K62 capsular polysaccharide (CPS) conjugate vaccines were challenged with 5×10 6 colony forming units (CFU, colony-forming unit) of K62 Klebsiella pneumoniae (C) and treated with cyclophosphamide to induce neurite Mice with sarcopenia. The K62 capsular polysaccharide (CPS) conjugate vaccine significantly protected immunocompromised mice from infection with K62 Klebsiella pneumoniae ( P = 0.0448, log-rank test).

圖8A和B顯示了K1和K2莢膜多醣(CPS)接合二價疫苗在 小鼠中的功效。經K1和K2莢膜多醣(CPS)接合二價疫苗免疫的五隻小鼠分別分別以腹腔注射接種1×104菌落形成單位(CFU,colony-forming unit)的克雷伯氏肺炎桿菌NTUH-K2044(A)或NTUH-A4528(B)。接種K1或K2莢膜多醣(CPS)接合疫苗顯著增加了感染克雷伯氏肺炎桿菌NTUH-K2044(P=0.0143,對數等級檢定(log-rank test))或NTUH-A4528(P=0.0023,對數等級檢定(log-rank test))的小鼠的存活率。 Figures 8A and B show the efficacy of K1 and K2 capsular polysaccharide (CPS)-conjugated bivalent vaccines in mice. Five mice immunized with K1 and K2 capsular polysaccharide (CPS)-conjugated bivalent vaccine were intraperitoneally injected with 1×10 4 colony forming units (CFU, Klebsiella pneumoniae NTUH-- K2044 (A) or NTUH-A4528 (B). Vaccination with K1 or K2 capsular polysaccharide (CPS) conjugate vaccine significantly increased infection with K. pneumoniae NTUH-K2044 ( P = 0.0143, log-rank test) or NTUH-A4528 ( P = 0.0023, logarithm Survival rate of mice with log-rank test.

圖9至12分別顯示K64莢膜多醣(CPS),K24莢膜多醣(CPS),K28莢膜多醣(CPS)和KN2莢膜多醣(CPS)的光譜。 Figures 9 to 12 show the spectra of K64 capsular polysaccharide (CPS), K24 capsular polysaccharide (CPS), K28 capsular polysaccharide (CPS) and KN2 capsular polysaccharide (CPS), respectively.

圖13A和B顯示以未經加工的K1莢膜多醣(CPS)或K1莢膜多醣(CPS)接合疫苗接種的小鼠,誘導出抗K1莢膜多醣(CPS)(A)和血清殺菌活性(B)的抗體。將不同量的K1(2000奈克至7.8125奈克,兩倍稀釋)轉移到膜上,並以未經加工的K1莢膜多醣(CPS)或K1莢膜多醣(CPS)接合疫苗接種的小鼠中獲得的血清(1:1000稀釋)用來做墨點法分析。 Figures 13A and B show that mice immunized with unprocessed K1 capsular polysaccharide (CPS) or K1 capsular polysaccharide (CPS) conjugate vaccine induced anti-K1 capsular polysaccharide (CPS) (A) and serum bactericidal activity ( B) antibodies. Different amounts of K1 (2000 Nike to 7.8125 Ng, two-fold dilution) were transferred to the membrane and vaccinated with unprocessed K1 capsular polysaccharide (CPS) or K1 capsular polysaccharide (CPS) vaccinated mice The serum obtained (1:1000 dilution) was used for dot analysis.

材料和方法Materials and Method

分離噬菌體Isolation of phage

噬菌體的純化和噬菌體的滴度測定係以瓊脂覆蓋的方法進行分離;噬菌體的感染性則係使用斑點測試進行確定(Lin TL,Hsieh PF,Huang YT,et al.Isolation of a bacteriophage and its depolymerase specific for K1 capsule of Klebsiella pneumoniae:implication in typing and treatment.The Journal of infectious diseases 2014;210:1734-44)。 Purification of phage and titer determination of phage were performed by agar-covered method; phage infectivity was determined by spot test ( Lin TL, Hsieh PF, Huang YT, et al.Isolation of a bacteriophage and its depolymerase specific For K1 capsule of Klebsiella pneumoniae: implication in typing and treatment. The Journal of infectious diseases 2014; 210:1734-44 ).

噬菌體基因組DNA和定序Phage genomic DNA and sequencing

噬菌體的基因體DNA係以QIAGEN的λ試劑組提取,其方法係修改自如下文獻(Lin TL,Hsieh PF,Huang YT,et al.Isolation of a bacteriophage and its depolymerase specific for K1 capsule of Klebsiella pneumoniae:implication in typing and treatment.The Journal of infectious diseases 2014;210:1734-44)。將噬菌體沉澱和裂解後,用苯酚/氯仿萃取DNA,並以乙醇進行沉澱,最後通過Illumina GAII定序來確定噬菌體的基因體序列。 The phage DNA of the phage was extracted with QIAGEN's lambda reagent set, and the method was modified from the following literature ( Lin TL, Hsieh PF, Huang YT, et al. Isolation of a bacteriophage and its depolymerase specific for K1 capsule of Klebsiella pneumoniae:implication In typing and treatment. The Journal of infectious diseases 2014;210:1734-44 ). After the phage was precipitated and cleaved, the DNA was extracted with phenol/chloroform, precipitated with ethanol, and finally sequenced by Illumina GAII to determine the genomic sequence of the phage.

蛋白質表現和純化Protein expression and purification

最近的研究已揭示了重組His標記的K1-ORF34蛋白的表現和純化(Lin TL,Hsieh PF,Huang YT,et al。Isolation of a bacteriophage and its defolymerase specific for K1 capsule of Klebsiella pneumoniae:implicationin typing and treatment.Journal of infectious diseases 2014;210:1734-44)。K2-orf16片段的擴增係先使用1611E-ORF16順向引子(5'-CAAACATCACGGTGACGCTAGCATGACCATTATCAAACG-3';SEQ ID NO:4)和1611E-ORF16反向引子(5'-CTTTTAACATTTAGCACTCGAGTGTAAAATTAATAATG-3';SEQ ID NO:5)來進行PCR,再以NheI和XhoI限制酶進行分解,之後將經分解後之K2-orf16片段克隆到pET28c質體(Novagen)中的NheI和XhpI雙重分解位點(亦經NheI和XhoI限制酶進行分解)。K62莢膜解聚酶的擴增係先使用Ref-K10-1 ORF6順向引子(5'-ATGAATAAGATGTTTACCCAG-3';SEQ ID NO:6)和Ref-K10-1 ORF6反向引子 (5'-AATTGGGCGAAGGCGTTCAAAC-3';SEQ ID NO:7)進行PCR,然後克隆到pET28c質體(Novagen)的平端化EcoRI分解位點中。將得到的質體轉化到BL21型大腸桿菌(DE3)中,利用0.4毫莫耳濃度(mM)的IPTG在16℃進行誘導過夜來表達重組His標籤蛋白,並按照試劑組(Qiagen)內說明書提供的方法進行蛋白質純化。 Recent studies have revealed the expression and purification of recombinant His-tagged K1-ORF34 protein (Lin TL, Hsieh PF, Huang YT, et al. Isolation of a bacteriophage and its defolymerase specific for K1 capsule of Klebsiella pneumoniae:implicationin typing and treatment .Journal of infectious diseases 2014;210:1734-44) . The K2- orf16 fragment was amplified using the 1611E-ORF16 forward primer (5'-CAAACATCACGGTGACGCTAGCATGACCATTATCAAACG-3'; SEQ ID NO: 4) and the 1611E-ORF16 reverse primer (5'-CTTTTAACATTTAGCACTCGAGTGTAAAATTAATAATG-3'; SEQ ID NO :5) to carry out PCR, and then decompose with NheI and XhoI restriction enzymes, and then clone the decomposed K2- orf16 fragment into the double decomposition sites of NheI and XhpI in pET28c plastid (Novagen) (also by NheI and XhoI) Restriction enzymes are broken down). The K62 capsular depolymerase was first amplified using the Ref-K10-1 ORF6 forward primer (5'-ATGAATAAGATGTTTACCCAG-3'; SEQ ID NO: 6) and the Ref-K10-1 ORF6 reverse primer (5'- AATTGGGCGAAGGCGTTCAAAC-3'; SEQ ID NO: 7) was subjected to PCR and then cloned into the blunt-ended EcoRI decomposing site of pET28c plastid (Novagen). The obtained plastid was transformed into BL21 type Escherichia coli (DE3), and the recombinant His-tag protein was expressed by induction with IPTG at 0.4 mmol (mM) at 16 ° C, and was provided according to the instructions in the reagent group (Qiagen). The method for protein purification.

克雷伯氏肺炎桿菌莢膜多醣(CPS)的純化Purification of Klebsiella pneumoniae capsular polysaccharide (CPS)

分別從克雷伯氏肺炎桿菌NTUH-K2044△wbbO,NTUH-A4528△wbbO和K62 reference△wbbO突變菌株中純化出K1,K2及K62的莢膜多醣(CPS)(Hsieh PF,Lin TL,Yang FL,et al.Lipopolysaccharide O1 antigen contributes to the virulence in Klebsiella pneumoniae causing pyogenic liver abscess.PloS one 2012;7:e33155),以消除O多醣的污染。將細菌在Luria瓊脂盤上,於37℃下培養12小時。將細菌收集並放入無菌水(重量/體積=1/10)中,在100℃下加熱10分鐘。冷卻後,將細菌溶液以15,000xg離心20分鐘。將上清液(體積)與冰冷的丙酮(4倍體積)混合以進行多醣沉澱。在12,000xg離心20分鐘後,得到一未經加工的莢膜多醣(CPS)沉澱物。將該沉澱物打散並懸浮在無菌水中並冷凍乾燥。未經加工的莢膜多醣(CPS)粉末在37℃下被核醣核酸酶(Roche)和脫氧核醣核酸酶I(Roche)分解24小時,然後與蛋白酶K在10毫莫耳濃度(mM)的三羥甲基氨基甲烷-HCl(pH 7.4)中進一步分解6至8小時。在100℃變性10分鐘後,上清液以孔洞大小約為8至10千道耳吞的透析膜進行透析純化並冷凍乾燥。部分純化的莢膜多醣(CPS)以0.1%疊氮化鈉在過濾的純水中進行洗脫,接著在TSK HW-65F管柱[1.6公分(直徑)×90公分(高度)]上進一步純化。通過苯酚- 硫酸法檢測含有碳水化合物的碎片並以純水進行透析(分子量閥值:1千道耳吞),並以冷凍乾燥濃縮。 K1, K2 and K62 capsular polysaccharides (CPS) were purified from Klebsiella pneumoniae NTUH-K2044 △ wbbO , NTUH -A4528 △ wbbO and K62 reference △ wbbO mutant strains (Hsieh PF, Lin TL, Yang FL) , et al. Lipopolysaccharide O1 antigen contributes to the virulence in Klebsiella pneumoniae causing pyogenic liver abscess. PloS one 2012; 7: e33155) to eliminate the contamination of the O polysaccharide. The bacteria were incubated on a Luria agar plate for 12 hours at 37 °C. The bacteria were collected and placed in sterile water (weight/volume = 1/10) and heated at 100 ° C for 10 minutes. After cooling, the bacterial solution was centrifuged at 15,000 x g for 20 minutes. The supernatant (volume) was mixed with ice-cold acetone (4 volumes) to carry out polysaccharide precipitation. After centrifugation at 12,000 xg for 20 minutes, a raw capsular polysaccharide (CPS) precipitate was obtained. The precipitate was broken up and suspended in sterile water and lyophilized. Unprocessed capsular polysaccharide (CPS) powder was decomposed by ribonuclease (Roche) and deoxyribonuclease I (Roche) for 24 hours at 37 ° C, then with proteinase K at 10 millimolar (mM) Further decomposition in hydroxymethylaminomethane-HCl (pH 7.4) for 6 to 8 hours. After denaturation at 100 ° C for 10 minutes, the supernatant was dialyzed and purified by dialysis on a dialysis membrane having a pore size of about 8 to 10 thousand aspirate. Partially purified capsular polysaccharide (CPS) was eluted with 0.1% sodium azide in filtered pure water, followed by further purification on a TSK HW-65F column [1.6 cm (diameter) x 90 cm (height)] . Carbohydrate-containing fragments were detected by phenol-sulfuric acid method and dialyzed against pure water (molecular weight threshold: 1 thousand auricular) and concentrated by lyophilization.

莢膜多寡醣之莢膜多醣(CPS)結構分析Structural Analysis of Capsular Polysaccharide (CPS) of Capsular Polysaccharides

先前的研究(Yang FL et al.,The Journal of biological chemistry 2011,286(24):21041-21051;Corsaro MM et al.,Carbohydrate research 2005,340(13):2212-2217)已揭示了克雷伯氏肺炎桿菌NTUH-K2044(K1)和A4528(K2)莢膜多醣的化學結構。 Previous studies ( YANG FL et al., The Journal of biological chemistry 2011, 286(24): 21041-21051; Corsaro MM et al., Carbohydrate research 2005, 340(13): 2212-2217 ) have revealed Cray Chemical structure of capsular polysaccharides of N. pneumoniae NTUH-K2044 (K1) and A4528 (K2).

質譜分析法:在基質輔助雷射脫附電離質譜分析上,先將0.5微升(μl)樣品與0.5微升(μl)基質溶液(20毫克/毫升2,5-二羥基苯甲酸(DHB))混合在50% ACN和1%硝酸水溶液(H3PO4)中,得一混合液,將混合液點在不銹鋼的盤子上,經空氣乾燥後,在4800型基質輔助雷射脫附電離-飛行時間/飛行時間質譜分析儀(Applied Biosystems,Foster City,CA)上,以加速電壓為20千伏特、電網電壓為16%的正反射器模式下進行分析。典型的光譜係由1000個激光照射產生的。使用Data-Explorer軟件(Applied Biosystems)(Tsai CF et al.,Neuromethods 2011,57:181-196),通過基線扣除和噪音去除處理原始光譜。在一次質譜分析上,在Ultraflex II基質輔助雷射脫附電離-飛行時間/飛行時間質譜儀(Bruker Daltonik GmbH,Germany)上進行測量。質譜係在質荷比(m/z)範圍從500到4,000的反射模式下獲得的。質譜/質譜分析係在升降機模式下進行的。質譜分析由中央研究院基因組研究中心的質譜儀實驗室(GRC Mass Core Facility)進行。 Mass spectrometry: 0.5 μl (μl) of sample with 0.5 μl (μl) of substrate solution (20 mg/ml 2,5-dihydroxybenzoic acid (DHB)) on matrix-assisted laser desorption ionization mass spectrometry Mixing in 50% ACN and 1% aqueous solution of nitric acid (H 3 PO 4 ), a mixture is obtained, and the mixture is spotted on a stainless steel plate, and after air drying, the matrix-assisted laser desorption ionization is carried out in a type 4800- The time-of-flight/time-of-flight mass spectrometer (Applied Biosystems, Foster City, CA) was analyzed in a specular reflector mode with an acceleration voltage of 20 kV and a grid voltage of 16%. A typical spectrum is produced by 1000 laser illumination. The original spectra were processed by baseline subtraction and noise removal using Data-Explorer software (Applied Biosystems) ( Tsai CF et al., Neuromethods 2011, 57: 181-196 ). Measurements were performed on a mass spectrometry analysis on an Ultraflex II matrix assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometer (Bruker Daltonik GmbH, Germany). Mass spectra were obtained in a reflection mode with a mass-to-charge ratio (m/z) ranging from 500 to 4,000. Mass spectrometry/mass spectrometry was performed in elevator mode. Mass spectrometry was performed by the GRC Mass Core Facility of the Central Research Institute Genomics Research Center.

核磁共振光譜分析:本發明記錄一重水中的小莢膜多醣(CPS)片段的核磁共振光譜分析結果;所有的二維核磁共振光譜分析實驗 都使用Bruker所提供的標準脈衝序列進行。核磁共振光譜分析數據係使用上旋轉3.1處理。核磁共振光譜分析實驗和共振分配:所有的核磁共振實驗都在Bruker AVANCE 600或AVANCE 800核磁共振質譜儀(Bruker,Karlsruhe,Germany)上進行,配備有三重(1H、13C和15N)共振冷凍探針,包括一屏蔽z-梯度。收集二維(2D)1H NMR、TOCSY和NOESY光譜。所有重組蛋白質的異核核磁共振實驗均按要求進行。通過CBCA(CO)NH、HNCACB、HNCO、HN(CA)CO和C(CO)NH的獨立連接性分析實現骨架原子的序列特異性分配。1H共振使用3D HAHB(CO)NH和HCCH-TOCSY分配。 Nuclear Magnetic Resonance Spectroscopy: The present invention records the results of nuclear magnetic resonance spectroscopy of small capsular polysaccharide (CPS) fragments in one heavy water; all two-dimensional nuclear magnetic resonance spectroscopy experiments were performed using standard pulse sequences provided by Bruker. The NMR spectral analysis data was processed using the up-rotation 3.1. Nuclear Magnetic Resonance Spectroscopy Experiment and Resonance Assignment: All NMR experiments were performed on a Bruker AVANCE 600 or AVANCE 800 NMR mass spectrometer (Bruker, Karlsruhe, Germany) equipped with triple ( 1 H, 13 C and 15 N) resonances. The cryoprobe includes a shielded z-gradient. Two-dimensional (2D) 1 H NMR, TOCSY and NOESY spectra were collected. Heteronuclear nuclear magnetic resonance experiments of all recombinant proteins were performed as required. Sequence-specific assignment of backbone atoms was achieved by independent connectivity analysis of CBCA (CO) NH, HNCACB, HNCO, HN (CA) CO, and C (CO) NH. 1 H resonance was assigned using 3D HAHB(CO)NH and HCCH-TOCSY.

酶裂解:通過β-氫消除反應,以K1裂解酶將K1莢膜多醣(CPS)降解,以產生葡萄醣醛酸的C-4和C-5之間的雙鍵,並測定其在232奈米波長吸光值的分光光度變化。在UV-VIS分光光度計(Ultrospec 4000 UV/Visible;Amersham Pharmacia Biotech,Piscataway,NJ,USA)中,25℃的條件下,在1毫升體積的比色管中進行三重複測定。將重組K1裂解酶(10微克/毫升)加入到含有25毫莫耳濃度(mM)、pH7.5的三羥甲基氨基甲烷(Tris)、3毫莫耳濃度(mM)的氯化鎂(MgCl2)和40微克/毫升的莢膜多醣(CPS)的反應混合物中,隨後測定15分鐘的232奈米波長吸光值的增加。對照組則不含K1裂解酶。 Enzymatic cleavage: K1 capsular polysaccharide (CPS) is degraded by K1 lyase by β-hydrogen elimination reaction to produce a double bond between C-4 and C-5 of glucuronic acid, and determined at 232 nm Spectrophotometric change in wavelength absorbance. Three replicate assays were performed in a 1 ml volume of colorimetric tube in a UV-VIS spectrophotometer (Ultrospec 4000 UV/Visible; Amersham Pharmacia Biotech, Piscataway, NJ, USA) at 25 °C. Recombinant K1 lyase (10 μg/ml) was added to magnesium trichloride (MgCl 2 ) containing 25 mmol (mM), pH 7.5, Tris, 3 mmol (mM) ) and a 40 μg/ml capsular polysaccharide (CPS) reaction mixture, followed by an increase in the absorbance at 232 nm wavelength for 15 minutes. The control group did not contain K1 lyase.

用3,5-二硝基水楊酸(DNSA)測定法(對於K2水解酶)來定量還原末端:本發明係通過估算3,5-二硝基水楊酸還原醣的濃度的方法來確定水解酶活性(DNAS)(Sigma-Aldrich)(Danner M et al.,European journal of biochemistry/FEBS 1993,215(3):653-661;Miller GL et al.,Analytical Chemistry 1959,31(3):426-428)。當樣品與DNSA混合併加熱以催化反應時, 通過裝置FlexStation 3將DNS的3'端的硝基還原成可在535奈米波長測量吸光值的胺。通過定量還原醣的濃度可以確定每種水解酶的條件。 The reduction end is quantified by the 3,5-dinitrosalicylic acid (DNSA) assay (for K2 hydrolase): the present invention is determined by estimating the concentration of 3,5-dinitrosalicylic acid reducing sugar Hydrolase activity (DNAS) (Sigma-Aldrich) ( Danner M et al., European journal of biochemistry/FEBS 1993, 215(3): 653-661; Miller GL et al., Analytical Chemistry 1959, 31(3): 426-428 ). When the sample was mixed with DNSA and heated to catalyze the reaction, the nitro group at the 3' end of the DNS was reduced by the device FlexStation 3 to an amine capable of measuring the absorbance at a wavelength of 535 nm. The conditions of each hydrolase can be determined by quantifying the concentration of the reducing sugar.

毛細管電泳:本發明式係在Beckman P/ACE MDQ毛細管電泳系統上進行毛細管電泳,該毛細管電泳系統配備有設置在230奈米波長的UV檢測器。在25℃下,以電動力學層析法塗覆的熔融石英毛細管(內徑77微米,總長度65公分,從注射點到檢測器50公分)進行分離和分析。操作緩衝液由磷酸鈉緩衝液(50毫莫耳濃度(mM),pH9.0)組成。將緩衝液通過孔洞直徑0.2微米的膜濾器真空過濾脫氣,並在超聲波水槽中振盪。每次執行前,毛細管先以0.1莫耳濃度的NaOH清洗5分鐘,再以二次蒸餾水清洗5分鐘,然後用操作緩衝液處理5分鐘。待分析的樣品使用壓力注射模式自動注射,其中樣品加壓15秒。使用正常極性,在20千伏特(約65毫安培)下進行毛細管電泳。 Capillary Electrophoresis: The present invention is subjected to capillary electrophoresis on a Beckman P/ACE MDQ capillary electrophoresis system equipped with a UV detector set at a wavelength of 230 nm. Separation and analysis were performed on a fused silica capillary (inner diameter 77 μm, total length 65 cm from the injection point to the detector 50 cm) coated by electrokinetic chromatography at 25 °C. The operating buffer consisted of sodium phosphate buffer (50 millimolar (mM), pH 9.0). The buffer was degassed by vacuum filtration through a membrane filter having a pore diameter of 0.2 μm, and oscillated in an ultrasonic water tank. Prior to each run, the capillary was first washed with 0.1 molar NaOH for 5 minutes, then with double distilled water for 5 minutes, and then treated with the operating buffer for 5 minutes. The sample to be analyzed was automatically injected using a pressure injection mode in which the sample was pressurized for 15 seconds. Capillary electrophoresis was carried out at 20 kV (about 65 mA) using normal polarity.

分解後的莢膜多醣(CPS)與DT-CRM197載體蛋白的接合Decomposition of capsular polysaccharide (CPS) and DT-CRM197 carrier protein after decomposition

以kochetkov胺化製備醣基胺的方法:於還原醣水溶液(20毫克的還原醣溶解在3.0毫升的二次蒸餾水中)中加入碳酸銨(3.0克,過量)。將得到的懸浮液密封,並在室溫下攪拌7天,之後將反應混合物冷凍乾燥直至殘餘物的干重保持恆定而獲得無色的固態醣基胺,且使用時不經進一步的純化。 Method for the preparation of glycosylamine by akochetkov amination: Ammonium carbonate (3.0 g, excess) was added to a reducing sugar aqueous solution (20 mg of reducing sugar dissolved in 3.0 ml of double distilled water). The resulting suspension was sealed and stirred at room temperature for 7 days, after which time the reaction mixture was lyophilized until the dry weight of the residue remained constant to afford a colorless solid glycosamine, which was used without further purification.

通過醣基胺連接硫醇連接物的方法:於醣基胺溶液(20毫克的醣基胺溶解在3.0毫升的磷酸鹽緩衝生理鹽水(pH7.4)中)中加入3,3'-二硫代雙(磺基琥珀酰亞胺基丙酸酯,DTSSP,20毫克,過量),之後加入1莫耳濃度的NaOH溶液使反應混合物維持在pH 7.4至7.8,並在室溫下攪拌16 小時。於前述之溶液中加入二硫蘇醣醇(DTT,20毫克,過量),該混合物在40℃下攪拌1-2小時。最後進行減壓除去溶劑,殘留物經Sephadex LH-20柱層析純化,用二次蒸餾水洗脫,得到所需的產物:分解的莢膜多醣-硫醇(CPS-SH)。 Method for linking a thiol linker via a glycosylamine: adding 3,3'-disulfide to a glycosylamine solution (20 mg of glycosylamine dissolved in 3.0 ml of phosphate buffered saline (pH 7.4)) Substituted bis(sulfosuccinimidyl propionate, DTSSP, 20 mg, excess), followed by addition of 1 molar concentration of NaOH solution to maintain the reaction mixture at pH 7.4 to 7.8 and stirred at room temperature for 16 hours. Dithiothreitol (DTT, 20 mg, excess) was added to the above solution, and the mixture was stirred at 40 ° C for 1-2 hours. Finally, the solvent was removed under reduced pressure, and the residue was purified and purified eluted from EtOAc EtOAc EtOAc EtOAc.

CRM197-馬來醯亞胺(CRM197-maleimid)的合成:在通過交替溶解在水中並透析(Amicon Ultra-0.5,10千道耳吞)將市售CRM197(1.0毫克)的鹽除去之後,將殘餘物溶於磷酸鹽緩衝生理鹽水(pH6.5,1.0毫升)中,並轉移到樣品瓶。於該溶液中加入N-ε-馬來醯亞胺(maleimid)己酰氧基磺基琥珀酰亞胺酯(Sulfo-EMCS,1.0毫克,8.22×10-6莫耳),然後在室溫下攪拌反應2小時,再用Amicon Ultra-0.5(10千道耳吞)純化該混合物。在使用基質輔助雷射脫附電離-飛行時間光譜分析檢查分子量和BCA測定以計算蛋白質的總量之後,將CRM197-馬來醯亞胺(CRM197-maleimid)保存在磷酸鹽緩衝生理鹽水(pH7.2,1.0毫克/毫升)中,於下一步使用。根據基質輔助雷射脫附電離-飛行時間光譜分析的數據,可以計算馬來醯亞胺的官能團的數量。例如,當CRM197-馬來醯亞胺(CRM197-maleimid)的分子量為61841時,便可以確定CRM197-馬來醯亞胺(CRM197-maleimid)上的馬來醯亞胺官能團的數量。 Synthesis of CRM197-maleimide (CRM197-maleimid) : Residues after removal of commercially available CRM197 (1.0 mg) salt by alternately dissolving in water and dialyzed (Amicon Ultra-0.5, 10 thousand auricular) The material was dissolved in phosphate buffered saline (pH 6.5, 1.0 ml) and transferred to a vial. To this solution was added N-ε-maleimide hexanoyloxysulfosuccinimide ester (Sulfo-EMCS, 1.0 mg, 8.22×10 -6 mol), then at room temperature The reaction was stirred for 2 hours and the mixture was purified again with Amicon Ultra-0.5 (10 kA). CRM197-maleimide ( CRM197-maleimid ) was stored in phosphate buffered saline (pH 7. After matrix-assisted laser desorption ionization-time-of-flight spectroscopy analysis of molecular weight and BCA determination to calculate the total amount of protein. 2, 1.0 mg / ml), used in the next step. Based on data from matrix-assisted laser desorption ionization-time-of-flight spectroscopy, the number of functional groups of maleimide can be calculated. For example, when the molecular weight of CRM197-maleimide ( CRM197-maleimid ) is 61841, the number of maleimide functional groups on CRM197-maleimide ( CRM197-maleimid ) can be determined.

分解的莢膜多醣-CRM197(CPS-CRM197)接合物(1至4)的合成:將CRM197-馬來醯亞胺(CRM197-maleimid)溶於磷酸鹽緩衝生理鹽水(pH7.2,1.0毫克/毫升)中,然後向溶液中加入不同量的分解的莢膜多醣-硫醇(CPS-SH)(在磷酸鹽緩衝生理鹽水中為5.0毫克/毫升,pH7.2)。該混合物在室溫下攪拌2小時。通過使用Amicon Ultra-0.5(10千道耳吞) 來純化經分解的莢膜多醣-CRM197(CPS-CRM197)接合物,以通過透析移除非反應性分解的莢膜多醣-硫醇(CPS-SH)和磷酸鈉鹽。再以通過基質輔助雷射脫附電離-飛行時間光譜分析來確定該所獲得的經分解的莢膜多醣-CRM197(CPS-CRM197)接合物的碳水化合物摻入率。非反應性分解的莢膜多醣-硫醇(CPS-SH)與二硫蘇醣醇(DTT)反應後,經LH-20管柱層析純化即可回收。通過改變經分解的莢膜多醣-硫醇(CPS-SH)的量,我們可以將不同比例的寡醣抗原決定位接合到CRM197載體上。 Synthesis of decomposed capsular polysaccharide-CRM197 (CPS-CRM197) conjugate (1 to 4): CRM197-maleimide ( CRM197-maleimid ) was dissolved in phosphate buffered saline (pH 7.2, 1.0 mg/ In ml), different amounts of decomposed capsular polysaccharide-thiol (CPS-SH) (5.0 mg/ml in phosphate buffered saline, pH 7.2) were then added to the solution. The mixture was stirred at room temperature for 2 hours. The decomposed capsular polysaccharide-CRM197 (CPS-CRM197) conjugate was purified by using Amicon Ultra-0.5 (10 thousand octaves) to remove non-reactive decomposed capsular polysaccharide-thiol (CPS- by dialysis) SH) and sodium phosphate salt. The carbohydrate incorporation rate of the obtained decomposed capsular polysaccharide-CRM197 (CPS-CRM197) conjugate was determined by matrix-assisted laser desorption ionization-time-of-flight spectroscopy. The non-reactive decomposed capsular polysaccharide-thiol (CPS-SH) is reacted with dithiothreitol (DTT) and recovered by column chromatography on LH-20. By varying the amount of decomposed capsular polysaccharide-thiol (CPS-SH), we can ligate different ratios of oligosaccharide epitopes to the CRM197 vector.

疫苗接種Vaccination

將莢膜多醣(CPS)接合的疫苗在磷酸鹽緩衝生理鹽水中稀釋至濃度為100微克/毫升,並將醣脂佐劑C34在二甲基亞碸(DMSO)中溶解至濃度為100微克/毫升。100微升由莢膜多醣(CPS)接合疫苗(2微克聚醣)和2微克佐劑組成的疫苗混合物以肌肉注射(IM)的方式施打於小鼠。對於K1和K2疫苗:五週齡的雌性BALB/c小鼠接受疫苗三次,每次間隔一周。對於K62疫苗:五週齡的雌性BALB/c小鼠以每兩週接種一次疫苗,共五次。 The capsular polysaccharide (CPS)-conjugated vaccine was diluted to a concentration of 100 μg/ml in phosphate buffered saline, and the glycolipid adjuvant C34 was dissolved in dimethylammonium (DMSO) to a concentration of 100 μg/ ML. One hundred microliters of a vaccine mixture consisting of a capsular polysaccharide (CPS) conjugate vaccine (2 micrograms of glycans) and 2 micrograms of adjuvant was administered intramuscularly (IM) to mice. For K1 and K2 vaccines: Five-week-old female BALB/c mice received the vaccine three times, one week apart. For the K62 vaccine: Five-week-old female BALB/c mice were vaccinated once every two weeks for a total of five times.

對抗莢膜多醣(CPS)的抗體的檢測Detection of antibodies against capsular polysaccharide (CPS)

通過免疫斑點試驗將不同量的純化的莢膜多醣(CPS)轉移到膜上。通過培養疫苗接種後的小鼠的血清(1:1000稀釋)來檢測抗莢膜多醣(CPS)的抗體。 Different amounts of purified capsular polysaccharide (CPS) were transferred to the membrane by immunospot assay. The antibody against capsular polysaccharide (CPS) was detected by culturing the serum (1:1000 dilution) of the mouse after vaccination.

血清殺菌試驗Serum bactericidal test

小鼠血清在56℃下培養30分鐘後,用生理鹽水做二倍連續稀釋(1/2倍至1/256倍)。將25微升(μl)稀釋的血清和12.5微升(μl)細菌懸 浮液(100菌落形成單位(CFU,colony-forming unit))在37℃下培養15分鐘。培養後,加入12.5微升(μl)新生兔子的補體(Pel-Freez,USA)並在37℃下培養1小時。然後將反應混合物鋪在LB盤上。培養至隔天後,計算存活細菌的數量。血清殺菌力價被定義為血清稀釋度的倒數,對比於僅接種佐劑的對照組小鼠,接種疫苗小鼠的細菌-補體-血清達到50%的殺菌力。 The mouse serum was incubated at 56 ° C for 30 minutes, and then serially diluted twice (1/2 times to 1/256 times) with physiological saline. 25 microliters (μl) of diluted serum and 12.5 microliters (μl) of bacterial suspension (100 colony forming units (CFU) were incubated at 37 ° C for 15 minutes. After the incubation, 12.5 μl (μl) of newborn rabbit complement (Pel-Freez, USA) was added and incubated at 37 ° C for 1 hour. The reaction mixture was then spread on an LB disk. After the incubation to the next day, the number of viable bacteria was counted. Serum bactericidal valence was defined as the reciprocal of serum dilution, and the bacteriocidal-suppressed mice achieved 50% bactericidal power compared to control mice vaccinated only with adjuvant.

保護力分析Protection analysis

對於K1和K2疫苗:疫苗接種後一周(每組5隻小鼠),包含疫苗接種的或對照小鼠(僅佐劑),用腹腔注射(IP)方式接種1×104菌落形成單位(CFU,colony-forming unit)的NTUH-K2044或NTUH-A4528菌株。實驗進行30天以觀察小鼠的死亡率。通過Kaplan-Meier分析法並以log-rank檢驗分析小鼠的生存率;P值<0.05則被認為具有統計學上的顯著差異。對於K62疫苗:接種疫苗組或對照組小鼠(僅用佐劑)每兩天以環磷醯胺(100毫克/公斤)進行前處理兩次。在環磷醯胺處理的小鼠中,白血球和嗜中性球的數量顯著偏低。在環磷醯胺處理後兩天(每組5隻小鼠),以5×106菌落形成單位(CFU,colony-forming unit)的K62參考菌株對這些小鼠進行腹腔注射接種。進行30天的觀察,以確認小鼠的死亡率。通過Kaplan-Meier分析法並以log-rank檢驗分析小鼠的生存率;P值<0.05則被認為具有統計學上的顯著差異。本發明所述的其他免疫原的疫苗皆以如上所述的類似方法進行測定。 For K1 and K2 vaccines: one week after vaccination (5 mice per group), vaccinated or control mice (adjuvant only), 1 x 10 4 colony forming units (CFU) were injected intraperitoneally (IP) , colony-forming unit) NTUH-K2044 or NTUH-A4528 strain. The experiment was carried out for 30 days to observe the mortality of the mice. The survival rate of the mice was analyzed by Kaplan-Meier analysis and by log-rank test; P values <0.05 were considered to be statistically significant differences. For the K62 vaccine: vaccinated or control mice (adjuvant only) were pretreated twice with cyclophosphamide (100 mg/kg) every two days. In cyclophosphamide-treated mice, the number of white blood cells and neutrophils was significantly lower. Two days after cyclophosphamide treatment (5 mice per group), these mice were intraperitoneally inoculated with a K62 reference strain of 5 x 10 6 colony forming units (CFU). A 30-day observation was performed to confirm the mortality of the mice. The survival rate of the mice was analyzed by Kaplan-Meier analysis and by log-rank test; P values <0.05 were considered to be statistically significant differences. The vaccines of the other immunogens described in the present invention were all assayed in a similar manner as described above.

實施方式1:分離感染克雷伯氏肺炎桿菌1611E株(K2莢膜型)的噬菌體Embodiment 1: Isolation of phage infected with Klebsiella pneumoniae 1611E strain (K2 capsular type)

先前的研究已揭示了來自K1特異性噬菌體NTUH-K2044-K1-1的K1莢膜解聚酶(K1-ORF34)(Lin TL et al.,The Journal of infectious diseases 2014,210(11):1734-1744)。為了分離K2莢膜降解酶,從未處理的水中分離出感染克雷伯氏肺炎桿菌1611E株(K2型莢膜)的噬菌體。檢測到具有半透明光暈的透明菌斑,並將噬菌體命名為1611E-K2-1。使用wzy引子對另外7個莢膜型K2菌株的莢膜類型進行聚合酶連鎖反應測定來評估1611E-K2-1噬菌體K2型莢膜的敏感性。該噬菌體可能會感染所有K2型莢膜的菌株。 Previous studies have revealed K1 capsular depolymerase (K1-ORF34) from the K1-specific phage NTUH-K2044-K1-1 ( Lin TL et al., The Journal of infectious diseases 2014, 210(11): 1734 -1744 ). In order to isolate the K2 capsular degrading enzyme, phage infected with Klebsiella pneumoniae 1611E strain (K2 type capsule) were isolated from untreated water. A clear plaque with a translucent halo was detected and the phage was named 1611E-K2-1. The sensitivity of the 1611E-K2-1 phage K2 type capsule was evaluated by performing a polymerase chain reaction assay on the capsule type of the other 7 capsular type K2 strains using the wzy primer. This phage may infect all strains of the K2 type capsule.

實施方式2:鑑定推定的莢膜解聚酶Embodiment 2: Identification of putative capsular depolymerase

鑑定推定的K2莢膜解聚酶Putative K2 capsular depolymerase

噬菌體1611E-K2-1的全基因體長度被確定為47,797個鹼基對。基因體序列的註釋顯示該噬菌體預計包含17個超過500個鹼基對的開放閱讀區(ORF)。噬菌體1611E-K2-1的開放閱讀區(ORF)分析顯示,預測的ORF16與尾部突起63D唾液酸酶顯示出46%的氨基酸同一性,顯示該蛋白可能對應於莢膜解聚酶。K2-orf16基因被克隆成質體並在大腸桿菌中表達。純化的重組K2-ORF16蛋白的純度如圖1A所示。當在接種克雷伯氏肺炎桿菌1611E的盤子上點樣時,重組的K2-ORF16蛋白會產生類似於斑塊暈的半透明斑點(圖1B)。從1611E噬菌體中提取莢膜多醣(CPS),然後用十二烷基硫酸鈉聚丙烯醯胺凝膠電泳(SDS-PAGE)分離K2-ORF16蛋白,並用阿爾西藍染色(圖1C)。結果證明,K2-ORF16蛋白可以分解K2莢膜多醣(CPS)。這種酶對K2型莢膜的敏感性在另外7個莢膜型K2菌株中得到進一步證實。結果顯示K2-ORF16蛋白係K2莢膜解聚酶。 The whole genome length of phage 1611E-K2-1 was determined to be 47,797 base pairs. Annotation of the genome sequence indicates that the phage is predicted to contain 17 open reading regions (ORFs) of more than 500 base pairs. Open reading region (ORF) analysis of phage 1611E-K2-1 revealed that predicted ORF16 and tail-protrusion 63D sialidase showed 46% amino acid identity, indicating that the protein may correspond to capsular depolymerase. The K2- orf16 gene was cloned into plastids and expressed in E. coli. The purity of the purified recombinant K2-ORF16 protein is shown in Figure 1A. When spotted on a plate inoculated with K. pneumoniae 1611E, the recombinant K2-ORF16 protein produced a translucent spot similar to a plaque halo (Fig. 1B). The capsular polysaccharide (CPS) was extracted from the 1611E phage, and then the K2-ORF16 protein was isolated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and stained with Alcian blue (Fig. 1C). The results demonstrate that K2-ORF16 protein can decompose K2 capsular polysaccharide (CPS). The sensitivity of this enzyme to the K2 type capsule was further confirmed in the other seven capsular K2 strains. The results show that the K2-ORF16 protein is a K2 capsular depolymerase.

鑑定推定的K62莢膜解聚酶Putative K62 capsular depolymerase

從未處理的水中分離出感染莢膜型K10和K62菌株的噬菌 體,表示為噬菌體Ref-K10-1。從噬菌體基因組測序分析中鑑定出兩種推定的莢膜解聚酶(ORF5和ORF6)。在這兩種蛋白質表現後,ORF6被證實為K62莢膜解聚酶,可在接種K62參考菌株的盤子上產生半透明斑點。 Phage infected with the capsular type K10 and K62 strains were isolated from untreated water and expressed as phage Ref-K10-1. Two putative capsular depolymerases (ORF5 and ORF6) were identified from phage genome sequencing analysis. After expression of these two proteins, ORF6 was confirmed to be a K62 capsular depolymerase, which produced a translucent spot on the plate inoculated with the K62 reference strain.

實施方式3:分析K1-ORF34莢膜解聚酶分解的莢膜多醣(CPS)Embodiment 3: Analysis of K1-ORF34 capsular depolymerase-decomposed capsular polysaccharide (CPS)

進一步分析K1-ORF34莢膜解聚酶分解的莢膜多醣(CPS)的結構。K1莢膜多醣(CPS)在與純化的K1-ORF34蛋白培養後,被還原成寡醣。經膠體滲透層析儀和通過質譜分析和毛細管電泳分析的分離顯示,大部分寡醣係六醣,而九醣係非常少量的,即為三醣單元的二聚體和三聚體(圖2A和2B)。從分子量為1145的寡醣的串連質譜分析中可以看出,葡萄醣醛酸被還原成雙鍵衍生物,在232奈米波長處被吸收,維持了包括丙酮酸化和乙醯化的修飾(圖2C)。分解的寡醣的結構以核磁共振光譜進行測定(圖2D)。K1-ORF34分解的寡醣仍然可以被抗K1抗血清識別(數據未顯示)。因此,K1-ORF34酶屬於一種裂解酶,可用於K1莢膜多醣(CPS)接合疫苗的開發。 The structure of the capsular polysaccharide (CPS) decomposed by K1-ORF34 capsular depolymerase was further analyzed. The K1 capsular polysaccharide (CPS) is reduced to an oligosaccharide after being cultured with the purified K1-ORF34 protein. Separation by colloidal permeation chromatography and analysis by mass spectrometry and capillary electrophoresis revealed that most of the oligosaccharides were hexasaccharides, while the nonasaccharides were very small, ie dimers and trimers of trisaccharide units (Fig. 2A). And 2B). From the tandem mass spectrometry analysis of oligosaccharides with a molecular weight of 1145, it can be seen that glucuronic acid is reduced to a double bond derivative, which is absorbed at a wavelength of 232 nm, and the modification including pyruvate and acetamidine is maintained (Fig. 2C). The structure of the decomposed oligosaccharide was measured by nuclear magnetic resonance spectroscopy (Fig. 2D). K1-ORF34 decomposed oligosaccharides were still recognized by anti-K1 antisera (data not shown). Therefore, the K1-ORF34 enzyme belongs to a lytic enzyme and can be used for the development of a K1 capsular polysaccharide (CPS) conjugate vaccine.

實施方式4:分析莢膜解聚酶分解的莢膜多醣(CPS)Embodiment 4: Analysis of capsular polysaccharide (CPS) decomposed by capsular depolymerase

分析K2-ORF16莢膜解聚酶分解的莢膜多醣(CPS)Analysis of K2-ORF16 capsular depolymerase-decomposed capsular polysaccharide (CPS)

進一步分析被K2-ORF16莢膜解聚酶分解的K2莢膜多醣(CPS)的結構。在與純化的K2-ORF16蛋白一起培養後,K2莢膜多醣(CPS)會被還原成寡醣。光譜結果顯示,兩種不同分子量(質荷比(m/z)為703和1365)的寡醣組成在經酵素的降解後被釋放出來(圖3A),並通過電灑游離質譜-質譜聯用分析進一步檢查(圖3B和3C)。根據之前揭示的K2莢膜多醣(CPS)的結構,K2-ORF16分解的莢膜多醣(CPS)的主要產物係四醣 (一個重複單元),次要產物係八醣(兩個重複單元)。因此,K2-ORF16酵素屬於一種水解酶,可用於開發K2莢膜多醣(CPS)結合疫苗。 The structure of K2 capsular polysaccharide (CPS) decomposed by K2-ORF16 capsular depolymerase was further analyzed. After incubation with the purified K2-ORF16 protein, the K2 capsular polysaccharide (CPS) is reduced to oligosaccharides. Spectroscopic results showed that two different molecular weights (mass-to-charge ratio (m/z) of 703 and 1365) were released after degradation by enzyme (Fig. 3A) and coupled by electrospray ionization mass spectrometry-mass spectrometry. The analysis was further examined (Figures 3B and 3C). According to the structure of the previously disclosed K2 capsular polysaccharide (CPS), the main product of the K2-ORF16 decomposed capsular polysaccharide (CPS) is tetrasaccharide (one repeating unit), and the secondary product is octasaccharide (two repeating units). Therefore, K2-ORF16 enzyme belongs to a hydrolase and can be used to develop a K2 capsular polysaccharide (CPS) conjugate vaccine.

分析K62莢膜解聚酶分解的莢膜多醣(CPS)。The capsular polysaccharide (CPS) decomposed by K62 capsule depolymerase was analyzed.

進一步分析經K62莢膜解聚酶分解的K62莢膜多醣(CPS)的結構。在與純化的K62莢膜解聚酶一起培養後,K62莢膜多醣(CPS)會被還原成寡醣。從基質輔助雷射脫附游離/飛行時間質譜分析和串連質譜的分析結果可以看出,分解的K62莢膜多醣(CPS)產物主要為兩個重複單元(十醣),及少量的一個重複單元(五醣)(圖4)。從質量分析上看,K62莢膜解聚酶屬於一種水解酶,可用於K62莢膜多醣(CPS)接合疫苗的研製。 The structure of K62 capsular polysaccharide (CPS) decomposed by K62 capsular depolymerase was further analyzed. After incubation with purified K62 capsular depolymerase, K62 capsular polysaccharide (CPS) is reduced to oligosaccharides. From the results of matrix-assisted laser desorption/time-of-flight mass spectrometry and tandem mass spectrometry, it can be seen that the decomposed K62 capsular polysaccharide (CPS) product is mainly composed of two repeating units (decasaccharides), and a small amount of one repeat. Unit (pentose sugar) (Figure 4). From the quality analysis point of view, K62 capsular depolymerase belongs to a hydrolase and can be used in the development of K62 capsular polysaccharide (CPS) conjugate vaccine.

根據如上所述的類似方法來分析KN2,K24,K28和K64的莢膜解聚酶分解的莢膜多醣(CPS)。 The capsular polysaccharide (CPS) decomposed by the capsular depolymerase of KN2, K24, K28 and K64 was analyzed according to a similar method as described above.

實施方式5:莢膜多醣(CPS)接合疫苗Embodiment 5: capsular polysaccharide (CPS) conjugate vaccine

用於接合CRM197載體蛋白的K1、K2、K24、K28、K62和K64寡醣的主要醣鍊長度如下:六醣(K1莢膜多醣(CPS)的兩個重複單元)、四醣(K2莢膜多醣(CPS)的一個重複單元)、十二醣(K62莢膜多醣(CPS)的兩個重複單元)、六醣(K64莢膜多醣(CPS)的一個重複單元)、五醣(K24莢膜多醣(CPS)的一個重複單元)和六醣(K28莢膜多醣(CPS)的一個重複單元)。通過基質輔助雷射脫附游離/飛行時間質譜分析質譜測定抗原決定位的比例,並相對應地計算出聚醣的量。以K1為代表,透過分解的K1-莢膜多醣-硫醇(CPS-SH)數量的改變,我們可以得到免疫原比率從1:1.4到1:10.2;K1疫苗的詳細免疫原比例如下表所示。免疫原比率 通過基質輔助雷射脫附游離/飛行時間質譜分析質譜測定。 The major sugar chain lengths of the K1, K2, K24, K28, K62 and K64 oligosaccharides used to bind the CRM197 carrier protein are as follows: hexose (two repeating units of K1 capsular polysaccharide (CPS)), tetrasaccharide (K2 capsule) a repeating unit of polysaccharide (CPS), dodecaose (two repeating units of K62 capsular polysaccharide (CPS)), hexose (a repeating unit of K64 capsular polysaccharide (CPS)), pentasaccharide (K24 capsule) A repeating unit of polysaccharide (CPS) and a hexasaccharide (a repeating unit of K28 capsular polysaccharide (CPS)). The ratio of epitopes was determined by matrix-assisted laser desorption free/time-of-flight mass spectrometry mass spectrometry and the amount of glycans was calculated accordingly. With K1 as the representative, we can get the immunogen ratio from 1:1.4 to 1:10.2 through the change of the number of decomposed K1-capsular polysaccharide-thiol (CPS-SH); the detailed immunogen ratio of K1 vaccine is shown in the following table. Show. Immunogen ratio was determined by matrix-assisted laser desorption free/time-of-flight mass spectrometry mass spectrometry.

實施方式6:毒理學試驗(以K1作為代表性實例)Embodiment 6: Toxicology test (with K1 as a representative example)

記錄每次免疫接種K1莢膜多醣(CPS)接合疫苗前一天和後一天的小鼠的體重(圖5A)和直腸溫度(圖5B)。在第一次、第二次和第三次免疫接種K1莢膜多醣(CPS)接合疫苗後一周收集小鼠的血清,然後測定肝臟(血清轉胺酶(ALT))和腎臟(血尿素氮(BUN)和肌酸酐)的功能(圖5C)。這些結果顯示,在免疫接種三劑K1莢膜多醣(CPS)接合疫苗的小鼠中並未觀察到副作用。K2、K24、K28、K62或K64的莢膜多醣(CPS)的毒理學測定也按照與上述相似的方法進行。 The body weight (Fig. 5A) and rectal temperature (Fig. 5B) of the mice one day before and after the immunization of the K1 capsular polysaccharide (CPS) conjugate vaccine were recorded. The sera of the mice were collected one week after the first, second and third immunizations of the K1 capsular polysaccharide (CPS) conjugate vaccine, and then the liver (serum transaminase (ALT)) and kidney (blood urea nitrogen) were measured. The function of BUN) and creatinine) (Fig. 5C). These results showed that no side effects were observed in mice immunized with three doses of K1 capsular polysaccharide (CPS) conjugate vaccine. Toxicological determination of capsular polysaccharide (CPS) of K2, K24, K28, K62 or K64 was also carried out in a manner similar to that described above.

實施方式7:抗體反應和血清殺菌試驗Embodiment 7: Antibody reaction and serum bactericidal test

採集以肌肉內注射方式施用K1、K2或K62莢膜多醣(CPS)接合疫苗的小鼠的血清,用於抗體檢測和殺菌測定。免疫斑點試驗的結果顯示,由莢膜多醣(CPS)接合疫苗誘導的抗體可以與其原始的莢膜多醣(CPS)相互作用(圖6)。 Serum from mice administered K1, K2 or K62 capsular polysaccharide (CPS) conjugate vaccine by intramuscular injection was collected for antibody detection and bactericidal assays. The results of the immunospot assay showed that antibodies induced by the capsular polysaccharide (CPS) conjugate vaccine could interact with their original capsular polysaccharide (CPS) (Fig. 6).

殺菌測定的結果顯示,與來自未免疫小鼠的血清相比,來自經K1莢膜多醣(CPS)接合疫苗免疫的小鼠的血清,即使係使用1:128稀釋的血清,仍可以殺死大於50%的K1細菌(殺菌力價為32至128)。免疫K2莢 膜多醣(CPS)接合疫苗的小鼠的血清的K2細菌的殺菌力價為8至32。在免疫K62莢膜多醣(CPS)接合疫苗的小鼠的40%的血清中可檢測到對K62細菌的殺菌活性(殺菌力價為8至32)。因此,莢膜多醣(CPS)接合疫苗可成功誘導小鼠中莢膜型特異性抗體的產生,並且該抗體具有殺菌作用。 The results of the bactericidal assay showed that the sera from mice immunized with the K1 capsular polysaccharide (CPS) conjugate vaccine, even with serum 1:128 diluted, could kill more than the sera from non-immunized mice. 50% of K1 bacteria (the bactericidal power is 32 to 128). The bactericidal power of K2 bacteria in the serum of mice immunized with K2 capsular polysaccharide (CPS) conjugate vaccine was 8 to 32. The bactericidal activity against K62 bacteria was detected in 40% of the sera of mice immunized with K62 capsular polysaccharide (CPS) conjugate vaccine (bactericidal power price was 8 to 32). Therefore, the capsular polysaccharide (CPS) conjugate vaccine can successfully induce the production of a capsule-type specific antibody in mice, and the antibody has a bactericidal action.

實施方式8:保護試驗Embodiment 8: Protection test

本發明亦使用克雷伯氏肺炎桿菌(K.pneumoniae)攻擊免疫小鼠,以評估疫苗是否具有體內保護作用。以每週一次肌肉注射的方式對小鼠進行K1、K2莢膜多醣(CPS)接合疫苗的免疫接種(對照組僅給予佐劑)。在第三次免疫接種一周後,用1×104菌落形成單位(CFU,colony-forming unit)克雷伯氏肺炎桿菌NTUH-K2044或NTUH-A4528對小鼠進行腹腔注射感染。用克雷伯氏肺炎桿菌攻擊後30天的結果顯示,小鼠在接受K1或K2莢膜多醣(CPS)接合疫苗後,其存活率顯著高於僅接受佐劑的小鼠的存活率(圖7A和B)。 The present invention also uses K. pneumoniae to challenge immunized mice to assess whether the vaccine has in vivo protective effects. Mice were immunized with K1, K2 capsular polysaccharide (CPS) conjugate vaccine by intramuscular injection once a week (control group only adjuvant). One week after the third immunization, mice were intraperitoneally injected with 1 x 10 4 colony forming units (CFU, K. pneumoniae NTUH-K2044 or NTUH-A4528). The results of 30 days after challenge with Klebsiella pneumoniae showed that the survival rate of mice after receiving K1 or K2 capsular polysaccharide (CPS) conjugate vaccine was significantly higher than that of mice receiving adjuvant only (Fig. 7A and B).

然後用5×106菌落形成單位(CFU,colony-forming unit)的K62細菌攻擊用環磷醯胺處理以誘導嗜中性球減少症並免疫接種K62莢膜多醣(CPS)接合疫苗的小鼠。K62莢膜多醣(CPS)接合疫苗顯著保護了免疫受損的小鼠免於K62細菌的感染(圖7C)。 Then, K62 bacteria in a 5×10 6 colony forming unit (CFU, colony-forming unit) were used to challenge mice treated with cyclophosphamide to induce neutropenia and immunized with K62 capsular polysaccharide (CPS) conjugate vaccine. . The K62 capsular polysaccharide (CPS) conjugate vaccine significantly protected immunocompromised mice from infection with K62 bacteria (Fig. 7C).

實施方式9:K1和K2莢膜多醣(CPS)接合二價疫苗的功效Embodiment 9: Efficacy of K1 and K2 capsular polysaccharide (CPS) conjugated bivalent vaccine

引起侵襲性感染的克雷伯氏肺炎桿菌株的普遍莢膜型係K1和K2莢膜型。因此,進一步檢查了二價疫苗(等量的K1和K2莢膜多醣(CPS)接合疫苗的混合物)的保護效力(圖8A和8B)。免疫接種佐劑組的小鼠經腹腔注射感染1×104菌落形成單位(CFU,colony-forming unit)的 NTUH-K2044和NTUH-A4528的克雷伯氏肺炎桿菌後,分別造成了的80%和100%的死亡率;相反地,免疫接種二價疫苗的小鼠經腹腔注射感染後則沒有觀察到任何死亡。因此,小鼠在免疫接種二價疫苗之後,顯著保護了小鼠同時免於K1和K2克雷伯氏肺炎桿菌的感染。 The general capsular line K1 and K2 capsular types of Klebsiella pneumoniae strains causing invasive infections. Therefore, the protective efficacy of the bivalent vaccine (a mixture of equal amounts of K1 and K2 capsular polysaccharide (CPS) conjugate vaccines) was further examined (Figs. 8A and 8B). The mice in the immunization adjuvant group were intraperitoneally injected with 1×10 4 colony forming units (CFU, colony-forming unit) of NTUH-K2044 and NTUH-A4528 Klebsiella pneumoniae, respectively, resulting in 80% And 100% mortality; on the contrary, no death was observed after intraperitoneal injection of mice immunized with the bivalent vaccine. Thus, the mice significantly protected the mice from infection with K1 and K2 Klebsiella pneumoniae after immunization with the bivalent vaccine.

實施方式10:經K64、K24、K28和KN2莢膜解聚酶分解的莢膜多醣(CPS)的結構Embodiment 10: Structure of capsular polysaccharide (CPS) decomposed by K64, K24, K28 and KN2 capsule depolymerase

1. K641. K64

經分解後的K64莢膜多醣(CPS)在一個重複單元(六醣)中係主要的,在兩個重複(十二醣)中係次要的。由於反應產物的核磁共振光譜中顯示了新的雙鍵信號,所以K64莢膜多醣(CPS)切割酶係為一種裂解酶。主要的K64片段的串連質譜分析結果(六醣)如圖9所示。 The decomposed K64 capsular polysaccharide (CPS) is predominant in one repeat unit (hexasaccharide) and is secondary in two repeats (dodecose). The K64 capsular polysaccharide (CPS) cleavage enzyme is a lytic enzyme since a new double bond signal is shown in the nuclear magnetic resonance spectrum of the reaction product. The tandem mass spectrometry results (hexasaccharide) of the main K64 fragment are shown in FIG.

2. K242. K24

根據已公開的K24莢膜多醣(CPS)結構,其係由四種己醣和一種己醣醛酸所組成。分解後的K24莢膜多醣(CPS)質譜顯示,主要產物為乙醯化修飾的雙重重複單元寡醣[質荷比(m/z)1773,(Hex)8(HexA)2],次要單醣為乙醯化(質荷比(m/z)907和865),其顯示K24酶作具有一種水解酶的作用。主要的K24片段串連質譜分析結果(五醣)如圖10所示。 According to the disclosed K24 capsular polysaccharide (CPS) structure, it consists of four hexoses and one hexuronic acid. The decomposed K24 capsular polysaccharide (CPS) mass spectrum showed that the main product was acetylated modified double repeat unit oligosaccharide [mass-to-charge ratio (m/z) 1773, (Hex) 8 (HexA) 2 ], minor The sugar is acetylated (mass-to-charge ratio (m/z) 907 and 865), which shows that the K24 enzyme acts as a hydrolase. The main K24 fragment tandem mass spectrometry results (pentaose) are shown in FIG.

3. K283. K28

從基質輔助雷射脫附游離/飛行時間質譜分析的結果中可以看出,分解物-KN 2莢膜多醣(CPS)在一個重複單元(六醣)中係主要的。主要的K28片段串連質譜分析結果(六醣)如圖11所示。 It can be seen from the results of matrix-assisted laser desorption free/time-of-flight mass spectrometry that the decomposed product - KN 2 capsular polysaccharide (CPS) is predominant in one repeating unit (hexose). The main K28 fragment tandem mass spectrometry results (hexasaccharide) are shown in FIG.

4. KN24. KN2

克雷伯氏肺炎桿菌KN2屬於新的莢膜型,目前仍然沒文獻描述其化學結構。從基質輔助雷射脫附游離/飛行時間質譜分析的結果可以看出,分解物-KN2莢膜多醣(CPS)係由四個己醣和一個己醣醛酸(分子量1027)所組成。此外,根據基質輔助雷射脫附游離/飛行時間質譜分析的質荷比(m/z)結果,該結果顯示KN2酶係一種水解酶。該質荷比(m/z)1027進一步通過電灑游離質譜-質譜聯用分析法進行分析。串連質譜分析的片段證實了我們的猜測是正確的。在不久的將來,以氣相色譜法-質譜法聯用(GC-MS)分析KN2莢膜多醣(CPS)的成分和其連接物,將被用於闡明KN2莢膜多醣(CPS)的詳細化學結構。KN2水解酶分解的莢膜多醣(CPS)的基質輔助雷射脫附游離/飛行時間質譜分析結果如圖12所示。 Klebsiella Klebsiella KN2 belongs to the new capsular type, and its chemical structure is still not described in the literature. From the results of matrix-assisted laser desorption free/time-of-flight mass spectrometry analysis, it was found that the decomposition product-KN2 capsular polysaccharide (CPS) consisted of four hexoses and one hexuronic acid (molecular weight 1027). Furthermore, based on the mass-to-charge ratio (m/z) of matrix-assisted laser desorption free/time-of-flight mass spectrometry, the results show that the KN2 enzyme is a hydrolase. The mass-to-charge ratio (m/z) 1027 was further analyzed by electrospray free mass spectrometry-mass spectrometry. Fragments of tandem mass spectrometry confirmed that our guess was correct. In the near future, gas chromatography-mass spectrometry (GC-MS) analysis of KN2 capsular polysaccharide (CPS) components and their linkers will be used to elucidate the detailed chemistry of KN2 capsular polysaccharide (CPS). structure. The results of matrix-assisted laser desorption free/time-of-flight mass spectrometry analysis of capsular polysaccharide (CPS) decomposed by KN2 hydrolase are shown in FIG.

實施方式11:莢膜多醣(CPS)疫苗與莢膜多醣(CPS)接合疫苗的比較Embodiment 11: Comparison of capsular polysaccharide (CPS) vaccine and capsular polysaccharide (CPS) conjugate vaccine

比較接受K1未經加工的莢膜多醣(CPS)(2毫克)或K1莢膜多醣(CPS)接合疫苗(2毫克)免疫的小鼠中誘導出的抗莢膜多醣(CPS)抗體和血清殺菌活性(圖13A和B)。接受K1莢膜多醣(CPS)接合疫苗的小鼠中誘導出的抗K1抗體的量高於接受K1未經加工的莢膜多醣(CPS)的小鼠中誘導出的抗K1抗體的量。故,接受K1莢膜多醣(CPS)接合疫苗的小鼠的血清殺菌活性也顯著較高。 Comparison of anti-capsular polysaccharide (CPS) antibodies and serum sera induced in mice immunized with K1 unprocessed capsular polysaccharide (CPS) (2 mg) or K1 capsular polysaccharide (CPS) conjugate vaccine (2 mg) Activity (Figures 13A and B). The amount of anti-K1 antibody induced in mice receiving the K1 capsular polysaccharide (CPS) conjugate vaccine was higher than the amount of anti-K1 antibody induced in mice receiving K1 unprocessed capsular polysaccharide (CPS). Therefore, the serum bactericidal activity of mice receiving the K1 capsular polysaccharide (CPS) conjugate vaccine was also significantly higher.

<110> DCB-USA LLC國立臺灣大學 <110> DCB-USA LLC National Taiwan University

<120> 克雷伯氏肺炎桿菌之莢膜多醣疫苗 <120> capsular polysaccharide vaccine of Klebsiella pneumoniae

<130> N40580/PC0104 <130> N40580/PC0104

<150> US 62/403,365 <150> US 62/403,365

<151> 2016-10-03 <151> 2016-10-03

<160> 7 <160> 7

<170> PatentIn version 3.5 <170> PatentIn version 3.5

<210> 1 <210> 1

<211> 651 <211> 651

<212> PRT <212> PRT

<213> K1專一性噬菌體 <213> K1 specific phage

<400> 1 <400> 1

<210> 2 <210> 2

<211> 668 <211> 668

<212> PRT <212> PRT

<213> 噬菌體1611E-K2-1 <213> Phage 1611E-K2-1

<400> 2 <400> 2

<210> 3 <210> 3

<211> 535 <211> 535

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽;一載體蛋白 <223> synthetic peptide; a carrier protein

<400> 3 <400> 3

<210> 4 <210> 4

<211> 39 <211> 39

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多核苷酸;1611E-ORF16順向引子 <223> synthetic polynucleotide; 1611E-ORF16 forward primer

<400> 4 <400> 4

<210> 5 <210> 5

<211> 38 <211> 38

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多核苷酸;1611E-ORF16反向引子 <223> synthetic polynucleotide; 1611E-ORF16 reverse primer

<400> 5 <400> 5

<210> 6 <210> 6

<211> 21 <211> 21

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多核苷酸;Ref-K10-1 ORF6順向引子 <223> Synthetic polynucleotide; Ref-K10-1 ORF6 forward primer

<400> 6 <400> 6

<210> 7 <210> 7

<211> 22 <211> 22

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多核苷酸;Ref-K10-1 ORF6反向引子 <223> Synthetic polynucleotide; Ref-K10-1 ORF6 reverse primer

<400> 7 <400> 7

Claims (28)

一免疫原,包含具有下列公式(I)的克雷伯氏肺炎桿菌K1莢膜多醣的三醣的重複單元:{→4)-[2,3-( S)-pyruvate]-b-D-GlcA p-(1→4)-a-L- O-Ac-Fuc p-(1→3)-b- D-Glc p-(1→} m (I)其中m為1至4。 An immunogen comprising a repeating unit of a trisaccharide of Klebsiella Klebsiella K1 capsular polysaccharide having the following formula (I): {→4)-[2,3-( S )-pyruvate]-bD-GlcA p -(1→4)-aL- O- Ac-Fuc p -(1→3)-b- D-Glc p -(1→} m (I) wherein m is 1 to 4. 如申請專利範圍第1項所述之免疫原,其中m為2。  The immunogen as described in claim 1, wherein m is 2.   一免疫原,包含具有下列公式(II)的克雷伯氏肺炎桿菌K2莢膜多醣的四醣的重複單元: 其中n為1至4。 An immunogen comprising a repeating unit of a tetrasaccharide of Klebsiella Klebsiella K2 capsular polysaccharide having the following formula (II): Where n is 1 to 4. 如申請專利範圍第3項所述之免疫原,其中含有一個重複單元(n=1)。  An immunogen according to claim 3, which contains a repeating unit (n = 1).   一免疫原,包含具有下列公式(III)的克雷伯氏肺炎桿菌K64莢膜多醣的六醣的重複單元: 其中n為1至4。 An immunogen comprising a repeating unit of a hexasaccharide of Klebsiella Klebsiella K64 capsular polysaccharide having the following formula (III): Where n is 1 to 4. 如申請專利範圍第5項所述之免疫原,其中n為1。  An immunogen according to claim 5, wherein n is 1.   一免疫原,包含具有下列公式(IV)的克雷伯氏肺炎桿菌K62莢膜多醣的五醣的重複單元: 其中n為1至4。 An immunogen comprising a repeating unit of a pentasaccharide of Klebsiella Klebsiella K62 capsular polysaccharide having the following formula (IV): Where n is 1 to 4. 如申請專利範圍第7項所述之免疫原,其中n為2。  An immunogen as described in claim 7 wherein n is 2.   一免疫原,包含具有下列公式(V)的克雷伯氏肺炎桿菌K24莢膜多醣的五醣的重複單元: 其中n為1至4。 An immunogen comprising a repeating unit of a pentasaccharide of Klebsiella Klebsiella K24 capsular polysaccharide having the following formula (V): Where n is 1 to 4. 如申請專利範圍第9項所述之免疫原,其中n為1。  The immunogen of claim 9, wherein n is 1.   一免疫原,包含具有下列公式(VI)的克雷伯氏肺炎桿菌K28莢膜多醣的六醣的重複單元: 其中n為1至4。 An immunogen comprising a repeating unit of a hexasaccharide of Klebsiella Klebsiella K28 capsular polysaccharide having the following formula (VI): Where n is 1 to 4. 如申請專利範圍第11項所述之免疫原,其中n為1。  The immunogen of claim 11, wherein n is 1.   一免疫原,包含具有克雷伯氏肺炎桿菌KN2莢膜多醣的六醣的重複單元,其具有四個己醣和一種己醣醛酸,其分子量約為1027。  An immunogen comprising a repeating unit of a hexasaccharide having Klebsiella pneumoniae KN2 capsular polysaccharide having four hexoses and a hexuronic acid having a molecular weight of about 1027.   一分離的多肽或其變體,具有特異於克雷伯氏肺炎桿菌( Klebsiella pneumoniae)莢膜型K2菌株的莢膜的降解活性,其係選自:(a)一包含SEQ ID NO:2的胺基酸序列的多肽;及(b)一多核苷酸編碼的多肽,其係為至少在(i)SEQ ID NO:2的多肽編碼序列,或(ii)互補於(i)的全長序列等高嚴格條件下雜交的多核苷酸。 An isolated polypeptide or variant thereof having a degrading activity specific to a capsule of Klebsiella pneumoniae capsular K2 strain selected from: (a) a fragment comprising SEQ ID NO: a polypeptide of an amino acid sequence; and (b) a polypeptide encoded by a polynucleotide which is at least in (i) the polypeptide coding sequence of SEQ ID NO: 2, or (ii) is complementary to the full length sequence of (i) A polynucleotide that hybridizes under stringent conditions. 如申請專利範圍第14項所述之多肽,其具有SEQ ID NO:2所示之胺基酸序列。  The polypeptide of claim 14, which has the amino acid sequence of SEQ ID NO: 2.   一疫苗,包含一種或多種選自如申請專利範圍第1、3、4、7、9和11項所定義之公式(I)至公式(VI)的免疫原。  A vaccine comprising one or more immunogens selected from the formulae (I) to (VI) as defined in claims 1, 3, 4, 7, 9 and 11.   如申請專利範圍第16項所述之疫苗,其中該免疫原係接合至一載體。  The vaccine of claim 16, wherein the immunogen is conjugated to a carrier.   如申請專利範圍第16項所述之疫苗,其係包含申請專利範圍第1項和第3項所定義的公式I和公式II之免疫原的K1和K2莢膜多醣接合二價疫苗。  A vaccine according to claim 16 which is a K1 and K2 capsular polysaccharide-conjugated bivalent vaccine comprising an immunogen of Formula I and Formula II as defined in claims 1 and 3.   申請專利範圍第16項所述之疫苗,其係包含免疫原I-載體和免疫原Ⅱ-載體混合物的K1和K2莢膜多醣的接合二價疫苗,其中具有如申請專利範圍第1項中定義的公式(I)的免疫原I和如申請專利範圍第3項中定義的公式(II)的免疫原II,並分別接合至一載體。  The vaccine of claim 16 which is a conjugated vaccine comprising K1 and K2 capsular polysaccharides of a mixture of an immunogen I-vector and an immunogen II-vector, wherein the vaccine is as defined in claim 1 The immunogen I of the formula (I) and the immunogen II of the formula (II) as defined in the third paragraph of the patent application are bonded to a carrier, respectively.   如申請專利範圍第16項所述之疫苗,其係含有如申請專利範圍第5項和第7項中定義的公式Ⅲ和公式Ⅳ之免疫原的K64和K62莢膜多醣的接合二價疫苗。  A vaccine according to claim 16 which is a conjugated vaccine comprising K64 and K62 capsular polysaccharides of the immunogens of formula III and formula IV as defined in claims 5 and 7 of the patent application.   如申請專利範圍第16項所述之疫苗,其係含有免疫原III-載體和免疫原IV-載體的混合物的K64和K62莢膜多醣(CPS)接合的二價疫苗,其中該具有如申請專利範圍第5項中定義之公式(III)的免疫原III及該具有如申請專利範圍第7項中定義之公式(IV)的免疫原IV分別與載體接合。  A vaccine according to claim 16 which is a K64 and K62 capsular polysaccharide (CPS)-conjugated bivalent vaccine comprising a mixture of an immunogen III-vector and an immunogen IV-vector, wherein the patent is as claimed The immunogen III of the formula (III) defined in the fifth item and the immunogen IV having the formula (IV) as defined in the seventh paragraph of the patent application are respectively joined to the carrier.   如申請專利範圍第17、19及21項所述之疫苗,其中所述之載體係蛋白質、肽、脂質、聚合物、樹狀聚合物、病毒體、類病毒顆粒(VLP)或其組合。  The vaccine of claim 17, wherein the carrier is a protein, a peptide, a lipid, a polymer, a dendrimer, a virion, a viroid-like particle (VLP), or a combination thereof.   如申請專利範圍第17、19及21項所述之疫苗,其中所述之載體係蛋白質載體。  The vaccine of claim 17, wherein the carrier is a protein carrier.   如申請專利範圍第23項所述之疫苗,其中該蛋白質載體係細菌類毒素,毒素,外毒素及其無毒衍生物,如鑰孔蟲戚血藍蛋白(KLH),B型肝炎病毒核心蛋白、甲狀腺球蛋白、白蛋白(BSA)、人血清白蛋白(HSA)和卵清蛋白)、肺炎球菌表面蛋白A(PspA)、肺炎球菌粘附蛋白(PsaA)、結核菌素純化蛋白衍生物(PPD);運鐵蛋白結合蛋白、聚氨基酸(如:賴氨酸:谷氨酸)、破傷風類毒素、破傷風毒素片段C,白喉類毒素,CRM (無毒白喉毒素突變體),霍亂毒素,金黃色葡萄球菌外毒素或類毒素,大腸桿菌熱不穩定性腸毒素,銅綠假單胞菌外毒素A和細菌外膜蛋白(如腦膜炎奈瑟氏菌血清型B外膜蛋白複合物(OMPC)和外膜3類孔蛋白(rPorB))。  The vaccine according to claim 23, wherein the protein carrier is a bacterial toxin, a toxin, an exotoxin and a non-toxic derivative thereof, such as keyhole limpet hemocyanin (KLH), hepatitis B virus core protein, Thyroxin, albumin (BSA), human serum albumin (HSA) and ovalbumin), pneumococcal surface protein A (PspA), pneumococcal adhesion protein (PsaA), tuberculin purified protein derivative (PPD) Transferrin-binding protein, polyamino acid (eg lysine: glutamic acid), tetanus toxoid, tetanus toxin fragment C, diphtheria toxoid, CRM (non-toxic diphtheria toxin mutant), cholera toxin, golden yellow grape Cocci exotoxin or toxoid, Escherichia coli heat labile enterotoxin, Pseudomonas aeruginosa exotoxin A and bacterial outer membrane protein (such as Neisseria meningitidis serotype B outer membrane protein complex (OMPC) and Membrane class 3 porins (rPorB)).   如申請專利範圍第23項所述之疫苗,其中該蛋白質載體係具有SEQ ID NO:3所示胺基酸序列的CRM197。  The vaccine of claim 23, wherein the protein carrier is CRM197 having the amino acid sequence of SEQ ID NO: 3.   一種引發針對克雷伯氏肺炎桿菌的免疫反應的方法,包括將如申請專利範圍第1至13項中任一項所述的免疫原或申請專利範圍第16至25項中任一項所述之疫苗給予受試者。  A method for eliciting an immune response against Klebsiella pneumoniae, comprising the immunogen according to any one of claims 1 to 13 or any one of claims 16 to 25 The vaccine is administered to the subject.   一透過申請專利範圍第26項所述之方法所獲得的抗體。  An antibody obtained by the method described in claim 26 of the patent application.   一種預防克雷伯氏肺炎桿菌感染的方法,包括將有效劑量的如申請專利範圍第1至13項中任一項所述的免疫原或申請專利範圍第16至25項中任一項所述之疫苗給予受試者。  A method of preventing Klebsiella pneumoniae infection, comprising administering an effective amount of the immunogen according to any one of claims 1 to 13 or claiming any one of claims 16 to 25. The vaccine is administered to the subject.  
TW106134175A 2016-10-26 2017-10-03 Klebsiella pneumoniae capsule polysaccharide vaccines TWI771328B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662413269P 2016-10-26 2016-10-26
US62413269 2016-10-26

Publications (2)

Publication Number Publication Date
TW201834681A true TW201834681A (en) 2018-10-01
TWI771328B TWI771328B (en) 2022-07-21

Family

ID=64796984

Family Applications (2)

Application Number Title Priority Date Filing Date
TW111122713A TWI824571B (en) 2016-10-26 2017-10-03 Klebsiella pneumoniae capsule polysaccharide vaccines
TW106134175A TWI771328B (en) 2016-10-26 2017-10-03 Klebsiella pneumoniae capsule polysaccharide vaccines

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW111122713A TWI824571B (en) 2016-10-26 2017-10-03 Klebsiella pneumoniae capsule polysaccharide vaccines

Country Status (1)

Country Link
TW (2) TWI824571B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI731357B (en) * 2018-12-06 2021-06-21 中央研究院 Glycoconjugate vaccines, preparation method and uses thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI731357B (en) * 2018-12-06 2021-06-21 中央研究院 Glycoconjugate vaccines, preparation method and uses thereof
US11103567B2 (en) 2018-12-06 2021-08-31 Academia Sinica Glycoconjugate vaccines, preparation method and uses thereof

Also Published As

Publication number Publication date
TW202237179A (en) 2022-10-01
TWI824571B (en) 2023-12-01
TWI771328B (en) 2022-07-21

Similar Documents

Publication Publication Date Title
KR102157200B1 (en) Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
EP2056871B1 (en) Protein matrix vaccines and methods of making and administering such vaccines
JP2020504760A (en) Polypeptide antigen conjugates with unnatural amino acids
Goyette-Desjardins et al. Protection against Streptococcus suis serotype 2 infection using a capsular polysaccharide glycoconjugate vaccine
US9125863B2 (en) Synergistic immunogenic fusion protein-polysaccharide conjugate
JP2022513562A (en) Purified capsular polysaccharide of Streptococcus pneumoniae
EP3359188A1 (en) Streptococcus suis polysaccharide-protein conjugate composition
Zhu et al. Recent advances in lipopolysaccharide-based glycoconjugate vaccines
JP2015529677A (en) Clostridium difficile polypeptide as a vaccine
Prasanna et al. Semisynthetic glycoconjugate based on dual role protein/PsaA as a pneumococcal vaccine
González-Miró et al. Design and biological assembly of polyester beads displaying pneumococcal antigens as particulate vaccine
Laverde et al. Synthetic oligomers mimicking capsular polysaccharide diheteroglycan are potential vaccine candidates against encapsulated Enterococcal infections
US10500262B2 (en) Synthetic antigen constructs against Campylobacter jejuni
CN115803087A (en) Multivalent vaccine compositions and uses thereof
Pitirollo et al. Elucidating the role of N-acetylglucosamine in Group A Carbohydrate for the development of an effective glycoconjugate vaccine against Group A Streptococcus
TWI771328B (en) Klebsiella pneumoniae capsule polysaccharide vaccines
JP2018522978A (en) Immunogenic composition
JP2007537307A (en) Conserved inner core lipopolysaccharide epitopes as multi-vaccine candidates: core lipopolysaccharides as vaccine candidates for the prevention of diseases caused by animal pathogens including Actinobacillus pleuropneumony, Manheimia haemolytica and Pasteurella multocida Body epitope
US11097000B2 (en) Klebsiella pneumoniae capsule polysaccharide vaccines
AU2018290298A2 (en) Immunogenic compositions
CA2513024A1 (en) Vibrio cholerae lps detoxified derivatives and immunogenic compositions containing them
Oberli et al. Synthetic oligosaccharide bacterial antigens to produce monoclonal antibodies for diagnosis and treatment of disease using Bacillus anthracis as a case study
Palmieri Investigazione di tecnologie alternative per lo sviluppo di vaccini basati su polisaccaridi
Mallick Extraction and Purification of Capsular Polysaccharide from Streptococcus Pneumoniae and Escherichia Coli for Conjucate Vaccines Preperation
Donaldson Antimicrobial Carbohydrate Vaccines: Development of Burkholderia pseudomallei immunogens