TWI820425B - 增強型偵測器 - Google Patents

增強型偵測器 Download PDF

Info

Publication number
TWI820425B
TWI820425B TW110118986A TW110118986A TWI820425B TW I820425 B TWI820425 B TW I820425B TW 110118986 A TW110118986 A TW 110118986A TW 110118986 A TW110118986 A TW 110118986A TW I820425 B TWI820425 B TW I820425B
Authority
TW
Taiwan
Prior art keywords
sensing
detector
sensing elements
switching
elements
Prior art date
Application number
TW110118986A
Other languages
English (en)
Other versions
TW202213419A (zh
Inventor
王勇新
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW202213419A publication Critical patent/TW202213419A/zh
Application granted granted Critical
Publication of TWI820425B publication Critical patent/TWI820425B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2441Semiconductor detectors, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2446Position sensitive detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2448Secondary particle detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/24495Signal processing, e.g. mixing of two or more signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • H01J2237/24514Beam diagnostics including control of the parameter or property diagnosed
    • H01J2237/24521Beam diameter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Glass Compositions (AREA)
  • Fire Alarms (AREA)

Abstract

本發明提供一種偵測器,其包括:複數個感測元件;區段電路系統,其將第一組感測元件以通信方式耦接至第一信號處理電路系統之一輸入端;及一開關網路,其連接多組感測元件。元件間開關可連接鄰近感測元件,包括在一對角線方向上之彼等感測元件。一輸出匯流排可藉由一開關元件連接至該第一組中之每一感測元件。可存在配置於一個感測元件處的經組態以輸出來自該第一組之信號的一共同輸出端(拾取點)。提議各種開關及佈線方案。舉例而言,該共同輸出端可直接連接至該開關網路。一開關可設置於該輸出匯流排與第一信號處理電路系統之間。一開關可設置於該開關網路與該第一信號處理電路系統之間。

Description

增強型偵測器
本文中之描述係關於偵測器,且更特定言之,係關於可適用於帶電粒子偵測之偵測器。
在積體電路(IC)之製造程序中,未完成或已完成電路組件經檢測以確保其係根據設計而製造且無缺陷。利用光學顯微鏡之檢測系統通常具有低至幾百奈米之解析度;且該解析度受光之波長限制。隨著IC組件之實體大小繼續減小直至小於100奈米或甚至小於10奈米,需要比利用光學顯微鏡之檢測系統具有更高解析度的檢測系統。
解析度能夠低至小於一奈米的帶電粒子(例如,電子)束顯微鏡(諸如掃描電子顯微鏡(SEM)或透射電子顯微鏡(TEM))充當用於檢測特徵大小小於100奈米之IC組件的實用工具。利用SEM,可將單個一次帶電粒子束之電子或複數個一次帶電粒子束之電子聚焦於受檢測晶圓的所關注位置處。一次電子與晶圓相互作用且可反向散射或可使晶圓發射二次電子。包含反向散射電子及二次電子之電子束之強度可基於晶圓之內部及外部結構之屬性而變化,且藉此可指示晶圓是否具有缺陷。
與本揭露一致之實施例包括用於帶電粒子檢測系統之光束偵測(諸如超快光束電流偵測)之裝置、系統及方法。在一些實施例中,一種偵測器可包括一組感測元件,該組感測元件包括第一組感測元件及第二組感測元件。該偵測器亦可包括經組態以將第一組感測元件以通信方式耦接至第一信號處理電路系統之輸入端的第一區段電路系統。該偵測器可進一步包括經組態以將第二組感測元件以通信方式耦接至第二信號處理電路系統之輸入端的第二區段電路系統。該偵測器可進一步包括經組態以將第一信號處理電路系統之輸出端以通信方式耦接至第二信號處理電路系統之輸出端的互連電路系統。在一些實施例中,偵測系統可進一步包括經組態以控制偵測系統之影像信號處理的介面。
在一些實施例中,一種帶電粒子檢測系統可包括帶電粒子束源,該帶電粒子束源經組態以產生一次帶電粒子束以用於掃描樣品。該帶電粒子檢測系統亦可包括偵測器,該偵測器經組態以接收自一次帶電粒子束之入射點射出之二次帶電粒子束。該偵測器可包括多組感測元件,該多組感測元件包括第一組感測元件及第二組感測元件。該偵測器亦可包括經組態以將第一組感測元件以通信方式耦接至第一信號處理電路系統之輸入端的第一區段電路系統。該偵測器可進一步包括經組態以將第二組感測元件以通信方式耦接至第二信號處理電路系統之輸入端的第二區段電路系統。該偵測器可進一步包括經組態以將第一信號處理電路系統之輸出端以通信方式耦接至第二信號處理電路系統之輸出端的互連電路系統。
在一些實施例中,第一信號處理電路系統可包括第一放大器,且第二信號處理電路系統可包括第二放大器。該第一放大器或第二放大器中之至少一者可經組態以執行以下操作中之一者:接收電流信號及輸 出經放大電流信號,或接收電荷信號及輸出經放大電荷信號。
在一些實施例中,一種電腦實施方法可包括判定感測元件群組包含由帶電粒子偵測器中之帶電粒子束之光束點投影的感測元件。該電腦實施方法亦可包括判定用於在預定像素速率下處理感測元件群組之輸出信號的總類比信號頻寬是否滿足條件。該電腦實施方法可進一步包括基於判定總類比信號頻寬滿足條件而將感測元件群組劃分成複數個感測元件子群組,每一感測元件子群組包含感測元件群組之至少一個感測元件。該電腦實施方法可進一步包括將複數個感測元件子群組以通信方式耦接至帶電粒子偵測器之複數個信號處理電路。該電腦實施方法可進一步包括使用在以通信方式耦接至複數個信號處理電路之互連層之第一輸出端處的複數個信號處理電路之輸出信號判定組合信號。該電腦實施方法可進一步包括將組合信號輸出至以通信方式耦接至互連層之第一輸出端的第一類比/數位轉換器(ADC)。
在一些實施例中,一種偵測器可包括一組感測元件,該組感測元件包括第一共同輸出端。該偵測器亦可包括元件間開關元件,該等元件間開關元件經組態而以通信方式耦接該組感測元件中之鄰近感測元件。該偵測器可進一步包括輸出匯流排,該輸出匯流排經組態而以通信方式耦接至一組感測元件中之每一感測元件。該偵測器可進一步包括接合點,該接合點經組態以經由第一開關元件以通信方式耦接至第一共同輸出端且經由第二開關元件以通信方式耦接至輸出匯流排。該偵測器可進一步包括配置於第一共同輸出端與第一開關元件之間的開關網路,該開關網路包括經組態以將第一共同輸出端以通信方式耦接至另一組感測元件中之第二共同輸出端的組間開關元件。
在一些實施例中,一種偵測系統可包括偵測器,如上文所論述。該偵測系統可進一步包括輸出匯流排,該輸出匯流排經組態而以通信方式耦接至一組感測元件中之每一感測元件。該偵測系統可進一步包括接合點,該接合點經組態以經由第一開關元件以通信方式耦接至第一共同輸出端且經由第二開關元件以通信方式耦接至輸出匯流排。該偵測系統可進一步包括配置於第一共同輸出端與第一開關元件之間的開關網路,該開關網路包括經組態以將第一共同輸出端以通信方式耦接至另一組感測元件中之第二共同輸出端的組間開關元件。該偵測系統可進一步包括在接合點下游以通信方式耦接之信號處理電路系統,該信號處理電路系統經組態以處理來自接合點之信號。
在一些實施例中,一種帶電粒子檢測系統可包括帶電粒子束源,該帶電粒子束源經組態以產生一次帶電粒子束以用於掃描樣品。該帶電粒子檢測系統亦可包括偵測器,該偵測器經組態以接收自一次帶電粒子束之入射點射出之二次帶電粒子束。該偵測器可包括一組感測元件,該組感測元件包括第一共同輸出端。該偵測器亦可包括元件間開關元件,該等元件間開關元件經組態而以通信方式耦接該組感測元件中之鄰近感測元件。該偵測器可進一步包括輸出匯流排,該輸出匯流排經組態而以通信方式耦接至一組感測元件中之每一感測元件。該偵測器可進一步包括接合點,該接合點經組態以經由第一開關元件以通信方式耦接至第一共同輸出端且經由第二開關元件以通信方式耦接至輸出匯流排。該偵測器可進一步包括配置於第一共同輸出端與第一開關元件之間的開關網路,該開關網路包括經組態以將第一共同輸出端以通信方式耦接至另一組感測元件中之第二共同輸出端的組間開關元件。
在一些實施例中,一種電腦實施方法可包括在帶電粒子偵測器之感測元件的第一區段及感測元件的第二區段處接收二次帶電粒子束之帶電粒子,其中第一區段及第二區段係能夠獨立於帶電粒子偵測之鄰近區段。該電腦實施方法亦可包括接收指示用於操作帶電粒子偵測器之第一模式或第二模式中之一者的指令資料。該電腦實施方法可進一步包括基於指令資料而使得進行以下操作中之一者:對應於第二模式而輸出使用來自第一區段或第二區段中之至少一者之信號判定的組合信號,或對應於第一模式而輸出來自第一區段或第二區段中之至少一者的獨立信號。
在一些實施例中,非暫時性電腦可讀媒體可儲存一組指令,該組指令可由裝置之至少一個處理器實行以使裝置執行方法。該方法可包括在帶電粒子偵測器之感測元件的第一區段及感測元件的第二區段處接收二次帶電粒子束之帶電粒子,其中第一區段及第二區段係能夠獨立於帶電粒子偵測之鄰近區段。該方法亦可包括接收指示用於操作帶電粒子偵測器之第一模式或第二模式中之一者的指令資料。該方法可進一步包括基於指令資料而使得進行以下操作中之一者:對應於第二模式而輸出使用來自第一區段或第二區段中之至少一者之信號判定的組合信號,或對應於第一模式而輸出來自第一區段或第二區段中之至少一者的獨立信號。
在一些實施例中,設置於偵測器中之元件間開關元件可包括經組態以將第一感測元件以通信方式耦接至第二感測元件的第一元件間開關元件,其中第一感測元件及第二感測元件係沿著一組感測元件之第一方向配置。該等元件間開關元件亦可包括第二元件間開關元件,該第二元件間開關元件經組態以將第一感測元件以通信方式耦接至第三感測元件,其中第一感測元件及第三感測元件係沿著正交於第一方向的第二方向配 置。該等元件間開關元件可進一步包括第三元件間開關元件,該第三元件間開關元件經組態以將第二感測元件以通信方式耦接至第三感測元件。
在一些實施例中,一種電腦實施方法可包括在帶電粒子偵測器之第一感測元件及第二感測元件處接收二次帶電粒子束之帶電粒子,其中第一感測元件及第二感測元件係在感測元件之區段中的對角線方向上由元件間開關元件以通信方式耦接之鄰近感測元件。該電腦實施方法亦可包括藉由將由第一感測元件輸出之第一信號相加至由第二感測元件輸出之第二信號而輸出共同信號。
在一些實施例中,非暫時性電腦可讀媒體可儲存一組指令,該組指令可由裝置之至少一個處理器實行以使裝置執行方法。該方法可包括在帶電粒子偵測器之第一感測元件及第二感測元件處接收二次帶電粒子束之帶電粒子,其中第一感測元件及第二感測元件係在感測元件之區段中的對角線方向上由元件間開關元件以通信方式耦接之鄰近感測元件。該方法亦可包括藉由將由第一感測元件輸出之第一信號相加至由第二感測元件輸出之第二信號而輸出共同信號。
100:電子束檢測系統
101:主腔室
102:裝載/鎖定腔室
104:多光束光束工具/裝置/帶電粒子束工具
106:裝備前端模組
106a:第一裝載埠
106b:第二裝載埠
109,296,904,1102,1202:控制器
202:帶電粒子源
204:槍孔徑
206:聚光透鏡
208:交越點
210:一次帶電粒子束
212:源轉換單元
214,216,218:細光束
220:主要投影光學系統
222:光束分離器
226:偏轉掃描單元
228:物鏡
230:晶圓
236,238,240:二次帶電粒子束
242:輔助光學系統
244:帶電粒子偵測設備
246,248,250:偵測子區
252:副光軸
260:主光軸
270,272,274:探測光點
280:機動晶圓載物台
282:晶圓固持器
290:影像處理系統
292:影像獲取器
294:儲存器
300A,500,700,800,1300:偵測器
300B,501:感測器表面
301,510:感測器層
302:區段層
303:讀出層
311,312,313,314,315,316,317,511,512,513,701,702,703,704,705,706,902,1604,1606,1704,1804,1805,1904,1906,1908,1910,1912:感測元件
321,322,323,324,340,350,360,370,1002,1401,1602,1702,1802,1803,1902:區段
331,332,333,334:信號處理電路系統區段
380:區域
400,1000,1600,1700,1800,1900:偵測器陣列
402,721,722,723,1421,1423,1425,1427:佈線路徑
404,1022,1100,1302,1306,1310,1410,1412,1414,1416:放大器
406,1024,1200,1304,1308,1312:類比/數位轉換器
408:數位多工器
519,521,1008,1010,1012,1314,1316,1318,1320,1322,1324,1326,1328,1330,1332,1340,1403,1405,1407,1409,1612,1708,1712:開關元件
520:電路層
601:表面層
610:P型區
620:P型磊晶區
630:N型區
641,643:P型井
642:N型井
650:電極
711,712,713,1620,1622,1630,1632,1720,1722,1822,1914,1916:元件間開關元件
719:輸出端
720,1618,1628:元件-匯流排開關元件
728,729,1718,1818:共同輸出端
730:信號處理電路系統
731:前置放大器
732:後置放大器
733:資料轉換器
740:數位開關
751,752,753:資料通道
819:共同佈線路徑
820:共同開關元件
900:偵測系統
906:傳輸器
908:接收器
910:第一處理電路陣列
920:第二處理電路陣列
930:類比/數位轉換器陣列
940:處理電路
950:數位介面
960:信號路徑
970,1004,1402,1404,1406,1408:類比信號路徑
1006:互連層
1014,1016,1018,1020,1428,1430,1432,1434:互連開關元件
1026,1334,1336,1338:輸入/輸出點
1104:第一放大器
1106:第二放大器
1204:轉換器
1206:電壓輸入ADC
1400:偵測器陣列/區段
1418:求和點
1420,1422,1424,1426:子區段
1500,2100:方法
1502,1504,1506,1508,1520,1522,1524,1526,1528,1530,1532,2102,2104,2106:步驟
1603:區段電路
1608:輸出匯流排
1610:匯流排輸出端
1614,1624,1714:二極體
1616,1626,1716:接地開關元件
1617,1627,1717:接地電路
1706:開關網路
1710:接合點
1777,1877:二次光束點
圖1係繪示與本揭露之實施例一致的例示性帶電粒子束檢測系統之示意圖。
圖2係繪示與本揭露之實施例一致的可為圖1之例示性帶電粒子束檢測系統之一部分的例示性多光束光束工具之示意圖。
圖3A係與本揭露之實施例一致的偵測器之例示性結構的示意性表示。
圖3B係繪示與本揭露之實施例一致的偵測器陣列之例示性 表面的圖式。
圖4係繪示與本揭露之實施例一致的具有開關元件之例示性偵測器陣列的圖式。
圖5係繪示與本揭露之實施例一致的偵測器之層結構之橫截面視圖的圖式。
圖6係繪示與本揭露之實施例一致的偵測器之感測元件之橫截面視圖的圖式。
圖7係表示與本揭露之實施例一致的偵測器之例示性區段配置的圖式。
圖8係表示與本揭露之實施例一致的偵測器之另一例示性區段配置的圖式。
圖9係表示與本揭露之實施例一致的偵測系統之圖式。
圖10係繪示與本揭露之實施例一致的具有例示性架構之偵測器陣列的圖式。
圖11係繪示與本揭露之實施例一致的在電流模式下工作的例示性放大器之圖式。
圖12係繪示與本揭露之實施例一致的在電流模式下工作的例示性類比/數位轉換器之圖式。
圖13係表示與本揭露之實施例一致的具有圖10之例示性架構的偵測器之例示性區段配置之圖式。
圖14係繪示與本揭露之實施例一致的另一例示性架構之偵測器陣列的圖式。
圖15係與本揭露之實施例一致的偵測帶電粒子束之例示性 方法的流程圖。
圖16A係繪示與本揭露之實施例一致的用於偵測器陣列之例示性開關網路或開關矩陣設計的圖式。
圖16B係繪示與本揭露之實施例一致的圖16A之偵測器陣列之鄰近感測元件的圖式。
圖17A係繪示與本揭露之實施例一致的用於偵測器陣列之另一例示性開關網路或開關矩陣設計之圖式。
圖17B係繪示與本揭露之實施例一致的圖17A之偵測器陣列之鄰近感測元件的圖式。
圖17C係繪示與本揭露之實施例一致的圖17A之偵測器陣列之鄰近感測元件上的光束點之圖式。
圖18A係繪示與本揭露之實施例一致的用於偵測器陣列之例示性增強型開關網路或開關矩陣設計的圖式。
圖18B係繪示與本揭露之實施例一致的圖18A之偵測器陣列之鄰近感測元件的圖式。
圖18C係繪示與本揭露之實施例一致的圖18A之偵測器陣列之感測元件上的光束點之圖式。
圖19A係繪示與本揭露之實施例一致的用於偵測器陣列之另一例示性增強型開關網路或開關矩陣設計之圖式。
圖19B係繪示與本揭露之實施例一致的圖19A之偵測器陣列中之感測元件的圖式。
圖20係與本揭露之實施例一致的產生帶電粒子偵測信號之例示性方法的流程圖。
現將詳細參考例示性實施例,其實例繪示於隨附圖式中。以下描述參考隨附圖式,其中除非另外表示,否則不同圖式中之相同編號表示相同或類似元件。例示性實施例之以下描述中所闡述之實施方式並不表示與本揭露一致的所有實施方式。實情為,例示性實施例僅為與關於隨附申請專利範圍中所敍述之主題之態樣一致的裝置及方法之實例。舉例而言,儘管在利用帶電粒子束(例如,電子束)之上下文中描述一些實施例,但本揭露不限於此。可類似地應用其他類型之帶電粒子束。此外,可使用其他成像系統,諸如光學成像、光偵測、x射線偵測或類似者。
電子設備係由形成於稱為基板之半導體材料塊上的電路構成。半導體材料可包括例如矽、砷化鎵、磷化銦或矽鍺或類似者。許多電路可共同形成於同一塊矽上且稱為積體電路或IC。此等電路之大小已大大減小,使得更多電路可安裝於基板上。舉例而言,智慧型電話中之IC晶片可小至拇指甲而又可包括超過20億個電晶體,每一電晶體之大小小於人類毛髮之1/1000。
製造具有極小結構或組件之此等極小IC係常常涉及數百個個別步驟之複雜、耗時且昂貴之程序。即使一個步驟中之誤差亦有可能導致成品IC中之缺陷,從而使其無用。因此,製造程序之一個目標係避免此類缺陷以最大化程序中所製得之功能性IC的數目,亦即提高程序之總良率。
提高良率之一個組成部分係監測晶片製造程序以確保其產生足夠數目個功能性積體電路。監測程序之一種方式係在晶片電路結構形成之各個階段處檢測該等晶片電路結構。可使用掃描帶電粒子顯微鏡 (「SCPM」)來進行檢測。舉例而言,SCPM可為掃描電子顯微鏡(SEM)。SCPM可用以實際上使此等極小結構成像,從而拍攝晶圓之結構之「圖像」。影像可用以判定結構是否恰當地形成於恰當位置中。若結構有缺陷,則可調整程序,使得缺陷再現之可能性較低。
SEM之工作原理與攝影機類似。攝影機藉由接收及記錄自人或物件反射或發射之光的強度而拍攝圖像。SEM藉由接收及記錄自晶圓之結構反射或發射之電子之能量或量而拍攝「圖像」。在拍攝此類「圖像」之前,電子束可投影至結構上,且當電子自結構(例如,自晶圓表面、自晶圓表面下方之結構或此兩者)反射或發射(「射出」)時,SEM之偵測器可接收及記錄彼等電子之能量或量以產生檢測影像。為拍攝此類「圖像」,電子束可掃描晶圓(例如,以逐行或鋸齒形方式),且偵測器可接收來自電子束投影下方之區(被稱作「光束點」)的出射電子。偵測器可一次一個地接收及記錄來自每一光束點之出射電子且將針對所有光束點記錄之資訊結合以產生檢測影像。一些SEM使用單個電子束(被稱作「單光束SEM」)以拍攝單個「圖像」以產生檢測影像,而一些SEM使用多個電子束(被稱作「多光束SEM」)以並行拍攝晶圓之多個「子圖像」且將其拼接在一起以產生檢測影像。藉由使用多個電子束,SEM可將更多電子束提供至結構上以獲得此等多個「子圖像」,從而使得更多電子自結構射出。因此,偵測器可同時接收更多出射電子,且以較高效率及較快速度產生晶圓之結構之檢測影像。
藉由SEM之偵測器接收的出射電子可使偵測器產生與出射電子之能量及電子束之強度相當的電信號(例如,電流信號或電壓信號)。舉例而言,電信號之振幅可與所接收出射電子之電荷相當。偵測器可將電 信號輸出至影像處理器,且影像處理器可對電信號進行處理以形成晶圓之結構的影像。多光束SEM系統使用多個電子束進行檢測,且多光束SEM系統之偵測器可具有用以接收該等電子束的多個區段。每一區段可具有多個感測元件且可用以形成晶圓之子區的「圖像」。基於來自偵測器之每一區段之信號產生的「圖像」可經合併以形成所檢測晶圓之完整圖像。
偵測器之區段可以通信方式互連。偵測器之每一區段可具有用於對由偵測器產生之電信號進行處理的對應信號處理電路。當電子束撞擊於區段上時,其信號處理電路可經啟動以用於信號處理。當電子束撞擊於多個鄰近區段上時,其信號處理電路可以協調方式啟動以用於信號處理。當無電子束撞擊於區段上時,其信號處理電路可經撤銷啟動。當電子束撞擊於發生故障區段上時,其鄰近區段之信號處理電路可經啟動以用於信號處理。藉由此類互連區段設計,SEM之偵測器可向偵測器之信號處理提供靈活性及故障容許度。
偵測器具有許多性能指示符。一個指示符係「像素速率」,其為產生檢測影像之像素的速率。像素速率可指示數位系統中之數位資料處理頻寬,且偵測器之最大像素速率可指示其最大數位資料處理速度。另一指示符係「類比信號頻寬」,其為類比信號之最低與最高可達到頻率之間的頻率範圍。高頻類比信號可反映所檢測結構之「細節」。類比信號頻寬指示偵測器之偵測能力及檢測結果之精細度,其為不同於像素速率之性能指示符。舉例而言,若類比信號頻寬較低,則即使像素速率較高,檢測影像仍然可為模糊的,此係因為結構之一些細節可能歸因於低類比信號頻寬而丟失且可能未反映於檢測影像中。
像素速率及類比信號頻寬易於引發「寄生參數」,該等寄 生參數係由操作偵測器之組件引發的非所要或非預期電磁效應。寄生參數可包括寄生電容(例如,雜散電容)、寄生電阻或寄生電感。即使當一些組件不操作時仍可引發寄生參數。寄生參數可改變組件之設計規格,且可對偵測器之性能造成不利影響,諸如遏制信號動態及減小像素速率。舉例而言,雜散電容可抵抗電荷之移動。寄生電阻可增大內部偵測信號損失。寄生電感可抵抗動態電流之流動。另外,寄生參數可將雜訊及干擾引入檢測影像。理想地,偵測器之設計力求最小化寄生參數之產生。
像素速率及類比信號頻寬可對偵測器之其他性能指示符,諸如偵測器之信雜比(「SNR」)或性能容量(例如,最大檢測速度或最大檢測產出量)造成關鍵影響。為增大像素速率及類比信號頻寬,偵測器可經設計以縮短個別感測元件與其信號處理電路之間的電連接距離,此可遏制寄生參數(例如,串聯電阻、寄生電容或串聯電感)之產生。替代地,信號處理電路之架構可經增強或重新設計以使偵測器對寄生參數較不敏感。
然而,偵測器之現有互連區段設計仍面臨與類比信號頻寬及像素速率相關的若干挑戰。舉例而言,存在進一步遏制寄生參數之產生、減小寄生參數對類比信號頻寬之影響、增大類比或數位信號處理之處理頻寬,或增大偵測器之像素速率及性能可調適性而不產生大量成本的方式。
在本揭露中,具有改良架構之偵測器經提供以用於提高類比信號頻寬及像素速率。在偵測器之一些實施例中,互連層經設置於偵測器之類比信號處理電路系統與對應於類比信號處理電路系統之基於電流或電荷之類比/數位轉換器(ADC)之間。相較於等效基於電壓之類比處理電路系統,此類架構之優點在於減小基於電流或電荷之類比處理電路系統的 靈敏度,此實現類比信號頻寬之相對增大。互連層可經由互連開關元件將類比信號處理電路系統之輸出端以通信方式耦接至彼此。開關元件可經設置於類比信號處理電路系統之輸入端及輸出端處。藉由控制開關元件,不同類比信號處理電路可在偵測器中以通信方式啟動或撤銷啟動。藉由經由互連層中之互連開關元件耦接不同類比信號處理電路之輸出端,多個類比信號處理電路可經由互連層與單個基於電流或電荷之ADC相關聯,藉以可達成高類比信號頻寬而無需額外數位輸出容量。藉由經由互連層耦接ADC,該等ADC可經控制以在交錯模式下工作,此可提供高於單個ADC之規格的像素速率。總體而言,藉由使用所提供之架構,現有偵測器之性能可調適性及容量的限制可被推至較高。
此外,偵測器之區段的現有設計亦面臨若干挑戰。通常,偵測器之區段可包括經配置為陣列之多個帶電粒子感測元件及配置於鄰近感測元件之間的開關。然而,用於偵測器區段之組件的一些現有電連接方案可包括過多數目個開關,此可在信號處理電路中引起過多寄生參數(例如,等效串聯電阻或寄生電容)。此外,許多現有設計僅在區段之水平或豎直方向上配置元件間開關,此可限制偵測器之性能(例如,類比信號頻寬及組態靈活性)。
在本揭露中,提供了具有改良架構之偵測器以用於改良偵測器之類比信號頻寬、像素速率及組態靈活性。在偵測器之一些實施例中,區段與對應的信號處理電路之間的開關之數目減少。在偵測器之一些實施例中,可將開關設置於在對角線方向上鄰近之感測元件之間。此架構之優點在於信號處理電路中引發的寄生參數之副作用可進一步減少(例如,在一些狀況下,可為50%或更多),此可實現較高之類比信號頻寬。 此類架構之其他優點包括可提高區段之組態靈活性。總體而言,藉由使用所提供之架構,現有偵測器之性能、可調適性及容量的限制可被推至較高。
出於清楚起見,可誇示圖式中之組件的相對尺寸。在以下圖式描述內,相同或類似附圖標號係指相同或類似組件或實體,且僅描述相對於個別實施例之差異。
本揭露之目標及優點可由如本文所論述之實施例中闡述之元件及組合實現。然而,未必需要本揭露之實施例達成此類例示性目標或優點,且一些實施例可能不會達成所陳述目標或優點中之任一者。
在不限制本揭露之範疇的情況下,可在利用電子束(「e-beam」)之系統中提供偵測系統及偵測方法之上下文中描述一些實施例。然而,本揭露不限於此。可類似地應用其他類型之帶電粒子束。此外,用於偵測之系統及方法可用於其他成像系統中,諸如光學成像、光子偵測、x射線偵測、離子偵測或類似者。
如本文所用,除非另外具體陳述,否則術語「或」涵蓋所有可能組合,除非不可行。例如,若陳述組件可包括A或B,則除非另外具體陳述或不可行,否則組件可包括A,或B,或A及B。作為第二實例,若陳述組件可包括A、B或C,則除非另外具體陳述或不可行,否則組件可包括A,或B,或C,或A及B,或A及C,或B及C,或A及B及C。
圖1繪示與本揭露之實施例一致的例示性電子束檢測(EBI)系統100。EBI系統100可用於成像。如圖1中所展示,EBI系統100包括主腔室101、裝載/鎖定腔室102、光束工具104及裝備前端模組(EFEM)106。光束工具104位於主腔室101內。EFEM 106包括第一裝載埠106a及 第二裝載埠106b。EFEM 106可包括一或多個額外裝載埠。第一裝載埠106a及第二裝載埠106b收納含有待檢測之晶圓(例如,半導體晶圓或由其他材料製成之晶圓)或樣品(晶圓及樣品可互換使用)的晶圓前開式單元匣(FOUP)。一「批次」為可經裝載以作為批量進行處理的複數個晶圓。
EFEM 106中之一或多個機械手臂(未展示)可將晶圓運送至裝載/鎖定腔室102。裝載/鎖定腔室102連接至裝載/鎖定真空泵系統(未展示),該裝載/鎖定真空泵系統移除裝載/鎖定腔室102中之氣體分子以達至低於大氣壓之第一壓力。在達至第一壓力後,一或多個機器手臂(未展示)可將晶圓自裝載/鎖定腔室102運送至主腔室101。主腔室101連接至主腔室真空泵系統(未展示),該主腔室真空泵系統移除主腔室101中之氣體分子以達至低於第一壓力之第二壓力。在達至第二壓力後,晶圓經受光束工具104之檢測。光束工具104可為單光束系統或多光束系統。
控制器109以電子方式連接至光束工具104。控制器109可為經組態以對EBI系統100實行各種控制之電腦。雖然控制器109在圖1中被展示為在包括主腔室101、裝載/鎖定腔室102及EFEM 106之結構外部,但應瞭解,控制器109可為該結構之一部分。
在一些實施例中,控制器109可包括一或多個處理器(未展示)。處理器可為能夠操縱或處理資訊之通用或特定電子設備。舉例而言,處理器可包括任何數目個中央處理單元(或「CPU」)、圖形處理單元(或「GPU」)、光學處理器、可程式邏輯控制器、微控制器、微處理器、數位信號處理器、智慧財產權(IP)核心、可程式邏輯陣列(PLA)、可程式陣列邏輯(PAL)、通用陣列邏輯(GAL)、複合可程式邏輯設備(CPLD)、現場可程式閘陣列(FPGA)、系統單晶片(SoC)、特殊應用積體電路(ASIC)及 能夠進行資料處理之任何類型電路的任何組合。處理器亦可為虛擬處理器,該虛擬處理器包括橫越經由網路耦接的多個機器或設備分佈之一或多個處理器。
在一些實施例中,控制器109可進一步包括一或多個記憶體(未展示)。記憶體可為能夠儲存可由處理器(例如,經由匯流排)存取之程式碼及資料的通用或特定電子設備。舉例而言,記憶體可包括任何數目個隨機存取記憶體(RAM)、唯讀記憶體(ROM)、光碟、磁碟、硬驅動機、固態驅動機、快閃驅動機、安全數位(SD)卡、記憶棒、緊湊型快閃(CF)卡或任何類型的儲存設備的任何組合。程式碼及資料可包括作業系統(OS)及用於特定任務之一或多個應用程式(或「app」)。記憶體亦可為虛擬記憶體,該虛擬記憶體包括橫越經由網路耦接的多個機器或設備分佈之一或多個記憶體。
圖2繪示與本揭露之實施例一致的例示性多光束光束工具104(在本文中亦被稱作裝置104)及可經組態以用於EBI系統100(圖1)中之影像處理系統290的示意圖。
光束工具104包含帶電粒子源202、槍孔徑204、聚光透鏡206、自帶電粒子源202發射之一次帶電粒子束210、源轉換單元212、一次帶電粒子束210之複數個細光束214、216及218、主要投影光學系統220、機動晶圓載物台280、晶圓固持器282、多個二次帶電粒子束236、238及240、輔助光學系統242及帶電粒子偵測設備244。主要投影光學系統220可包含光束分離器222、偏轉掃描單元226及物鏡228。帶電粒子偵測設備244可包含偵測子區246、248及250。
帶電粒子源202、槍孔徑204、聚光透鏡206、源轉換單元 212、光束分離器222、偏轉掃描單元226及物鏡228可與裝置104之主光軸260對準。輔助光學系統242及帶電粒子偵測設備244可與裝置104之副光軸252對準。
帶電粒子源202可發射一或多個帶電粒子,諸如電子、質子、離子、牟子或攜載電荷的任何其他粒子。在一些實施例中,帶電粒子源202可為電子源。舉例而言,帶電粒子源202可包括陰極、提取器或陽極,其中一次電子可自陰極發射且經提取或加速以形成具有交越點(虛擬的或真實的)208之一次帶電粒子束210(在此情況下,為一次電子束)。為易於解釋而不引起分歧,在本文中之一些描述中將電子用作實例。然而,應注意,在本揭露之任何實施例中可使用任何帶電粒子,而不限於電子。一次帶電粒子束210可被視覺化為自交越點208發射。槍孔徑204可阻擋一次帶電粒子束210之外圍帶電粒子以減小庫侖(Coulomb)效應。庫侖效應可引起探測光點之大小的增大。
源轉換單元212可包含影像形成元件之陣列及光束限制孔徑之陣列。影像形成元件之陣列可包含微偏轉器或微透鏡之陣列。影像形成元件之陣列可藉由一次帶電粒子束210之複數個細光束214、216及218形成交越點208之複數個平行影像(虛擬的或真實的)。光束限制孔徑之陣列可限制複數個細光束214、216及218。雖然三個細光束214、216及218展示於圖2中,但本揭露之實施例不限於此。舉例而言,在一些實施例中,裝置104可經組態以產生第一數目個細光束。在一些實施例中,第一數目個細光束可在1至1000之範圍內。在一些實施例中,第一數目個細光束可在200至500之範圍內。在例示性實施例中,裝置104可產生400個細光束。
聚光透鏡206可聚焦一次帶電粒子束210。可藉由調整聚光透鏡206之聚焦倍率或藉由改變光束限制孔徑之陣列內的對應光束限制孔徑之徑向大小而使源轉換單元212下游之細光束214、216及218的電流變化。物鏡228可將細光束214、216及218聚焦於晶圓230上以用於成像,且可在晶圓230之表面上形成複數個探測光點270、272及274。
光束分離器222可為產生靜電偶極子場及磁偶極子場之韋恩濾光器型(Wien filter type)光束分離器。在一些實施例中,若應用靜電偶極子場及磁偶極子場,則由靜電偶極子場施加於細光束214、216及218之帶電粒子(例如,電子)上的力可實質上與由磁偶極子場施加於帶電粒子上的力量值相等且方向相反。細光束214、216及218可因此以零偏轉角直接通過光束分離器222。然而,由光束分離器222產生之細光束214、216及218之總色散亦可為非零。光束分離器222可將二次帶電粒子束236、238及240與細光束214、216及218分離,且將二次帶電粒子束236、238及240導向輔助光學系統242。
偏轉掃描單元226可使細光束214、216及218偏轉以遍及晶圓230之表面區域掃描探測光點270、272及274。回應於細光束214、216及218入射於探測光點270、272及274處,可自晶圓230發射二次帶電粒子束236、238及240。二次帶電粒子束236、238及240可包含具有能量分佈之帶電粒子(例如,電子)。舉例而言,二次帶電粒子束236、238及240可為包括二次電子(能量
Figure 110118986-A0305-02-0020-1
50eV)及反向散射電子(能量在50eV與細光束214、216及218之著陸能量之間)的二次電子束。輔助光學系統242可將二次帶電粒子束236、238及240聚焦至帶電粒子偵測設備244之偵測子區246、248及250上。偵測子區246、248及250可經組態以偵測對應二次帶 電粒子束236、238及240並產生用以重構在晶圓230之表面區域上或下方的結構之SCPM影像的對應信號(例如,電壓、電流或類似者)。
所產生信號可表示二次帶電粒子束236、238及240之強度,且可經提供至與帶電粒子偵測設備244、主要投影光學系統220及機動晶圓載物台280通信之影像處理系統290。機動晶圓載物台280之移動速度可與受偏轉掃描單元226控制的光束偏轉同步及協調,使得掃描探測光點(例如,掃描探測光點270、272及274)之移動可有序覆蓋晶圓230上之所關注區。此類同步及協調之參數可經調整以適應於不同材料之晶圓230。舉例而言,不同材料之晶圓230可具有不同電阻-電容特性,其可引起對掃描探測光點之移動的不同信號靈敏度。
二次帶電粒子束236、238及240之強度可根據晶圓230之外部或內部結構而變化,且因此可指示晶圓230是否包括缺陷。此外,如上文所論述,可將細光束214、216及218投影至晶圓230之頂部表面的不同位置上或晶圓230之局部結構的不同側上,以產生可具有不同強度之二次帶電粒子束236、238及240。因此,藉由利用晶圓230之區域映射二次帶電粒子束236、238及240之強度,影像處理系統290可重構反映晶圓230之內部或外部結構之特性的影像。
在一些實施例中,影像處理系統290可包括影像獲取器292、儲存器294及控制器296。影像獲取器292可包含一或多個處理器。舉例而言,影像獲取器292可包含電腦、伺服器、大型電腦主機、終端機、個人電腦、任何種類之行動計算設備或類似者,或其組合。影像獲取器292可經由諸如電導體、光纖纜線、攜帶型儲存媒體、IR、藍芽、網際網路、無線網路、無線電或其組合之媒體以通信方式耦接至光束工具104 之帶電粒子偵測設備244。在一些實施例中,影像獲取器292可自帶電粒子偵測設備244接收信號,且可建構影像。影像獲取器292可因此獲取晶圓230之SCPM影像。影像獲取器292亦可執行各種後處理功能,諸如產生輪廓、疊加指示符於所獲取影像上,或類似者。影像獲取器292可經組態以對所獲取影像之亮度及對比度進行調整。在一些實施例中,儲存器294可為儲存媒體,諸如硬碟、快閃驅動機、雲端儲存器、隨機存取記憶體(RAM)、其他類型之電腦可讀記憶體或類似者。儲存器294可與影像獲取器292耦接,且可用於保存經掃描原始影像資料作為原始影像及後處理影像。影像獲取器292及儲存器294可連接至控制器296。在一些實施例中,影像獲取器292、儲存器294及控制器296可一起整合為一個控制單元。
在一些實施例中,影像獲取器292可基於自帶電粒子偵測設備244接收到之成像信號而獲取晶圓之一或多個SCPM影像。成像信號可對應於用於進行帶電粒子成像之掃描操作。所獲取影像可為包含複數個成像區域之單個影像。單個影像可儲存於儲存器294中。單個影像可為可劃分成複數個區之原始影像。該等區中之每一者可包含含有晶圓230之特徵的一個成像區域。所獲取影像可包含在時序內多次取樣的晶圓230之單個成像區域的多個影像。多個影像可儲存於儲存器294中。在一些實施例中,影像處理系統290可經組態以藉由晶圓230之相同位置的多個影像執行影像處理步驟。
在一些實施例中,影像處理系統290可包括量測電路(例如,類比/數位轉換器)以獲得所偵測之二次帶電粒子(例如,二次電子)之分佈。在偵測時間窗期間所收集之帶電粒子分佈資料結合入射於晶圓表面之細光束214、216及218之對應掃描路徑資料可用以重構受檢測晶圓結構 之影像。經重構影像可用以顯露晶圓230之內部或外部結構的各種特徵,且藉此可用以顯露可能存在於晶圓中之任何缺陷。
在一些實施例中,帶電粒子可為電子。在一次帶電粒子束210之電子投影至晶圓230之表面(例如,探測光點270、272及274)上時,一次帶電粒子束210之電子可穿透晶圓230之表面一定深度,從而與晶圓230之粒子相互作用。一次帶電粒子束210之一些電子可與晶圓230之材料彈性地相互作用(例如,以彈性散射或碰撞之形式),且可反射或反衝出晶圓230之表面。彈性相互作用節約相互作用之主體(例如,一次帶電粒子束210之電子)之總動能,其中相互作用主體之動能不轉換為其他形式之能量(例如,熱能、電磁能或類似者)。自彈性相互作用產生之此類反射電子可稱為反向散射電子(BSE)。一次帶電粒子束210中之一些電子可(例如,以非彈性散射或碰撞之形式)與晶圓230之材料非彈性地相互作用。非彈性相互作用不節約相互作用之主體的總動能,其中相互作用主體之動能中之一些或所有轉換成其他形式之能量。舉例而言,經由非彈性相互作用,一次帶電粒子束210中之一些電子之動能可引起材料之原子的電子激勵及躍遷。此類非彈性相互作用亦可產生射出晶圓230之表面之電子,該電子可稱為二次電子(SE)。BSE及SE之良率或發射速率取決於例如受檢測材料及一次帶電粒子束210之電子著陸在材料的表面上之著陸能量等。一次帶電粒子束210之電子之能量可部分地由其加速電壓(例如,在圖2中之帶電粒子源202之陽極與陰極之間的加速電壓)賦予。BSE及SE之數量可比一次帶電粒子束210之注入電子更多或更少(或甚至相同)。
由SEM產生之影像可用於缺陷檢測。舉例而言,可將捕獲晶圓之測試設備區的所產生影像與捕獲相同測試設備區的參考影像進行比 較。參考影像可經(例如,藉由模擬)預定且不包括已知缺陷。若所產生影像與參考影像之間的差異超過容許度位準,則可識別出潛在缺陷。對於另一實例,SEM可掃描晶圓之多個區,每一區包括經設計為相同的測試設備區,且產生捕獲所製造之彼等測試設備區之多個影像。多個影像可相互比較。若多個影像之間的差異超過容許度位準,則可識別出潛在缺陷。
圖3A繪示與本揭露之實施例一致的偵測器300A之例示性結構的示意性表示。偵測器300A可經提供為帶電粒子偵測設備244。在圖3A中,偵測器300A包括感測器層301、區段層302及讀出層303。感測器層301可包括由多個感測元件組成之感測器晶粒,該多個感測元件包括感測元件311、312、313及314。在一些實施例中,多個感測元件可以感測元件陣列之形式提供,該等感測元件中之每一者可具有均一大小、形狀及配置。偵測器300A可具有相對於座標軸參考座標系之配置。感測器層301可沿著x-y平面配置。感測器層301中之感測元件可在x軸及y軸方向上排列。x軸方向在本文中亦可被稱作「水平」方向。y軸方向在本文中亦可被稱作「豎直」方向。偵測器300A可具有層結構,其中感測器層301、區段層302及區段層在z軸方向上堆疊。z軸方向在本文中亦可被稱作「厚度」方向。z軸方向可與經導向偵測器300A之帶電粒子之入射方向對準。
區段層302可包括多個區段,包括區段321、322、323及324。區段可包括經組態而以通信方式耦接多個感測元件之互連件(例如,佈線路徑)。區段亦可包括可控制感測元件之間的通信耦接之開關元件。區段可進一步包括感測元件與區段層中之一或多個共同節點之間的連接機構(例如,佈線路徑及開關元件)。舉例而言,如圖3A中所展示,區段323可經組態而以通信方式耦接至感測元件311、312、313及314之輸出端, 如由感測器層301與區段層302之間的四條虛線所展示。在一些實施例中,區段323可經組態以輸出自感測元件311、312、313及314搜集之組合信號作為共同輸出。在一些實施例中,區段(例如,區段323)可以通信方式耦接至置放於區段正上方的感測元件(例如,感測元件311、312、313及314)。舉例而言,區段323可具有經組態以與感測元件311、312、313及314之輸出端連接之端子柵格。在一些實施例中,區段321、322、323及324可以陣列結構提供,使得其具有均一大小與形狀及均一配置。舉例而言,區段321、322、323及324可成正方形。在一些實施例中,隔離區域可設置於鄰近區段之間以使其彼此電絕緣。在一些實施例中,區段可以諸如平鋪佈局之偏移圖案配置。
讀出層303可包括用於對感測元件之輸出進行處理的信號處理電路。在一些實施例中,可提供可與區段層302之區段中之每一者對應的信號處理電路。在一些實施例中,可提供多個分開之信號處理電路系統區段,包括信號處理電路系統區段331、332、333及334。在一些實施例中,信號處理電路系統區段可以具有均一大小及形狀以及均一配置的區段陣列之形式提供。在一些實施例中,信號處理電路系統區段可經組態以與來自區段層302之對應區段之輸出端連接。舉例而言,如圖3A中所展示,信號處理電路系統區段333可經組態而以通信方式耦接至區段323之輸出端,如由區段層302與讀出層303之間的虛線所展示。
在一些實施例中,讀出層303可包括輸入端子及輸出端子。讀出層303之一或多個輸出端可連接至用於對偵測器300A之輸出進行讀取及解譯的組件。舉例而言,讀出層303可直接連接至數位多工器、數位邏輯區塊、控制器、電腦或類似者。
區段之大小及與區段相關聯的感測元件之數目可變化。舉例而言,雖然圖3A在一個區段中繪示四個感測元件,但本揭露之實施例不限於此。
雖然圖3A將感測器層301、區段層302及讀出層303繪示為多個離散層,但應注意,感測器層301、區段層302及讀出層303不必被提供為分開之基板。舉例而言,區段層302之佈線路徑可設置於包括多個感測元件之感測器晶粒中,或可設置於感測器晶粒外部。佈線路徑可經圖案化於感測器層301上。另外,區段層302可與讀出層303組合。舉例而言,可提供包括區段層302之佈線路徑及讀出層303之信號處理電路之半導體晶粒。因此,可組合或劃分各個層之結構及功能。
在一些實施例中,偵測器可以雙晶粒組態形式提供。然而,本揭露之實施例不限於此。舉例而言,可在一個晶粒中或在可含有一或多個晶粒之封裝中實施感測器層、區段層及讀出層之功能。
在一些實施例中,感測器層301、區段層302及讀出層303之配置可以堆疊關係彼此對應。舉例而言,區段層302可直接安裝於讀出層303之頂部,且感測器層301可直接安裝於區段層302之頂部。層可經堆疊,使得區段層302內之區段與讀出層303之信號處理電路系統區段(例如,區段331、332、333及334)對準。此外,層可經堆疊,使得感測器層301內之一或多個感測元件與區段層302中之區段對準。在一些實施例中,與區段相關聯之感測元件可含於區段內。舉例而言,在偵測器300A之平面視圖中,區段(例如,區段323)之感測元件(例如,感測元件311、312、313及314)可裝配於區段之邊界內。此外,區段層302之個別區段可與讀出層303之信號處理電路系統區段重疊。以此方式,可建立用於使感 測元件與區段及信號處理電路系統相關聯之預定區域。
圖3B繪示與本揭露之實施例一致的可形成帶電粒子偵測設備244之表面的感測器表面300B之例示性結構。感測器表面300B可設有感測元件之多個區段,包括由虛線表示之區段340、350、360及370。舉例而言,感測器表面300B可為圖3A中之感測器層301的表面。每一區段可能能夠自晶圓230接收自特定位置發射的光束點之至少一部分,諸如圖2中所展示之二次帶電粒子束236、238及240中之一者。
感測器表面300B可包括感測元件陣列,包括感測元件315、316及317。在一些實施例中,區段340、350、360及370中之每一者可含有一或多個感測元件。舉例而言,區段340可含有第一複數個感測元件,且區段350可含有第二複數個感測元件,等等。第一複數個感測元件與第二複數個感測元件可為互斥的。在一些實施例中,感測元件可為二極體或類似於二極體之可將入射能量轉換成可量測信號的任何元件。舉例而言,感測元件可包括PIN二極體、突崩二極體、電子倍增管(EMT)或其他組件。
在圖3B中,區域380可設置於鄰近感測元件之間。區域380可為隔離區域,以使相鄰感測元件之側或隅角彼此隔離。在一些實施例中,區域380可包括不同於感測器表面300B之感測元件之絕緣材料的絕緣材料。在一些實施例中,區域380可提供為正方形。在一些實施例中,區域380可不設置於感測元件之鄰近側之間。
在一些實施例中,場可程式偵測器陣列可設有感測元件,該等感測元件具有整合於感測元件之間的開關區。舉例而言,可提供偵測器,諸如2018年9月14日申請之第PCT/EP2018/074833號PCT申請案中論 述的彼等實例中之一些,該申請案之內容以全文引用之方式併入本文中。在一些實施例中,開關區可設置於感測元件之間,使得感測元件中之一些或更多可在由相同帶電粒子束光點覆蓋時分組。用於控制開關區之電路可包括於讀出層(例如,圖3A中之讀出層303)之信號處理電路中。如貫穿本揭露所使用,表述「一組感測元件」應意謂第一數量之感測元件群組。一組感測元件中之第一組感測元件可指該組內之一子組感測元件。第二組感測元件可指該組內之另一子組感測元件。第一及第二組可或可不為互斥的。感測元件之「群組」可指與經投影於偵測器表面上之一個光束點(例如,光束點之邊界內)相關聯的感測元件。第一及第二組感測元件可指與不同光束點相關聯的感測元件之不同群組。多組感測元件不必受限於偵測器之特定「區段」。
圖4係繪示與本揭露之實施例一致的具有開關元件之例示性偵測器陣列400的圖式。偵測器陣列400可為圖3A中之偵測器300A之實例實施例。舉例而言,偵測器陣列400可包括感測器層(例如,類似於圖3A中之感測器層301)、區段層(例如,類似於圖3A中之區段層302),及讀出層(例如,類似於圖3A中之讀出層303)。偵測器陣列400之感測器層可包括多個感測元件,包括感測元件311、312、313及314。在一些實施例中,偵測器陣列400之感測元件中之每一者可具有均一大小、形狀及配置。偵測器陣列400之感測元件可產生與在感測元件之主動區域中接收的帶電粒子(例如,出射電子)相當之電流信號。「主動區域」在本文中可指感測元件之具有高於預定臨限值之輻射靈敏度的區域。
偵測器陣列400之區段層可包括基底基板(例如,半導體基板,圖4中未展示),該基底基板包括一或多個佈線路徑402。佈線路徑402 可經組態而以通信方式耦接偵測器陣列400之感測元件。如圖4中所展示,偵測器陣列400包括具有4×4個感測元件之區段321,包括感測元件311、312、313及314。在圖4中,偵測器陣列400之區段層可包括任何兩個鄰近感測元件之間的元件間開關元件。偵測器陣列400之區段層亦可包括以通信方式耦接至相鄰感測元件之邊緣的元件間開關元件。佈線路徑402可經組態而以通信方式耦接至區段321中之感測元件(例如,感測元件311、312、313及314)之輸出端。舉例而言,佈線路徑402可具有經組態以與感測元件311、312、313及314之輸出端連接之端子柵格(展示為感測元件之中心處的圓形黑點)。在一些實施例中,佈線路徑402可設置於偵測器陣列400之區段層中。在圖4中,佈線路徑402以通信方式耦接至上述感測元件(例如,感測元件311、312、313及314)。在圖4中,元件-匯流排開關元件可設置於感測元件之輸出端與佈線路徑402之間。在一些實施例中,元件-匯流排開關元件可設置於偵測器陣列400之區段層中。
在一些實施例中,佈線路徑402可包括列印於基底基板上之導電材料線、可撓性線、接線或類似者。在一些實施例中,開關元件可經提供以使得個別感測元件之輸出端可與區段321之共同輸出端連接或斷開連接。在一些實施例中,偵測器陣列400之區段層可進一步包括用於控制開關元件之對應電路。在一些實施例中,開關元件可設置於自身可含有用於控制開關元件之電路之分開之開關元件矩陣中。
偵測器陣列400之讀出層可包括用於對感測元件之輸出進行處理的信號調節電路。在一些實施例中,信號調節電路可將所產生電流信號轉換成可表示所接收光束點之強度的電壓,或可將所產生電流信號放大成經放大電流信號。信號調節電路可包括例如放大器404及一或多個類 比開關元件(圖4中未展示)。放大器404可為高速跨阻抗放大器、電流放大器或類似者。在圖4中,放大器404可以通信方式耦接至區段321之共同輸出端以用於放大區段321之感測元件的輸出信號。在一些實施例中,放大器404可為單級或多級放大器。舉例而言,若放大器404為多級放大器,則其可包括前置放大器及後置放大器,或包括前級及後級放大器或類似者。在一些實施例中,放大器404可為可變增益放大器,諸如可變增益跨阻抗放大器(VGTIA)、可變增益電荷轉移放大器(VGCTA)或類似者。調節電路可耦接至信號路徑,該信號路徑可包括例如類比/數位轉換器(ADC)406。在圖4中,ADC 406可以通信方式耦接至調節電路(例如,包括放大器404)之輸出端以將區段321之感測元件之類比輸出信號轉換成數位信號。偵測器陣列400之讀出層亦可包括用於其他功能之其他電路。舉例而言,偵測器陣列400之讀出層可包括可控制感測元件之間的開關元件之開關元件致動電路。為易於解釋而不產生分岐,感測元件與ADC 406之間的信號路徑可被稱作「類比信號路徑」。舉例而言,圖4中之類比信號路徑包括上文所描述之信號調節電路(例如,包括放大器404)。類比信號路徑之輸入端以通信方式耦接至感測元件,且類比信號路徑之輸出端以通信方式耦接至ADC 406。
在一些實施例中,ADC 406可包括以通信方式耦接至組件(例如,在偵測器陣列400之讀出層內部或外部的組件)的輸出端子,以用於對藉由ADC 406轉換之數位信號進行讀取及解譯。在圖4中,ADC 406以通信方式耦接至數位多工器408。在一些實施例中,數位多工器408可配置於偵測器陣列400之讀出層中。數位多工器408可接收多個輸入信號並將其轉換為輸出信號。數位多工器408之輸出信號可轉換回多個輸入信 號。數位多工器408之輸出信號可進一步傳輸至資料處理級(例如,圖2中之影像處理系統290)。
圖5係繪示與本揭露之實施例一致的偵測器500之層結構之橫截面視圖的圖式。偵測器500可經提供為如圖2中所展示之帶電粒子束工具104中之帶電粒子偵測設備244。偵測器500可經組態以具有在厚度方向上堆疊之多個層,該厚度方向實質上平行於帶電粒子束之入射方向。在一些實施例中,可提供偵測器500,諸如2018年9月14日申請之第PCT/EP2018/074834號PCT申請案中所論述的彼等實例中之一些,該申請案之內容以全文引用之方式併入本文中。
在圖5中,偵測器500可包括感測器層510及電路層520。在一些實施例中,感測器層510可表示圖3A中之感測器層301,且電路層520可表示圖3A中之區段層302及讀出層303。舉例而言,電路層520可包括互連件(例如,金屬線),及各種電子電路組件。作為另一實例,電路層520可包括處理系統。電路層520亦可經組態以接收在感測器層510中偵測到之輸出電流。在一些實施例中,感測器層510可表示圖3A中之感測器層301及區段層302,且電路層520可表示圖3A中之讀出層303。在一些實施例中,偵測器500可包括除感測器層301、區段層302及讀出層303之外的層。
在一些實施例中,感測器層510可設有用於接收入射帶電粒子之感測器表面501。可在感測器層510中設置感測元件,包括感測元件511、512及513(藉由虛線區分)。舉例而言,感測器表面501可類似於圖3B中之感測器表面300B。在圖5中,包括開關元件519及521之開關元件可在橫截面視圖中在水平方向上設置於鄰近感測元件之間。開關元件 519及521可嵌入於感測器層510中。在一些實施例中,感測元件511、512及513可在圖4中之偵測器陣列400之感測元件(例如,感測元件311、312、313及314)當中,且開關元件519及521可在圖4中之偵測器陣列400之感測元件之間的開關元件當中。
在一些實施例中,感測元件511、512及513可由在厚度方向上延伸之隔離區域(由虛線指示)分隔開。舉例而言,平行於厚度方向的感測元件511、512及513之側可由隔離區域(例如,圖3B中之區域380)彼此隔離。
在一些實施例中,感測器層510可組態為一或多個二極體,其中感測元件511、512及513類似於圖3B之感測元件315、316及317。開關元件519及521可經組態為電晶體(例如,MOSFET)。感測元件511、512、513中之每一者可包括用於與電路層520進行電連接之輸出端。舉例而言,輸出端可與開關元件519及521整合,或可各別提供。在一些實施例中,輸出端可整合於感測器層510之底層(例如,金屬層)中。
雖然圖5當以橫截面檢視時將感測元件511、512及513描繪為離散單元,但此類劃分事實上可並不實際。舉例而言,偵測器500之感測元件可由構成PIN二極體設備之半導體設備形成,該PIN二極體裝置可被製造為具有包括P型區、純質區及N型區之多個層之基板。在此類實例中,感測元件511、512、513在橫截面視圖中可為相連的。在一些實施例中,開關元件(例如,開關元件519及521)可與感測元件整合。
在一些實施例中,開關元件可整合於感測器層內、整合於其他層內,或可部分或完全地設置於現有層中。在一些實施例中,舉例而言,感測器層可含有井、渠溝或其他結構,其中開關元件形成於彼等結構 中。
在一些實施例中,偵測器500之開關元件(例如,開關元件519及521)可設置於感測器層510外部。舉例而言,開關元件可嵌入於電路層520(圖5中未展示)中。在一些實施例中,偵測器500之開關元件(例如,開關元件519及521)可形成於分開之晶粒(例如,開關晶粒)中。舉例而言,開關晶粒(圖5中未展示)可包夾於感測器層510與電路層520之間且以通信方式連接至該等感測器層及電路層。
圖6係繪示與本揭露之實施例一致的偵測器500之感測元件512之橫截面視圖的圖式。在圖6中,感測元件512可包括P型井及N型井以用於形成可以通信方式耦接至感測器層510或電路層520之其他組件的開關元件及其他主動或被動元件。儘管圖6僅展示一個完整感測元件512,但應理解感測器層510可由類似於感測元件512之多個感測元件(例如,感測元件511及513)構成,該等感測元件在橫截面視圖中可為相連的。
在一些實施例中,感測元件512可包括具有表面層601、P型區610、P型磊晶區620、N型區630及其他組件的二極體設備。表面層601可形成接收入射帶電粒子的偵測器之偵測表面(例如,主動區域)。舉例而言,表面層601可為金屬層(例如,由鋁或其他導電材料形成)。在與表面層601相對側上,可設置電極650作為電荷收集器。電極650可經組態以輸出表示在感測元件512之主動區域中接收到的帶電粒子之數目的電流信號。
在一些實施例中,如圖6中所展示,開關元件519及521可由金氧半導體(MOS)設備形成。舉例而言,多個MOS設備可形成於圖6中的N型區630之背側中,且N型區630之背側可與圖5中之感測器層510接 觸。作為MOS設備之實例,可提供深P型井641、N型井642及P型井643。在一些實施例中,MOS設備可藉由蝕刻、圖案化以及其他程序及技術製造。應理解,可使用諸如雙極性半導體設備等各種其他設備,且設備可藉由各種程序製作。
在感測元件512之操作中,當帶電粒子(例如,圖2中之二次帶電粒子束236、238及240)撞擊於表面層601上時,感測元件512之主體,包括例如空乏區可充斥有由經撞擊帶電粒子產生的電荷載流子。此類空乏區可延伸穿過感測元件之體積的至少一部分。舉例而言,帶電粒子可為電子,且經撞擊電子可在感測元件之空乏區中產生電子-電洞對並向該電子-電洞對供能。電子-電洞對中之供能電子可具有其他能量,使得其亦可產生新的電子-電洞對。由經撞擊帶電粒子產生的電子可在每一感測元件中促成信號之產生。
參看圖6,感測元件512中之空乏區可包括P型區610與N型區630之間的電場,且電子及電洞可各別被P型區610及N型區630吸引。當電子到達P型區610時或當電洞到達N型區630時,可產生偵測信號。因此,當帶電粒子束入射於感測元件512上時,感測元件512可產生輸出信號,諸如電流。可連接多個感測元件,且感測元件之群組可用以偵測帶電粒子束光點之強度。當帶電粒子束光點覆蓋多個鄰近感測元件(例如,感測元件511、512及513)時,感測元件可分組(「合併」)在一起以用於收集電流。舉例而言,感測元件可藉由接通其間之開關元件(例如,開關元件519及521)而合併。來自群組中之感測元件的信號可經收集並發送至連接至該群組的信號調節電路。群組中之感測元件之數目可為與光束點之大小及形狀相關的任意數目。數目可為1或大於1。
在一些實施例中,偵測器可經組態以使得個別感測元件可經由例如信號線及/或資料線以及位址信號與外部組件通信。偵測器可經組態以致動開關元件,使得兩個或兩個以上感測元件可經合併,且其輸出電流或電壓可經組合。如圖5至圖6中可見,利用感測元件之間的開關元件設計,感測元件可經設置為無實體隔離區域(例如,圖3B中之區域380)。因此,當啟動感測元件512時,表面層601下方之所有區域可變為主動的。當在鄰近感測元件之間不提供實體隔離區域時,其間的遮蔽區域可經最小化或消除。
圖7係表示與本揭露之實施例一致的偵測器700之例示性區段配置的圖式。舉例而言,偵測器700可為圖3A中之偵測器300A、圖4中之偵測器陣列400或圖5中之偵測器500的實施例。如圖7中所展示,偵測器700可包括多個感測元件,包括感測元件701、702、703、704、705及706。在一些實施例中,多個感測元件可為感測器層之部分,該感測器層可形成圖2中之帶電粒子偵測設備244的偵測表面(例如,圖3B中之感測器表面300B)。感測器層可包括鄰近感測元件之間的開關元件(例如,類似於圖6中之開關元件519及521),包括元件間開關元件711、712及713。在一些實施例中,開關元件在接通時可經組態以將兩個或兩個以上鄰近感測元件分組在一起。
在圖7中,偵測器700可包括多個區段(例如,類似於圖3A中之區段321、322、323及324)。區段中之每一者可包括一或多個感測元件、及感測元件之間的佈線路徑(例如,類似於圖4A中之佈線路徑402),以及共同輸出端。在一些實施例中,佈線路徑可包括共用線或共用信號路徑。舉例而言,如圖7中所展示,佈線路徑721可以通信方式連接至感測 元件701、702及703,並連接至共同輸出端728。佈線路徑721、感測元件701至703及共同輸出端728可屬於第一區段。佈線路徑722可以通信方式連接至感測元件704、705及706,並連接至共同輸出端729。佈線路徑722、感測元件704至706及共同輸出端729可屬於第二區段。感測元件(例如,感測元件706)之輸出端(例如,輸出端719)可經由元件-匯流排開關元件(例如,元件-匯流排開關元件720)以通信方式耦接至對應佈線路徑(例如,佈線路徑722)。在一些實施例中,元件-匯流排開關元件720可使用類似於如圖6中所描述之開關元件519及521的技術實施。在一些實施例中,當感測元件706未在作用中時,元件-匯流排開關元件720可斷開連接以減少來自感測元件706之雜訊、寄生電容或其他技術影響。
在圖7中,區段(例如,包括感測元件701至703之第一區段或包括感測元件704至706之第二區段)可經組態以將電信號輸出至信號處理電路及其他電路元件。舉例而言,佈線路徑722可經由共同輸出端729將電信號輸出至信號處理電路系統730。
信號處理電路系統730可包括用於對由佈線路徑722輸出之電信號進行處理的一或多個信號處理電路。舉例而言,信號處理電路系統730可包括前置放大器731、後置放大器732及資料轉換器733。舉例而言,前置放大器731可為跨阻抗放大器(TIA)、電荷轉移放大器(CTA)、電流放大器或類似者。後置放大器732可為可變增益放大器(VGA)或類似者。資料轉換器733可為類比/數位轉換器(ADC),該類比/數位轉換器可將類比電壓或類比電流轉換成數位值。在一些實施例中,前置放大器731及後置放大器732可經組合為單個放大器(例如,圖4A中之放大器404),且資料轉換器733可包括圖4中之ADC 406。
偵測器700可包括數位開關740。在一些實施例中,數位開關740可包括開關元件矩陣。在一些實施例中,數位開關740可包括多工器(例如,圖4中之數位多工器408)。舉例而言,多工器可經組態以接收第一數目個輸入且產生第二數目個輸出,其中第一數目及第二數目可相同或不同。第一數目可對應於偵測器700之參數(例如,區段之總數目),且第二數目可對應於圖1至圖2之光束工具104的參數(例如,由圖2中之帶電粒子源202產生的細光束之數目)。數位開關740可經由一或多個資料線及一或多個位址信號與外部組件通信。在一些實施例中,數位開關740可控制資料讀取/寫入。數位開關740亦可包括用於控制元件間開關元件(例如,元件間開關元件711、712及713)的電路系統。在圖7中,數位開關740可經由多個資料通道產生輸出信號,該多個資料通道包括資料通道751、752及753。在一些實施例中,數位開關740之資料通道可進一步連接至其他組件(例如,繼電器或類似者)。因此,偵測器700之多個區段可充當用於偵測器信號之獨立資料通道。
應注意,可在圖7之表示中之各個階段插入各種組件。在一些實施例中,可省去偵測器700之上述組件中之一或多者。在一些實施例中,其他電路可經提供以用於其他功能。舉例而言,開關元件致動電路(圖7中未展示)可經提供以控制元件間開關元件(例如,元件間開關元件711、712及713)以用於連接感測元件。在一些實施例中,可提供可由類比路徑讀取之類比輸出線(圖7中未展示)。舉例而言,類比輸出線可平行於用於接收後置放大器732之輸出的資料轉換器733。對於另一實例,類比輸出線可代替資料轉換器733。
圖8係表示與本揭露之實施例一致的偵測器800之另一例示 性區段配置的圖式。偵測器800可類似於偵測器700,不同之處在於與區段相關聯之感測元件(例如,感測元件704、705及706)可經由共同佈線路徑(例如,共同佈線路徑819)及共同開關元件(例如,共同開關元件820)以通信方式耦接至相關聯佈線路徑(例如,佈線路徑722)。在一些實施例中,共同開關元件820可使用類似於如圖6中所描述之開關元件519及521的技術來實施。舉例而言,如圖8中所展示,若帶電粒子束入射於感測元件704、705及706上,則感測元件704、705及706可產生偵測信號。感測元件705可將其偵測信號直接輸出至共同佈線路徑819。感測元件704及706可各別經由元件間開關元件712及713將其偵測信號投送至感測元件705,該等偵測信號可經由感測元件705進一步投送至共同佈線路徑819。此類設計可簡化偵測器之製造。作為比較,在感測元件與區段之間使用多個佈線路徑及開關元件的設計(例如,圖7中之偵測器700的設計)可為群組感測元件提供組態靈活性,此係因為區段之輸出端並不固定在彼區段之任何特定感測元件(例如,圖8中之感測元件705)處。另外,諸如圖7中之偵測器700之設計的設計可增強讀取個別感測元件之輸出的簡單性。為獲取二次電子束之光束投影,可能有利的是讀出每一感測元件之輸出以使得可獲取投影圖案之影像。
圖9係表示與本揭露之實施例一致的偵測系統900之圖式。在一些實施例中,偵測系統900可為圖2中之偵測設備244的實施例。偵測系統900可包括感測元件902(例如,類似於如圖3A至圖8中所描述之感測元件)及處理電路940(例如,類似於圖7至圖8中之信號處理電路系統730)。處理電路940可以通信方式耦接至數位介面950(例如,類似於圖7至圖8中之數位開關740)。感測元件902可形成感測器表面(例如,圖3B之 感測器表面300B),且可分段成多個區段(例如,類似於如圖3A至圖3B或圖7至圖8中所描述的區段)。處理電路940可包括用於處理感測元件902之輸出的第一處理電路陣列910(例如,包括圖7至圖8中之前置放大器731)、用於提供增益及偏移控制之第二處理電路陣列920(例如,包括圖7至圖8中之後置放大器732)以及用於將類比信號轉換成數位信號的ADC陣列930(例如,包括圖7至圖8中之資料轉換器733)。第一處理電路陣列910及第二處理電路陣列920可在處理電路940中形成信號調節電路。處理電路940之每一區段可以通信方式耦接至感測元件902之區段,該感測元件之區段可有序地以通信方式耦接至第一處理電路陣列910之單元、第二處理電路陣列920之單元及ADC陣列930之單元,從而形成信號路徑(例如,信號路徑960)。此類信號路徑可接收來自感測元件902之區段的輸出信號並產生表示形成於感測元件902之區段上的帶電粒子束光點的至少一部分之強度的帶電粒子偵測電流。帶電粒子偵測資料可輸出至數位介面950。在圖9中,信號路徑960包括類比信號路徑970,該類比信號路徑包括第一處理電路陣列910之單元及第二處理電路陣列920之單元。
數位介面950可包括控制器904。控制器904可與ADC陣列930、第二處理電路陣列920及感測元件902通信。數位介面950亦可經由例如收發器發送並接收來自偏轉及影像控制單元(圖9中未展示)的通信。收發器可包括傳輸器906及接收器908。在一些實施例中,控制器904可控制偵測系統900之影像信號程序。
存在進一步改良如參看圖3A至圖9描述之偵測器的性能、容量及可調適性的若干挑戰。典型地,彼等挑戰可與各者中之一或多者有關:表示偵測器可並行處理的信號(例如,類比信號或數位信號)數量的處 理頻寬、表示資料通信之最高速度及數位系統之處理能力的數位信號頻寬、表示偵測器之偵測能力及檢測結果之精細度的類比信號頻寬或表示偵測器可對數位信號進行處理之快速程度的像素速率。
偵測器之類比信號頻寬可受寄生參數限制。舉例而言,當撞擊於偵測設備(例如,偵測設備244)之感測器表面(例如,在圖3B中之感測器表面300B)上的光束(例如,圖2中之二次帶電粒子束236、238或240)具有極大光點大小時,偵測設備之大量感測元件(例如,如圖3A至圖8中所描述之感測元件)可涉及偵測光束。在一些狀況下,若光束撞擊於感測器表面之多個區段上,則彼等區段(例如,如圖3A至3B或圖7至圖8中所描述的區段)之感測元件可涉及偵測光束。作為另一實例,當感測元件共同硬佈線於偵測設備中時,甚至當光束撞擊於感測器表面之僅一個感測元件上時,經硬佈線在一起的所有感測元件可經啟動以用於偵測。然而,偵測光束中所涉及之組件愈多,則信號調節電路中可引發之寄生參數(例如,雜散電容)愈多,此可顯著減小偵測設備的類比信號路徑(例如,圖9中之類比信號路徑970)之類比信號頻寬。在一些狀況下,當多個感測元件涉及偵測時,與感測元件與信號調節電路之輸入端之間的互連件(例如,開關元件)相關聯的雜散電容亦可較大,此可減小放大器之類比信號頻寬。此外,類比信號頻寬之此類顯著減小可使成像性能降低。舉例而言,可能產生模糊影像,且偵測器可能無法滿足高像素速率之要求。
偵測器之資料處理頻寬在一些應用中可受偵測器之組件容量或電路設計限制。許多現有偵測設備可在每一信號路徑中僅具有一個ADC,此可能無法滿足一些應用中之一些需求。舉例而言,一些應用涉及高密度光束,其可能無需高像素速率用於資料處理。在此類狀況下,偵 測設備可需要大量信號路徑以用於偵測設備之小區。然而,即使無需高資料速率ADC來偵測高密度光束,偵測設備之信號路徑仍可易於耗盡。作為另一實例,一些應用涉及大點束,其中之每一者可產生大量偵測信號且可需要高像素速率以用於資料處理。在彼等狀況下,偵測設備可需要高資料速率ADC以用於其信號路徑及高頻寬資料通道。為針對每一大點束提供高像素速率,偵測設備可針對大點束使用多個信號路徑。然而,偵測設備之信號路徑在此類狀況下仍可易於耗盡,且即使信號路徑充足,資料通道之資料處理頻寬歸因於大資料量而仍可易於耗盡。作為另一實例,一些應用涉及低密度光束但每一光束需要高像素速率以用於偵測。在彼等狀況下,偵測設備可需要高像素速率ADC,其可引起設計及製造中之較高成本。在一些應用中,上文所描述之挑戰中之一些或所有可共存。偵測設備之現有設計可缺乏解決上述挑戰之可調適性。
偵測器之像素速率可受許多因素限制,包括偵測器之組件的類比信號頻寬及規格。舉例而言,讀出電路中之ADC可具有無法支援所需像素速率之最大取樣速率。將限制組件升級至更先進組件可在研究、開發及製造中產生大量成本。因此,長期渴求改良偵測器之像素速率的低成本解決方案。
偵測器之性能可調適性可受單向最佳化限制。偵測器之設計(例如,在圖3A中之感測器層301、區段層302及讀出層303)可經最佳化以用於一些應用,但此類最佳化可在一些其他應用中使偵測器之性能降低。
在本揭露中提供了一種偵測器陣列之例示性架構,其可有助於減輕上文所提及之問題中之一些或所有。圖10係繪示與本揭露之實施 例一致的具有例示性架構之偵測器陣列1000的圖式。圖10之架構可用於單光束檢測工具或多光束檢測工具(例如,圖2中之光束工具104)中。偵測器陣列1000可包括一些類似於圖4中之偵測器陣列400的組件,包括區段321、感測元件311、312、313及314、佈線路徑402及數位多工器408。類似於圖4,偵測器陣列1000可包括多個區段,包括圖10中之區段1002。區段1002可類似於區段321且包括4×4個感測元件,包括感測元件311、312、313及314。偵測器陣列1000亦包括與區段1002相關聯之類比信號路徑1004,該類比信號路徑自區段1002之輸出端開始並在互連層1006之輸入端處結束。類比信號路徑1004包括放大器1022。在一些實施例中,類似於圖9中之類比信號路徑970,類比信號路徑1004可另外或替代地包括其他組件。如圖10中所展示,區段1002係與類比信號路徑1004(包括放大器1022)及ADC 1024相關聯,藉以藉由區段1002之感測元件產生的偵測信號可由類比信號路徑1004及ADC 1024處理,且經輸出至數位多工器408。數位多工器408可接收與偵測器陣列1000之不同區段相關聯的不同ADC之輸出。
偵測器陣列1000包括將信號處理電路系統之輸出端以通信方式彼此耦接之互連層1006。信號處理電路系統可包括類比信號路徑(包括類比信號路徑1004)。如圖10中所展示,互連層1006包括以通信方式耦接至偵測器陣列1000之類比信號路徑之輸出端的互連開關元件。舉例而言,互連開關元件1014、1016、1018及1020可以通信方式耦接鄰近類比信號路徑(包括類比信號路徑1004)之輸出端。
在圖10中,開關元件1008可將區段1002之輸出端以通信方式耦接至類比信號路徑1004之輸入端。開關元件1010可將類比信號路徑 1004之輸出端以通信方式耦接至互連層1006之輸入端(例如,輸入/輸出點1026或「I/O點」1026)。若類比信號路徑1004未經選擇以供使用,則開關元件1008及1010可經組態以通信方式斷開連接。舉例而言,帶電粒子束可撞擊於區段1002之感測元件中之一些或所有上,但區段1002之偵測信號可經重新導向至對應於偵測器陣列1000之另一區段的另一類比信號路徑。在此類狀況下,類比信號路徑1004可由於未被選擇而斷開連接。在一些實施例中,若區段1002中無感測元件經任何帶電粒子撞擊且類比信號路徑1004未經選擇以供使用(例如,處理來自其他區段之信號),則除了以通信方式斷開開關元件1008及1010的連接以外,放大器1022亦可經停用以減小功率消耗。當開關元件1008及1010以通信方式斷開連接時,類比信號路徑1004(包括放大器1022)可有效地自偵測器陣列1000撤銷啟動。
在圖10中,開關元件1012可將互連層1006之輸出端(例如,I/O點1026)以通信方式耦接至ADC 1024之輸入端。在一些實施例中,互連層1006之輸出端亦可為輸入端。舉例而言,I/O點1026可充當互連層1006之輸入端(以通信方式耦接至類比信號路徑1004之輸出端)及輸出端(以通信方式耦接至ADC 1024之輸入端)。在一些實施例中,類比信號路徑1004之輸出端可等效於I/O點1026。在一些實施例中,ADC 1024之輸入端可等效於I/O點1026。在一些實施例中,I/O點1026可經實施為分開之組件(圖10中未展示)。當開關元件1012以通信方式斷開連接時,ADC 1024可有效地自區段1002及經由互連開關元件1014、1016、1018或1020以通信方式耦接至ADC 1024的任何其他區段(圖10中未展示)撤銷啟動。在一些實施例中,若ADC 1024未經選擇以供使用,則開關元件1012可經 組態而以通信方式斷開連接。舉例而言,自類比信號路徑1004輸出之信號可經重新導向至對應於偵測器陣列1000中之另一類比信號路徑的另一ADC。在一些實施例中,若區段1002中無感測元件經任何帶電粒子撞擊且類比信號路徑1004及ADC 1024皆未經選擇以供使用(例如,對來自其他區段之信號進行處理),則除了以通信方式斷開開關元件1012的連接以外,ADC 1024亦可經停用以減小功率消耗。
在一些實施例中,偵測器陣列1000可取決於諸如光束點之大小、光束點之形狀或需達成的像素速率或類似者之各種因素而以各種方式對帶電粒子偵測信號進行投送。偵測器陣列1000可藉由控制感測元件、開關元件1008、1010、1012及互連開關元件1014、1016、1018、1020之間的開關元件的連接及斷開連接而對偵測信號進行投送。舉例而言,偵測器陣列1000可將由區段1002輸出之信號投送(例如,經由感測元件之間的開關元件)至除類比信號路徑1004以外的另一類比信號路徑。在另一實例中,偵測器陣列1000可經由開關元件1008將來自除區段1002以外之另一區段的信號投送至類比信號路徑1004。在另一實例中,偵測器陣列1000可將由類比信號路徑1004輸出的信號投送(例如,經由互連開關元件1014、1016、1018或1020)至除ADC 1024以外之另一ADC。在另一實例中,偵測器陣列1000可將來自除類比信號路徑1004以外之另一類比信號路徑的信號投送(例如,經由開關元件1012)至ADC 1024。在一些實施例中,若區段1002不產生偵測信號且類比信號路徑1004及ADC 1024皆未經選擇以供使用,且若類比信號路徑或鄰近區段之ADC經選擇以供使用,則區段1002與鄰近區段之間的互連開關元件(例如,互連開關元件1014、1016、1018或1020)可以通信方式斷開連接,此可有助於在接通放 大器1022及ADC 1024時減少其引發的串擾及寄生參數。
在一些實施例中,若區段1002之感測元件(例如,感測元件311)不在使用中且不包括於用於偵測任何二次電子束之任何感測元件群組中,則該感測元件可以通信方式自佈線路徑402解耦以減少寄生參數(例如,雜散電容),此可進一步有助於提高偵測器陣列1000之性能。舉例而言,感測元件311可藉由以通信方式斷開感測元件311與佈線路徑402之間的開關元件的連接而與佈線路徑402斷開連接。在感測元件311與佈線路徑402斷開連接時,感測元件311與其相鄰感測元件之間的所有開關元件亦可以通信方式斷開連接。
在一些實施例中,互連層1006、互連開關元件1014、1016、1018及1020以及開關元件1008、1010及1012可包括於偵測器陣列1000之讀出層(例如,類似於圖3A中之讀出層303)中。在一些實施例中,互連開關元件1014至1020及開關元件1008、1010、1012可使用類似於如圖6中所描述之開關元件519及521的技術來實施。
在一些實施例中,諸如偵測器陣列1000之類比信號路徑中的放大器(例如,放大器1022)或在偵測器陣列1000之信號路徑之末端處的ADC(例如,ADC 1024)的組件可經組態以在電流模式下工作,其中放大器及ADC之輸入及輸出為電流。在一些實施例中,組件(例如,放大器1022或ADC 1024)可經組態以在電荷模式下工作,其中放大器及ADC之輸入及輸出為電荷信號。放大器1022及ADC 1024兩者皆可在電流或電荷模式下或在混合模式下操作。混合模式可為電流模式及電荷模式之混合模式。在混合模式中,放大器及ADC之輸入及輸出可經組態以在電流模式或電荷模式中之任一者下工作。
相較於在電壓模式下工作的放大器,在電荷模式或電流模式下工作的放大器之輸入阻抗可減小且輸出阻抗可增大。輸入阻抗減少可降低放大器對周圍干擾(例如,來自鄰近數位組件之干擾)的靈敏度並降低放大器對寄生參數(例如,雜散電容)之靈敏度。此類益處亦可在除放大器以外之諸如ADC的其他組件中達成。在輸入阻抗減少之情況下,即使在組件輸入端處存在一些雜散電容,該組件仍可具有較高類比信號頻寬且可實現基於硬體之類比信號處理,其中硬體涉及不同信號路徑之間的互連件(例如,互連層1006)。輸出阻抗增大可促進相加來自不同類比信號路徑之輸出信號。舉例而言,來自不同類比信號路徑之輸出信號可藉由以通信方式連接共同點處的類比信號路徑之輸出端而進行相加。用於放大器及ADC之電流或電荷模式設計可降低設計及實施基於硬體之類比信號處理的難度。
圖11係繪示與本揭露之實施例一致的在電流模式下工作的例示性放大器1100之圖式。在一些實施例中,放大器1100可為偵測器陣列1000中之放大器1022。放大器1100包括控制器1102、第一放大器1104及第二放大器1106。第一放大器1104及第二放大器1106可以通信方式串聯耦接,其中第一放大器1104之輸出端可以通信方式耦接至第二放大器1106之輸入端。第一放大器1104之輸入端可接收由感測元件(例如,圖10中之區段1002中之感測元件)產生的電流信號。第二放大器1106之輸出端可將經放大電流信號傳輸至ADC(例如,圖10中之ADC 1024)。控制器1102可以通信方式耦接至第一放大器1104及第二放大器1106並控制該第一放大器及該第二放大器之操作。在一些實施例中,第一放大器1104可為電荷轉移放大器(CTA)、跨阻抗放大器(TIA)或可在TIA或CTA模式下操作 的CTA與TIA之組合(CTIA)。在一些實施例中,第二放大器1106可為轉導放大器(TCA)。應注意,儘管放大器1100經展示為包括圖11中之兩個放大級(亦即第一放大器1104及第二放大器1106),但其可經實施以具有僅一個放大級或多個放大級。舉例而言,若放大器1100為單級放大器,則其可包括電流放大器,該電流放大器之輸入及輸出可皆為電流。在另一實例中,若放大器1100為多級放大器,則其可包括除第一放大器1104及第二放大器1106以外的更多放大器。本揭露並不將放大器1100之實施例限於上文所描述之實例。在一些實施例中,放大器可包括雙模式電荷轉移及跨阻抗放大器。放大器亦可包括轉導放大器。放大器可經組態以接收電流信號並輸出電荷信號,或接收電荷信號並輸出電流信號。
圖12係繪示與本揭露之實施例一致的在電流或電荷模式下工作的例示性ADC 1200之圖式。ADC 1200可為圖10之偵測器陣列1000中之ADC 1024。在電流或電荷模式下,ADC 1200之輸入可為電流或電荷信號,且ADC 1200之輸出可為電流信號或電壓信號。ADC 1200包括控制器1202、轉換器1204及電壓輸入ADC 1206。轉換器1204可為電流-電壓(I-V)轉換器或電荷-電壓(C-V)轉換器等等。轉換器1204及電壓輸入ADC 1206可以通信方式串聯耦接,其中轉換器1204之輸出端可以通信方式耦接至電壓輸入ADC 1206之輸入端。轉換器1204之輸入端可接收由放大器1100輸出的電流信號。電壓輸入ADC 1206之輸出端可將數位信號傳輸至其他處理電路系統(例如,圖10中之數位多工器408)。控制器1202可以通信方式耦接至轉換器1204及電壓輸入ADC 1206並控制該轉換器及該電壓輸入ADC 1206之操作。應注意,儘管ADC 1200經展示為包括圖12中之兩級(亦即轉換器1204及電壓輸入ADC 1206),但其可經實施以具有 僅一級且仍能夠在電流或電荷模式下操作。舉例而言,若ADC 1200為單級ADC,則其可為電荷再分佈ADC或電荷共用ADC。本揭露並不將ADC 1200之實施例限於上文所描述之實施例。
圖13係表示與本揭露之實施例一致的具有圖10之例示性架構的偵測器1300之例示性區段配置之圖式。偵測器1300可具有類似於圖7之偵測器700的組件,包括感測元件701、702、703、704、705及706、元件間開關元件711、712及713、輸出端719、元件-匯流排開關元件720、佈線路徑721、722及723、共同輸出端728及729、數位開關740以及資料通道751、752及753。在一些實施例中,數位開關740可包括如圖10中所展示之數位多工器408。
在圖13中,類似於偵測器陣列1000,偵測器1300之放大器(包括放大器1302、1306及1310)可經由開關元件(例如,開關元件1314、1320及1326)以通信方式耦接至區段。在一些實施例中,放大器可類似於圖10中之放大器1022或圖11中之放大器1100。開關元件可類似於圖10中之開關元件1008。
在圖13中,偵測器1300包括ADC(包括ADC 1304、1308及1312)及配置於放大器與ADC之間的互連層1006(由虛線框表示)。ADC可類似於圖10中之ADC 1024或圖12中之ADC 1200。放大器可經由開關元件(包括開關元件1316、1322及1328)以通信方式耦接至互連層1006,該等開關元件可類似於圖10中之開關元件1010。互連層1006可經由開關元件(包括開關元件1318、1324及1330)以通信方式耦接至ADC,該等開關元件可類似於圖10中之開關元件1012。在一些實施例中,開關元件1314至1332及1340可使用類似於如圖6中所描述之開關元件519及521的 技術來實施。
在圖13中,互連層1006可包括多個輸出端,包括I/O點1334、I/O點1336及I/O點1338。在一些實施例中,I/O點1334、1336及1338可類似於圖10中之I/O點1026。在一些實施例中,偵測器1300之放大器(例如,包括放大器1302、1306及1310)中之每一者可經由開關元件(例如,各別為開關元件1316、1322及1328)以通信方式耦接至互連層1006的輸入端(例如,各別為I/O點1334、1336及1338)。在一些實施例中,偵測器1300之ADC(例如,包括ADC 1304、1308及1312)中之每一者可經由開關元件(例如,各別為開關元件1318、1324及1330)以通信方式耦接至互連層1006之輸出端(例如,各別為I/O點1334、1336及1338)。
在圖13中,互連層1006包括以通信方式耦接至放大器之輸出端的互連開關元件(例如,互連開關元件1332),該等互連開關元件可類似於圖10中之互連開關元件1014、1016、1018及1020。在一些實施例中,互連層1006中之互連開關元件可使用類似於如圖6中所描述之開關元件519及521的技術來實施。
在一些實施例中,為增加像素速率,偵測器1300之ADC可經組態以在交錯模式下工作。一般而言,當ADC在交錯模式下工作時,兩個或兩個以上ADC可以通信方式耦接至計時電路。ADC之時鐘可經設定為具有預定關係。當操作時,ADC可替代地對輸入信號進行取樣(使其「交錯」)並產生組合輸出信號。組合輸出信號之像素速率可高於每一個別ADC達成之像素速率。舉例而言,當m個(m為整數)ADC經組態以在交錯模式下工作時,其中每一ADC具有每秒n個(n為數目)像素之像素速率,m個ADC之組合像素速率可為每秒m×n個像素。
舉例而言,計時電路(圖13中未展示)及控制電路(圖13中未展示)可設置於數位開關740中。時脈控制電路(例如,可為圖12中控制器1202之部分)可設置於每一ADC中,包括ADC 1304、1308及1312。時脈控制電路可以通信方式耦接至計時電路並參考由計時電路產生的時脈信號而針對每一ADC設定不同時序移位。ADC之輸入端可經由互連層1006中之開關元件以通信方式彼此耦接,且控制電路可控制該等ADC在交錯模式下工作。在一些實施例中,在電流模式下工作的偵測器1300之放大器可為待經組態以在交錯模式下工作的ADC提供更多靈活性。
在一些實施例中,對於需要高於由偵測器1300之ADC的最大取樣速率支援之像素速率的像素速率之應用,ADC可經組態以在交錯模式下工作。舉例而言,ADC 1304及1308可具有相同最大取樣速率。當佈線路徑721經啟動(例如,歸因於帶電粒子束撞擊於感測元件701至703上)時,開關元件1314及1316可以通信方式連接以使得由佈線路徑721輸出之信號能夠由放大器1302處理及放大。互連開關元件1332與開關元件1318及1324可經協調以按交替方式將由放大器1302輸出的經放大信號分流至ADC 1304及1308。舉例而言,由放大器1302輸出的經放大信號可藉由以通信方式連接開關元件1318及以通信方式斷開互連開關元件1332及開關元件1324的連接而分流至ADC 1304。由放大器1302輸出的經放大信號可藉由以通信方式斷開開關元件1318的連接及以通信方式連接互連開關元件1332及開關元件1324而分流至ADC 1308。控制電路及計時電路可控制用於ADC 1304及1308的此類分流之時序及取樣之時序。ADC 1304及1308之組合輸出信號的有效取樣速率可為任何單個ADC之最大取樣速率的兩倍。
應注意,偵測器1300之兩個以上ADC可經組態以在交錯模式下以類似方式工作,且本揭露並不將交錯模式之實施例限於以上實例。在一些實施例中,在交錯模式下工作的偵測器1300之以通信方式耦接的ADC可彼此鄰近或不彼此鄰近。舉例而言,ADC 1304、1308及1312可經組態以在交錯模式下工作,其中該等ADC間的互連層1006之互連開關元件(例如,包括互連開關元件1332)及開關元件1318、1324及1330可經協調以按交替方式將由放大器1306輸出的經放大信號分流至ADC 1304、1308及1312。舉例而言,由放大器1306輸出的經放大信號可藉由以通信方式連接開關元件1318與互連開關元件1332,且以通信方式斷開開關元件1324、開關元件1330及ADC 1308與1312之間的一或多個互連開關元件的連接而分流至ADC 1304。由放大器1306輸出的經放大信號可藉由以通信方式連接開關元件1324,及以通信方式斷開開關元件1318、開關元件1330、互連開關元件1332及ADC 1308與1312之間的一或多個互連開關元件的連接而分流至ADC 1308。由放大器1306輸出的經放大信號可藉由以通信方式連接開關元件1330及ADC 1308與1312之間的所有互連開關元件,且以通信方式斷開開關元件1318、開關元件1324及互連開關元件1332的連接而分流至ADC 1312。
在一些實施例中,當撞擊於偵測器1300上之光束具有大光束點時,偵測器1300之多個類比信號路徑可經組態以經由互連層1006以通信方式耦接至單個ADC。舉例而言,來自不同類比信號路徑之類比信號可在輸入至任何ADC之前藉由硬體(例如,在互連層1006處)求和或合併。經求和類比信號可由單個ADC轉換。此類設計可減小所需數位輸出頻寬並增大組態靈活性。相反,偵測器之現有設計可缺乏在信號數位化之 前基於硬體之類比信號求和的能力(例如,歸因於類比信號路徑不具有在其他信號路徑中將其信號輸出至ADC的能力),且可需要多個數位輸出通道或頻寬以對來自相同大光束點之信號進行處理。相較於現有設計,偵測器1300之設計可具有較高類比信號頻寬而無需額外數位輸出容量或使讀出電路之大小顯著增大,此係因為單個ADC可足以在與來自多個類比信號路徑之類比信號求和的類比信號輸入之前對其進行處理。
圖14係繪示與本揭露之實施例一致的具有例示性架構之偵測器陣列1400之區段1401的圖式。圖14之架構可用於單光束檢測工具或多光束檢測工具(例如,圖2中之光束工具104)。區段1400與圖10中之區段1002共用一些類似組件,包括感測元件311、312、313及314、ADC 1024及數位多工器408。在圖14中,區段1400包括四個子區段1420、1422、1424及1426,該等子區段中之每一者包括2×2個感測元件。子區段1424包括感測元件311、312、313及314。子區段1420、1422、1424及1426各別以通信方式耦接至佈線路徑1421、1423、1425及1427。圖14亦展示各別以通信方式耦接至佈線路徑1421、1423、1425及1427的四個類比信號路徑1402、1404、1406及1408。類比信號路徑1402、1404、1406及1408可各自類似於圖10中之類比信號路徑1004並各別包括放大器1410、1412、1414及1416。類比信號路徑1402、1404、1406及1408中之每一者在其與其佈線路徑之間具有上游開關元件(例如,類似於圖10中之開關元件1008),且亦在其與互連層1006之間具有下游開關元件(例如,類似於圖10中之開關元件1010)。如圖14中所展示,類比信號路徑1402、1404、1406及1408經由互連層1006以通信方式耦接至求和點1418,其中開關元件1403、1405、1407及1409(例如,每一者類似於圖10中之開關元件1012) 配置於求和點1418與互連層1006之間。求和點1418可以通信方式耦接至ADC 1024,該ADC進一步以通信方式耦接至數位多工器408。求和點1418可作為類比多工器操作且可將經多工類比信號輸出至ADC 1024以將其轉換成數位信號。數位信號可輸出至數位多工器408以供進一步處理。
在圖14中,子區段1420、1422、1424及1426各別與類比信號路徑1402、1404、1406及1408相關聯。類比信號路徑1402、1404、1406及1408係與ADC 1024相關聯。在一些實施例中,區段1400中與一個ADC相關聯的類比信號路徑之數目可為任意的。在一些實施例中,不同數目個類比信號路徑可與區段1400中之一個ADC相關聯。相較於圖10中之偵測器陣列1000的類比信號路徑1004,圖14中的類比信號路徑1402、1404、1406及1408中之每一者可對自較少感測元件偵測到之信號進行處理,此可增大類比信號頻寬及組態靈活性。區段1400可藉由控制互連開關元件1428、1430、1432及1434以及開關元件1403、1405、1407及1409的打開及閉合而以各種方式將由類比信號路徑1402、1404、1406及1408輸出之信號投送至求和點1418。
在一些實施例中,若由類比信號路徑1402、1404、1406及1408輸出之信號係來自同一光束點,則彼等信號可在輸出至求和點1418之前在互連層1006處求和(例如,藉由基於硬體之類比信號求和)。舉例而言,在此類狀況下,互連開關元件1428、1430及1432可以通信方式連接,開關元件1403、1405及1407可以通信方式斷開連接,且開關元件1409可以通信方式連接,藉以由類比信號路徑1402、1404、1406及1408輸出的信號可在互連層1006處相加並經由開關元件1409輸出至求和點1418。
在一些實施例中,若由類比信號路徑1402、1404、1406及1408輸出的信號皆來自不同光束點,則彼等信號可在無基於硬體之類比信號求和之情況下經多工至求和點1418。舉例而言,在此類狀況下,開關元件1403、1405、1407及1409皆可以通信方式連接。若ADC 1024之最高取樣速率足以支援所需像素速率,則互連開關元件1428、1430、1432及1434皆可以通信方式斷開連接,且由類比信號路徑1402、1404、1406及1408輸出的信號可經多工至求和點1418,該求和點可進一步將經多工信號輸出至ADC 1024以用於信號數位化。若ADC 1024之最高取樣速率不足以支援所需像素速率,則由類比信號路徑1402、1404、1406及1408輸出之信號可經由互連層1006中之一或多個互連開關元件輸出至多個求和點(例如,包括求和點1418或其他),且多個求和點可將信號輸出至多個ADC(例如,包括ADC 1024或其他)以用於信號數位化。在此類狀況下,多個ADC可在交錯模式下工作。
在一些實施例中,由類比信號路徑1402、1404、1406及1408輸出的信號中之一些可來自同一光束點,且該等信號中之一些可來自不同光束點。在彼等狀況下,來自同一光束點之信號可在互連層1006處相加以產生類比信號之總和,且來自不同光束點之信號可在互連層1006處保持為個別信號(例如,不執行基於硬體之類比信號求和)。類比信號與個別信號之總和可經多工至求和點1418或如上文所描述之多個求和點,此取決於ADC 1024之最高取樣速率是否足以支援所需像素速率。
在一些實施例中,如圖14中所展示的架構之組態靈活性及性能可調適性可藉由經由互連層1006之開關元件將多個類比信號路徑(例如,包括類比信號路徑1402、1404、1406及1408)以通信方式耦接至多個 求和點(例如,包括求和點1418)而進一步增大。藉此,區段1400可經組態以具有用於不同應用之類比信號路徑與資料通道中之ADC的各種比率。取決於應用及偵測器設定,類比信號路徑之數目(例如,放大器之數目)可大於、小於或等於資料通道中之ADC的數目。藉此,如圖11、圖13及圖14中所展示之架構可具有高組態靈活性、高失效容許度及低功率消耗以用於信號處理而不產生大量成本。
高組態靈活性可避免單向最佳化問題。舉例而言,若干ADC可經交錯以對來自多個類比信號路徑之信號進行處理,諸如用於涉及大點束及需要高像素速率的應用。在另一實例中,一個ADC可經指派至一個光束(例如,需要一個類比信號路徑)以用於信號處理。在另一實例中,一個ADC可由若干光束(例如,通過若干類比信號路徑)共用以用於信號處理,諸如用於涉及高密度光束且不需高像素速率的應用。高失效容許度可增大偵測系統之穩固性。舉例而言,若偵測器之放大器或ADC中之一些發生故障,則可繞過發生故障之組件,且本應由該等發生故障之組件處理的信號可經重新導向至其他組件以供處理。低功率消耗可藉由為偵測器的不必要組件(例如,類比信號路徑或ADC)之供電(及以通信方式斷開連接)來達成而不影響如藉由特定應用所需性能。應注意,放大器與ADC之特定比率及信號路由及處理的特定方式可不限於上文所描述之實例,且本揭露之實施例可取決於特定應用而提供其他實施方式。
圖15係與本揭露之實施例一致的偵測帶電粒子束之例示性方法1500的流程圖。方法1500可由帶電粒子檢測系統之控制器(例如,圖1中之控制器109或圖9中之控制器904)執行。控制器可包括經程式化以實施方法1500之電路系統(例如,記憶體及處理器)。舉例而言,控制器可為 與帶電粒子檢測系統耦接之內部控制器或外部控制器(例如,圖1中之控制器109或圖9中之控制器904)。方法1500可連接至關於圖3A至圖14展示及描述的組件、操作及步驟。
如圖15中所展示,方法1500可以獲取偵測影像之步驟1502開始。偵測影像可為形成在偵測器之表面上的帶電粒子束光點(例如,二次電子束光點)之影像。偵測影像可包括偵測器表面上之二次光束點投影圖案。當多個帶電粒子束入射於偵測器上時,偵測影像可包括多個光束點。步驟1502可包括讀取可包括於偵測器中的感測元件之個別輸出。可在步驟1502中判定射出晶圓之帶電粒子入射於偵測器上且因此影像處理應開始。步驟1502可包括以相較於特定應用之目標像素速率相對較低的速度執行的影像獲取處理。
接下來,如圖15中所展示,方法1500可繼續進行判定邊界之步驟1504。邊界可對應於投影於偵測器之表面上的帶電粒子束光點之邊界。可根據在步驟1502處收集之資訊判定邊界。步驟1504可包括判定對應於多個光束點之多個邊界。邊界可用於將感測元件指派至群組,如下文將論述。
接下來,如圖15中所展示,方法1500可繼續進行將感測元件分組在一起的步驟1506。邊界內之感測元件可分組在一起。步驟1506可包括致動開關。感測元件之間的開關可經致動,使得例如在同一群組內的兩個鄰近感測元件經電連接。
接下來,如圖15中所展示,方法1500可繼續進行判定光束點是否大之步驟1508。步驟1508可基於預定準則。步驟1508可包括判定光束點之大小及將該大小與臨限值進行比較。步驟1508可包括判定是否 可針對感測元件之群組達成對應於目標像素速率之目標類比頻寬。判定目標類比頻寬是否可達成可基於包括於群組中的感測元件及信號處理電路系統之特性。當例如光束點具有使得用於應用之目標頻寬將基於包括於群組中之感測元件的數目而不可達成之此類大小時,光束點可判定為較大。
回應於在步驟1508中判定光束點不大,方法1500可繼續進行將未使用感測元件接地的步驟1522,如下文將論述。當判定光束點不大時,光束點可被視為單個群組並經如此處理。
回應於在步驟1508中判定光束點較大,方法1500可繼續進行將對應於大光束點之群組再分為子群組的步驟1520。步驟1520可包括判定子群組之大小。子群組之大小可基於目標類比頻寬。子群組可被視為感測元件之個別群組且可與類比信號路徑相關聯,如下文將論述。
接下來,如圖15中所展示,方法1500可自步驟1508或步驟1520繼續進行至將未使用感測元件接地的步驟1522。可使用接地開關或其他構件來將未在使用中之感測元件接地。接地開關可設置於電路系統之感測元件層級中。在圖16A至圖16B中展示接地開關之實例。舉例而言,可基於感測元件是否包括於群組或子群組中而將感測元件判定為未使用。在一些實施例中,未使用感測元件可判定為不輸出偵測信號的感測元件,或判定為由於某些原因(例如,為減小串擾)自群組或子群組中排除的感測元件。
接下來,如圖15中所展示,方法1500可繼續進行判定信號輸出路徑之步驟1524。步驟1524可包括判定用於每一光束點及其對應感測元件群組或子群組之信號輸出路徑。信號輸出路徑可為類比信號路徑。在一些實施例中,可判定每一群組或子群組的輸出點之位置在每一感測元 件群組或子群組的幾何中心或質量中心之區中。基於質量中心判定輸出位置可涉及使用群組或子群組內的光束點之強度分佈。
接下來,如圖15中所展示,方法1500可繼續進行致動開關以將感測元件之群組或子群組連接至其信號輸出路徑的步驟1526。指派至感測元件之群組或子群組的信號輸出路徑可為在步驟1524中判定的信號輸出路徑。在步驟1526中致動之開關可為設置於感測元件之輸出端處的開關(例如,相對於鄰近感測元件之間的開關)。步驟1526可包括將感測元件連接至與群組或子群組之幾何或質量中心相距最近的類比信號路徑。類比信號路徑之輸入端可經由在群組或子群組之幾何或質量中心處的感測元件之輸出端,或經由靠近幾何或質量中心的感測元件之輸出端而連接至感測元件之群組或子群組。在感測元件之輸出端處的開關可閉合且彼等感測元件可連接至類比信號路徑所屬區段中之共用線。在一些實施例中,在感測元件之輸出端處的開關之數目可為1或大於1。當開關之數目大於1時,自感測元件之群組或子群組至類比信號路徑之輸入端的阻抗可減小。此可產生改良之類比信號頻寬。
接下來,如圖15中所展示,方法1500可繼續進行信號處理之步驟1528。步驟1528可包括藉由ADC對光束點之信號進行數位化。藉由ADC數位化的信號可為已經由感測元件之群組的類比信號路徑放大的經放大信號。當光束點較大(在步驟1508中為是)時,步驟1528可包括將來自感測元件之子群組的信號相加在一起。此等信號可由硬體例如以一方式相加在一起,該方式使得類比信號路徑之輸出端之間的對應開關被連接(例如,在如圖10、圖13及圖14中所展示之互連層1006中)。步驟1528可包括判定目標像素速率是否大於一個ADC之最高取樣速率。若目標像素 速率不大於一個ADC之最高取樣速率,則一個ADC可經指派至光束點之每一輸出信號路徑。若目標像素速率比一個ADC之最高取樣速率小得多,則一個ADC可經由互連層(例如,如圖10、圖13及圖14中所展示之互連層1006)而由多個類比信號共用。當例如目標像素速率及一個ADC之最高取樣速率相差至少一個數量級(例如,最高取樣速率大於目標像素速率10倍或10倍以上)時,目標像素速率可比一個ADC之最高取樣速率小得多(<<)。若目標像素速率高於一個ADC之最高取樣速率,則多個ADC可交錯穿過互連層且多個ADC可用以對一個光束點之類比信號進行處理。
接下來,如圖15中所展示,方法1500可繼續進行判定信號路由之步驟1530。用於ADC輸出之信號路由可基於偵測器中之ADC的位置及用以於自其傳送資料的數位輸出通道而判定。
接下來,如圖15中所展示,方法1500可繼續組態偵測器之步驟1532。偵測器可基於在方法1500中執行之各種其他判定而組態。舉例而言,偵測器可經組態以在按特定應用所需之像素速率運行之正常光束強度偵測模式下操作。可維持設定直至SEM成像條件改變為止,該SEM成像條件之改變可引起二次電子束投影之變化。
方法1500之修改及變化將係顯而易見。舉例而言,在圖15中,在步驟1502處,控制器可判定感測元件群組,其中感測元件群組可包括由帶電粒子偵測器(例如,在圖13中之偵測器1300或在圖14中之偵測器陣列1400)中之帶電粒子束之光束點投影的感測元件。舉例而言,帶電粒子束可為圖2中之二次帶電粒子束236、238及240中之任一者。感測元件可在帶電粒子偵測器之表面(例如,在圖3B中之感測器表面300B)上,諸如圖10中之感測元件311至314中之任一者、圖13中之感測元件701至 706中之任一者,或圖14中之感測元件311至314中之任一者。感測元件群組可表示光束點之輪廓或形狀。舉例而言,感測元件群組中之邊界感測元件可表示光束點之邊界。
在一些實施例中,帶電粒子偵測器可為掃描電子顯微鏡(SEM)。在一些實施例中,帶電粒子偵測器可在單光束檢測裝置(例如,單光束SEM)中。在一些實施例中,帶電粒子偵測器可在多光束檢測裝置(例如,圖2中之光束工具104)中。應注意,方法1500可實施於單光束檢測裝置或多光束檢測裝置處,且本揭露並不對此類實施方式強加任何限制。
在一些實施例中,感測元件群組可包括複數個感測元件。在彼等狀況下,控制器可接收帶電粒子偵測器之複數個感測元件的輸出信號。控制器可收集資訊以例如偵測或形成投影於偵測器上之二次帶電粒子束光點的圖像。控制器可讀取每一個別感測元件之輸出。鄰近感測元件(例如,如圖13中所展示的元件間開關元件711、712及713)之間的任何開關可處於打開(例如,斷開連接)狀態。舉例而言,若帶電粒子偵測器為圖13中之偵測器1300,則控制器可經由輸出端719接收感測元件706之輸出信號。控制器可使用所收集資訊以判定形成於偵測器表面上之帶電粒子束光點的邊界。
如圖15之步驟1508中,判定光束點是否較大可基於一條件。該條件可與偵測器中之信號處理電路系統的能力相關。舉例而言,控制器可判定與感測元件群組相關聯之信號處理電路系統可或不可處置特定狀況(例如,基於目標應用)。此可與用於應用之目標類比信號頻寬相關。頻寬可由感測元件群組,包括其相關聯組件之特性判定。舉例而言,用於感測元件群組之頻寬可由感測元件群組及與其相關聯之放大器的大小判 定。用於在預定像素速率下對感測元件群組之輸出信號進行處理的總類比信號頻寬可或可不滿足應用之要求。
舉例而言,當在步驟1502處偵測到之帶電粒子束之光束點較大且覆蓋大量感測元件時,感測元件可分組成感測元件群組,且類比信號頻寬減小可發生以使得感測元件群組之信號處理電路系統無法達至所要應用之所需類比信號頻寬。作為實例,帶電粒子束之光束點可覆蓋區段1401(參看圖14)之感測元件,且可覆蓋其他鄰近區段(未展示)之一些感測元件。區段1401中之感測元件以及其他區段中之所覆蓋感測元件可分組在一起。與區段1401相關聯的類比信號路徑中之一者之輸入端可以通信方式耦接至感測元件群組。在一些實施例中,若無法達到對應於用於對群組之輸出信號進行處理的目標像素速率之類比信號頻寬的要求,則控制器可將群組劃分成較小子群組,該等較小子群組中之每一者可以通信方式耦接至區段1401中之類比信號路徑或可由光束點(至少部分地)覆蓋的其他區段中之類比信號路徑的輸入端。以此方式,信號可傳輸通過不同子群組及不同信號處理電路系統。子群組之信號可加總在一起以表示原始群組之總體信號。
圖16A係繪示與本揭露之實施例一致的用於偵測器陣列1600之例示性開關設計的圖式。偵測器陣列1600可為圖3A中之偵測器300A之實例實施例。舉例而言,偵測器陣列1600之開關設計可實施於偵測器陣列400、1000或1400中。圖16A之開關網路或開關矩陣設計可用於單光束檢測工具或多光束檢測工具(例如,圖2中之光束工具164)中。
在圖16A中,偵測器陣列1600可包括多個區段(例如,類似於圖10中之區段1002),包括區段1602(由虛線框包圍)。區段1602可以通 信方式耦接至偵測器陣列1600之一或多個其他區段。在圖16A中,區段1602在其四個平面方向(由雙頭箭頭展示)上以通信方式耦接至四個鄰近(或「相鄰」)區段(圖16A中未展示)。沿著本文中之方向的兩個「鄰近」物件可指沿著方向其間未配置有介入物件的兩個物件。此類物件可為例如區段或感測元件。
區段1602包括4×4個感測元件(例如,類似於圖4、圖10及圖14中之感測元件312至314中之任一者、圖5至6中之感測元件511至513中之任一者或圖7、圖8及圖13中之感測元件701至706中之任一者),包括感測元件1604及1606(由虛線包圍)。如圖16A中所示,偵測器陣列1600之每一感測元件可具有相同結構且以相同方式操作。在圖16A中,感測元件1604及1606在豎直(例如,y軸)方向上鄰近。區段1602進一步包括輸出匯流排1608(展示為粗黑線),該輸出匯流排為用於接收由感測元件(例如,感測元件1604或1606)產生的個別偵測信號的共用信號匯流排。輸出匯流排1608可經由匯流排輸出端1610將所接收信號獨立地輸出至區段信號路徑或讀出電路。如圖16A中所示,輸出匯流排1608可將信號輸出至區段電路1603。區段電路1603可例如包括於圖3A中之區段321至324中之任一者中。開關元件1612可配置於匯流排輸出端1610與區段電路1603之間。在一些實施例中,當無信號在匯流排輸出端1610處輸出時,開關元件1612可設定為以通信方式斷開連接(例如,打開)以用於減少信號處理中之寄生參數。
圖16B係繪示與本揭露之實施例一致的圖16A中之區段1602的感測元件1604及1606的圖式。偵測器陣列之感測元件可回應於傳入帶電粒子之入射而產生信號。因此,感測元件可充當二極體,原因在於 其可將入射能量轉換成可量測信號,且可在預定方向上進行此操作。偵測器陣列之感測元件可經概念化為包括二極體或其他電氣組件。如圖16B中所示,感測元件1604包括二極體1614、接地開關元件1616、接地電路1617、元件-匯流排開關元件1618以及元件間開關元件1620及1622。類似地,感測元件1606包括二極體1624、接地開關元件1626、接地電路1627、元件-匯流排開關元件1628及元件間開關元件1630及1632。舉例而言,在感測元件1604中,二極體1614可將入射帶電粒子之能量轉換成可量測電信號(例如,電流)。舉例而言,二極體1614可為PIN二極體、突崩二極體、電子倍增管(EMT)或類似者。接地開關元件1616可將感測元件1604連接至接地電路1617。接地電路可用以將電荷自未在使用中的感測元件釋放。在一些情形中,舉例而言,當感測元件經斷開連接以減小串擾、雜訊或寄生參數時,未在使用中的感測元件仍可接收射出晶圓之帶電粒子。若感測元件用於帶電粒子束偵測,則在感測元件之感測元件層級電路處的接地開關(例如,接地開關元件1616)可保持以通信方式斷開連接(例如,打開)。若感測元件未在使用中,則接地開關可經設定為以通信方式連接(例如,閉合)。元件-匯流排開關元件1618可將二極體1614以通信方式耦接至輸出匯流排1608以用於偵測信號輸出。元件間開關元件1620及1622可各別在水平(例如,x軸)及豎直(例如,y軸)方向上將感測元件1604以通信方式耦接至其鄰近感測元件。舉例而言,當以通信方式連接(例如,閉合)時,元件間開關元件1620可將感測元件1604以通信方式耦接至感測元件1606。感測元件1606之類似組件可以類似於感測元件1604之對應組件的方式起作用。
在一些實施例中,可(例如,藉由圖9中之控制器904)獨立 地控制感測元件1604之元件-匯流排開關元件(例如,元件-匯流排開關元件1618)以用於信號輸出。在某些情形下,感測元件可在使用中或不在使用中。感測元件可在使用中或不在使用中,而不管其是否接收帶電粒子。感測元件可取決於某些準則而選擇為在使用中或不在使用中。舉例而言,準則可包括感測元件是否處於用於光束偵測之群組中。感測元件是否處於群組中可基於偵測器表面上之二次光束點投影圖案(例如,在二次光束點之邊界內)或其他要求。其他此類要求可基於例如光束點之收集速率,或光束之間的串擾。在使用中的感測元件可回應於接收帶電粒子而產生偵測信號,且可使其輸出端藉助於開關(例如,元件-匯流排開關元件1618)而耦接至輸出匯流排1608。若多個感測元件(例如,感測元件1604及1606)在使用中,則其各別元件-匯流排開關元件可經控制以將其各別二極體連接至輸出匯流排1608。
在一些實施例中,多個感測元件可按順序次序各別連接至輸出匯流排1608。舉例而言,當感測元件1604及1606兩者皆在使用中時,可逐一連接及斷開元件-匯流排開關元件1618及1628。舉例而言,當感測元件1604將其信號輸出至輸出匯流排1608時,區段1602中之所有其他感測元件(包括感測元件1606)可以通信方式自輸出匯流排1608斷開。當感測元件1606將其信號輸出至輸出匯流排1608時,區段1602中之所有其他感測元件(包括感測元件1604)可以通信方式自輸出匯流排1608斷開。以此方式,輸出匯流排1608可個別地(例如,依序)接收來自感測元件之偵測信號,且個別地(例如,依序)將該等偵測信號輸出至區段電路1603,而不會在其間產生顯著干擾。在一些實施例中,多個感測元件可並聯連接至輸出匯流排1608。舉例而言,當感測元件1604及1606兩者皆在使用中時, 可同時連接元件-匯流排開關元件1618及1628。
偵測器可具有複數個操作模式。在第一模式中,偵測器可獲取二次光束點投影圖案(例如,偵測器表面上之光束點的影像)。第一模式可用以判定感測元件分組。在第二模式中,偵測器可執行光束點強度偵測。在第一模式中,偵測器中之感測元件中之每一者可逐一(例如,依序)定址以對偵測器表面實行電子掃描。然而,在一些實施例中,第一模式不必限於每次僅讀取偵測器表面上之一個感測元件。舉例而言,偵測器可包括複數個區段,且可同時讀取來自每一區段之感測元件。在一些實施例中,可存在與每一區段相關聯之一個信號路徑,且在一區段中每次僅可讀取一個感測元件,但可在不同區段當中並行地進行讀出。此外,在第一模式中,自光束點投影圖案之讀出可包括偵測器之所有感測元件,或可僅包括可位於特定所關注區域中之感測元件的一部分。圖16A之偵測器陣列1600可經組態以在第一及第二模式兩者下操作。
圖17A係繪示與本揭露之實施例一致的用於偵測器陣列1700之另一例示性開關設計的圖式。偵測器陣列1700可為基於圖16A之偵測器陣列1600之修改。在圖17A中,偵測器陣列1700可包括多個區段,包括區段1702。區段1702可類似於圖16A之區段1602,但可包括感測元件1704及經修改開關組態。圖17B係繪示與本揭露之實施例一致的圖17A中之區段1702的感測元件1704及1606的圖式。在圖17B中,感測元件1704可具有與區段1702之其他感測元件類似的組件。舉例而言,類似於感測元件1606,感測元件1704包括二極體1714、接地開關元件1716、接地電路1717以及元件間開關元件1720及1722。然而,感測元件1704並不包括任何元件-匯流排開關元件(不同於感測元件1606中之元件-匯流排開關元 件1628)。亦即,感測元件1704與輸出匯流排1608永久地斷開連接且並不將偵測信號直接輸出至輸出匯流排1608。此外,感測元件1704包括共同輸出端1718。共同輸出端1718可充當區段1702之集合信號輸出端。共同輸出端1718可用以輸出來自區段1702中之所有或一些感測元件或可與區段1702中之感測元件分組在一起之其他感測元件的信號。舉例而言,當區段1702具有在使用中的多個感測元件(例如,包括正使用之感測元件1606及其鄰近感測元件)時,彼等在使用中的感測元件與感測元件1704之間的所有元件間開關元件(例如,包括元件間開關元件1720)可以通信方式連接,使得彼等感測元件之所有偵測信號可經投送至共同輸出端1718以用於信號輸出。此外,例如,用於光束點強度之偵測的感測元件之群組可包括橫跨多個區段之感測元件。群組內之感測元件可經連接(例如,藉助於元件間開關元件),且群組可包括與輸出匯流排1608永久地斷開之感測元件。舉例而言,群組可包括來自區段1702外部之感測元件,且可包括區段1702內之感測元件,包括感測元件1704。在此狀況下,共同輸出端1718可用以輸出群組之信號。在共同輸出端1718處,可在輸出之前相加、組合或合併所有所接收信號。應注意,感測元件1704可配置於區段1702之任何位置處(例如,在任何邊界位置或任何內部位置處),不限於如圖17A中所示之位置。另外,偵測器可高度靈活,以便適應偵測器上之光束點投影的各種配置。舉例而言,在用於光束點強度偵測之每一區段中,彼區段中之僅一部分感測元件包括於群組中的機率為高的。或者,來自區段之第一組感測元件可包括於第一群組中(例如,與第一光束點相關聯),且來自區段之第二組感測元件包括於第二群組中(例如,與不同光束點相關聯),等等。
返回參看圖17A,共同輸出端1718可經由開關元件1708以通信方式耦接至接合點1710。匯流排輸出端1610可經由開關元件1612以通信方式耦接至接合點1710。在一些實施例中,接合點1710可配置於感測器層(例如,圖3A中之感測器層301)中,該感測器層包括區段1702之感測元件。
偵測器陣列1700可進一步包括以通信方式耦接至區段(包括區段1702)之開關網路1706。在圖17A中,開關網路1706可經由接合點1710耦接至區段1702,且可經由開關元件1712耦接至區段信號路徑或讀出電路(例如,區段電路1603)。開關網路1706可包括可以通信方式耦接多個區段之信號輸出端的多個區段間開關元件。舉例而言,開關網路1706可包括將接合點1710(及區段電路1603)耦接至其他區段之接合點(圖17A或圖17B中未展示)的區段間開關元件。
在一些實施例中,藉由控制開關元件1612及1708之打開及閉合,區段1702可設定為在不同模式下操作。舉例而言,當區段1702經設定以在第一模式下操作時,開關元件1612可閉合,且開關元件1708可打開。在此類狀況下,匯流排輸出端1610可以通信方式耦接至接合點1710,且共同輸出端1718可以通信方式自接合點1710解耦,使得區段1702之感測元件(除感測元件1704之外)的偵測信號可僅經由匯流排輸出端1610投送至接合點1710。輸出信號可進一步經由開關元件1712自接合點1710投送至區段電路1603以用於信號處理。在第一模式中,區段1702之偵測信號可經控制以按類似於如上文針對圖16A中之區段1602所述的第一模式之信號輸出程序的方式輸出至接合點1710,其將不在此重複。換言之,在第一模式中,區段1702可以與區段1602之第一模式類似的方式操 作(例如,用於讀出區段之所有感測元件以獲取二次光束點投影圖案)。當開關元件1612以通信方式與接合點1710解耦時,區段1702之感測元件1704的偵測信號可經由共同輸出端1718及開關元件1708而投送至接合點1710。來自感測元件1704之信號的投送可藉由以通信方式連接開關元件1708來達成。因此,可在第一模式中對包括感測元件1704之所有感測元件進行定址。
當在第一模式中操作時,可連續輸出感測元件之信號,且偵測器陣列1700可偵測入射帶電粒子束之光束點輪廓(例如,大小、形狀、邊界或類似者)。所偵測之光束點輪廓可用於判定感測元件之分組,或其他目的。舉例而言,可判定光束點之邊界內之感測元件在同一群組內。感測元件之分組可適用於其他處理步驟,諸如第二模式,其中群組中之鄰近感測元件之間的開關元件可閉合,使得感測元件之輸出可一起讀出以判定光束點強度。在一些實施例中,第一模式可為第二模式之前驅體。然而,自第一模式中之操作收集的資訊可存在各種用途。舉例而言,第一模式可用以藉由獲取二次光束點投影圖案而偵測及監測SEM系統之性能。
在另一實例中,當區段1702經設定以在第二模式下操作時,開關元件1612可為打開的,且開關元件1708可為閉合的。在此類狀況下,共同輸出端1718可以通信方式耦接至接合點1710,且匯流排輸出端1610可以通信方式自接合點1710解耦,使得感測元件之偵測信號可僅經由共同輸出端1718投送至接合點1710。輸出信號可進一步經由開關元件1712自接合點1710投送至區段電路1603以用於信號處理。
當在第二模式下操作時,與特定光束點相關聯之群組內的任何感測元件之間的元件間開關元件可閉合,使得由群組中之不在使用中 的感測元件產生的所有偵測信號可經投送至共同輸出端。舉例而言,如圖17C中所展示,二次帶電粒子束可入射於偵測器陣列1700上以使得二次光束點1777覆蓋感測元件1606及1704。可判定(例如,在第一模式中)感測元件1606及1704在二次光束點1777之邊界內,且感測元件1606及1704可在第二模式中使用。當感測元件1606及1704分組在一起時,元件間開關元件1720可閉合以將感測元件1606之偵測信號投送至共同輸出端1718。在另一實例中,在除感測元件1606及1704以外相對較大光束點亦可覆蓋其他感測元件之情況下,彼等感測元件與感測元件1606及1704之間的元件間開關元件亦可閉合。應注意,當感測元件1704在使用中時,其與其他感測元件之間的元件間開關元件可能需要閉合以使其信號經由共同輸出端1718而進行相加及投送。在共同輸出端1718處,可經由開關元件1708將所有傳入偵測信號作為共同信號輸出至接合點1710。共同信號可為傳入偵測信號之組合(例如,具有經相加振幅)。
在一些實施例中,當在第二模式中操作時,由偵測器陣列1700之不同區段產生的不同共同信號可經組合以輸出至單個區段電路。此可在形成於偵測器陣列1700上之光束點覆蓋多個不同區段之感測元件時發生,且因此感測元件之群組可橫跨多個不同區段。因此,可在偵測覆蓋感測元件之群組的單個光束點中涉及多個區段。為了改進性能(例如,類比頻寬),在偵測光束點中所涉及的多個區段之共同輸出端可用以對來自群組之信號進行投送。群組之感測元件之輸出可經投送通過各別區段之共同輸出端或接合點。輸出可經由區段間開關網路接合,且可經投送至一個區段電路。舉例而言,區段1702可經由接合點1710將第一共同信號輸出至開關網路1706。偵測器陣列1700之第二區段(圖17A或圖17B中未展 示)亦可經由第二接合點(圖17A中未展示)將第二共同信號輸出至開關網路1706。類似於接合點1710,第二接合點可經由第二開關元件而以通信方式耦接至第二區段電路(圖17A或圖17B中未展示)。藉由閉合接合點1710與第二接合點之間的開關網路1706中之一或多個區段間開關元件,第一共同信號及第二共同信號可能能夠組合(例如,其中相加振幅)並作為組合信號輸出。舉例而言,可藉由相加一或多個共同信號來產生組合信號。若開關元件1712閉合且第二開關元件(第二接合點與第二區段電路之間)打開,則可將組合信號輸出至區段電路1603。若開關元件1712打開且第二開關元件閉合,則組合信號可輸出至第二區段電路。藉由新增開關網路1706,類比信號頻寬可增加。
當在第二模式中操作時,可並行輸出偵測器陣列1700之經分組感測元件。當帶電粒子束之光束點之大小較大時,光束點可覆蓋多個鄰近感測元件。群組之多個感測元件可分佈於偵測器陣列1700之單個區段(例如,區段1702)或多個鄰近區段(例如,包括區段1702及其他區段)中。可將偵測信號組合為共同信號(例如,當感測元件分佈於單個區段中時),或自多個共同信號合併之組合信號(例如,當感測元件分佈於多個區段中時)。共同信號或組合信號可輸出至單個區段電路(例如,區段電路1603)。藉由在第二模式中操作,偵測器陣列1700可快速輸出來自大量感測元件之偵測信號。因此,可藉由寬類比信號頻寬進行光束點強度判定。
在一些實施例中,如上文所論述,第一及第二模式可與圖15之方法1500之某些步驟對應。舉例而言,第一模式可包括步驟1502及1504。第二模式可包括圖15中所展示之步驟1506至步驟1532。第一模式可對應於光束點邊界偵測模式或光束投影成像模式,且第二模式可對應於 光束點強度偵測模式。
自圖17至圖17C之描述可見,開關網路1706可改進偵測器陣列1700之類比信號頻寬及像素速率。舉例而言,偵測器陣列1700之像素速率可為每秒數百萬、數十億或甚至數萬億像素。此外,藉由使用開關網路1706,由同一帶電粒子束覆蓋且分佈於多個區段中的感測元件可經靈活地組態以偵測帶電粒子束,不論帶電粒子束撞擊之位置。
在一些實施例中,在偵測帶電粒子束中涉及更多感測元件,更多寄生參數可出現在信號處理電路(例如,區段電路1603)中。藉由使用開關元件1612、1708以及1712,亦可減少由區段電路的輸入區段所見之寄生參數(例如,寄生電阻或寄生電容)。舉例而言,當區段1702在第一模式中操作時,元件間開關元件(例如,包括元件間開關元件1720及1722)可在偵測信號自匯流排輸出端1610輸出至區段電路1603時打開。當偵測器陣列1700在第二模式中操作時,元件-匯流排開關元件(例如,圖17B中之元件-匯流排開關元件1628)可打開,而共同信號自共同輸出端1718輸出至區段電路1603。藉由在第二模式下打開開關元件1612,可減小由區段電路1603所見之寄生電容。信號可自共同輸出端1718投送至區段電路1603。藉由新增開關網路1706,可連接來自具有同一群組中之感測元件之區段的共同輸出端,且可減少至區段電路之輸入端的信號路徑中之寄生電阻。此外,藉由打開開關網路1706中之一些開關,未在使用中(例如,不輸出偵測信號,或出於某一其他原因而斷開)的區段可以通信方式自信號處理電路(例如,包括區段電路1603)斷開,此可減少由信號處理電路所見之寄生電容。
在一些實施例中,對諸如偵測器陣列1700之偵測器的進一 步改良可為可能的。舉例而言,區段1702可使用大量開關,其可引發由信號處理電路所見之過量寄生參數(例如,等效串聯電阻或寄生電容)。此外,元件間開關(例如,元件間開關元件1720及1722)僅配置於區段1702之x軸及y軸方向上。因此,當信號自對角線方向上鄰近之感測元件中之一者傳播至另一者時,其通過兩個元件間開關元件,相比於信號自水平或垂直方向上鄰近之感測元件中之一者傳播至另一者的情況,此可引發更多寄生參數(例如,等效串聯電阻)。
在本揭露之一些實施例中,提供了可達成較高類比信號頻寬、較高像素速率及較高組態靈活性之偵測器陣列的設計。圖18A係繪示與本揭露之實施例一致的用於偵測器陣列1800之例示性增強型開關設計的圖式。偵測器陣列1800可為基於圖16A之偵測器陣列1600或圖17A之偵測器陣列1700的修改。在圖18A中,偵測器陣列1800可包括多個區段,包括區段1802。區段1802可類似於圖16A之區段1602,但可包括感測元件1804及經修改開關組態。圖18B係繪示與本揭露之實施例一致的偵測器陣列1800之區段1802之感測元件1804及1606的圖式。在圖18B中,感測元件1804可具有與區段1802之其他感測元件(例如,感測元件1606)相似的組件及相似的電子連接方案。舉例而言,類似於感測元件1606(或圖16B中之感測元件1604),感測元件1804包括二極體1614、接地開關元件1616、接地電路1617、元件-匯流排開關元件1618及元件間開關元件1620及1622。此外,感測元件1804包括共同輸出端1818。共同輸出端1818可類似於圖17B中之共同輸出端1718起作用。不同於感測元件1704,感測元件1804包括可將二極體1614以通信方式耦接至輸出匯流排1608之元件-匯流排開關元件1618。亦即,感測元件1804可將其偵測信號直接輸出至輸 出匯流排1608(例如,當偵測器陣列1800在第一模式中操作時,類似於上文關於圖17A至圖17C所描述之彼情形)。藉由在感測元件1804中使用元件-匯流排開關元件1618,區段1802之所有感測元件可具有均一組態。偵測器陣列之製造之簡化可藉由提供感測元件之均一配置來達成。
與圖17A中之區段1702相比,區段1802仍可包括輸出匯流排1608及匯流排輸出端1610。與圖17A中之偵測器陣列1700相比,區段1802可包括開關元件1620、開關網路1706、接合點1710及開關元件1712。然而,偵測器陣列1700中在共同輸出端1718與開關網路1706之間的開關元件1708不包括於偵測器陣列1800中。因此,偵測器陣列1800中在共同輸出端1818與區段電路1603之間的開關元件之數目小於偵測器陣列1700中在共同輸出端1718與區段電路1603之間的開關元件之數目。藉由減少共同輸出端1818與區段電路1603之間的開關元件之數目,可減少區段電路1603中所引發的寄生參數(例如,等效串聯電阻)。在一些情況下,與偵測器陣列1700相比,偵測器陣列1800之信號處理電路中引發的寄生參數可減少50%。此類設計可改進偵測器陣列1800之類比信號頻寬。
此外,與圖17A中之偵測器陣列1700相比,偵測器陣列1800中之接合點1710配置於開關網路1706下游。亦即,在圖18A中,開關網路1706配置於共同輸出端1818與開關元件1712之間。同時,信號輸出可僅經由開關元件1612由匯流排輸出端1610直接輸出至區段電路1603。亦即,信號不必如在可為圖17A中之情況下通過開關網路1706。另外,開關元件1612仍可控制輸出來自匯流排輸出端1610及區段電路1603的信號,且開關元件1712仍可控制將來自共同輸出端1818的共同信號輸出至區段電路1603。此外,類似於偵測器陣列1700,當偵測器陣列1800 在第二模式中操作時,開關元件1712仍可控制將自來自開關網路1706之多個共同信號合併之組合信號輸出至區段電路1603。對於偵測器陣列1800,當開關元件1612閉合且開關元件1712打開時,偵測器陣列1800可在第一模式中操作。當開關元件1612打開且開關元件1712閉合時,偵測器陣列1800可在第二模式中操作。藉由此類設計,可維持偵測器陣列1800之組態靈活性。
在一些實施例中,共同輸出端1818可包括(例如,整合)於感測元件1804中。在一些實施例中,共同輸出端1818可為配置於區段1802之感測元件1804內的信號拾取點。共同輸出端1818可包括連接至感測元件1804之佈線。
在一些實施例中,輸出匯流排1608可配置於偵測器陣列1800之感測元件之間。舉例而言,輸出匯流排1608可包括未整合於區段1802之個別感測元件中的佈線。
在一些實施例中,偵測器陣列1800之區段電路1603可包括於區段層(例如,圖3A中之區段層302)中。在一些實施例中,區段層可進一步包括接合點1710、開關網路1706、開關元件1612或開關元件1712中之至少一者。
在一些實施例中,成對角線的元件間開關元件可配置於偵測器陣列1800中在對角線方向上鄰近之感測元件之間,以用於減少當偵測信號自兩個在對角線方向上鄰近之感測元件中之一者傳播至另一者時所引發的寄生參數(例如,等效串聯電阻)。圖19A係繪示與本揭露之實施例一致的用於偵測器陣列1900之另一例示性增強型開關設計的圖式。偵測器陣列1900可為基於圖18A之偵測器陣列1800之修改。在圖19A中,偵測 器陣列1900可包括多個區段,包括區段1902。區段1902包括多個感測元件,包括感測元件1904、1906、1908、1910及1912。在圖19A中,區段1902之感測元件經配置為矩陣。區段1902之感測元件可具有與圖18A之區段1802之感測元件類似的組件。然而,區段1902之感測元件可具有與區段1802之感測元件不同的電連接方案。
相較於區段1802,區段1902之每一感測元件可包括在對角線方向上的兩個額外元件間開關元件。對角線方向可在x軸方向與y軸方向之間(例如與其成45度角傾斜)。圖19B係繪示與本揭露之實施例一致的偵測器陣列1900之區段1902之感測元件1904的圖式。在圖19B中,類似於圖18B之感測元件1804,感測元件1904包括二極體1614、接地開關元件1616、接地電路1617、元件-匯流排開關元件1618及元件間開關元件1620及1622。如圖19B中所展示,感測元件1904之元件間開關元件1620及1622可分別在y軸方向及x軸方向上將感測元件1904以通信方式耦接至鄰近感測元件。如圖19B中所展示,感測元件1904可進一步包括元件間開關元件1914及1916。如圖19A及圖19B中所展示,元件間開關元件1914和1916可分別在第一對角線方向(例如,自左上到右下)及第二對角線方向(例如,自右上到左下)上將感測元件1904以通信方式耦接至鄰近感測元件1912及1908。
區段1902之所有感測元件可具有與感測元件1904類似的連接方案。換言之,區段1902之每一感測元件可包括四個元件間開關元件以將感測元件以通信方式耦接至矩陣中之其八個鄰近感測元件,且在任何兩個感測元件之間可存在僅一個單個元件間開關元件。相較於圖18A之區段1802,當感測元件1908及1912之偵測信號將傳播至感測元件1904時(例 如,當感測元件1908及1912分組在一起且在第二模式中使用時),可形成額外連接,且可存在將感測元件1904連接至鄰近感測元件之額外路徑。信號可能能夠在對角線方向上傳播,且總電阻及電感可減小。舉例而言,在感測元件1912與感測元件1904之間,信號可不僅傳播通過開關元件1914,且可傳播通過連接感測元件1904與輸出路徑之間的路線之其他開關元件(例如,信號亦可經由感測元件1906在感測元件1912與感測元件1904之間傳播通過開關元件1620)。藉由此類連接方案,可減小在偵測器陣列1900之區段電路1603中引發的寄生參數(諸如電阻及電感),且可進一步增大偵測器陣列1900之類比信號頻寬及像素速率。另外,新增成對角線的開關可增大偵測器陣列1900之組態靈活性。在比較實例中,為了連接在對角線方向上彼此鄰近之兩個感測元件,可能有必要使用鄰近於該兩個感測元件之至少一個額外感測元件。成對角線的開關可消除此類要求。
儘管已展示及描述感測元件之均一矩陣配置,但應理解,亦可使用各種幾何形狀。舉例而言,感測元件可以諸如平鋪佈局之偏移圖案配置。此外,感測元件本身可具有各種形狀及大小。
圖20係與本揭露之實施例一致的偵測帶電粒子束之例示性方法2100的流程圖。方法2100可由帶電粒子檢測系統之控制器(例如,圖1中之EBI系統100的控制器109或圖9中之控制器904)執行。控制器可包括經程式化以實施方法2100之電路系統(例如,記憶體及處理器)。舉例而言,控制器可為與帶電粒子檢測系統耦接之內部控制器或外部控制器(例如,圖1中之控制器109或圖9中之控制器904)。方法2100可與關於圖3A至圖19所展示及描述之組件、操作及步驟對應。
參考圖20,在一些實施例中,方法2100可由偵測器陣列 (例如,偵測器陣列1800或1900)執行。在步驟2102處,偵測器陣列接收射出晶圓之帶電粒子(例如,圖2中之二次帶電粒子束236、238及240中之任一者)。帶電粒子可到達偵測器陣列之感測元件的第一區段(例如,圖8至圖9中之區段1802或1902)及感測元件的第二區段。第一區段及第二區段可為鄰近區段。舉例而言,第一及第二區段可為圖14中之區段321及322。
在步驟2104處,偵測器陣列接收指示用於操作帶電粒子偵測器之第一模式或第二模式中之一者的指令資料。第一模式可為「光束點邊界偵測模式」,而第二模式可為「光束點強度偵測模式」,該兩者可藉由諸如圖16至圖19中所示之彼等偵測器陣列的偵測器陣列應用。在一些實施例中,偵測器陣列之控制器可接收指令資料。
在步驟2106處,基於指令資料,偵測器陣列可執行對應於第一模式之第一操作或對應於第二模式之第二操作中之一者。第一操作可包括判定投影於偵測器陣列之表面上的帶電粒子束光點之邊界。第一操作可包括經由匯流排輸出端1610讀取由第一區段(例如,區段1802)之感測元件輸出的偵測信號。此類偵測信號可依序讀出。第一操作可包括上文參看圖15所論述之步驟1502及1504。第二操作可包括在光束點強度偵測模式下輸出來自第一區段或第二區段中之至少一者的信號。舉例而言,在光束點強度偵測模式中,組合信號可為由如參看圖17至圖19所描述之一或多個共同信號合併且由接合點(例如,圖18A中之接合點1710)輸出之信號。第二操作可包括上文參看圖15所論述之步驟1506至1532。
在一些實施例中,若指令資料指示光束點邊界偵測模式,則偵測器陣列可判定第一區段(例如,圖18A中之區段1802)是否包括感測 元件之群組。在一些實施例中,偵測器陣列可判定感測元件之群組是否橫跨多個區段。在一些實施例中,經分組感測元件可為鄰近感測元件。舉例而言,第一區段可包括第一感測元件(例如,圖18B中之感測元件1804),該第一感測元件分組有第二感測元件(例如,圖18B中之感測元件1606)。若判定出第一區段包括第一感測元件且第一區段或第二區段中之一者包括第二感測元件,則偵測器陣列可藉由將由第一感測元件輸出之第一信號相加至由第二感測元件輸出之第二信號而判定組合信號。接著,偵測器陣列可輸出組合信號。
在一些情形下,入射於偵測器陣列上之光束可形成含於一個區段內之光束點。第一區段可包括第一及第二感測元件兩者。舉例而言,情況可為二次帶電粒子束撞擊於第一區段(例如,圖18A中之區段1802)之多個鄰近感測元件(例如,圖18B中之感測元件1804及1606)上。在彼等情況下,偵測器陣列可藉由將第一信號相加至第二信號而形成組合信號。舉例而言,偵測器陣列可包括以通信方式耦接至第一感測元件(例如,圖18A中之感測元件1804)之共同輸出端(例如,圖18B中之共同輸出端1818)。偵測器陣列可接收第一信號及第二信號,且藉由將第一信號相加至第二信號而形成組合信號。在一些實施例中,當將第一感測元件及第二感測元件分組時,偵測器陣列可以通信方式連接在第一感測元件(例如,圖18B中之感測元件1804)與第二感測元件(例如,圖18B中之感測元件1606)之間的元件間開關元件(例如,圖18B中之元件間開關元件1620),且在共同輸出端處接收組合信號。在一些實施例中,偵測器陣列可在第一區段之共同輸出端處接收組合信號。
在一些實施例中,偵測器陣列可在另一區段之共同輸出端 處接收組合信號。若例如二次帶電粒子束撞擊於第一區段之感測元件及第二區段之感測元件上,其中該等感測元件中之一者連接至第二區段之共同輸出端,則偵測器陣列可在第二區段之共同輸出端處接收感測元件之群組的組合信號。組合信號可由第二區段輸出。在另一實例中,若二次帶電粒子束僅撞擊於第一區段上且在第一區段外部無其他感測元件,則與光束點相關聯之感測元件之群組可僅由來自第一區段之感測元件組成。在此類情況下,組合信號可由第一區段輸出。
在一些情形下,入射於偵測器上之光束可形成主要覆蓋一個區段之感測元件同時亦覆蓋另一區段之至少一些感測元件的光束點。其他區段之感測元件可藉由元件間開關元件連接至一個區段之感測元件。可將來自其他區段之感測元件的信號投送至設置於一個區段中之共同輸出端。
即使當光束點較大時,偵測器陣列亦可經組態以適應大光束點且可達成規定的頻寬要求。舉例而言,偵測器陣列可經組態以在個別區段中具有數個感測元件及其配置,使得即使當光束點較大時,分組在一起以與光束點相關聯之感測元件的數目未過大而使類比信號路徑過滿。使用開關網路亦可幫助藉由允許連接(不同區段之)多個共同輸出端而改進類比頻寬。舉例而言,在歸因於光束點之較大大小而可能不再能夠滿足頻寬要求,且光束點覆蓋屬於若干不同區段之大量感測元件,且連接至區段之各別共同輸出端的彼等區段中之感測元件亦經覆蓋的情況下,開關網路(例如,開關網路1706)可用以連接共同輸出端以便將額外連接層新增至群組之感測元件網路以改進類比頻寬。在例如光束點較大以便至少部分地覆蓋多個區段,且直接連接至部分覆蓋區段中之共同輸出端之感測元件並未 由光束點覆蓋(但可非常接近於被覆蓋之彼等感測元件)之一些情形下,此類感測元件可連接至群組以視需要改進類比頻寬。用於將此等感測元件連接至群組之一些先決條件可包括例如直接連接至共同輸出端之感測元件未由另一群組使用,且將其連接至群組將不會引起問題(例如,惡化串擾)。
藉由經由元件間開關元件連接感測元件,可在連接感測元件之處將來自感測元件之信號進行組合。亦即,所連接感測元件之輸出可合併且可一起投送至偵測器陣列之下游部分(例如,共同輸出端1718、1818或接合點1710)。
圖18C展示與本揭露之實施例一致的覆蓋不同區段之感測元件之光束點的例示性情形。如圖18C中所展示,偵測器陣列1800可包括區段1802及鄰近區段1803。二次光束點1877可形成於偵測器陣列1800上,且可覆蓋區段1803之感測元件以及區段1802之一些感測元件。雖然區段1802之一些感測元件可由光束點1877覆蓋(例如,在該光束點之邊界內),但可直接連接至共同輸出端1818之感測元件1804可未由光束點1877覆蓋。無論如何,可將感測元件1804新增至與光束點1877相關聯之感測元件之群組。元件間開關元件1822可被閉合,且感測元件1804可經連接至鄰近感測元件1805。信號可自感測元件1805及其他感測元件投送,且可經由感測元件1804傳輸通過共同輸出端1818。
以此方式,在感測元件之階層層級處,可視需要在分組程序中涉及額外感測元件(除可由光束點覆蓋之彼等感測元件以外)以允許將信號投送至其他區段之共同輸出端。同時,在開關網路(例如,開關網路1706)之階層層級處,可致動開關以連接不同區段之共同輸出端。
在一些情形下,光束點可相當大以覆蓋可包括於一或多個 區段中之大量感測元件。若光束點相當大以使得上文所論述之方法不再能夠達成預期類比頻寬,則光束點可再分為子區域。與光束點相關聯的感測元件之群組可再分為子群組。子群組中之每一者可對應於子區域。子群組可提供額外類比信號路徑且可有助於達成目標類比頻寬。
在一些實施例中,第一感測元件及第二感測元件可為沿著第一區段中之水平(例如,x軸)方向或豎直(例如,y軸)方向中之一者的鄰近感測元件。舉例而言,第一及第二感測元件可分別為圖19A中的感測元件1904及1910。在另一實例中,第一及第二感測元件可分別為圖19A中之感測元件1904及1906。在一些實施例中,第一感測元件及第二感測元件可為對角線方向上之鄰近感測元件。舉例而言,第一及第二感測元件可分別為圖19A中之感測元件1904及1908。在另一實例中,第一及第二感測元件可分別為圖19A中之感測元件1906及1910。
在一些實施例中,若在圖20之步驟2104處接收之指令資料指示光束點強度偵測模式,則偵測器陣列可判定第一區段(例如,圖18A中之區段1802)是否包括第一感測元件(例如,圖18B中之感測元件1804)且第一區段或第二區段中之一者是否包括第二感測元件。第一及第二感測元件可分別輸出第一信號及第二信號。另一方面,若在步驟2104處所接收之指令資料指示光束點邊界偵測模式,則偵測器陣列可輸出第一信號及第二信號作為獨立信號。
在一些實施例中,在光束點邊界偵測模式中,例如,第一區段可包括第一感測元件(例如,圖18B中之感測元件1804)及第二感測元件(例如,圖18B中之感測元件1606),且第一區段可包括第一輸出匯流排(例如,圖18A中之輸出匯流排1608)。為輸出第一信號及第二信號,偵測 器陣列可以通信方式連接第一感測元件(例如,圖18B中之感測元件1804)與第一輸出匯流排之間的第一元件-匯流排開關元件(例如,圖18B中之元件-匯流排開關元件1618),且以通信方式連接第二感測元件與第一輸出匯流排之間的第二元件-匯流排開關元件(例如,圖18B中之元件-匯流排開關元件1628)。偵測器陣列可經由第一元件-匯流排開關元件將第一信號自第一感測元件投送至第一輸出匯流排,且經由第二元件-匯流排開關元件將第二信號自第二感測元件投送至第一輸出匯流排。偵測器陣列接著可將第一信號及第二信號自第一輸出匯流排輸出至信號處理電路系統(例如,圖18A中之區段電路1603)。在一些實施例中,為將第一信號及第二信號輸出至信號處理電路系統,偵測器陣列可以通信方式連接第一輸出匯流排與信號處理電路系統之間的第二開關元件(例如,圖18A中之開關元件1612),且經由第二開關元件將第一信號及第二信號輸出至信號處理電路系統。
在光束點邊界偵測模式下,偵測器中之感測元件中之每一者可逐一(例如,依序)定址以對偵測器表面實行電子掃描。此可用以獲取偵測器上之光束點圖案之偵測影像。感測元件可一次一個地連接至匯流排。舉例而言,當一個感測元件連接至匯流排時,連接至匯流排之其他感測元件可不存在時段重疊。在圖18B中,可一次一個地致動元件-匯流排開關元件1618及元件-匯流排開關元件1628,以使得每次各別感測元件(1606或1804)中之僅一者連接至輸出匯流排1608。可獨立地傳輸來自個別感測元件之信號,且可獲取二次光束投影影像之影像。
在一些實施例中,可執行像素合併。像素合併可涉及在將信號傳輸至輸出匯流排時組合來自一個以上感測元件之信號。像素合併可 適用於以相對較高速度獲得二次光束投影圖案之相對較低解析度影像。像素合併可包含使用在感測元件與匯流排之間的開關以每次將一個以上感測元件連接至匯流排。在一些實施例中,像素合併可包含使用元件間開關元件連接待分組在一起之感測元件。接著,連接至分組感測元件之元件-匯流排開關元件中之任一者可經致動以將分組感測元件連接至匯流排。應理解,可藉由根據本揭露之實施例的偵測器達成許多變化,諸如上述變化。場可程式化偵測設備可經設計以具有極高組態靈活性且可適應於許多不同應用條件。
可使用以下條項進一步描述實施例:
1.一種偵測器,其包含:一組感測元件,其包含第一共同輸出端;元件間開關元件,其經組態而以通信方式耦接該組感測元件中之鄰近感測元件;輸出匯流排,其經組態而以通信方式耦接至該組感測元件中之每一感測元件;接合點,其經組態以經由第一開關元件以通信方式耦接至第一共同輸出端且經由第二開關元件以通信方式耦接至輸出匯流排;以及開關網路,其配置於第一共同輸出端與第一開關元件之間,該開關網路包含經組態以將第一共同輸出端以通信方式耦接至另一組感測元件之第二共同輸出端的組間開關元件。
2.如條項1之偵測器,其中該組感測元件中之一個感測元件包含第一共同輸出端。
3.如條項1至2中任一項之偵測器,其中第二開關元件經組態以控制 將來自輸出匯流排之信號輸出至接合點。
4.如條項1至3中任一項之偵測器,其進一步包含:第一元件-匯流排開關元件,其經組態以將輸出匯流排以通信方式耦接至該組感測元件中之第一感測元件;以及第二元件-匯流排開關元件,其經組態以獨立於第一元件-匯流排開關元件將輸出匯流排以通信方式耦接至該組感測元件中之第二感測元件。
5.如條項1至4中任一項之偵測器,其中元件間開關元件經組態以將該組感測元件中之至少一個感測元件以通信方式耦接至包含第一共同輸出端之感測元件。
6.如條項5之偵測器,其中第一開關元件經組態以控制將來自第一共同輸出端之信號輸出至接合點。
7.如條項5至6中任一項之偵測器,其中第一開關元件及第二開關元件經組態以控制將來自第一共同輸出端之信號中之一者或來自輸出匯流排之信號輸出至接合點。
8.如條項5至7中任一項之偵測器,其中開關網路經組態以藉由將來自第一共同輸出端之信號相加至經由組間開關元件自第二共同輸出端接收之其他信號而形成組合信號。
9.如條項8之偵測器,其中第一開關元件經進一步組態以控制將組合信號輸出至接合點。
10.如條項1至9中任一項之偵測器,其中該組感測元件經配置為矩陣。
11.如條項10之偵測器,其中元件間開關元件包含:第一元件間開關元件,其經組態以將第一感測元件以通信方式耦接 至第二感測元件,其中第一感測元件及第二感測元件係沿著矩陣之第一方向配置;以及第二元件間開關元件,其經組態以將第一感測元件以通信方式耦接至第三感測元件,其中第一感測元件及第三感測元件係沿著正交於第一方向的第二方向配置。
12.如條項11之偵測器,其中元件間開關元件進一步包含第三元件間開關元件,該第三元件間開關元件經組態以將第一感測元件以通信方式耦接至第四感測元件,其中該第四感測元件係沿著第一方向與第二方向之間的對角線方向配置。
13.如條項12之偵測器,其中元件間開關元件進一步包含:第四元件間開關元件,其經組態以將第一感測元件以通信方式耦接至第五感測元件,其中該第五感測元件係沿著第二對角線方向配置。
14.如條項1至13中任一項之偵測器,其進一步包含:區段電路系統,其經組態以將該組感測元件以通信方式耦接至信號處理電路系統。
15.如條項14之偵測器,其中接合點處於區段電路系統中。
16.如條項14至15中任一項之偵測器,其中第一開關元件處於區段電路系統中。
17.如條項14至16中任一項之偵測器,其中第二開關元件處於區段電路系統中。
18.如條項14至17中任一項之偵測器,其中開關網路處於區段電路系統中。
19.一種偵測系統,其包含: 一組感測元件,其包含第一共同輸出端;元件間開關元件,其經組態而以通信方式耦接該組感測元件中之鄰近感測元件;輸出匯流排,其經組態而以通信方式耦接至該組感測元件中之每一感測元件;接合點,其經組態以經由第一開關元件以通信方式耦接至第一共同輸出端且經由第二開關元件以通信方式耦接至輸出匯流排;開關網路,其配置於第一共同輸出端與第一開關元件之間,該開關網路包含經組態以將第一共同輸出端以通信方式耦接至另一組感測元件之第二共同輸出端的組間開關元件;以及以通信方式耦接接合點之下游的信號處理電路系統,其經組態以對來自接合點之信號進行處理。
20.如條項19之偵測系統,其中該組感測元件中之一個感測元件包含第一共同輸出端。
21.如條項19至20中任一項之偵測系統,其中第二開關元件經組態以控制將來自輸出匯流排之信號輸出至接合點。
22.如條項19至21中任一項之偵測系統,其進一步包含:第一元件-匯流排開關元件,其經組態以將輸出匯流排以通信方式耦接至該組感測元件中之第一感測元件;以及第二元件-匯流排開關元件,其經組態以獨立於第一元件-匯流排開關元件而將輸出匯流排以通信方式耦接至該組感測元件中之第二感測元件。
23.如條項20至22中任一項之偵測系統,其中元件間開關元件經組態以將該組感測元件中之至少一個感測元件以通信方式耦接至包含第一共同 輸出端之感測元件。
24.如條項23之偵測系統,其中第一開關元件經組態以控制將來自第一共同輸出端之信號輸出至接合點。
25.如條項23至24中任一項之偵測系統,其中第一開關元件及第二開關元件經組態以控制將來自共同輸出端之信號中之一者或來自輸出匯流排之信號輸出至接合點。
26.如條項23至25中任一項之偵測系統,其中開關網路經組態以藉由將來自第一共同輸出端之信號相加至經由組間開關元件自第二共同輸出端接收之其他信號而形成組合信號。
27.如條項26之偵測系統,其中第一開關元件經進一步組態以控制將組合信號輸出至接合點。
28.如條項18至27中任一項之偵測系統,其中該組感測元件經配置為矩陣。
29.如條項28之偵測系統,其中元件間開關元件包含:第一元件間開關元件,其經組態以將第一感測元件以通信方式耦接至第二感測元件,其中第一感測元件及第二感測元件係沿著矩陣之第一方向配置;以及第二元件間開關元件,其經組態以將第一感測元件以通信方式耦接至第三感測元件,其中第一感測元件及第三感測元件係沿著正交於第一方向的第二方向配置。
30.如條項29之偵測系統,其中元件間開關元件進一步包含第三元件間開關元件,該第三元件間開關元件經組態以將第一感測元件以通信方式耦接至第四感測元件,其中該第四感測元件係沿著第一方向與第二方向之 間的對角線方向配置。
31.如條項30之偵測系統,其中元件間開關元件進一步包含:第四元件間開關元件,其經組態以將第一感測元件以通信方式耦接至第五感測元件,其中該第五感測元件係沿著第二對角線方向配置。
32.如條項19至31中任一項之偵測系統,其進一步包含:區段電路系統,其經組態以將該組感測元件以通信方式耦接至信號處理電路系統。
33.如條項32之偵測系統,其中接合點處於區段電路系統中。
34.如條項32至33中任一項之偵測系統,其中第一開關元件處於區段電路系統中。
35.如條項32至34中任一項之偵測系統,其中第二開關元件處於區段電路系統中。
36.如條項32至35中任一項之偵測系統,其中開關網路處於區段電路系統中。
37.一種帶電粒子檢測系統,其包含:帶電粒子束源,其經組態以產生一次帶電粒子束以用於樣品掃描;偵測器,其經組態以接收自一次帶電粒子束之入射點射出的二次帶電粒子束,其中該偵測器包含:一組感測元件,其包含第一共同輸出端;元件間開關元件,其經組態而以通信方式耦接該組感測元件中之鄰近感測元件;輸出匯流排,其經組態而以通信方式耦接至該組感測元件中之每一感測元件; 接合點,其經組態以經由第一開關元件以通信方式耦接至第一共同輸出端且經由第二開關元件以通信方式耦接至輸出匯流排;以及開關網路,其配置於第一共同輸出端與第一開關元件之間,該開關網路包含經組態以將第一共同輸出端以通信方式耦接至另一組感測元件之第二共同輸出端的組間開關元件。
38.如條項37之帶電粒子檢測系統,其中該組感測元件中之一個感測元件包含第一共同輸出端。
39.如條項37至38中任一項之帶電粒子檢測系統,其中第二開關元件經組態以控制將來自輸出匯流排之信號輸出至接合點。
40.如條項37至39中任一項之帶電粒子檢測系統,其進一步包含:第一元件-匯流排開關元件,其經組態以將輸出匯流排以通信方式耦接至該組感測元件中之第一感測元件;以及第二元件-匯流排開關元件,其經組態以獨立於第一元件-匯流排開關元件將輸出匯流排以通信方式耦接至該組感測元件中之第二感測元件。
41.如條項37至40中任一項之帶電粒子檢測系統,其中元件間開關元件經組態以將該組感測元件中之至少一個感測元件以通信方式耦接至包含第一共同輸出端之感測元件。
42.如條項41之帶電粒子檢測系統,其中第一開關元件經組態以控制將來自第一共同輸出端之信號輸出至接合點。
43.如條項41至42中任一項之帶電粒子檢測系統,其中第一開關元件及第二開關元件經組態以控制將來自第一共同輸出端之信號中之一者或來自輸出匯流排之信號輸出至接合點。
44.如條項41至43中任一項之帶電粒子檢測系統,其中開關網路經組 態以藉由將來自第一共同輸出端之信號相加至經由組間開關元件自第二共同輸出端接收之其他信號而形成組合信號。
45.如條項44之帶電粒子檢測系統,其中第一開關元件經進一步組態以控制將組合信號輸出至接合點。
46.如條項37至45中任一項之帶電粒子檢測系統,其中該組感測元件經配置為矩陣。
47.如條項46之帶電粒子檢測系統,其中元件間開關元件包含:第一元件間開關元件,其經組態以將第一感測元件與第二感測元件以通信方式耦接,其中第一感測元件及第二感測元件係沿著矩陣之第一方向配置;以及第二元件間開關元件,其經組態以將第一感測元件與第三感測元件以通信方式耦接,其中第一感測元件及第三感測元件係沿著正交於第一方向的第二方向配置。
48.如條項47之帶電粒子檢測系統,其中元件間開關元件進一步包含第三元件間開關元件,該第三元件間開關元件經組態以將第一感測元件以通信方式耦接至第四感測元件,其中該第四感測元件係沿著第一方向與第二方向之間的對角線方向配置。
49.如條項48之帶電粒子檢測系統,其中元件間開關元件進一步包含:第四元件間開關元件,其經組態以將第一感測元件以通信方式耦接至第五感測元件,其中該第五感測元件係沿著第二對角線方向配置。
50.如條項37至48中任一項之帶電粒子檢測系統,其進一步包含:區段電路系統,其經組態以將該組感測元件以通信方式耦接至信號 處理電路系統。
51.如條項50之帶電粒子檢測系統,其中接合點處於區段電路系統中。
52.如條項50至51中任一項之帶電粒子檢測系統,其中第一開關元件處於區段電路系統中。
53.如條項50至52中任一項之帶電粒子檢測系統,其中第二開關元件處於區段電路系統中。
54.如條項50至53中任一項之帶電粒子檢測系統,其中開關網路處於區段電路系統中。
55.一種電腦實施方法,其包含:在帶電粒子偵測器之感測元件的第一區段處接收二次帶電粒子束之帶電粒子;接收指示用於操作帶電粒子偵測器之第一模式或第二模式中之一者的指令資料;以及基於指令資料而使得進行以下操作中之一者:對應於第二模式而輸出使用來自第一區段之信號判定的組合信號,或對應於第一模式而輸出來自第一區段之感測元件的獨立信號。
56.如條項55之電腦實施方法,其中第一區段包括第一感測元件及第二元件,以及輸出組合信號包含接收來自第一感測元件之第一信號及接收來自第二感測元件之第二信號。
57.如條項56之電腦實施方法,其中第一感測元件包含共同輸出端,且輸出組合信號包含: 經由共同輸出端投送組合信號。
58.如條項56或條項57之電腦實施方法,其進一步包含:將元件間開關元件連接在第一感測元件與第二感測元件之間。
59.如條項55至58中任一項之電腦實施方法,其中帶電粒子偵測器包含第二組感測元件,且輸出組合信號包含:將元件間開關元件連接在第一區段之感測元件與第二區段之感測元件之間。
60.如條項55之電腦實施方法,其中第一區段包含第一感測元件、第二感測元件及第三感測元件,該第一感測元件包含第一共同輸出端,且帶電粒子偵測器包含感測元件之第二區段,其中輸出組合信號包含:將元件間開關元件連接在第二區段之第四感測元件與第三感測元件之間;以及經由第一共同輸出端投送來自第二區段之感測元件的信號。
61.如條項55之電腦實施方法,其中第一感測元件處於第一區段之邊界上。
62.如條項55之電腦實施方法,其中第一感測元件處於第一區段之內部。
63.如條項55至62中任一項之電腦實施方法,其中第二區段之第四感測元件在第五感測元件與第三感測元件之間。
64.如條項60之電腦實施方法,其中第五感測元件包含第二共同輸出端,該方法進一步包含:將開關網路之區段間開關元件連接在第一區段與第二區段之間;以及 藉由將來自第一共同輸出端之信號相加至來自第二共同輸出端之信號而形成組合信號。
65.如條項55之電腦實施方法,其中輸出獨立信號包含:將第一元件-匯流排開關元件連接在第一感測元件與第一輸出匯流排之間;以及將第二元件-匯流排開關元件連接在第二感測元件與第一輸出匯流排之間。
66.如條項64之電腦實施方法,其中輸出組合信號包含:致動處於開關網路與第一區段之信號處理電路之間的開關元件。
67.如條項65之電腦實施方法,其中第一區段包含第一輸出匯流排,且第二區段包含第二輸出匯流排。
68.如條項65之電腦實施方法,其中輸出獨立信號包含:依序致動第一元件-匯流排開關元件及第二元件-匯流排開關元件。
69.如條項65之電腦實施方法,其中輸出獨立信號包含:執行像素合併,其包含同時連接第一元件-匯流排開關元件與第二元件-匯流排開關元件。
70.如條項65之電腦實施方法,其中輸出獨立信號包含:執行像素合併,其包含:在連接第一元件-匯流排開關元件時,將元件間開關元件連接在第一感測元件與第一相鄰感測元件之間;以及在連接第二元件-匯流排開關元件時,將元件間開關元件連接在第二感測元件與第二相鄰感測元件之間。
71.一種非暫時性電腦可讀媒體,其儲存一組指令,該組指令可由裝置之至少一個處理器執行以使該裝置執行方法,該方法包含: 在帶電粒子偵測器之感測元件的第一區段處接收二次帶電粒子束之帶電粒子;接收指示用於操作帶電粒子偵測器之第一模式或第二模式中之一者的指令資料;以及基於指令資料而使得進行以下操作中之一者:對應於第二模式而輸出使用來自第一區段之信號判定的組合信號,或對應於第一模式而輸出來自第一區段之感測元件的獨立信號。
可提供與本揭露中之實施例一致的一種非暫時性電腦可讀媒體,其儲存用於控制器(例如,圖1中之控制器109或圖9中之控制器904)之處理器的指令,以用於根據上文圖15及圖20之例示性流程圖偵測帶電粒子束。舉例而言,儲存於非暫時性電腦可讀媒體中之指令可由用於部分或全部執行方法1500或2100的控制器之電路系統實行。非暫時性媒體之常見形式包括例如軟碟、可撓性磁碟、硬碟、固態磁碟機、磁帶或任何其他磁性資料儲存媒體、緊密光碟唯讀記憶體(CD-ROM)、任何其他光學資料儲存媒體、具有孔圖案之任何實體媒體、隨機存取記憶體(RAM)、可程式化唯讀記憶體(PROM)及可抹除可程式化唯讀記憶體(EPROM)、FLASH-EPROM或任何其他快閃記憶體、非揮發性隨機存取記憶體(NVRAM)、快取記憶體、暫存器、任何其他記憶體晶片或卡匣,及其網路化版本。
應瞭解,本揭露之實施例不限於已在上文所描述及在隨附圖式中所繪示之確切構造,且可在不脫離本揭露之範疇的情況下作出各種修改及改變。本揭露已結合各種實施例進行了描述,藉由考慮本文中所揭示之本發明之規格及實踐,本發明之其他實施例對於熟習此項技術者將為 顯而易見的。意欲將本說明書及實例僅視為例示性的,其中本發明之真實範疇及精神由以下申請專利範圍指示。
1606,1804:感測元件
1608:輸出匯流排
1614,1624:二極體
1616,1626:接地開關元件
1617,1627:接地電路
1618,1628:元件-匯流排開關元件
1620,1622,1630,1632:元件間開關元件
1818:共同輸出端

Claims (14)

  1. 一種偵測器,其包含:一組感測元件,其包含一第一共同輸出端;元件間(inter-element)開關元件,其經組態而以通信方式耦接(communicatively couple)該組感測元件中之鄰近感測元件;一輸出匯流排,其經組態而以通信方式耦接至該組感測元件中之每一感測元件;一接合點,其經組態以經由一第一開關元件以通信方式耦接至該第一共同輸出端且經由一第二開關元件以通信方式耦接至該輸出匯流排;以及一開關網路,其配置於該第一共同輸出端與該第一開關元件之間,該開關網路包含經組態以將該第一共同輸出端以通信方式耦接至另一組感測元件之一第二共同輸出端的一組間(inter-set)開關元件。
  2. 如請求項1之偵測器,其中該組感測元件中之一個感測元件包含該第一共同輸出端。
  3. 如請求項1之偵測器,其中該第二開關元件經組態以控制將來自該輸出匯流排之一信號輸出至該接合點。
  4. 如請求項1之偵測器,其進一步包含:一第一元件-匯流排開關元件,其經組態以將該輸出匯流排以通信方式耦接至該組感測元件中之一第一感測元件;以及 一第二元件-匯流排開關元件,其經組態以獨立於該第一元件-匯流排開關元件而將該輸出匯流排以通信方式耦接至該組感測元件中之一第二感測元件。
  5. 如請求項1之偵測器,其中該等元件間開關元件經組態以將該組感測元件中之至少一個感測元件以通信方式耦接至包含該第一共同輸出端之一感測元件。
  6. 如請求項5之偵測器,其中該第一開關元件經組態以控制將來自該第一共同輸出端之信號輸出至該接合點。
  7. 如請求項5之偵測器,其中該第一開關元件及該第二開關元件經組態以控制將來自該第一共同輸出端之信號中之一者或來自該輸出匯流排之信號輸出至該接合點。
  8. 如請求項5之偵測器,其中該開關網路經組態以藉由經由該組間開關元件將來自該第一共同輸出端之信號相加至自該第二共同輸出端接收之其他信號而形成一組合信號。
  9. 如請求項8之偵測器,其中該第一開關元件經進一步組態以控制將該組合信號輸出至該接合點。
  10. 如請求項1之偵測器,其中該組感測元件經配置為一矩陣。
  11. 如請求項10之偵測器,其中該等元件間開關元件包含:一第一元件間開關元件,其經組態以將一第一感測元件以通信方式耦接至一第二感測元件,其中該第一感測元件及該第二感測元件係沿著該矩陣之一第一方向配置;以及一第二元件間開關元件,其經組態以將該第一感測元件以通信方式耦接至一第三感測元件,其中該第一感測元件及該第三感測元件係沿著正交於該第一方向的一第二方向配置。
  12. 如請求項11之偵測器,其中該等元件間開關元件進一步包含一第三元件間開關元件,該第三元件間開關元件經組態以將該第一感測元件以通信方式耦接至一第四感測元件,其中該第四感測元件係沿著該第一方向與該第二方向之間的一對角線方向配置。
  13. 如請求項12之偵測器,其中該等元件間開關元件進一步包含:一第四元件間開關元件,其經組態以將該第一感測元件以通信方式耦接至一第五感測元件,其中該第五感測元件係沿著一第二對角線方向配置。
  14. 如請求項1之偵測器,其進一步包含:區段電路系統,其經組態以將該組感測元件以通信方式耦接至信號處理電路系統。
TW110118986A 2020-05-28 2021-05-26 增強型偵測器 TWI820425B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063031486P 2020-05-28 2020-05-28
US63/031,486 2020-05-28

Publications (2)

Publication Number Publication Date
TW202213419A TW202213419A (zh) 2022-04-01
TWI820425B true TWI820425B (zh) 2023-11-01

Family

ID=76250317

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110118986A TWI820425B (zh) 2020-05-28 2021-05-26 增強型偵測器

Country Status (4)

Country Link
US (1) US20230215685A1 (zh)
CN (1) CN115917700A (zh)
TW (1) TWI820425B (zh)
WO (1) WO2021239754A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024013336A1 (en) 2022-07-15 2024-01-18 Asml Netherlands B.V. Picture mode resolution enhancement for e-beam detector
WO2024033070A1 (en) 2022-08-08 2024-02-15 Asml Netherlands B.V. Dynamic switching of a detector switch matrix

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019053174A1 (en) * 2017-09-18 2019-03-21 Asml Netherlands B.V. SWITCHING MATRIX DESIGN FOR BEAM IMAGE SYSTEM
TWI668724B (zh) * 2017-02-07 2019-08-11 荷蘭商Asml荷蘭公司 帶電粒子偵測之方法與裝置
WO2019192821A1 (en) * 2018-04-02 2019-10-10 Asml Netherlands B.V. Architecture for large active area high speed detector
US20190378682A1 (en) * 2018-06-08 2019-12-12 Asml Netherlands B.V. Semiconductor charged particle detector for microscopy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI668724B (zh) * 2017-02-07 2019-08-11 荷蘭商Asml荷蘭公司 帶電粒子偵測之方法與裝置
WO2019053174A1 (en) * 2017-09-18 2019-03-21 Asml Netherlands B.V. SWITCHING MATRIX DESIGN FOR BEAM IMAGE SYSTEM
WO2019192821A1 (en) * 2018-04-02 2019-10-10 Asml Netherlands B.V. Architecture for large active area high speed detector
US20190378682A1 (en) * 2018-06-08 2019-12-12 Asml Netherlands B.V. Semiconductor charged particle detector for microscopy

Also Published As

Publication number Publication date
US20230215685A1 (en) 2023-07-06
TW202213419A (zh) 2022-04-01
WO2021239754A1 (en) 2021-12-02
CN115917700A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
US11862427B2 (en) Switch matrix design for beam image system
TWI820425B (zh) 增強型偵測器
US11430629B2 (en) Field programmable detector array
KR102660806B1 (ko) 이득 엘리먼트를 갖는 하전 입자 검출기
TWI808411B (zh) 用於高效能偵測裝置之增強架構
TWI836310B (zh) 單體式偵測器
TWI735859B (zh) 電子偵測裝置及偵測系統
EP3869533A1 (en) Charged particle assessment tool, inspection method
WO2024033097A1 (en) Switch matrix configuration for improved bandwidth performance
WO2024033070A1 (en) Dynamic switching of a detector switch matrix
WO2024013336A1 (en) Picture mode resolution enhancement for e-beam detector
WO2023213500A1 (en) Radiation tolerant detector architecture for charged particle detection
US20240339292A1 (en) Charged particle device, charged particle assessment apparatus, measuring method, and monitoring method
EP4310884A1 (en) Charged particle detector for microscopy
WO2024033071A1 (en) Particle detector with reduced inter-symbol interference
TW202425037A (zh) 用於在檢測期間用偵測器偵測粒子之系統及方法
WO2024141261A1 (en) Hybrid detectors featuring low temperature surface passivation