TWI820374B - Inductively coupled plasma apparatus and method for operating the same - Google Patents

Inductively coupled plasma apparatus and method for operating the same Download PDF

Info

Publication number
TWI820374B
TWI820374B TW109145831A TW109145831A TWI820374B TW I820374 B TWI820374 B TW I820374B TW 109145831 A TW109145831 A TW 109145831A TW 109145831 A TW109145831 A TW 109145831A TW I820374 B TWI820374 B TW I820374B
Authority
TW
Taiwan
Prior art keywords
magnetic field
field shielding
reaction chamber
shielding element
plasma
Prior art date
Application number
TW109145831A
Other languages
Chinese (zh)
Other versions
TW202226895A (en
Inventor
廖耕潁
董懷仁
林子平
陳柏仁
陳明凱
陳希賢
蘇明宏
林玉珠
任啟中
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Priority to TW109145831A priority Critical patent/TWI820374B/en
Publication of TW202226895A publication Critical patent/TW202226895A/en
Application granted granted Critical
Publication of TWI820374B publication Critical patent/TWI820374B/en

Links

Images

Abstract

A method for operating an inductively coupled plasma apparatus is provided. The method includes disposing a first magnetic shield element adjacent a first side of a reaction chamber; performing a first plasma process when the first magnetic shield element is disposed adjacent the first side of the reaction chamber; removing the first magnetic shield element from the first side of the reaction chamber after performing the first plasma process; and performing a second plasma process after removing the first magnetic shield element from the first side of the reaction chamber.

Description

感應耦合電漿設備及其操作方法Inductively coupled plasma device and method of operating the same

本揭露是關於一種感應耦合電漿設備及其操作方法。The present disclosure relates to an inductively coupled plasma device and a method of operating the same.

近年來,半導體積體電路(semiconductor integR1ted circuits)經歷了指數級的成長。在積體電路材料以及設計上的技術進步下,產生了多個世代的積體電路,其中每一世代較前一世代具有更小更複雜的電路。在積體電路發展的過程中,當幾何尺寸(亦即,製程中所能產出的最小元件或者線)縮小時,功能密度(亦即,每一晶片區域所具有的內連接裝置的數目)通常會增加。In recent years, semiconductor integrated circuits have experienced exponential growth. Technological advances in integrated circuit materials and designs have produced multiple generations of integrated circuits, with each generation having smaller and more complex circuits than the previous generation. In the process of integrated circuit development, as the geometric size (that is, the smallest component or line that can be produced in the process) shrinks, the functional density (that is, the number of interconnected devices per chip area) usually increases.

一般而言,此種尺寸縮小的製程可以提供增加生產效率以及降低製造成本的好處,然而,此種尺寸縮小的製程亦會增加製造與生產積體電路的複雜度。為了實現這些進步,需要在積體電路製程和製造設備中進行相應的研發。在一例子中,利用電漿製造系統來實施基板的電漿蝕刻製程。於電漿蝕刻製程中,電漿通過從基板表面蝕刻的材料的元素與由電漿產生的反應性物質之間的化學反應產生揮發性蝕刻產物。Generally speaking, such a downsizing process can provide the benefits of increasing production efficiency and reducing manufacturing costs. However, such a downsizing process can also increase the complexity of manufacturing and producing integrated circuits. To achieve these advances, corresponding R&D is required in integrated circuit processes and manufacturing equipment. In one example, a plasma fabrication system is used to perform a plasma etching process of the substrate. In a plasma etching process, the plasma generates volatile etching products through chemical reactions between elements of the material etched from the substrate surface and reactive species produced by the plasma.

本揭露的部分實施方式提供了一種操作感應耦合電漿設備的方法。該方法包含:將一第一磁場遮蔽元件設置鄰近於一反應室的一第一側;當第一磁場遮蔽元件設置鄰近於該反應室的該第一側時,進行一第一電漿製程;在進行完該第一電漿製程之後,從該反應室的該第一側,移除該第一磁場遮蔽元件;以及在從該反應室的該第一側移除該第一磁場遮蔽元件之後,進行一第二電漿製程。Certain embodiments of the present disclosure provide a method of operating an inductively coupled plasma device. The method includes: disposing a first magnetic field shielding element adjacent to a first side of a reaction chamber; and performing a first plasma process when the first magnetic field shielding element is disposed adjacent to the first side of the reaction chamber; After performing the first plasma process, removing the first magnetic field shielding element from the first side of the reaction chamber; and after removing the first magnetic field shielding element from the first side of the reaction chamber , perform a second plasma process.

本揭露的部分實施方式提供了一種操作一感應耦合電漿設備的方法,包含:將一第一磁場遮蔽元件設置鄰近於一反應室的一第一側;當該第一磁場遮蔽元件設置鄰近於該反應室的該第一側時,進行一第一電漿製程;在進行完該第一電漿製程之後,將一第二磁場遮蔽元件設置鄰近於該反應室的該第一側;以及當該第一磁場遮蔽元件以及該第二磁場遮蔽元件設置鄰近於該反應室的該第一側時,進行一第二電漿製程。Some embodiments of the present disclosure provide a method of operating an inductively coupled plasma device, including: disposing a first magnetic field shielding element adjacent to a first side of a reaction chamber; when the first magnetic field shielding element is disposed adjacent to when performing a first plasma process on the first side of the reaction chamber; after performing the first plasma process, disposing a second magnetic field shielding element adjacent to the first side of the reaction chamber; and when When the first magnetic field shielding element and the second magnetic field shielding element are disposed adjacent to the first side of the reaction chamber, a second plasma process is performed.

本揭露的部分實施方式提供了一種感應耦合電漿設備。感應耦合電漿設備包含反應室、晶圓基座、第一磁場遮蔽元件以及第二磁場遮蔽元件。反應室具有本體以及介電板體,其中該本體以及該介電板體定義一空間。晶圓基座設置於反應室中用以承載一基板。第一磁場遮蔽元件可拆卸地設置於該本體的外表面。第二磁場遮蔽元件可拆卸地設置於該本體的該外表面。Some embodiments of the present disclosure provide an inductively coupled plasma device. The inductively coupled plasma device includes a reaction chamber, a wafer base, a first magnetic field shielding element and a second magnetic field shielding element. The reaction chamber has a body and a dielectric plate body, wherein the body and the dielectric plate body define a space. The wafer base is disposed in the reaction chamber to carry a substrate. The first magnetic field shielding element is detachably disposed on the outer surface of the body. The second magnetic field shielding element is detachably disposed on the outer surface of the body.

以下本揭露將提供許多個不同的實施方式或實施例以實現所提供之專利標的之不同特徵。許多元件與設置將以特定實施例在以下說明,以簡化本揭露。當然這些實施例僅用以示例而不應用以限制本揭露。舉例而言,敘述「第一特徵形成於第二特徵上」包含多種實施方式,其中涵蓋第一特徵與第二特徵直接接觸,以及額外的特徵形成於第一特徵與第二特徵之間而使兩者不直接接觸。此外,於各式各樣的實施例中,本揭露可能會重複標號以及/或標註字母。此重複是為了簡化並清楚說明,而非意圖表明這些討論的各種實施方式以及/或配置之間的關係。The following disclosure will provide many different implementations or examples for implementing different features of the provided patent subject matter. Many components and arrangements are described below with specific embodiments to simplify the present disclosure. Of course, these embodiments are only examples and should not be used to limit the present disclosure. For example, the statement "the first feature is formed on the second feature" includes various embodiments, including the first feature being in direct contact with the second feature, and additional features being formed between the first feature and the second feature. The two are not in direct contact. In addition, in various embodiments, the present disclosure may repeat reference numbers and/or reference letters. This repetition is for simplicity and clarity and is not intended to indicate the relationship between the various implementations and/or configurations discussed.

更甚者,空間相對的詞彙,例如「下層的」、「低於」、「下方」、「之下」、「上層的」、「上方」等相關詞彙,於此用以簡單描述元件或特徵與另一元件或特徵的關係,如圖所示。在使用或操作時,除了圖中所繪示的轉向之外,這些空間相對的詞彙涵蓋裝置的不同的轉向。或者,這些裝置可旋轉(旋轉90度或其他角度),且在此使用的空間相對的描述語可作對應的解讀。What's more, spatially relative words, such as "lower", "below", "below", "below", "upper", "above" and other related words, are used here to simply describe components or features. A relationship to another element or feature, as shown in the figure. These spatially relative terms cover different directions of use or operation of the device in addition to the direction illustrated in the figures. Alternatively, the devices may be rotated (90 degrees or other degrees) and the spatially relative descriptors used herein interpreted accordingly.

在感應耦合電漿設備中,介電板體設置於感應線圈與電漿之間,例如設置於腔體外圍或頂端。使用射頻源將一射頻電流輸入線圈產生感應射頻磁場,再由射頻磁場於腔體內感應產生與射頻電流反向的一射頻電場。藉此,射頻源可負責感應耦合產生電漿並控制電漿密度。In an inductively coupled plasma device, the dielectric plate is disposed between the induction coil and the plasma, for example, at the periphery or top of the cavity. A radio frequency source is used to input a radio frequency current into the coil to generate an induced radio frequency magnetic field, and then the radio frequency magnetic field induces a radio frequency electric field in the cavity that is opposite to the radio frequency current. Thereby, the RF source can be responsible for inductive coupling to generate plasma and control the plasma density.

第1圖為根據本揭露的部分實施方式中的感應耦合電漿設備100的剖面示意圖。於部分實施方式中,感應耦合電漿設備100可操作以實施一電漿蝕刻製程,例如從基板W的表面以電漿蝕刻金屬、介電質、半導體及/或遮罩材料(mask materials)。舉例而言,可用於平面電晶體製程中,蝕刻底部抗反射塗層(bottom antireflective coating;BARC)、多晶矽以及遮罩等。於部分其他實施方式中,感應耦合電漿設備100可操作以實施一沉積製程,例如以電漿沉積金屬、介電質、半導體及/或遮罩材料於基板W的表面上。於部分其他實施方式中,感應耦合電漿設備100可操作以執行一電漿處理(treatment),例如以電漿處理基板W的表面上之金屬、介電質、半導體及/或遮罩材料。Figure 1 is a schematic cross-sectional view of an inductively coupled plasma device 100 according to some embodiments of the present disclosure. In some embodiments, the inductively coupled plasma apparatus 100 is operable to perform a plasma etching process, such as plasma etching metal, dielectric, semiconductor and/or mask materials from the surface of the substrate W. For example, it can be used in planar transistor manufacturing processes to etch bottom antireflective coating (BARC), polycrystalline silicon, and masks. In some other embodiments, the inductively coupled plasma apparatus 100 is operable to perform a deposition process, such as plasma depositing metal, dielectric, semiconductor and/or masking materials on the surface of the substrate W. In some other embodiments, the inductively coupled plasma apparatus 100 is operable to perform a plasma treatment, such as plasma treatment of metal, dielectric, semiconductor and/or masking materials on the surface of the substrate W.

於部分實施方式中,感應耦合電漿設備100包含反應室110、晶圓基座120、線圈130、氣體輸送器140、固定件160以及磁場遮蔽元件170。In some embodiments, the inductively coupled plasma device 100 includes a reaction chamber 110 , a wafer base 120 , a coil 130 , a gas transporter 140 , a fixture 160 and a magnetic field shielding element 170 .

於部分實施方式中,反應室110包含本體112以及介電板體(dielectric window)114。本體112以及介電板體114定義反應室110之一密閉空間110S。於部分實施方式中,反應室110之密閉空間110S絕緣於外側環境且可維持於一適當的狀態,例如真空或是具有低於大氣壓力的壓力。In some embodiments, the reaction chamber 110 includes a body 112 and a dielectric window 114. The main body 112 and the dielectric plate body 114 define a closed space 110S of the reaction chamber 110 . In some embodiments, the enclosed space 110S of the reaction chamber 110 is insulated from the outside environment and can be maintained in an appropriate state, such as a vacuum or a pressure lower than atmospheric pressure.

於部分實施方式中,晶圓基座120設置於反應室110內,並用以支撐基板W。晶圓基座120可包含靜電吸座(electrostatic chuck)及/或夾環(clamp ring)(圖未示),以於製程期間固定基板W。晶圓基座120可亦包含冷卻及/或加熱元件(圖未示)用以控制晶圓基座120之溫度。於部分實施方式中,晶圓基座120可更包含耦合(coupled)至射頻產生器(RF generator)的電極122。於電漿處理製程中,電極122可由射頻產生器偏壓在射頻電壓之上。被偏壓後的電極122可被用來向進入的處理氣體提供偏壓並幫助將其激發成電漿。此外,電極122可於電漿處理製程中維持電漿。In some embodiments, the wafer base 120 is disposed in the reaction chamber 110 and used to support the substrate W. The wafer base 120 may include an electrostatic chuck and/or a clamp ring (not shown) to secure the substrate W during the process. The wafer base 120 may also include cooling and/or heating elements (not shown) for controlling the temperature of the wafer base 120 . In some embodiments, the wafer base 120 may further include an electrode 122 coupled to an RF generator. During the plasma treatment process, the electrode 122 may be biased on a radio frequency voltage by an radio frequency generator. The biased electrode 122 can be used to provide a bias voltage to the incoming process gas and help excite it into a plasma. In addition, the electrode 122 can maintain the plasma during the plasma treatment process.

於部分實施方式中,線圈130設置於介電板體114之上。線圈130電性耦接一電漿射頻電源(未繪示)。介電板體114允許電漿電源所提供之射頻能量由線圈130傳送至反應室110之密閉空間110S。藉此,透過使用線圈130將射頻能量經介電板體114傳送至反應室110之密閉空間110S,可使反應室110之密閉空間110S內之製程氣體形成感應耦合電漿,進而進行基板W之蝕刻、沉積、及/或其他電漿製程。於部分實施方式中,感應耦合電漿設備100可選擇性地包含蓋體150,蓋體150用以遮蓋線圈130以及介電板體114,以防止塵粒汙染。In some embodiments, the coil 130 is disposed on the dielectric plate 114 . The coil 130 is electrically coupled to a plasma radio frequency power source (not shown). The dielectric plate 114 allows the radio frequency energy provided by the plasma power source to be transmitted from the coil 130 to the enclosed space 110S of the reaction chamber 110 . Thereby, by using the coil 130 to transmit radio frequency energy to the sealed space 110S of the reaction chamber 110 through the dielectric plate 114, the process gas in the sealed space 110S of the reaction chamber 110 can form an inductively coupled plasma, and then the substrate W can be processed. Etching, deposition, and/or other plasma processes. In some embodiments, the inductively coupled plasma device 100 may optionally include a cover 150 for covering the coil 130 and the dielectric plate 114 to prevent dust particle contamination.

於部分實施方式中,介電板體114具有一開口114O與氣體輸送器140連接。氣體輸送器140連接於一氣體供應源(未繪示),且用以提供製程氣體或其他適當氣體(例如清潔氣體、保護氣體等)至反應室110之密閉空間110S。於各種實施方式中,製程氣體可為蝕刻氣體、沉積氣體、處理(treatment)氣體、載體氣體(carrier gas)(如氮氣、氬氣等)、其他合適的氣體及其組合。氣體輸送器140以及開口114O的數量可為一或多個。於部分實施方式中,氣體輸送器140以及開口114O可大致位於於線圈130的中心位置。於部分其他實施方式中,氣體輸送器140以及開口114O可偏離線圈130中心設置。於部分實施方式中,本體112可包含氣體出口112GO,其可連接一抽氣幫浦(未繪示),而從密閉空間110S中抽除空氣。In some embodiments, the dielectric plate 114 has an opening 114O connected to the gas conveyor 140 . The gas transporter 140 is connected to a gas supply source (not shown) and is used to provide process gas or other appropriate gases (such as cleaning gas, protective gas, etc.) to the closed space 110S of the reaction chamber 110 . In various embodiments, the process gas may be an etching gas, a deposition gas, a treatment gas, a carrier gas (such as nitrogen, argon, etc.), other suitable gases, and combinations thereof. The number of gas conveyors 140 and openings 114O may be one or more. In some embodiments, the gas conveyor 140 and the opening 114O may be located approximately at the center of the coil 130 . In some other embodiments, the gas conveyor 140 and the opening 114O may be disposed offset from the center of the coil 130 . In some embodiments, the body 112 may include a gas outlet 112GO, which may be connected to an air extraction pump (not shown) to extract air from the enclosed space 110S.

於部分實施方式中,磁場遮蔽元件170可以選擇性地設置於蓋體150的各外表面150OS以及本體112的各外表面112OS。磁場遮蔽元件170的材料可以是能阻隔外部磁場的適當金屬板體。舉例而言,磁場遮蔽元件170的材料可以是過渡金屬或其他適當材料。於部分實施方式中,磁場遮蔽元件170的材料可以是四族至十一族金屬。於部分實施方式中,磁場遮蔽元件170的材料可以是鉬(Mo)、鐵(Fe)、鎳(Ni)、其合金或其組合等。In some embodiments, the magnetic field shielding element 170 can be selectively disposed on each outer surface 150OS of the cover 150 and each outer surface 112OS of the body 112 . The material of the magnetic field shielding element 170 may be a suitable metal plate that can block external magnetic fields. For example, the material of the magnetic field shielding element 170 may be a transition metal or other suitable material. In some embodiments, the material of the magnetic field shielding element 170 may be a metal from Group IV to Group Eleven. In some embodiments, the material of the magnetic field shielding element 170 may be molybdenum (Mo), iron (Fe), nickel (Ni), alloys thereof, or combinations thereof.

於部分實施方式中,磁場遮蔽元件170可透過固定件160而固定於外表面112OS以及150OS上。舉例而言,固定件160可固定於(例如鎖固於)本體112的外表面112OS以及/或蓋體150的外表面150OS上。固定件160可包含一或多個插槽160T,以承載磁場遮蔽元件170。於本文中,本體112的外表面112OS以及蓋體150的外表面150OS的組合稱為外表面OS。In some embodiments, the magnetic field shielding element 170 can be fixed on the outer surfaces 112OS and 150OS through the fixing member 160. For example, the fixing member 160 can be fixed (eg, locked) on the outer surface 112OS of the body 112 and/or the outer surface 150OS of the cover 150 . The fixture 160 may include one or more slots 160T for carrying the magnetic field shielding element 170 . In this article, the combination of the outer surface 112OS of the body 112 and the outer surface 150OS of the cover 150 is called the outer surface OS.

磁場遮蔽元件170可包含位於反應室110側邊的磁場遮蔽元件172以及位於反應室110上方的磁場遮蔽元件174。磁場遮蔽元件172、174可彼此分離,而能夠獨立地經選擇而設置於反應室110周圍。固定件160可包含位於反應室110側邊的固定件162以及位於反應室110上方的固定件164,以分別承載磁場遮蔽元件172、174。The magnetic field shielding element 170 may include a magnetic field shielding element 172 located on the side of the reaction chamber 110 and a magnetic field shielding element 174 located above the reaction chamber 110 . The magnetic field shielding elements 172, 174 are separable from each other and can be independently selected to be positioned around the reaction chamber 110. The fixing part 160 may include a fixing part 162 located on the side of the reaction chamber 110 and a fixing part 164 located above the reaction chamber 110 to carry the magnetic field shielding elements 172 and 174 respectively.

藉由固定件160以及磁場遮蔽元件170的配置,操作者可以依據欲進行的電漿製程,調整反應室110周圍的磁場遮蔽元件170的分布,以達到有效地隔絕地磁的目的。舉例而言,可以採用不同磁場遮蔽元件170的分布來進行多種電漿製程。Through the arrangement of the fixing member 160 and the magnetic field shielding elements 170, the operator can adjust the distribution of the magnetic field shielding elements 170 around the reaction chamber 110 according to the desired plasma process, so as to effectively isolate the geomagnetic field. For example, various plasma processes may be performed using different distributions of magnetic field shielding elements 170 .

於本揭露的部分實施方式中,當磁場遮蔽元件172設置於本體112的外表面112OS時,磁場遮蔽元件172的上表面可以高於介電板體114的上表面的位置,且磁場遮蔽元件172的下表面可以低於晶圓基座120的下表面的位置。具體而言,磁場遮蔽元件172的上表面可以高於線圈130的位置,且磁場遮蔽元件172的下表面可以低於晶圓基座120中電極122的下表面的位置。藉此,在使用線圈130產生磁場時,磁場遮蔽元件172能環繞線圈130以及電極122之間的區域,而避免地磁影響此區域的電漿。如此一來,此區域的電漿能有效地被線圈130以及電極122控制,而達到目標效果,例如達到均勻蝕刻或不均勻蝕刻。In some embodiments of the present disclosure, when the magnetic field shielding element 172 is disposed on the outer surface 112OS of the body 112 , the upper surface of the magnetic field shielding element 172 may be higher than the upper surface of the dielectric plate body 114 , and the magnetic field shielding element 172 The lower surface of the wafer base 120 may be lower than the lower surface of the wafer base 120 . Specifically, the upper surface of the magnetic field shielding element 172 may be higher than the position of the coil 130 , and the lower surface of the magnetic field shielding element 172 may be lower than the position of the lower surface of the electrode 122 in the wafer base 120 . Thereby, when the coil 130 is used to generate a magnetic field, the magnetic field shielding element 172 can surround the area between the coil 130 and the electrode 122 to prevent geomagnetism from affecting the plasma in this area. In this way, the plasma in this area can be effectively controlled by the coil 130 and the electrode 122 to achieve the target effect, such as uniform etching or uneven etching.

於部分實施方式中,為了便於保養機台的時候開闔蓋體150,可以設計位於側邊的固定件162不固定於蓋體150的外表面150OS上,而僅固定於本體112的外表面112OS。舉例而言,固定件162直接固定於本體112,而不直接固定於蓋體150。藉此,固定件162的設置不會影響機台本身的運作。於部分實施方式中,固定件162可以接觸或不接觸蓋體150的外表面150OS。於部分實施方式中,固定件164可直接固定於蓋體150的上表面。In some embodiments, in order to facilitate opening and closing the cover 150 during machine maintenance, the fixing member 162 located on the side may be designed not to be fixed to the outer surface 150OS of the cover 150, but only to be fixed to the outer surface 112OS of the body 112. . For example, the fixing member 162 is directly fixed to the body 112 rather than directly fixed to the cover 150 . Therefore, the arrangement of the fixing member 162 will not affect the operation of the machine itself. In some embodiments, the fixing member 162 may or may not contact the outer surface 150OS of the cover 150 . In some embodiments, the fixing member 164 can be directly fixed on the upper surface of the cover 150 .

於部分實施方式中,設置於反應室110同側的磁場遮蔽元件170(例如第1圖的磁場遮蔽元件172)可以被固定件160(例如第1圖的固定件162)隔開,而不互相接觸。或者,於部分其他實施方式中,設置於反應室110同側的磁場遮蔽元件170(例如第1圖的磁場遮蔽元件172)可以不被固定件160隔開。換句話說,於部分其他實施方式中,設置於反應室110同側的磁場遮蔽元件170(例如第1圖的磁場遮蔽元件172)可以互相接觸。In some embodiments, the magnetic field shielding elements 170 (such as the magnetic field shielding element 172 in FIG. 1 ) disposed on the same side of the reaction chamber 110 can be separated by the fixing member 160 (such as the fixing member 162 in FIG. 1 ) without being separated from each other. get in touch with. Alternatively, in some other embodiments, the magnetic field shielding elements 170 (such as the magnetic field shielding element 172 in FIG. 1 ) disposed on the same side of the reaction chamber 110 may not be separated by the fixing member 160 . In other words, in some other embodiments, the magnetic field shielding elements 170 (such as the magnetic field shielding element 172 in FIG. 1 ) disposed on the same side of the reaction chamber 110 may be in contact with each other.

於部分實施方式中,基板W可為一矽晶圓。於其他實施例中,基板W可包含其他元素(elemental)半導體材料、化合物半導體材料,合金半導體材料或其他半導體晶片,以及其他合適的基板。舉例而言,化合物半導體材料包含,但不限於,碳化矽、砷化鎵、磷化鎵、磷化銦、砷化銦及/或銻化銦。舉例而言,合金半導體材料包含,但不限於,SiGe、GaAsP、AlInAs、AlGaAs、GaInAs、GaInP、及/或GaInAsP。In some embodiments, the substrate W may be a silicon wafer. In other embodiments, the substrate W may include other elemental semiconductor materials, compound semiconductor materials, alloy semiconductor materials or other semiconductor wafers, as well as other suitable substrates. For example, compound semiconductor materials include, but are not limited to, silicon carbide, gallium arsenide, gallium phosphide, indium phosphide, indium arsenide and/or indium antimonide. For example, alloy semiconductor materials include, but are not limited to, SiGe, GaAsP, AlInAs, AlGaAs, GaInAs, GaInP, and/or GaInAsP.

於部分實施方式中,介電板體114可由石英、陶瓷、及/或介電材料等電磁訊號可穿透之材質所製成。上述電磁訊號可為可見光、紅外線、紫外線、X射線光、及/或其他電磁訊號。通過介電板體114之電磁訊號可用以監測密閉空間110S之製程情況,例如電漿的存在、製程氣體種類的存在、及/或蝕刻/沉積殘餘材料的存在。介電板體114可包含合適的形狀,例如圓板(round plate)、方板或其他適當形狀。於部分實施方式中,介電板體114可為透明的。於部分實施方式中,介電板體114也可以稱為介電窗體。In some embodiments, the dielectric plate body 114 may be made of materials that are transparent to electromagnetic signals, such as quartz, ceramics, and/or dielectric materials. The above-mentioned electromagnetic signals may be visible light, infrared rays, ultraviolet rays, X-rays, and/or other electromagnetic signals. The electromagnetic signals passing through the dielectric plate 114 can be used to monitor the process conditions of the enclosed space 110S, such as the presence of plasma, the presence of process gas species, and/or the presence of etching/deposition residual materials. The dielectric plate body 114 may include a suitable shape, such as a round plate, a square plate, or other suitable shapes. In some embodiments, the dielectric plate 114 may be transparent. In some embodiments, the dielectric plate body 114 may also be called a dielectric window.

於部分實施方式中,線圈130可為一平面多匝螺旋線圈(planar multi-turn spiral coil)、非平面多匝螺旋線圈(non-planar multi-turn spiral coil)或具有其他合適形狀的線圈。於部分實施方式中,線圈130可構成一電漿天線。於其他實施例中,電漿天線可包含適用於電容耦合電漿(capacitively coupled plasma)之多個板件。於其他實施例中,電漿可經由其他電漿天線維持,例如電子迴旋共振(electron cyclotron resonance;ECR)、平行板、螺旋(helicon)、螺旋諧振器(helical resonator)、或其他電漿天線。電漿電源ES可例如為射頻(RF)電源。In some embodiments, the coil 130 may be a planar multi-turn spiral coil, a non-planar multi-turn spiral coil, or a coil with other suitable shapes. In some embodiments, the coil 130 may constitute a plasma antenna. In other embodiments, the plasma antenna may include multiple plates suitable for capacitively coupled plasma. In other embodiments, the plasma can be maintained through other plasmonic antennas, such as electron cyclotron resonance (ECR), parallel plates, helicons, helical resonators, or other plasmonic antennas. The plasma power supply ES may be, for example, a radio frequency (RF) power supply.

於部分實施方式中,感應耦合電漿設備100更可包含陶瓷支撐座180,用以支撐線圈130的內線圈及外線圈。舉例而言,線圈130可以透過適當手段(例如螺絲)而固定於陶瓷支撐座180。陶瓷支撐座180可包含有適當開口,以供氣體輸送器140通過。於部分實施方式中,感應耦合電漿設備100更可包含端子190,其中線圈130是藉由端子190連接電漿射頻電源。In some embodiments, the inductively coupled plasma device 100 may further include a ceramic support base 180 for supporting the inner coil and the outer coil of the coil 130 . For example, the coil 130 can be fixed to the ceramic support base 180 through appropriate means (eg, screws). The ceramic support base 180 may include appropriate openings for the gas conveyor 140 to pass through. In some embodiments, the inductively coupled plasma device 100 may further include terminals 190 , wherein the coil 130 is connected to the plasma RF power source through the terminals 190 .

於部分實施方式中,感應耦合電漿設備100更可包含電漿檔板116,以限定電漿圍繞基板W並使製程氣體以及製程副產物能經由電漿檔板116傳送至氣體出口112GO而排出。電漿檔板116上可鍍有可替代的腔體材料評估(alternate chamber material evaluation;ACME)膜,其中該膜可包含鋁材料,例如經陽極處理的鋁,該膜的配置可以降低缺陷。In some embodiments, the inductively coupled plasma apparatus 100 may further include a plasma baffle 116 to limit the plasma surrounding the substrate W and enable the process gas and process by-products to be transported to the gas outlet 112GO through the plasma baffle 116 for discharge. . The plasma baffle 116 may be coated with an alternative chamber material evaluation (ACME) film, where the film may include an aluminum material, such as anodized aluminum, and may be configured to reduce defects.

第2圖為根據本揭露的部分實施方式中的感應耦合電漿設備100的立體示意圖。於本揭露的實施方式中,固定件160可以設置於外表面OS(包含本體112的外表面112OS以及蓋體150的外表面150OS)的上下、左右、前後側,而使磁場遮蔽元件170能依照需求,配置於反應室110外。FIG. 2 is a perspective view of an inductively coupled plasma device 100 according to some embodiments of the present disclosure. In the embodiment of the present disclosure, the fixing members 160 can be disposed on the upper and lower sides, left and right sides, and front and rear sides of the outer surface OS (including the outer surface 112OS of the body 112 and the outer surface 150OS of the cover 150), so that the magnetic field shielding element 170 can be configured according to the requirements. requirements, configured outside the reaction chamber 110.

舉例而言,於部分實施方式中,磁場遮蔽元件172包含有設置於反應室110的四側的主要磁場遮蔽元件172a~172d以及次要磁場遮蔽元件172a’~172d’。磁場遮蔽元件172a~172d以及次要磁場遮蔽元件172a’~172d’可彼此分離,而能夠獨立地經選擇而設置於反應室110周圍。於部分實施方式中,主要磁場遮蔽元件172a~172d、次要磁場遮蔽元件172a’~172d’的形狀以及尺寸經由設計以配合感應耦合電漿設備100中其他元件的結構。舉例而言,次要磁場遮蔽元件172a’~172d’的尺寸可小於磁場遮蔽元件172a~172d的尺寸。For example, in some embodiments, the magnetic field shielding element 172 includes primary magnetic field shielding elements 172a to 172d and secondary magnetic field shielding elements 172a’ to 172d’ disposed on four sides of the reaction chamber 110. The magnetic field shielding elements 172a-172d and the secondary magnetic field shielding elements 172a'-172d' can be separated from each other and can be independently selected to be arranged around the reaction chamber 110. In some embodiments, the shapes and sizes of the primary magnetic field shielding elements 172a-172d and the secondary magnetic field shielding elements 172a'-172d' are designed to match the structures of other components in the inductively coupled plasma device 100. For example, the size of the secondary magnetic field shielding elements 172a'-172d' may be smaller than the size of the magnetic field shielding elements 172a-172d.

於部分實施方式中,磁場遮蔽元件170上可以設有多個鎖固孔170H,外表面OS可以設有多個對應的鎖固孔OSH,以供磁場遮蔽元件170固定於外表面OS上。磁場遮蔽元件170可以透過其他固定件(參照圖1的固定件160)而固定於外表面OS。或者,於其他實施方式中,磁場遮蔽元件170可直接固定於磁場遮蔽元件170,而不需要其他固定件介於其中。本實施方式的其他細節大致如前所述,在此不再贅述。In some embodiments, the magnetic field shielding element 170 may be provided with a plurality of locking holes 170H, and the outer surface OS may be provided with a plurality of corresponding locking holes OSH for fixing the magnetic field shielding element 170 to the outer surface OS. The magnetic field shielding component 170 can be fixed on the outer surface OS through other fixing components (refer to the fixing component 160 in FIG. 1 ). Alternatively, in other embodiments, the magnetic field shielding element 170 can be directly fixed to the magnetic field shielding element 170 without the need for other fasteners to be interposed therebetween. Other details of this implementation are generally as described above and will not be described again here.

第3圖為根據本揭露的部分實施方式中的感應耦合電漿設備100的立體示意圖。如第3圖所示,固定件160可透過螺絲鎖定方式,固定於感應耦合電漿設備100的外表面OS。舉例而言,固定件160上可以設有多個鎖固孔160H,而使磁場遮蔽元件170的鎖固孔170H能透過螺絲經由鎖固孔160H,鎖固於外表面OS的鎖固孔OSH。藉此,磁場遮蔽元件170亦可透過螺絲鎖定方式,固定於固定件160的插槽160T中。本實施方式的其他細節大致如前所述,在此不再贅述。FIG. 3 is a three-dimensional schematic diagram of an inductively coupled plasma device 100 according to some embodiments of the present disclosure. As shown in FIG. 3 , the fixing member 160 can be fixed on the outer surface OS of the inductively coupled plasma device 100 through screw locking. For example, the fixing member 160 may be provided with a plurality of locking holes 160H, so that the locking holes 170H of the magnetic field shielding element 170 can be locked to the locking holes OSH on the outer surface OS through screws passing through the locking holes 160H. Thereby, the magnetic field shielding element 170 can also be fixed in the slot 160T of the fixing member 160 through screw locking. Other details of this implementation are generally as described above and will not be described again here.

第4圖為根據本揭露的部分實施方式中的感應耦合電漿設備100的立體示意圖。於本實施方式中,本體112(參考第1圖)的周圍可以設置殼體300,殼體300的材料可以是能阻隔外部磁場的金屬材料。舉例而言,殼體300的材料可以是過渡金屬或其他適當材料。於部分實施方式中,殼體300的材料可以是四族至十一族金屬。於部分實施方式中,殼體300的材料可以是鉬(Mo)、鐵(Fe)、鎳(Ni)、其合金或其組合等。藉此,能進一步防止地磁影像線圈產生的磁場。於部分實施方式中,用於環繞密閉空間110S的本體112(參考第1圖)可以開設晶圓通道,以便於晶圓傳輸。殼體300亦可以開設晶圓通道300G,其與本體112(參考第1圖)的晶圓通道連通,以便於晶圓傳輸。磁場遮蔽元件170可以設置於本體112(參考第1圖)以及殼體300未設有晶圓通道的兩側。於部分實施方式中,本體112(參考第1圖)以及殼體300未設有晶圓通道的一側可免設置磁場遮蔽元件170及其固定件160(參考第1圖)。或者,於其他實施方式中,本體112(參考第1圖)以及殼體300設有晶圓通道的一側可以設置有配合尺寸的磁場遮蔽元件170及其固定件160(參考第1圖)。本實施方式的其他細節大致如前所述,在此不再贅述。FIG. 4 is a perspective view of an inductively coupled plasma device 100 according to some embodiments of the present disclosure. In this embodiment, a housing 300 may be provided around the body 112 (refer to FIG. 1 ), and the material of the housing 300 may be a metal material that can block external magnetic fields. For example, the material of the housing 300 may be a transition metal or other suitable material. In some embodiments, the material of the housing 300 may be a metal from Group IV to Group 11. In some embodiments, the material of the housing 300 may be molybdenum (Mo), iron (Fe), nickel (Ni), alloys thereof, or combinations thereof. In this way, the magnetic field generated by the geomagnetic imaging coil can be further prevented. In some embodiments, the body 112 (refer to FIG. 1 ) for surrounding the enclosed space 110S may have a wafer channel to facilitate wafer transportation. The housing 300 may also have a wafer channel 300G connected to the wafer channel of the body 112 (refer to FIG. 1 ) to facilitate wafer transfer. The magnetic field shielding element 170 can be disposed on both sides of the body 112 (refer to FIG. 1 ) and the housing 300 where the wafer channel is not provided. In some embodiments, the magnetic field shielding element 170 and its fixing member 160 (see FIG. 1 ) can be omitted from the main body 112 (refer to FIG. 1 ) and the side of the housing 300 that is not provided with a wafer channel. Alternatively, in other embodiments, the main body 112 (refer to FIG. 1 ) and the side of the housing 300 where the wafer channel is provided may be provided with matching size magnetic field shielding elements 170 and their fixing members 160 (refer to FIG. 1 ). Other details of this implementation are generally as described above and will not be described again here.

第5圖為根據本揭露的部分實施方式中的操作感應耦合電漿設備方法M的流程圖。第6A圖至第6B圖為根據本揭露的部分實施方式中的操作感應耦合電漿設備方法M於各個階段的示意圖。此描述僅為例示,而不意圖進一步限制後續專利申請範圍中所載的內容。方法M包含步驟S1~S8。應了解到,可以在步驟S1~S8之前、之中以及之後加入額外的步驟,且對於該方法的另一部份實施方式,以下提到的部分步驟可以被取代或取消。步驟/程序的順序可以被改變。Figure 5 is a flowchart of a method M of operating an inductively coupled plasma device in accordance with some embodiments of the present disclosure. 6A to 6B are schematic diagrams of various stages of a method M for operating an inductively coupled plasma device according to some embodiments of the present disclosure. This description is for illustration only and is not intended to further limit the content contained in the scope of subsequent patent applications. Method M includes steps S1 to S8. It should be understood that additional steps can be added before, during and after steps S1 to S8, and for another part of the implementation of the method, some of the steps mentioned below can be replaced or eliminated. The order of steps/procedures can be changed.

首先,參照第5圖與第6A圖,方法來到步驟S1,提供一感應耦合電漿設備100,且調整多個磁場遮蔽元件170至第一位置配置。舉例而言,將磁場遮蔽元件170設置於反應室110週邊四側以及上下側。在採用第一位置配置的情況下,反應室110四側的磁場遮蔽元件172a~172b、172a’~172b’、以及反應室110上下側的磁場遮蔽元件174的數量、形狀等可以有預定的配置。舉例而言,於此以數量為例,磁場遮蔽元件172a~172b、174分別為3、2、1、4、1。First, referring to FIGS. 5 and 6A , the method proceeds to step S1 , an inductively coupled plasma device 100 is provided, and a plurality of magnetic field shielding elements 170 are adjusted to a first position configuration. For example, the magnetic field shielding elements 170 are disposed around the four sides, upper and lower sides of the reaction chamber 110 . When the first position configuration is adopted, the number, shape, etc. of the magnetic field shielding elements 172a~172b, 172a'~172b' on the four sides of the reaction chamber 110, and the magnetic field shielding elements 174 on the upper and lower sides of the reaction chamber 110 can be arranged in a predetermined manner. . For example, taking the quantity as an example, the magnetic field shielding elements 172a to 172b and 174 are 3, 2, 1, 4, and 1 respectively.

接著,參照第5圖與第6A圖,方法來到步驟S2,在調整多個磁場遮蔽元件170至第一位置配置後,將第一晶圓放入反應室。或者,於部分其他實施方式中,步驟S1、S2的順序可以調換,而不以圖中所示為限。舉例而言,可在將第一晶圓放入反應室後,再調整多個磁場遮蔽元件170至第一位置配置。Next, referring to Figures 5 and 6A, the method proceeds to step S2. After adjusting the plurality of magnetic field shielding elements 170 to the first position, the first wafer is placed into the reaction chamber. Alternatively, in some other implementations, the order of steps S1 and S2 can be exchanged, and is not limited to what is shown in the figure. For example, after the first wafer is placed into the reaction chamber, the plurality of magnetic field shielding elements 170 can be adjusted to the first position.

接著,方法來到步驟S3,再使用該感應耦合電漿設備100,對晶圓進行適當電漿製程,例如電漿蝕刻製程、電漿沉積製程或電漿處理製程等。於本實施方式中,此電漿製程包含使用氣體輸送器140(參考第1圖)運送製程氣體至密閉空間110S中,以及使用線圈130(參考第1圖)傳送能量至密閉空間110S,進而提升製程氣體的能量而產生及/或維持電漿。在部分實施方式中,此電漿製程可以是非等向性或等向性的。Next, the method proceeds to step S3, and then the inductively coupled plasma equipment 100 is used to perform an appropriate plasma process on the wafer, such as a plasma etching process, a plasma deposition process, or a plasma treatment process. In this embodiment, the plasma process includes using a gas conveyor 140 (refer to Figure 1) to transport process gas to the closed space 110S, and using a coil 130 (refer to Figure 1) to transmit energy to the closed space 110S, thereby improving The energy of the process gas is used to generate and/or maintain the plasma. In some embodiments, the plasma process may be anisotropic or isotropic.

接著,參照第5圖與第6A圖,方法來到步驟S4,在對此晶圓進行完一次電漿製程後,可從反應室中移出晶圓,並將下個晶圓置入反應室110的密閉空間110S中,對下個晶圓進行此電漿製程。Next, referring to Figures 5 and 6A, the method proceeds to step S4. After completing a plasma process on the wafer, the wafer can be removed from the reaction chamber and the next wafer can be placed into the reaction chamber 110 In the closed space 110S, this plasma process is performed on the next wafer.

在對多個晶圓(例如同一梯次的多個晶圓)進行這些電漿製程後,參照第5圖與第6B圖,方法來到步驟S5,調整磁場遮蔽元件170至第二位置配置。舉例而言,可增加位於反應室110週邊四側以及上下側中任一者的磁場遮蔽元件170的數量,例如於反應室110週邊四側以及上下側中任一者加設磁場遮蔽元件170。或者,在部分例子中,可減少位於反應室110週邊四側以及上下側中任一者的磁場遮蔽元件170的數量,例如移除反應室110週邊四側以及上下側中任一者的磁場遮蔽元件170。在採用第二位置配置的情況下,反應室110四側的磁場遮蔽元件172a~172b、172a’~172b’、 以及反應室110上下側的磁場遮蔽元件174的數量、形狀等可以有預定的配置。舉例而言,於此以數量為例,磁場遮蔽元件172a~172b、174分別為2、4、1、5、1。After performing these plasma processes on multiple wafers (for example, multiple wafers in the same run), with reference to FIGS. 5 and 6B , the method proceeds to step S5 to adjust the magnetic field shielding element 170 to the second position. For example, the number of magnetic field shielding elements 170 located on any one of the four sides and the upper and lower sides of the reaction chamber 110 can be increased, for example, the number of magnetic field shielding elements 170 can be added on any one of the four sides and upper and lower sides of the reaction chamber 110 . Alternatively, in some examples, the number of magnetic field shielding elements 170 located on any one of the four sides, upper and lower sides of the reaction chamber 110 can be reduced, for example, the number of magnetic field shielding elements 170 located on any one of the four sides, upper and lower sides of the reaction chamber 110 can be removed. Element 170. When the second position configuration is adopted, the number, shape, etc. of the magnetic field shielding elements 172a~172b, 172a'~172b' on the four sides of the reaction chamber 110, and the magnetic field shielding elements 174 on the upper and lower sides of the reaction chamber 110 can be arranged in a predetermined manner. . For example, taking the quantity as an example, the magnetic field shielding elements 172a to 172b and 174 are 2, 4, 1, 5, and 1 respectively.

在部分實施方式中,在調整磁場遮蔽元件170至第二位置配置時,可以將設置於反應室110的任一側的磁場遮蔽元件17 0移除。或者,於其他部分實施方式中,可以將設置於反應室110的任一側的磁場遮蔽元件170移動至另一側。或者,在部分實施方式中,可以增加設置於反應室110的任一側的磁場遮蔽元件170的數量。In some embodiments, when adjusting the magnetic field shielding element 170 to the second position configuration, the magnetic field shielding element 170 disposed on either side of the reaction chamber 110 can be removed. Alternatively, in other embodiments, the magnetic field shielding element 170 disposed on either side of the reaction chamber 110 can be moved to the other side. Alternatively, in some embodiments, the number of magnetic field shielding elements 170 disposed on either side of the reaction chamber 110 may be increased.

接著,參照第5圖與第6B圖,方法來到步驟S6,在調整多個磁場遮蔽元件170至第二位置配置後,將第二晶圓放入反應室。或者,於部分其他實施方式中,步驟S5、S6的順序可以調換,而不以圖中所示為限。舉例而言,可在將第二晶圓放入反應室後,再調整多個磁場遮蔽元件170至第二位置配置。Next, referring to Figures 5 and 6B, the method proceeds to step S6. After adjusting the plurality of magnetic field shielding elements 170 to the second position, the second wafer is placed into the reaction chamber. Alternatively, in some other implementations, the order of steps S5 and S6 can be exchanged, and is not limited to what is shown in the figure. For example, after the second wafer is placed into the reaction chamber, the plurality of magnetic field shielding elements 170 can be adjusted to the second position.

接著,方法來到步驟S7,再操作該感應耦合電漿設備100,對第二晶圓進行適當電漿製程,例如電漿蝕刻製程、電漿沉積製程或電漿處理製程等。於本實施方式中,此電漿製程包含使用氣體輸送器140(參考第1圖)運送製程氣體至密閉空間110S中,以及使用線圈130(參考第1圖)傳送能量至密閉空間110S,進而提升製程氣體的能量而產生及/或維持電漿。在部分實施方式中,此電漿製程可以是非等向性或等向性的。Next, the method proceeds to step S7, and then the inductively coupled plasma device 100 is operated to perform an appropriate plasma process on the second wafer, such as a plasma etching process, a plasma deposition process, or a plasma treatment process. In this embodiment, the plasma process includes using a gas conveyor 140 (refer to Figure 1) to transport process gas to the closed space 110S, and using a coil 130 (refer to Figure 1) to transmit energy to the closed space 110S, thereby improving The energy of the process gas is used to generate and/or maintain the plasma. In some embodiments, the plasma process may be anisotropic or isotropic.

接著,參照第5圖與第6B圖,方法來到步驟S8,在對此晶圓進行完一次電漿製程後,可從反應室中移出晶圓,並將下個晶圓置入反應室110的密閉空間110S中,對下個晶圓(例如同一梯次的多個晶圓)進行此電漿製程。Next, referring to Figures 5 and 6B, the method proceeds to step S8. After a plasma process is performed on the wafer, the wafer can be removed from the reaction chamber and the next wafer can be placed into the reaction chamber 110. In the closed space 110S, the plasma process is performed on the next wafer (for example, multiple wafers in the same run).

於本揭露的部分實施方式中,操作者可以視電漿製程的需求而選擇適當的磁場遮蔽元件170配置。舉例而言,在此,磁場遮蔽元件170在該第二電漿製程的配置不同於在第一電漿製程的配置。在第5圖中,雖然分別對第一晶圓以及第二晶圓進行第一電漿製程以及第二電漿製程為例,但不應以此限制本揭露範圍。於其他實施方式中,第一電漿製程以及第二電漿製程可以對同一晶圓進行。In some embodiments of the present disclosure, the operator can select an appropriate configuration of the magnetic field shielding element 170 according to the requirements of the plasma process. For example, here, the configuration of the magnetic field shielding element 170 in the second plasma process is different from the configuration in the first plasma process. In FIG. 5 , although the first plasma process and the second plasma process are performed on the first wafer and the second wafer respectively as an example, this should not limit the scope of the disclosure. In other embodiments, the first plasma process and the second plasma process can be performed on the same wafer.

第7圖為根據本揭露的部分實施方式中的操作感應耦合電漿設備方法N的流程圖。第6A圖至第6B圖為根據本揭露的部分實施方式中的操作感應耦合電漿設備方法M於各個階段的示意圖。此描述僅為例示,而不意圖進一步限制後續專利申請範圍中所載的內容。方法N包含步驟P1~P6。應了解到,可以在步驟P1~P6之前、之中以及之後加入額外的步驟,且對於該方法的另一部份實施方式,以下提到的部分步驟可以被取代或取消。步驟/程序的順序可以被改變。Figure 7 is a flowchart of a method N of operating an inductively coupled plasma device in accordance with some embodiments of the present disclosure. 6A to 6B are schematic diagrams of various stages of a method M for operating an inductively coupled plasma device according to some embodiments of the present disclosure. This description is for illustration only and is not intended to further limit the content contained in the scope of subsequent patent applications. Method N includes steps P1 to P6. It should be understood that additional steps can be added before, during and after steps P1 to P6, and for another part of the implementation of the method, some of the steps mentioned below can be replaced or eliminated. The order of steps/procedures can be changed.

參照第7圖與第6A圖,方法來到步驟P1,在將第一晶圓放入感應耦合電漿設備100的反應室。Referring to FIGS. 7 and 6A , the method proceeds to step P1 , where the first wafer is placed into the reaction chamber of the inductively coupled plasma device 100 .

接著,方法來到步驟P2,調整多個磁場遮蔽元件170至第一位置配置。舉例而言,將磁場遮蔽元件170設置於反應室110週邊四側以及上下側。在採用第一位置配置的情況下,反應室110四側的磁場遮蔽元件172a~172b、172a’~172b’、以及反應室110上下側的磁場遮蔽元件174的數量、形狀等可以有預定的配置。舉例而言,於此以數量為例,磁場遮蔽元件172a~172b、174分別為3、2、1、4、1。步驟P1、P2的順序可以調換,而不以圖中所示為限。舉例而言,可在將第一晶圓放入反應室之前或之後,調整多個磁場遮蔽元件170至第一位置配置。Next, the method proceeds to step P2, where the plurality of magnetic field shielding elements 170 are adjusted to the first position configuration. For example, the magnetic field shielding elements 170 are disposed around the four sides, upper and lower sides of the reaction chamber 110 . When the first position configuration is adopted, the number, shape, etc. of the magnetic field shielding elements 172a~172b, 172a'~172b' on the four sides of the reaction chamber 110, and the magnetic field shielding elements 174 on the upper and lower sides of the reaction chamber 110 can be arranged in a predetermined manner. . For example, taking the quantity as an example, the magnetic field shielding elements 172a to 172b and 174 are 3, 2, 1, 4, and 1 respectively. The order of steps P1 and P2 can be exchanged and is not limited to what is shown in the figure. For example, the plurality of magnetic field shielding elements 170 may be adjusted to the first position configuration before or after placing the first wafer into the reaction chamber.

方法來到步驟P3,再操作該感應耦合電漿設備100,對晶圓進行適當電漿製程,例如電漿蝕刻製程、電漿沉積製程或電漿處理製程等。The method proceeds to step P3, and then the inductively coupled plasma equipment 100 is operated to perform an appropriate plasma process on the wafer, such as a plasma etching process, a plasma deposition process, or a plasma treatment process.

接著,參照第7圖與第6B圖,方法來到步驟P4,調整多個磁場遮蔽元件170至第二位置配置。舉例而言,可增加位於反應室110週邊四側以及上下側中任一者的磁場遮蔽元件170的數量,例如於反應室110週邊四側以及上下側中任一者加設磁場遮蔽元件170。或者,在部分例子中,可減少位於反應室110週邊四側以及上下側中任一者的磁場遮蔽元件170的數量,例如移除反應室110週邊四側以及上下側中任一者的磁場遮蔽元件170。在採用第二位置配置的情況下,反應室110四側的磁場遮蔽元件172a~172b、172a’~172b’、 以及反應室110上下側的磁場遮蔽元件174的數量、形狀等可以有預定的配置。舉例而言,於此以數量為例,磁場遮蔽元件172a~172b、174分別為2、4、1、5、1。Next, referring to Figures 7 and 6B, the method proceeds to step P4, where the plurality of magnetic field shielding elements 170 are adjusted to the second position. For example, the number of magnetic field shielding elements 170 located on any one of the four sides and the upper and lower sides of the reaction chamber 110 can be increased, for example, the number of magnetic field shielding elements 170 can be added on any one of the four sides and upper and lower sides of the reaction chamber 110 . Alternatively, in some examples, the number of magnetic field shielding elements 170 located on any one of the four sides, upper and lower sides of the reaction chamber 110 can be reduced, for example, the number of magnetic field shielding elements 170 located on any one of the four sides, upper and lower sides of the reaction chamber 110 can be removed. Element 170. When the second position configuration is adopted, the number, shape, etc. of the magnetic field shielding elements 172a~172b, 172a'~172b' on the four sides of the reaction chamber 110, and the magnetic field shielding elements 174 on the upper and lower sides of the reaction chamber 110 can be arranged in a predetermined manner. . For example, taking the quantity as an example, the magnetic field shielding elements 172a to 172b and 174 are 2, 4, 1, 5, and 1 respectively.

接著,方法來到步驟P5,再操作該感應耦合電漿設備100,對晶圓進行適當電漿製程,例如電漿蝕刻製程、電漿沉積製程或電漿處理製程等。Next, the method proceeds to step P5, and then the inductively coupled plasma device 100 is operated to perform an appropriate plasma process on the wafer, such as a plasma etching process, a plasma deposition process, or a plasma treatment process.

第8A圖至第8J圖為根據本揭露的部分實施方式中的半導體裝置於製程中各個階段的示意圖。此描述僅為例示,而不意圖進一步限制後續專利申請範圍中所載的內容。應了解到,可以在第8A圖至第8J圖的步驟之前、之中以及之後加入額外的步驟,且對於該方法的另一部份實施方式,以下提到的部分步驟可以被取代或取消。步驟/程序的順序可以被改變。8A to 8J are schematic diagrams of semiconductor devices at various stages of a manufacturing process according to some embodiments of the present disclosure. This description is for illustration only and is not intended to further limit the content contained in the scope of subsequent patent applications. It should be understood that additional steps can be added before, during and after the steps of Figures 8A to 8J, and for other implementations of the method, some of the steps mentioned below can be replaced or eliminated. The order of steps/procedures can be changed.

參考第8A圖,在半導體基板910上,形成硬式遮罩層920、底部抗反射層(bottom anti-reflection coating;BARC)930以及圖案化光阻層940。在部分實施方式中,圖案化光阻層940可包含適當有機材料。在部分實施方式中,經由在底部抗反射層930上塗佈光阻層、對光阻層進行微影製程(例如曝光以及顯影),而形成圖案化光阻層940。Referring to FIG. 8A , on the semiconductor substrate 910, a hard mask layer 920, a bottom anti-reflection coating (BARC) 930 and a patterned photoresist layer 940 are formed. In some embodiments, the patterned photoresist layer 940 may include suitable organic materials. In some embodiments, the patterned photoresist layer 940 is formed by coating a photoresist layer on the bottom anti-reflective layer 930 and performing a photolithography process (such as exposure and development) on the photoresist layer.

於部分實施方式中,此半導體基板910可包含適當半導體材料,諸如矽(Si)、鍺(Ge)、碳化矽(SiC)、矽鍺(SiGe)或上述之組合。於部分實施方式中,半導體基板910例如為塊狀矽。於部分實施方式中,半導體基板910可為絕緣體上矽(silicon on insulator; SOI) 基板、多層基板、梯度基板或混合定向基板。In some embodiments, the semiconductor substrate 910 may include suitable semiconductor materials, such as silicon (Si), germanium (Ge), silicon carbide (SiC), silicon germanium (SiGe), or combinations thereof. In some embodiments, the semiconductor substrate 910 is, for example, bulk silicon. In some embodiments, the semiconductor substrate 910 may be a silicon on insulator (SOI) substrate, a multilayer substrate, a gradient substrate or a hybrid directional substrate.

於部分實施方式中,硬式遮罩層920可包含多層介電材料,可為碳化矽-氧化矽-碳化矽的三層結構。或者,於部分實施方式中,硬式遮罩層920可包含一碳化矽層。於部分實施方式中,底部抗反射層930可包含適當有機或無機介電材料,例如碳化矽(SiC)。在對光阻層進行曝光時,底部抗反射層930可以降低下方特徵的反射干擾。In some embodiments, the hard mask layer 920 may include multiple layers of dielectric material, and may be a three-layer structure of silicon carbide-silicon oxide-silicon carbide. Alternatively, in some embodiments, the hard mask layer 920 may include a silicon carbide layer. In some embodiments, the bottom anti-reflective layer 930 may include suitable organic or inorganic dielectric materials, such as silicon carbide (SiC). The bottom anti-reflective layer 930 can reduce reflection interference from underlying features when exposing the photoresist layer.

參考第8B圖,以前述的感應耦合電漿設備100,進行電漿蝕刻製程,以移除未被圖案化光阻層940覆蓋的底部抗反射層930的部分,而形成底部抗反射層932。具體而言,將半導體基板910放置在晶圓基座(參考圖1的晶圓基座120)上,控制氣體輸送器140引入一氣體Ga,而產生電漿Pa,以蝕刻未被圖案化光阻層940覆蓋的底部抗反射層930(參照第8A圖)的部分。在此電漿蝕刻過程中,磁場遮蔽元件170(參考前述第1圖~第4圖或第6A圖以及第6B圖)可以採用一位置配置170LA。Referring to FIG. 8B , the aforementioned inductively coupled plasma device 100 is used to perform a plasma etching process to remove the portion of the bottom anti-reflective layer 930 that is not covered by the patterned photoresist layer 940 to form the bottom anti-reflective layer 932 . Specifically, the semiconductor substrate 910 is placed on the wafer base (refer to the wafer base 120 in FIG. 1 ), and the gas transporter 140 is controlled to introduce a gas Ga to generate plasma Pa to etch the unpatterned light. The resistive layer 940 covers the portion of the bottom anti-reflective layer 930 (see FIG. 8A). During this plasma etching process, the magnetic field shielding element 170 (refer to the aforementioned Figures 1 to 4 or Figure 6A and Figure 6B) can adopt a position configuration 170LA.

參考第8C圖,蝕刻硬式遮罩層920,而形成硬式遮罩922。具體而言,感應耦合電漿設備100引入一氣體Gb,而產生電漿Pb,以蝕刻未被底部抗反射層932覆蓋的硬式遮罩層920(參照第8B圖)的部分。在此電漿蝕刻過程中,磁場遮蔽元件170(參考前述第1圖~第4圖或第6A圖以及第6B圖)可以採用一位置配置170LB。Referring to FIG. 8C , the hard mask layer 920 is etched to form a hard mask 922 . Specifically, the inductively coupled plasma device 100 introduces a gas Gb to generate plasma Pb to etch the portion of the hard mask layer 920 (see FIG. 8B ) that is not covered by the bottom anti-reflective layer 932 . During this plasma etching process, the magnetic field shielding element 170 (refer to the aforementioned Figures 1 to 4 or Figure 6A and Figure 6B) can adopt a position configuration 170LB.

參考第8D圖,使用硬式遮罩922作為蝕刻遮罩,蝕刻半導體基板910,而在半導體基板910形成溝槽910R。具體而言,感應耦合電漿設備100引入一氣體Gc,而產生電漿Pc,以蝕刻未被硬式遮罩922覆蓋的半導體基板910的部分。在此電漿蝕刻過程中,磁場遮蔽元件170(參考前述第1圖~第4圖或第6A圖以及第6B圖)可以採用一位置配置170LC。Referring to FIG. 8D , the hard mask 922 is used as an etching mask to etch the semiconductor substrate 910 to form a trench 910R in the semiconductor substrate 910 . Specifically, the inductively coupled plasma device 100 introduces a gas Gc to generate plasma Pc to etch the portion of the semiconductor substrate 910 that is not covered by the hard mask 922 . During this plasma etching process, the magnetic field shielding element 170 (refer to the aforementioned Figures 1 to 4 or Figure 6A and Figure 6B) can adopt a position configuration 170LC.

參考第8E圖,在溝槽910R中填入介電材料,而形成淺溝槽隔離區950。淺溝槽隔離區950可用以定義半導體基板910的主動區912。Referring to FIG. 8E, a dielectric material is filled in the trench 910R to form a shallow trench isolation region 950. Shallow trench isolation region 950 may be used to define active region 912 of semiconductor substrate 910 .

參考第8F圖,在淺溝槽隔離區950以及主動區912上,形成閘極介電層960、閘極電極層970、硬式遮罩層980、底部抗反射層(bottom anti-reflection coating;BARC)990以及圖案化光阻層1000。在部分實施方式中,經由在底部抗反射層990上塗佈光阻層、對光阻層進行微影製程(例如曝光以及顯影),而形成圖案化光阻層1000。Referring to Figure 8F, on the shallow trench isolation area 950 and the active area 912, a gate dielectric layer 960, a gate electrode layer 970, a hard mask layer 980, and a bottom anti-reflection coating (BARC) are formed. ) 990 and patterned photoresist layer 1000. In some embodiments, the patterned photoresist layer 1000 is formed by coating a photoresist layer on the bottom anti-reflective layer 990 and performing a photolithography process (such as exposure and development) on the photoresist layer.

參考第8G圖,蝕刻底部抗反射層990,而形成底部抗反射層992。具體而言,感應耦合電漿設備100引入一氣體Ga’,而產生電漿Pa’,以蝕刻未被圖案化光阻層1000覆蓋的底部抗反射層990(參照圖7F)的部分。在此電漿蝕刻過程中,磁場遮蔽元件170(參考前述第1圖~第4圖或第6A圖以及第6B圖)可以採用一位置配置170LD。Referring to FIG. 8G, the bottom anti-reflective layer 990 is etched to form a bottom anti-reflective layer 992. Specifically, the inductively coupled plasma device 100 introduces a gas Ga' to generate plasma Pa' to etch the portion of the bottom anti-reflective layer 990 (refer to FIG. 7F) that is not covered by the patterned photoresist layer 1000. During this plasma etching process, the magnetic field shielding element 170 (refer to the aforementioned Figures 1 to 4 or Figure 6A and Figure 6B) can be configured in a position 170LD.

參考第8H圖,蝕刻硬式遮罩層980,而形成硬式遮罩982。具體而言,感應耦合電漿設備100引入一氣體Gb’,而產生電漿Pb’,以蝕刻未被底部抗反射層992覆蓋的硬式遮罩層980(參照圖7G)的部分。在此電漿蝕刻過程中,磁場遮蔽元件170(參考前述第1圖~第4圖或第6A圖以及第6B圖)可以採用一位置配置170LE。Referring to Figure 8H, the hard mask layer 980 is etched to form a hard mask 982. Specifically, the inductively coupled plasma device 100 introduces a gas Gb' to generate plasma Pb' to etch the portion of the hard mask layer 980 (refer to FIG. 7G) that is not covered by the bottom anti-reflective layer 992. During this plasma etching process, the magnetic field shielding element 170 (refer to the aforementioned Figures 1 to 4 or Figure 6A and Figure 6B) can adopt a position configuration 170LE.

參考第8I圖,使用硬式遮罩982作為蝕刻遮罩,蝕刻閘極電極層970以及閘極介電層960(參照圖7H),而分別形成閘極電極972以及閘極介電質962。具體而言,感應耦合電漿設備100引入一氣體Gc’,而產生電漿Pc’,以蝕刻未被硬式遮罩982覆蓋的閘極電極層970以及閘極介電層960(參照第8H圖)的部分。在此電漿蝕刻過程中,磁場遮蔽元件170(參考前述第1圖~第4圖或第6A圖以及第6B圖)可以採用一位置配置170LF。Referring to FIG. 8I, the hard mask 982 is used as an etching mask to etch the gate electrode layer 970 and the gate dielectric layer 960 (see FIG. 7H) to form the gate electrode 972 and the gate dielectric 962 respectively. Specifically, the inductively coupled plasma device 100 introduces a gas Gc' to generate plasma Pc' to etch the gate electrode layer 970 and the gate dielectric layer 960 that are not covered by the hard mask 982 (refer to FIG. 8H )part. During this plasma etching process, the magnetic field shielding element 170 (refer to the aforementioned Figures 1 to 4 or Figure 6A and Figure 6B) can adopt a position configuration 170LF.

於部分實施方式中,參照第8B圖至第8I圖,位置配置170LA~170LF中至少兩個不同。於部分實施方式中,依據蝕刻圖案的相似度,位置配置170LA~170LF可以部分相同。舉例而言,位置配置170LA~170LC可以實質相同,而位置配置170LD~170LF可以實質相同,其中位置配置170LA~170LC不同於位置配置170LD~170LF。於部分實施方式中,依據被蝕刻的目標材料的種類,位置配置170LA~170LF可以部分相同。舉例而言,用於蝕刻底部抗反射層的位置配置170LA、170LD可以實質相同,用於硬式遮罩層的位置配置170LB、170LE可以實質相同,用於矽基板或多晶矽的位置配置170LC、170LF可以實質相同,其中該組位置配置170LA、170LD、該組位置配置170LB、170LE以及該組位置配置170LC、170LF各不相同。或者,於部分其他實施方式中,位置配置170LA~170LF各不相同。In some embodiments, referring to Figures 8B to 8I, at least two of the position configurations 170LA~170LF are different. In some implementations, depending on the similarity of the etching patterns, the position configurations 170LA~170LF may be partially the same. For example, location configurations 170LA~170LC may be substantially the same, and location configurations 170LD~170LF may be substantially the same, where location configurations 170LA~170LC are different from location configurations 170LD~170LF. In some implementations, depending on the type of target material to be etched, the position configurations 170LA to 170LF may be partially the same. For example, the position configurations 170LA and 170LD used for etching the bottom anti-reflective layer can be substantially the same, the position configurations 170LB and 170LE used for the hard mask layer can be substantially the same, and the position configurations 170LC and 170LF used for the silicon substrate or polycrystalline silicon can be substantially the same. They are essentially the same, but the group of position configurations 170LA and 170LD, the group of position configurations 170LB and 170LE, and the group of position configurations 170LC and 170LF are different. Or, in some other implementations, the position configurations 170LA~170LF are different.

於部分實施方式中,依據被蝕刻的材料,氣體Ga、Gb、Gc可而不同,而使電漿Pa、Pb、Pc不同。同樣地,依據被蝕刻的材料,氣體Ga’、Gb’、Gc’可而不同,而使電漿Pa’、Pb’、Pc’不同。於部分實施方式中,氣體Ga、Ga’可採用相同氣體,而使電漿Pa、Pa’的成分實質相同。於部分實施方式中,氣體Gb、Gb’可採用相同氣體,而使電漿Pb、Pb’的成分實質相同。於部分實施方式中,氣體Gc、Gc’可採用相同氣體,而使電漿Pc、Pc’的成分實質相同。或者,於其他部份實施方式中,氣體Ga、Gb、Gc、Ga’、Gb’、Gc’可各不相同。In some embodiments, depending on the material being etched, the gases Ga, Gb, and Gc may be different, thereby causing the plasmas Pa, Pb, and Pc to be different. Likewise, depending on the material being etched, the gases Ga', Gb', and Gc' may be different, causing the plasmas Pa', Pb', and Pc' to be different. In some embodiments, the gases Ga and Ga' can be the same gas, so that the compositions of the plasmas Pa and Pa' are substantially the same. In some embodiments, the gases Gb and Gb' can be the same gas, so that the compositions of the plasmas Pb and Pb' are substantially the same. In some embodiments, the gases Gc and Gc' can be the same gas, so that the compositions of the plasmas Pc and Pc' are substantially the same. Or, in other embodiments, the gases Ga, Gb, Gc, Ga', Gb', and Gc' can be different.

參考第8J圖,在未被閘極電極972以及閘極介電質962覆蓋的部分的主動區912中/上,形成源極/汲極區1100。舉例而言,可以透過n型或p型摻雜方式,形成源極/汲極區1100。或者,於部分實施方式中,可以透過磊晶成長方式,形成源極/汲極區1100。以上第8A圖至第8J圖的步驟可以重複對多個基板進行。Referring to FIG. 8J , a source/drain region 1100 is formed in/on the portion of the active region 912 that is not covered by the gate electrode 972 and the gate dielectric 962 . For example, the source/drain region 1100 can be formed through n-type or p-type doping. Alternatively, in some embodiments, the source/drain regions 1100 can be formed through epitaxial growth. The above steps in Figures 8A to 8J can be repeated for multiple substrates.

第9圖為根據本揭露的部分實施方式中的半導體製程機台200的示意圖。半導體製程機台200可以是一群集工具(cluster tool),包含裝載埠(load port)LP、設備前端模組(Equipment Front-End Module;EFCM)TC、負載鎖定(load-lock)室LC、緩衝室BC以及製程反應室(例如感應耦合電漿設備100)。FIG. 9 is a schematic diagram of a semiconductor processing tool 200 according to some embodiments of the present disclosure. The semiconductor process tool 200 may be a cluster tool, including a load port LP, an equipment front-end module (Equipment Front-End Module; EFCM) TC, a load-lock chamber LC, and a buffer Chamber BC and the process reaction chamber (eg, inductively coupled plasma device 100).

裝載埠LP用以承載晶圓傳送盒WP。晶圓傳送盒WP可以裝載多個晶圓,並被適當自動化搬動系統運送,例如空中單軌無人搬送系統 (Overhead Hoist Transfer;OHT)。The loading port LP is used to carry the wafer transfer box WP. The wafer transfer box WP can load multiple wafers and be transported by an appropriate automated moving system, such as an overhead monorail unmanned transport system (Overhead Hoist Transfer; OHT).

設備前端模組TC連接裝載埠LP以及負載鎖定室LC。負載鎖定室LC可用以裝載或卸載晶圓,舉例而言,負載鎖定室LC包含晶圓進入室WI、晶圓送出室WO。設備前端模組TC中可設有機械手臂A1,以將晶圓從裝載埠LP所承載的晶圓傳送盒WP中取出而傳送至負載鎖定室LC的晶圓進入室WI中,也可以將晶圓從負載鎖定室LC的晶圓送出室WO中取出傳送到裝載埠LP所承載的晶圓傳送盒WP中。緩衝室BC連接負載鎖定室LC以及製程反應室(例如感應耦合電漿設備100)。緩衝室BC可設有機械手臂A2,以使晶圓在負載鎖定室LC以及多個反應室製程反應室(例如感應耦合電漿設備100)之間傳送。於部分實施方式中,感應耦合電漿設備100的配置大致如前所述,感應耦合電漿設備100的數量僅為示意,不應以此數量為限。The equipment front-end module TC is connected to the loading port LP and the load lock chamber LC. The load lock chamber LC can be used to load or unload wafers. For example, the load lock chamber LC includes a wafer entry chamber WI and a wafer delivery chamber WO. The equipment front-end module TC may be provided with a robotic arm A1 to take out the wafer from the wafer transfer box WP carried by the loading port LP and transfer it to the wafer entry chamber WI of the load lock chamber LC. The wafer may also be moved into the wafer entry chamber WI. The wafer is taken out from the wafer delivery chamber WO of the load lock chamber LC and transferred to the wafer transfer box WP carried by the load port LP. The buffer chamber BC connects the load lock chamber LC and the process reaction chamber (eg, inductively coupled plasma device 100). The buffer chamber BC may be provided with a robotic arm A2 to transfer wafers between the load lock chamber LC and a plurality of reaction chamber process chambers (eg, the inductively coupled plasma apparatus 100 ). In some embodiments, the configuration of the inductively coupled plasma device 100 is generally as described above. The number of the inductively coupled plasma device 100 is only for illustration and should not be limited to this number.

基於以上討論,可以看出本揭露提供了的多個優點。然而,應該理解,其他實施方式可以提供額外的優點,並且並非所有優點都必須在此公開,並且並非所有實施方式都需要特定優點。本案的優點之一是藉由在反應室周圍裝設固定件,操作者可以依據欲進行的電漿製程,輕易地調整反應室周圍的磁場遮蔽元件的分布,以達有效地隔絕地磁,進而提升對電漿的控制,而達到良好的電漿蝕刻的控制,例如達到均勻蝕刻或不均勻蝕刻。本揭露之實施方式中的磁場遮蔽元件也可以採用他種手段固定,並不以圖文中所示的固定件為限。Based on the above discussion, it can be seen that the present disclosure provides multiple advantages. It is understood, however, that other embodiments may provide additional advantages, not all of which are necessarily disclosed herein, and not all embodiments require specific advantages. One of the advantages of this case is that by installing fixtures around the reaction chamber, the operator can easily adjust the distribution of magnetic field shielding elements around the reaction chamber according to the desired plasma process, so as to effectively isolate the geomagnetic field and thereby improve Control of plasma to achieve good plasma etching control, such as uniform etching or uneven etching. The magnetic field shielding element in the embodiment of the present disclosure can also be fixed by other means, and is not limited to the fixing components shown in the figures and text.

本揭露的部分實施方式提供了一種操作感應耦合電漿設備的方法。該方法包含:將一第一磁場遮蔽元件設置鄰近於一反應室的一第一側;當第一磁場遮蔽元件設置鄰近於該反應室的該第一側時,進行一第一電漿製程;在進行完該第一電漿製程之後,從該反應室的該第一側,移除該第一磁場遮蔽元件;以及在從該反應室的該第一側移除該第一磁場遮蔽元件之後,進行一第二電漿製程。Certain embodiments of the present disclosure provide a method of operating an inductively coupled plasma device. The method includes: disposing a first magnetic field shielding element adjacent to a first side of a reaction chamber; and performing a first plasma process when the first magnetic field shielding element is disposed adjacent to the first side of the reaction chamber; After performing the first plasma process, removing the first magnetic field shielding element from the first side of the reaction chamber; and after removing the first magnetic field shielding element from the first side of the reaction chamber , perform a second plasma process.

於部分實施方式中,方法更包含在進行該第一電漿製程後,在進行該第二電漿製程之前,將一第二磁場遮蔽元件設置鄰近於該反應室的一第二側。In some embodiments, the method further includes disposing a second magnetic field shielding element adjacent to a second side of the reaction chamber after performing the first plasma process and before performing the second plasma process.

於部分實施方式中,方法更包含將一第一基板設置於該反應室中,其中該第一電漿製程是對該反應室中的該第一基板進行的,該第二電漿製程是對該反應室中的該第一基板進行的。In some embodiments, the method further includes disposing a first substrate in the reaction chamber, wherein the first plasma process is performed on the first substrate in the reaction chamber, and the second plasma process is performed on the first substrate in the reaction chamber. performed on the first substrate in the reaction chamber.

於部分實施方式中,方法更包含將一第一基板設置於該反應室中,其中該第一電漿製程是對該反應室中的該第一基板進行的;從該反應室移除該第一基板;以及將一第二基板設置於該反應室中,其中該第二電漿製程是對該反應室中的該第二基板進行的。In some embodiments, the method further includes disposing a first substrate in the reaction chamber, wherein the first plasma process is performed on the first substrate in the reaction chamber; removing the first substrate from the reaction chamber. a substrate; and disposing a second substrate in the reaction chamber, wherein the second plasma process is performed on the second substrate in the reaction chamber.

本揭露的部分實施方式提供了一種操作一感應耦合電漿設備的方法,包含:將一第一磁場遮蔽元件設置鄰近於一反應室的一第一側;當該第一磁場遮蔽元件設置鄰近於該反應室的該第一側時,進行一第一電漿製程;在進行完該第一電漿製程之後,將一第二磁場遮蔽元件設置鄰近於該反應室的該第一側;以及當該第一磁場遮蔽元件以及該第二磁場遮蔽元件設置鄰近於該反應室的該第一側時,進行一第二電漿製程。Some embodiments of the present disclosure provide a method of operating an inductively coupled plasma device, including: disposing a first magnetic field shielding element adjacent to a first side of a reaction chamber; when the first magnetic field shielding element is disposed adjacent to when performing a first plasma process on the first side of the reaction chamber; after performing the first plasma process, disposing a second magnetic field shielding element adjacent to the first side of the reaction chamber; and when When the first magnetic field shielding element and the second magnetic field shielding element are disposed adjacent to the first side of the reaction chamber, a second plasma process is performed.

於部分實施方式中,其中進行該第一電漿製程包含將一第一氣體引入該反應室,進行該第二電漿製程包含將一第二氣體引入該反應室,其中該第二氣體不同於該第一氣體。In some embodiments, performing the first plasma process includes introducing a first gas into the reaction chamber, and performing the second plasma process includes introducing a second gas into the reaction chamber, wherein the second gas is different from the first gas.

於部分實施方式中,其中將該第一磁場遮蔽元件設置鄰近於該反應室的該第一側包含:將該第一磁場遮蔽元件鎖固於該反應室的該第一側。In some embodiments, disposing the first magnetic field shielding element adjacent to the first side of the reaction chamber includes: locking the first magnetic field shielding element to the first side of the reaction chamber.

於部分實施方式中,其中將該第二磁場遮蔽元件設置鄰近於該反應室的該第一側的進行使該第二磁場遮蔽元件接觸該第一磁場遮蔽元件。In some embodiments, disposing the second magnetic field shielding element adjacent to the first side of the reaction chamber is performed such that the second magnetic field shielding element contacts the first magnetic field shielding element.

本揭露的部分實施方式提供了一種感應耦合電漿設備。感應耦合電漿設備包含反應室、晶圓基座、第一磁場遮蔽元件以及第二磁場遮蔽元件。反應室具有本體以及介電板體,其中該本體以及該介電板體定義一空間。晶圓基座設置於反應室中用以承載一基板。第一磁場遮蔽元件可拆卸地設置於該本體的外表面。第二磁場遮蔽元件可拆卸地設置於該本體的該外表面。Some embodiments of the present disclosure provide an inductively coupled plasma device. The inductively coupled plasma device includes a reaction chamber, a wafer base, a first magnetic field shielding element and a second magnetic field shielding element. The reaction chamber has a body and a dielectric plate body, wherein the body and the dielectric plate body define a space. The wafer base is disposed in the reaction chamber to carry a substrate. The first magnetic field shielding element is detachably disposed on the outer surface of the body. The second magnetic field shielding element is detachably disposed on the outer surface of the body.

於部分實施方式中,該第一磁場遮蔽元件的一上表面高於該介電板體的一上表面,且該第一磁場遮蔽元件的一下表面低於該晶圓基座的一下表面。In some embodiments, an upper surface of the first magnetic field shielding element is higher than an upper surface of the dielectric plate body, and a lower surface of the first magnetic field shielding element is lower than a lower surface of the wafer base.

以上概述多個實施方式之特徵,該技術領域具有通常知識者可較佳地了解本揭露之多個態樣。該技術領域具有通常知識者應了解,可將本揭露作為設計或修飾其他製程或結構的基礎,以實行實施方式中提到的相同的目的以及/或達到相同的好處。該技術領域具有通常知識者也應了解,這些相等的結構並未超出本揭露之精神與範圍,且可以進行各種改變、替換、轉化,在此,本揭露精神與範圍涵蓋這些改變、替換、轉化。The features of various embodiments are summarized above, and those with ordinary skill in the art can better understand the various aspects of the present disclosure. Those skilled in the art should appreciate that the present disclosure may be used as a basis for designing or modifying other processes or structures to achieve the same purposes and/or achieve the same benefits mentioned in the embodiments. Those with ordinary knowledge in this technical field should also understand that these equivalent structures do not exceed the spirit and scope of the disclosure, and various changes, substitutions, and transformations can be made. Here, the spirit and scope of the disclosure cover these changes, substitutions, and transformations. .

100:感應耦合電漿設備 110:反應室 110S:密閉空間 112:本體 112OS:外表面 112GO:氣體出口 114:介電板體 114O:開口 116:電漿檔板 120:晶圓基座 122:電極 130:線圈 140:氣體輸送器 150:蓋體 150OS:外表面 160:固定件 160H:鎖固孔 162、164:固定件 160T:插槽 170:磁場遮蔽元件 170H:鎖固孔 170LA~170LF:位置配置 172、174:磁場遮蔽元件 172a~172d:主要磁場遮蔽元件 172a’~172d’:次要磁場遮蔽元件 180:陶瓷支撐座 190:端子 200:半導體製程機台 300:殼體 300G:晶圓通道 910:半導體基板 910R:溝槽 912:主動區 920:硬式遮罩層 922:硬式遮罩 930:底部抗反射層 932:底部抗反射層 940:圖案化光阻層 950:淺溝槽隔離區 960:閘極介電層 962:閘極介電質 970:閘極電極層 972:閘極電極 980:硬式遮罩層 982:硬式遮罩 990:底部抗反射層 992:底部抗反射層 1000:圖案化光阻層 1100:源極/汲極區 W:基板 M、N:方法 S1~S8、P1~P5:步驟 Ga、Ga’、Gb、Gb’、Gc、Gc’:氣體 Pa、Pa’、Pb、Pb’、Pc、Pc’:電漿 OS:外表面 OSH:鎖固孔 LP:裝載埠 TC:設備前端模組 LC:負載鎖定室 BC:緩衝室 WP:晶圓傳送盒 WI:晶圓進入室 WO:晶圓送出室 A1、A2:機械手臂 100: Inductively coupled plasma equipment 110:Reaction room 110S: Confined space 112:Ontology 112OS:Outer surface 112GO: Gas outlet 114:Dielectric plate body 114O:Open your mouth 116:Plasma baffle 120:Wafer base 122:Electrode 130: coil 140:Gas conveyor 150: Cover 150OS: outer surface 160: Fixtures 160H: Locking hole 162, 164: Fixing parts 160T: slot 170:Magnetic field shielding element 170H: Locking hole 170LA~170LF: Position configuration 172, 174: Magnetic field shielding element 172a~172d: Main magnetic field shielding components 172a’~172d’: Secondary magnetic field shielding element 180:Ceramic support seat 190:Terminal 200:Semiconductor process machine 300: Shell 300G: Wafer channel 910:Semiconductor substrate 910R: Groove 912:Active zone 920: Hard mask layer 922:Hard mask 930: Bottom anti-reflective layer 932: Bottom anti-reflective layer 940:Patterned photoresist layer 950:Shallow trench isolation area 960: Gate dielectric layer 962: Gate dielectric 970: Gate electrode layer 972: Gate electrode 980: Hard mask layer 982:Hard mask 990: Bottom anti-reflective layer 992: Bottom anti-reflective layer 1000:Patterned photoresist layer 1100: Source/drain area W: substrate M, N: method S1~S8, P1~P5: steps Ga, Ga’, Gb, Gb’, Gc, Gc’: gas Pa, Pa’, Pb, Pb’, Pc, Pc’: plasma OS: outer surface OSH: locking hole LP: loading port TC: device front-end module LC: Load lock chamber BC: buffer room WP: wafer transfer box WI: Wafer entry chamber WO: Wafer delivery room A1, A2: Robotic arm

從以下詳細敘述並搭配圖式檢閱,可理解本揭露的態樣。應注意到,多種特徵並未以產業上實務標準的比例繪製。事實上,為了清楚討論,多種特徵的尺寸可以任意地增加或減少。 第1圖為根據本揭露的部分實施方式中的感應耦合電漿設備的剖面示意圖。 第2圖為根據本揭露的部分實施方式中的感應耦合電漿設備的立體示意圖。 第3圖為根據本揭露的部分實施方式中的感應耦合電漿設備的立體示意圖。 第4圖為根據本揭露的部分實施方式中的感應耦合電漿設備的立體示意圖。 第5圖為根據本揭露的部分實施方式中的操作感應耦合電漿設備方法的流程圖。 第6A圖至第6B圖為根據本揭露的部分實施方式中的操作感應耦合電漿設備方法於各個階段的示意圖。 第7圖為根據本揭露的部分實施方式中的操作感應耦合電漿設備方法的流程圖。 第8A圖至第8J圖為根據本揭露的部分實施方式中的半導體裝置於製程中各個階段的示意圖。 第9圖為根據本揭露的部分實施方式中的半導體製程機台的示意圖。 The aspect of this disclosure can be understood from the following detailed description and review with diagrams. It should be noted that various features are not drawn to a scale that is standard practice in the industry. In fact, the dimensions of the various features may be arbitrarily increased or decreased for clarity of discussion. Figure 1 is a schematic cross-sectional view of an inductively coupled plasma device according to some embodiments of the present disclosure. Figure 2 is a three-dimensional schematic diagram of an inductively coupled plasma device according to some embodiments of the present disclosure. Figure 3 is a three-dimensional schematic diagram of an inductively coupled plasma device according to some embodiments of the present disclosure. Figure 4 is a three-dimensional schematic diagram of an inductively coupled plasma device according to some embodiments of the present disclosure. Figure 5 is a flowchart of a method of operating an inductively coupled plasma device in accordance with some embodiments of the present disclosure. 6A to 6B are schematic diagrams of various stages of a method of operating an inductively coupled plasma device according to some embodiments of the present disclosure. Figure 7 is a flowchart of a method of operating an inductively coupled plasma device in accordance with some embodiments of the present disclosure. 8A to 8J are schematic diagrams of semiconductor devices at various stages of a manufacturing process according to some embodiments of the present disclosure. FIG. 9 is a schematic diagram of a semiconductor manufacturing tool according to some embodiments of the present disclosure.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in order of storage institution, date and number) without Overseas storage information (please note in order of storage country, institution, date, and number) without

100:感應耦合電漿設備 100: Inductively coupled plasma equipment

110:反應室 110:Reaction room

110S:密閉空間 110S: Confined space

112:本體 112:Ontology

112OS:外表面 112OS:Outer surface

112GO:氣體出口 112GO: Gas outlet

114:介電板體 114:Dielectric plate body

114O:開口 114O:Open your mouth

116:電漿檔板 116:Plasma baffle

120:晶圓基座 120:Wafer base

122:電極 122:Electrode

130:線圈 130: coil

140:氣體輸送器 140:Gas conveyor

150:蓋體 150: Cover

150OS:外表面 150OS: outer surface

160:固定件 160: Fixtures

162、164:固定件 162, 164: Fixing parts

160T:插槽 160T: slot

170:磁場遮蔽元件 170:Magnetic field shielding element

172、174:磁場遮蔽元件 172, 174: Magnetic field shielding element

180:陶瓷支撐座 180:Ceramic support seat

190:端子 190:Terminal

W:基板 W: substrate

OS:外表面 OS: outer surface

Claims (10)

一種操作一感應耦合電漿設備的方法,包含:將一第一磁場遮蔽元件設置鄰近於一反應室的一上側,其中該第一磁場遮蔽元件位於一蓋體之上,該蓋體位於該反應室上且遮罩一線圈;當該第一磁場遮蔽元件設置鄰近於該反應室的該上側時,透過該線圈,進行一第一電漿製程;在進行完該第一電漿製程之後,從該反應室的該上側,移除該第一磁場遮蔽元件;以及在從該反應室的該上側移除該第一磁場遮蔽元件之後,透過該線圈,進行一第二電漿製程。 A method of operating an inductively coupled plasma device, comprising: disposing a first magnetic field shielding element adjacent to an upper side of a reaction chamber, wherein the first magnetic field shielding element is located on a cover that is located on the reaction chamber. The chamber is covered with a coil; when the first magnetic field shielding element is disposed adjacent to the upper side of the reaction chamber, a first plasma process is performed through the coil; after the first plasma process is completed, The first magnetic field shielding element is removed from the upper side of the reaction chamber; and after the first magnetic field shielding element is removed from the upper side of the reaction chamber, a second plasma process is performed through the coil. 如請求項1所述之方法,更包含:在進行該第一電漿製程後,在進行該第二電漿製程之前,將一第二磁場遮蔽元件設置鄰近於該反應室的另一側。 The method of claim 1 further includes: after performing the first plasma process and before performing the second plasma process, disposing a second magnetic field shielding element adjacent to the other side of the reaction chamber. 如請求項1所述之方法,更包含:將一第一基板設置於該反應室中,其中該第一電漿製程是對該反應室中的該第一基板進行的,該第二電漿製程是對該反應室中的該第一基板進行的。 The method of claim 1, further comprising: placing a first substrate in the reaction chamber, wherein the first plasma process is performed on the first substrate in the reaction chamber, and the second plasma process The process is performed on the first substrate in the reaction chamber. 如請求項1所述之方法,更包含:將一第一基板設置於該反應室中,其中該第一電漿製程是對該反應室中的該第一基板進行的; 從該反應室移除該第一基板;以及將一第二基板設置於該反應室中,其中該第二電漿製程是對該反應室中的該第二基板進行的。 The method of claim 1, further comprising: disposing a first substrate in the reaction chamber, wherein the first plasma process is performed on the first substrate in the reaction chamber; Remove the first substrate from the reaction chamber; and place a second substrate in the reaction chamber, wherein the second plasma process is performed on the second substrate in the reaction chamber. 一種操作一感應耦合電漿設備的方法,包含:將一第一數量的至少一第一磁場遮蔽元件設置鄰近於一反應室的一第一外側;將一第二數量的至少一第二磁場遮蔽元件設置鄰近於該反應室的一第二外側,該第一數量大於或小於該第二數量;以及當該第一數量的該至少一第一磁場遮蔽元件設置鄰近於該反應室的該第一外側以及該第二數量的該至少一第二磁場遮蔽元件設置鄰近於該反應室的該第二外側時,進行一第一電漿製程。 A method of operating an inductively coupled plasma device, comprising: arranging a first number of at least one first magnetic field shielding element adjacent to a first outside of a reaction chamber; and arranging a second number of at least one second magnetic field shielding element The elements are disposed adjacent to a second outer side of the reaction chamber, the first number is greater than or less than the second number; and when the first number of the at least one first magnetic field shielding element is disposed adjacent to the first side of the reaction chamber When the outer side and the second number of the at least one second magnetic field shielding element are disposed adjacent to the second outer side of the reaction chamber, a first plasma process is performed. 如請求項5所述之方法,更包含:在進行完該第一電漿製程之後,將該第一數量的該至少一第一磁場遮蔽元件的調整為一第三數量的該至少一第一磁場遮蔽元件;在進行完該第一電漿製程之後,將該第二數量的該至少一第二磁場遮蔽元件的調整為一第四數量的該至少一第二磁場遮蔽元件;以及當該第三數量的該至少一第一磁場遮蔽元件設置鄰近於該反應室的該第一外側以及該第四數量的該至少一第二磁場 遮蔽元件設置鄰近於該反應室的該第二外側時,進行一第二電漿製程,其中進行該第一電漿製程包含將一第一氣體引入該反應室,進行該第二電漿製程包含將一第二氣體引入該反應室,其中該第二氣體不同於該第一氣體。 The method of claim 5, further comprising: after completing the first plasma process, adjusting the first number of the at least one first magnetic field shielding element to a third number of the at least one first magnetic field shielding element. magnetic field shielding elements; after completing the first plasma process, adjusting the second number of the at least one second magnetic field shielding element to a fourth number of the at least one second magnetic field shielding element; and when the third number of the at least one second magnetic field shielding element is Three numbers of the at least one first magnetic field shielding element are disposed adjacent to the first outer side of the reaction chamber and the fourth number of the at least one second magnetic field shielding element When the shielding element is disposed adjacent to the second outer side of the reaction chamber, a second plasma process is performed, wherein performing the first plasma process includes introducing a first gas into the reaction chamber, and performing the second plasma process includes A second gas is introduced into the reaction chamber, where the second gas is different from the first gas. 如請求項5所述之方法,其中將該第一數量的該至少一第一磁場遮蔽元件設置鄰近於該反應室的該第一外側包含:將該第一數量的該至少一第一磁場遮蔽元件鎖固於該反應室的該第一外側。 The method of claim 5, wherein disposing the first number of the at least one first magnetic field shielding element adjacent to the first outside of the reaction chamber includes: shielding the first number of the at least one first magnetic field shielding element. The component is locked to the first outer side of the reaction chamber. 如請求項5所述之方法,其中將該第一數量的該至少一第一磁場遮蔽元件設置鄰近於該反應室的該第一外側的進行使複數個該些第一磁場遮蔽元件互相接觸。 The method of claim 5, wherein arranging the first number of the at least one first magnetic field shielding element adjacent to the first outer side of the reaction chamber is performed such that a plurality of the first magnetic field shielding elements are in contact with each other. 一種感應耦合電漿設備,包含:一反應室,具有一本體以及一介電板體,其中該本體以及該介電板體定義一空間;一線圈,設置於該介電板體上;一蓋體,位於該反應室上且遮罩該介電板體與該線圈;一晶圓基座,設置於該反應室中;至少一第一磁場遮蔽元件,設置於該本體的一第一外側;至少一第二磁場遮蔽元件,與該第一磁場遮蔽元件分離,且設置於該本體的一第二外側,其中該至少一第一磁場遮 蔽元件的數量大於或小於該至少一第二磁場遮蔽元件的數量;一固定件,設置於該蓋體之上且具有一插槽;以及一第三磁場遮蔽元件,設置於該蓋體之上且位於該固定件的該插槽中。 An inductively coupled plasma device includes: a reaction chamber having a body and a dielectric plate body, wherein the body and the dielectric plate body define a space; a coil arranged on the dielectric plate body; and a cover A body located on the reaction chamber and covering the dielectric plate body and the coil; a wafer base disposed in the reaction chamber; at least a first magnetic field shielding element disposed on a first outer side of the body; At least one second magnetic field shielding element is separated from the first magnetic field shielding element and is disposed on a second outer side of the body, wherein the at least one first magnetic field shielding element The number of shielding elements is greater than or less than the number of the at least one second magnetic field shielding element; a fixing member is disposed on the cover and has a slot; and a third magnetic field shielding element is disposed on the cover. and located in the slot of the fixture. 如請求項9所述之感應耦合電漿設備,其中該至少一第一磁場遮蔽元件的一上表面高於該介電板體的一上表面且低於該蓋體的一上表面,且該至少一第一磁場遮蔽元件的一下表面低於該晶圓基座的一下表面。 The inductively coupled plasma device of claim 9, wherein an upper surface of the at least one first magnetic field shielding element is higher than an upper surface of the dielectric plate and lower than an upper surface of the cover, and the The lower surface of at least one first magnetic field shielding component is lower than the lower surface of the wafer base.
TW109145831A 2020-12-23 2020-12-23 Inductively coupled plasma apparatus and method for operating the same TWI820374B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109145831A TWI820374B (en) 2020-12-23 2020-12-23 Inductively coupled plasma apparatus and method for operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109145831A TWI820374B (en) 2020-12-23 2020-12-23 Inductively coupled plasma apparatus and method for operating the same

Publications (2)

Publication Number Publication Date
TW202226895A TW202226895A (en) 2022-07-01
TWI820374B true TWI820374B (en) 2023-11-01

Family

ID=83437053

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109145831A TWI820374B (en) 2020-12-23 2020-12-23 Inductively coupled plasma apparatus and method for operating the same

Country Status (1)

Country Link
TW (1) TWI820374B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070062449A1 (en) * 2004-07-30 2007-03-22 Applied Materials, Inc., A Delaware Corporation Enhanced magnetic shielding for plasma-based semiconductor processing tool
TW201436081A (en) * 2013-01-25 2014-09-16 Applied Materials Inc Self aligned dual patterning technique enhancement with magnetic shielding
WO2014149307A1 (en) * 2013-03-15 2014-09-25 Applied Materials, Inc. Magnetic shielding for plasma process chambers
TWI513856B (en) * 2014-10-20 2015-12-21
TWI633572B (en) * 2015-12-31 2018-08-21 大陸商中微半導體設備(上海)有限公司 Plasma processing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070062449A1 (en) * 2004-07-30 2007-03-22 Applied Materials, Inc., A Delaware Corporation Enhanced magnetic shielding for plasma-based semiconductor processing tool
TW201436081A (en) * 2013-01-25 2014-09-16 Applied Materials Inc Self aligned dual patterning technique enhancement with magnetic shielding
WO2014149307A1 (en) * 2013-03-15 2014-09-25 Applied Materials, Inc. Magnetic shielding for plasma process chambers
TW201438056A (en) * 2013-03-15 2014-10-01 Applied Materials Inc Magnetic shielding for plasma process chambers
TWI513856B (en) * 2014-10-20 2015-12-21
TWI633572B (en) * 2015-12-31 2018-08-21 大陸商中微半導體設備(上海)有限公司 Plasma processing device

Also Published As

Publication number Publication date
TW202226895A (en) 2022-07-01

Similar Documents

Publication Publication Date Title
CN106356449B (en) Method for forming structures with desired crystallinity for use in MRAM applications
JP6199250B2 (en) Method for processing an object
US9028191B2 (en) Substrate processing apparatus and method of manufacturing semiconductor device
WO2014150260A1 (en) Process load lock apparatus, lift assemblies, electronic device processing systems, and methods of processing substrates in load lock locations
US10497858B1 (en) Methods for forming structures for MRAM applications
TW201742147A (en) Substrate processing apparatus
KR20170066080A (en) Baffle plate, plasma chamber using the same, substrate treating apparatus and method of processing a substrate
US20140374024A1 (en) Apparatus for removing particles from a twin chamber processing system
KR102504290B1 (en) Preparing method for hydrogen plasma annealing treatment, method for hydrogen plasma annealing treatment, and apparatus therefor
CN107731681B (en) Plasma etching method and plasma etching system
TWI820374B (en) Inductively coupled plasma apparatus and method for operating the same
CN114664621A (en) Inductively coupled plasma apparatus and method of operating the same
TW201810746A (en) Method of manufacturing magnetoresistive device and magnetoresistive device manufacturing system
TWI758939B (en) Inductively coupled plasma apparatus and method for operating the same
JPH07235394A (en) Method and device for producing plasma and method and device for plasma processing incorporating them
JP3047801B2 (en) Plasma processing method and apparatus
JP7121786B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and substrate processing method
US20230207262A1 (en) Plasma generation unit, and apparatus for treating substrate with the same
KR101928008B1 (en) Substrate treating apparatus and substrate treating method
JP3047802B2 (en) Plasma processing equipment
JP3079982B2 (en) Plasma generating method and apparatus and plasma processing method using the same
KR20220002742A (en) Showerhead insert for uniformity tuning
KR101603972B1 (en) Substrate treating apparatus
WO2023009983A1 (en) Reactor with inductively coupled plasma source
CN113851366A (en) Inductively coupled plasma apparatus and method of operating the same