TWI820144B - Manufacturing method of composite carbon silicon negative electrode base material and composite carbon silicon negative electrode base material made by the manufacturing method - Google Patents

Manufacturing method of composite carbon silicon negative electrode base material and composite carbon silicon negative electrode base material made by the manufacturing method Download PDF

Info

Publication number
TWI820144B
TWI820144B TW108119006A TW108119006A TWI820144B TW I820144 B TWI820144 B TW I820144B TW 108119006 A TW108119006 A TW 108119006A TW 108119006 A TW108119006 A TW 108119006A TW I820144 B TWI820144 B TW I820144B
Authority
TW
Taiwan
Prior art keywords
silicon
carbon
composite
polymer material
negative electrode
Prior art date
Application number
TW108119006A
Other languages
Chinese (zh)
Other versions
TW202046535A (en
Inventor
賴鴻政
林正崧
張曾隆
Original Assignee
芯量科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芯量科技股份有限公司 filed Critical 芯量科技股份有限公司
Priority to TW108119006A priority Critical patent/TWI820144B/en
Publication of TW202046535A publication Critical patent/TW202046535A/en
Application granted granted Critical
Publication of TWI820144B publication Critical patent/TWI820144B/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一種複合型碳矽負極基材的製造方法及由該製造方法所形成之複合型碳矽負極基體,該複合型碳矽負極基體包含一第一階碳矽球,包含複數個石墨烯片、複數個奈米級矽與氧化矽之複合單體及複數個第一高分子材質;該第一高分子材質做為黏著劑用於連結該複數個石墨烯片及該多個奈米級矽與氧化矽之複合單體;其中該複數個石墨烯片、該複數個奈米級矽與氧化矽之複合單體及該複數個第一高分子材質之間形成多個緩衝空隙;一第二高分子材質層其包覆在該第一階碳矽球的外部;該第二高分子材質層經過燒結,使得醣類產生碳化,以增加整體複合型碳矽負極基體的結構能力;以及複數個奈米碳管緊緊包裹該第二高分子材質層;該奈米碳管包裹該第二高分子材質層,其具有緊束的作用,使得其內部的該第一階碳矽球不易膨脹。 A method for manufacturing a composite carbon silicon negative electrode substrate and a composite carbon silicon negative electrode substrate formed by the manufacturing method. The composite carbon silicon negative electrode substrate includes a first-order carbon silicon ball, a plurality of graphene sheets, and a plurality of graphene sheets. A composite monomer of nanoscale silicon and silicon oxide and a plurality of first polymer materials; the first polymer material is used as an adhesive to connect the plurality of graphene sheets and the plurality of nanoscale silicon and oxide A composite monomer of silicon; wherein a plurality of buffer gaps are formed between the plurality of graphene sheets, the plurality of composite monomers of nanoscale silicon and silicon oxide, and the plurality of first polymer materials; a second polymer The material layer is coated on the outside of the first-stage carbon silicon ball; the second polymer material layer is sintered to carbonize the sugars to increase the structural capacity of the overall composite carbon silicon negative electrode matrix; and a plurality of nanometer The carbon tube tightly wraps the second polymer material layer; the carbon nanotube wraps the second polymer material layer, which has a tight binding effect so that the first-order carbon silicon ball inside is not easy to expand.

Description

複合型碳矽負極基材的製造方法及由該製造方法所製成之複 合型碳矽負極基體 Manufacturing method of composite carbon silicon negative electrode base material and composite made by the manufacturing method Composite carbon silicon negative electrode matrix

本發明係有關於電池負極材料,尤其是一種複合型碳矽負極基材的製造方法及由該製造方法所製成之複合型碳矽負極基體。 The present invention relates to battery negative electrode materials, in particular to a manufacturing method of a composite carbon silicon negative electrode base material and a composite carbon silicon negative electrode base body made by the manufacturing method.

在鋰電池的負極材料中,傳統上使用石墨插嵌鋰原子,因為石墨的電容量有限,無法符合市場未來需求,所以較佳的方式應用矽材料(純矽、氧化矽)部分配合石墨使用。因為矽材料的電容量較石墨為高,所以可以使得整個負極具有更大的電容量,以增加電池的儲存能力。 Among the negative electrode materials of lithium batteries, graphite is traditionally used to insert lithium atoms. Because graphite has a limited capacity and cannot meet future market needs, the best way is to use silicon materials (pure silicon, silicon oxide) partially in combination with graphite. Because the electric capacity of silicon material is higher than that of graphite, the entire negative electrode can have a larger electric capacity to increase the storage capacity of the battery.

可是在傳統的鋰矽電池中,鋰原子會藉由電化學反應嵌插進入矽材料的晶體結構中。當進行化學放電時,大部分的活性鋰離開該晶體結構,但是仍有一部份的活性鋰會因反應速率、電解液中之電化學活性物質而發生部分副反應造成鋰鹽析出,而沉澱在該矽材料的周圍,形成一層膜,即SEI膜。在充電時,矽材料因容納鋰而形成鋰矽晶體結構,該結構較原矽材料結構大的多,整體矽材料體積會膨脹;然而放電時,活性鋰離開矽體晶體結構而留下空洞,使得整個材質會顯得鬆軟,並在電化學反應下可能發生結構崩塌之狀況。在多次充放電後,久而久之會使得該空洞被扭曲而碎裂,因此減低整個矽材的電容量。 However, in traditional lithium-silicon batteries, lithium atoms are inserted into the crystal structure of the silicon material through electrochemical reactions. When chemical discharge is performed, most of the active lithium leaves the crystal structure, but there is still a part of the active lithium that will undergo partial side reactions due to the reaction rate and the electrochemically active substances in the electrolyte, resulting in the precipitation of lithium salts, and the precipitation will occur in the A layer of film, the SEI film, is formed around the silicon material. During charging, the silicon material accommodates lithium to form a lithium silicon crystal structure. This structure is much larger than the original silicon material structure, and the volume of the entire silicon material will expand; however, during discharge, the active lithium leaves the silicon crystal structure and leaves a cavity. The entire material will appear soft, and the structure may collapse under the electrochemical reaction. After repeated charging and discharging, the cavity will be distorted and fragmented over time, thus reducing the capacitance of the entire silicon material.

故本案希望提出一種嶄新的複合型碳矽負極基材的製造方法及由該製造方法所製成之複合型碳矽負極基體,以解決上述先前技術上的缺陷。 Therefore, this case hopes to propose a new manufacturing method of composite carbon silicon negative electrode substrate and a composite carbon silicon negative electrode substrate made by the manufacturing method, so as to solve the above-mentioned shortcomings of the previous technology.

所以本發明的目的係為解決上述習知技術上的問題,本發明中提出一種複合型碳矽負極基材的製造方法及由該製造方法所製成之複合型碳矽負極基體,係將複數個石墨烯片、複數個奈米級矽與氧化矽之複合單體及複數個第一高分子材質混合形成第一階碳矽球,該第一高分子材質做為黏著劑,用於連結該石墨烯片及該奈米級矽與氧化矽之複合單體。其中該石墨烯片為具韌性及彈性的結構體,不會輕易產生形變,所以可以限制該奈米級矽與氧化矽之複合單體的膨脹,因此使得該奈米級矽與氧化矽之複合單體不會輕易變形或者產生脆裂的狀態。另外整個第一階碳矽球中的該複數個石墨烯片、該複數個第一高分子材質及該複數個奈米級矽與氧化矽之複合單體之間所形成的多個蜂窩狀之緩衝空隙可以吸收該奈米級矽與氧化矽之複合單體的膨脹,所以整個第一階碳矽球可以長時間維持較小之體積膨脹。在該第一階碳矽球的外層包覆一層該第二高分子材質層,在該第二高分子材質層的外面則經燒結後藉由混漿工藝由該奈米碳管緊緊包裹,使得該第一階碳矽球不易膨脹,所以更進一步增加整體結構的結合力。其中該第二高分子材質層因為經過燒結,使得醣類產生碳化,所以也增加整體複合型碳矽負極基體的電化學循環能力進而提升更持久的高效電容與結構維持能力。因此用本案的材料作為負極材料時,即具有較高的電容量,再者又可以具有較長的電池壽命。 Therefore, the purpose of the present invention is to solve the above-mentioned problems in the conventional technology. The present invention proposes a manufacturing method of a composite carbon silicon negative electrode base material and a composite carbon silicon negative electrode base material made by the manufacturing method. A graphene sheet, a plurality of composite monomers of nanoscale silicon and silicon oxide and a plurality of first polymer materials are mixed to form a first-order carbon silicon ball, and the first polymer material is used as an adhesive to connect the Graphene sheets and composite monomers of nanoscale silicon and silicon oxide. The graphene sheet is a tough and elastic structure that will not easily deform, so it can limit the expansion of the composite monomer of nanoscale silicon and silicon oxide, thus making the composite of nanoscale silicon and silicon oxide The monomer will not easily deform or become brittle. In addition, a plurality of honeycomb-shaped structures are formed between the plurality of graphene sheets, the plurality of first polymer materials and the plurality of composite monomers of nanoscale silicon and silicon oxide in the entire first-stage carbon silicon ball. The buffer void can absorb the expansion of the composite monomer of nanoscale silicon and silicon oxide, so the entire first-order carbon silicon ball can maintain a small volume expansion for a long time. The outer layer of the first-stage carbon silicon ball is coated with a layer of the second polymer material, and the outside of the second polymer material layer is tightly wrapped by the carbon nanotubes through a mixing process after sintering. This makes the first-stage carbon silicon balls less likely to expand, thus further increasing the bonding force of the overall structure. Because the second polymer material layer is sintered, the sugars are carbonized, which also increases the electrochemical cycle capability of the overall composite carbon silicon negative electrode matrix, thereby improving longer-lasting high-efficiency capacitance and structural maintenance capabilities. Therefore, when the material in this case is used as a negative electrode material, it has a higher capacitance and a longer battery life.

為達到上述目的本發明中提出一種複合型碳矽負極基材的製造方法,包含下列步驟:步驟A:將石墨烯(graphene)裂解成複數個石墨烯片;步驟B:將該複數個石墨烯片混合乙醇及第一高分子材質並加以混拌後產生具黏滯性的高分子石墨烯母液;步驟C:將矽、氧化矽粉末分散裂解成多個奈米級矽與氧化矽之複合單體,再將該高分子石墨烯母液混合該多個奈米級矽與氧化矽之複合單體,而形成碳矽母液;步驟D:將上述碳矽母液進行噴霧乾燥過程;即將該碳矽母液噴出後形成微粒,在微粒態下予以乾燥;其目的用於蒸發原來該 碳矽母液中的乙醇;所以形成第一階碳矽球,其主要結構即包含該複數個石墨烯片、該多個奈米級矽與氧化矽之複合單體及該第一高分子材質;其中該第一高分子材質做為黏著劑,用於連結該複數個石墨烯片及該多個奈米級矽與氧化矽之複合單體;其中該第一階碳矽球中存在多數個凹陷及緩衝空缺的位置,而形成多個蜂窩狀之緩衝空隙,用以吸收該奈米級矽與氧化矽之複合單體的膨脹;步驟E:進行混合燒結步驟,係將該第一階碳矽球、第二高分子材質及奈米碳管混合後再行燒結,或者是先將該第一階碳矽球、該第二高分子材質混合燒結後再混合該奈米碳管;步驟F:將該混合的第一階碳矽球、第二高分子材質及奈米碳管經過特殊的成形步驟,而形成第二階碳矽球;步驟G:將該第二階碳矽球在燒結爐內經過燒結後形成無定型碳披覆之第三階碳矽球;其中該第三階碳矽球的結構係為該第一階碳矽球的外層包覆一層該第二高分子材質,在該第二高分子材質所形成的外層的外面則由奈米碳管緊緊包裹;其中該包覆的第二高分子材質因為在燒結程序中經過燒結,使得醣類產生碳化,所以也增加整體第三階碳矽球的電容能力。 In order to achieve the above purpose, the present invention proposes a method for manufacturing a composite carbon silicon negative electrode substrate, which includes the following steps: Step A: splitting graphene into a plurality of graphene sheets; Step B: splitting the plurality of graphene sheets The tablets are mixed with ethanol and the first polymer material and mixed to produce a viscous polymer graphene mother liquor; Step C: Disperse and crack the silicon and silicon oxide powder into multiple nanoscale composite units of silicon and silicon oxide. body, and then mix the polymer graphene mother liquor with the composite monomers of nanoscale silicon and silicon oxide to form a carbon silicon mother liquor; step D: perform a spray drying process on the carbon silicon mother liquor; that is, the carbon silicon mother liquor After spraying, particles are formed and dried in the particle state; their purpose is to evaporate the original Ethanol in the carbon silicon mother liquor; therefore, a first-order carbon silicon ball is formed, the main structure of which includes the plurality of graphene sheets, the plurality of composite monomers of nanoscale silicon and silicon oxide, and the first polymer material; The first polymer material is used as an adhesive to connect the plurality of graphene sheets and the plurality of composite monomers of nanoscale silicon and silicon oxide; wherein there are a plurality of depressions in the first-stage carbon silicon ball and buffer vacant positions to form multiple honeycomb buffer voids to absorb the expansion of the composite monomer of nanoscale silicon and silicon oxide; Step E: Perform a mixed sintering step, in which the first-stage carbon silicon is The balls, the second polymer material and the carbon nanotubes are mixed and then sintered, or the first-stage carbon silicon balls, the second polymer material are mixed and sintered and then the carbon nanotubes are mixed; step F: The mixed first-stage carbon silicon balls, the second polymer material and the carbon nanotubes are subjected to a special shaping step to form the second-stage carbon silicon balls; Step G: The second-stage carbon silicon balls are heated in a sintering furnace After sintering, amorphous carbon-coated third-stage carbon silica balls are formed; the structure of the third-stage carbon silica balls is that the outer layer of the first-stage carbon silica balls is coated with a layer of the second polymer material. The outer layer formed by the second polymer material is tightly wrapped by carbon nanotubes; the covered second polymer material is sintered during the sintering process, causing the sugars to carbonize, so it also increases the overall third Capacitive capacity of third-order carbon silicon balls.

本案尚提出一種複合型碳矽負極基體,包含:一第一階碳矽球,包含複數個石墨烯片、複數個奈米級矽與氧化矽之複合單體及複數個第一高分子材質;該第一高分子材質做為黏著劑用於連結該複數個石墨烯片及該多個奈米級矽與氧化矽之複合單體;其中該複數個石墨烯片、該複數個奈米級矽與氧化矽之複合單體及該複數個第一高分子材質之間形成多個蜂窩狀之緩衝空隙;一第二高分子材質層其包覆在該第一階碳矽球的外部;該第二高分子材質層經過燒結,使得醣類產生碳化,以增加整體複合型碳矽負極基體的導電能力;以及複數個奈米碳管緊緊包裹該第二高分子材質層;該奈米碳管包裹該第二高分子材質層,其具有緊束的作用,使得其內部的該第一階碳矽球不易膨脹。 This case also proposes a composite carbon silicon negative electrode matrix, which includes: a first-order carbon silicon ball, including a plurality of graphene sheets, a plurality of composite monomers of nanoscale silicon and silicon oxide, and a plurality of first polymer materials; The first polymer material is used as an adhesive to connect the plurality of graphene sheets and the plurality of composite monomers of nanoscale silicon and silicon oxide; wherein the plurality of graphene sheets, the plurality of nanoscale silicon A plurality of honeycomb-shaped buffer gaps are formed between the composite monomer of silicon oxide and the plurality of first polymer materials; a second polymer material layer coats the outside of the first-stage carbon silicon ball; The two polymer material layers are sintered to carbonize the sugars to increase the conductivity of the overall composite carbon silicon negative electrode matrix; and a plurality of carbon nanotubes tightly wrap the second polymer material layer; the carbon nanotubes Wrapping the second polymer material layer has a tightening effect, making it difficult for the first-stage carbon silicon balls inside to expand.

由下文的說明可更進一步瞭解本發明的特徵及其優點,閱讀時並請參考附圖。 The features and advantages of the present invention can be further understood from the following description. Please refer to the accompanying drawings when reading.

1:複合型碳矽負極基體 1: Composite carbon silicon negative electrode matrix

10:石墨烯片 10:Graphene sheet

20:第一高分子材質 20:The first polymer material

30:奈米級矽與氧化矽之複合單體 30: Composite monomer of nanoscale silicon and silicon oxide

40:第二高分子材質 40: The second polymer material

45:第二高分子材質層 45: The second polymer material layer

50:奈米碳管 50:Carbon nanotubes

60:緩衝空隙 60: Buffer gap

100:第一階碳矽球 100:First stage carbon silicon ball

300:第三階碳矽球 300:Third stage carbon silicon ball

圖1顯示本案之第一階碳矽球之示意圖。 Figure 1 shows a schematic diagram of the first-stage carbon silicon ball in this case.

圖2顯示本案之第三階碳矽球之截面示意圖。 Figure 2 shows a schematic cross-sectional view of the third-stage carbon silicon ball in this case.

圖3顯示本案之第三階碳矽球之立體示意圖。 Figure 3 shows a three-dimensional schematic diagram of the third-stage carbon silicon ball in this case.

圖4顯示本案之製程之步驟流程圖。 Figure 4 shows the step flow chart of the manufacturing process of this case.

圖5顯示本案之複合型碳矽負極基體之截面示意圖。 Figure 5 shows a schematic cross-sectional view of the composite carbon silicon negative electrode matrix in this case.

圖6顯示本案之複合型碳矽負極基體之立體示意圖。 Figure 6 shows a schematic three-dimensional view of the composite carbon silicon negative electrode matrix in this case.

茲謹就本案的結構組成,及所能產生的功效與優點,配合圖式,舉本案之一較佳實施例詳細說明如下。 Hereby, we would like to give a detailed description of the structural composition of this case, as well as the functions and advantages it can produce, together with the drawings, and give a detailed description of one of the preferred embodiments of this case as follows.

請參考圖1至圖4所示,顯示本發明之複合型碳矽負極基材的製造方法,圖4中顯示本案之製造方法之步驟流程圖。該製造方法包含下列步驟: Please refer to FIGS. 1 to 4 , which illustrate the manufacturing method of the composite carbon silicon negative electrode base material of the present invention. FIG. 4 shows a step flow chart of the manufacturing method of the present invention. The manufacturing method includes the following steps:

將石墨烯(graphene)裂解成複數個石墨烯片10(步驟700),其中每片的最大尺寸小於3微米(micrometer);其裂解的方式比如使用行星式混拌、濕式研磨、高壓均質研磨等方式中的任一種。 Crack graphene (graphene) into a plurality of graphene sheets 10 (step 700), where the maximum size of each sheet is less than 3 micrometers (micrometer); the cracking method includes planetary mixing, wet grinding, and high-pressure homogeneous grinding. any of the other methods.

將該複數個石墨烯片10混合乙醇及第一高分子材質20並加以混拌後產生具黏滯性的高分子石墨烯母液(步驟701)。其中該第一高分子材質20選自高分子纖維素醣類物質或高分子不飽和醣類物質。其中該複數個石墨烯片10、乙醇、第一高分子材質20其重量的比例為石墨烯片10:乙醇:第一高分子材質20=(0.15~0.20):(0.01~0.015):(0.77~0.84)。而該高分子纖維素醣類物質或高分子不飽和醣類物質比如可為羧甲基纖維素(CMC,Carboxymethyl cellulose)、 海藻酸鹽(Alginate)、聚乙烯吡咯烷酮(PVP,Polyvinylpyrrolidone)、聚乙烯醇(PVA,Polyvinyl alcohol)、葡萄糖(Glucose)等。 The plurality of graphene sheets 10 are mixed with ethanol and the first polymer material 20 and mixed to generate a viscous polymer graphene mother liquid (step 701). The first polymer material 20 is selected from polymer cellulose sugar materials or polymer unsaturated sugar materials. The weight ratio of the plurality of graphene sheets 10, ethanol, and first polymer material 20 is graphene sheet 10: ethanol: first polymer material 20 = (0.15~0.20): (0.01~0.015): (0.77 ~0.84). The polymer cellulose sugar material or the polymer unsaturated sugar material can be, for example, carboxymethyl cellulose (CMC, Carboxymethyl cellulose), Alginate, polyvinylpyrrolidone (PVP, Polyvinylpyrrolidone), polyvinyl alcohol (PVA, Polyvinyl alcohol), glucose (Glucose), etc.

將矽、氧化矽粉末(SiOx,其中x小於2)分散裂解成多個奈米級矽與氧化矽之複合單體30,再將該高分子石墨烯母液混合該多個奈米級矽與氧化矽之複合單體30,而形成碳矽母液(步驟702)。其中混合的方式可應用氣動式均質混合或行星式混和,此為業界所熟悉者,所以不再詳述其內容。 Silicon and silicon oxide powder (SiO x , where x is less than 2) are dispersed and cracked into a plurality of composite monomers 30 of nanoscale silicon and silicon oxide, and then the polymer graphene mother liquor is mixed with the plurality of nanoscale silicon and silicon oxide. The silicon composite monomer 30 is oxidized to form a carbon silicon mother liquor (step 702). The mixing method can be pneumatic homogeneous mixing or planetary mixing, which is familiar to the industry, so its content will not be described in detail.

將上述碳矽母液進行噴霧乾燥過程。即將該碳矽母液噴出後形成微粒,在微粒態下予以乾燥。其目的用於蒸發原來該碳矽母液中的乙醇。所以形成第一階碳矽球100,其主要結構即包含該複數個石墨烯片10、該多個奈米級矽與氧化矽之複合單體30及該第一高分子材質20。其中該第一高分子材質20做為黏著劑,用於連結該複數個石墨烯片10及該多個奈米級矽與氧化矽之複合單體30(步驟703)。如圖1中所示者。在此結構中,該石墨烯片10為具韌性及彈性的結構體,不會輕易產生形變,所以可以限制該奈米級矽與氧化矽之複合單體30的膨脹,因此使得該奈米級矽與氧化矽之複合單體30不會輕易變形或者產生脆裂的狀態。另外,如圖1所示,整個第一階碳矽球100中的該複數個石墨烯片10、該第一高分子材質20及該奈米級矽與氧化矽之複合單體30之間存在多數個凹陷及緩衝空缺的位置,而形成多個蜂窩狀之緩衝空隙60,這些緩衝空隙60可以吸收該奈米級矽與氧化矽之複合單體30的膨脹,所以整個第一階碳矽球100可以長時間維持固定的體積。因此用本案的材料作為負極材料時,即具有較高的電容量,再者又可以具有較長的電池壽命。 The above carbon silicon mother liquor is subjected to a spray drying process. That is, the carbon silicon mother liquor is sprayed out to form particles, and then dried in the particle state. Its purpose is to evaporate the ethanol in the original carbon silicon mother liquor. Therefore, the first-stage carbon silicon ball 100 is formed, and its main structure includes the plurality of graphene sheets 10, the plurality of composite monomers 30 of nanoscale silicon and silicon oxide, and the first polymer material 20. The first polymer material 20 is used as an adhesive for connecting the plurality of graphene sheets 10 and the plurality of composite monomers 30 of nanoscale silicon and silicon oxide (step 703). As shown in Figure 1. In this structure, the graphene sheet 10 is a tough and elastic structure that does not easily deform, so it can limit the expansion of the composite monomer 30 of nanoscale silicon and silicon oxide, thus making the nanoscale The composite monomer 30 of silicon and silicon oxide will not easily deform or become brittle. In addition, as shown in FIG. 1 , there are gaps between the plurality of graphene sheets 10 , the first polymer material 20 and the composite monomer 30 of nanoscale silicon and silicon oxide in the entire first-stage carbon silicon ball 100 . A plurality of depressions and buffering vacancies form multiple honeycomb-shaped buffering voids 60. These buffering voids 60 can absorb the expansion of the composite monomer 30 of nanoscale silicon and silicon oxide, so the entire first-order carbon silicon ball 100 can maintain a fixed volume for a long time. Therefore, when the material in this case is used as a negative electrode material, it has a higher capacitance and a longer battery life.

下文說明本案之進一步的製程: The following describes the further process of this case:

進行混合燒結步驟,係將該第一階碳矽球100、第二高分子材質40及奈米碳管50(少量)混合後再行燒結,或者是先將該第一階碳矽球100、該第二高分子材質40混合燒結後再混合該奈米碳管50。(步驟704)。該第一階碳矽球 100、該第二高分子材質40及該奈米碳管50的重量的比例為第一階碳矽球100:第二高分子材質40:奈米碳管50=(0.80~0.84):(0.16~0.19):(0.0001~0.005)。該第二高分子材質40為高分子可聚醣,比如為羧甲基纖維素(CMC,Carboxymethyl cellulose)、海藻酸鹽(Alginate)、聚乙烯吡咯烷酮(PVP,Polyvinylpyrrolidone)、聚乙烯醇(PVA,Polyvinyl alcohol)、葡萄糖(Glucose)。該第二高分子材質40的分子量、聚合度與黏性比上述該第一高分子材質20高。該奈米碳管50為具備優良導電性與較完整結構性之15~25μm之陣列式碳管。 In the mixing and sintering step, the first-stage carbon silicon ball 100, the second polymer material 40 and the carbon nanotube 50 (a small amount) are mixed and then sintered, or the first-stage carbon silicon ball 100, After the second polymer material 40 is mixed and sintered, the carbon nanotubes 50 are mixed. (step 704). The first stage carbon silicon ball 100. The weight ratio of the second polymer material 40 and the carbon nanotube 50 is first-stage carbon silicon ball 100: second polymer material 40: carbon nanotube 50=(0.80~0.84): (0.16 ~0.19): (0.0001~0.005). The second polymer material 40 is a polymeric polysaccharide, such as carboxymethyl cellulose (CMC), alginate (Alginate), polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), Polyvinyl alcohol), glucose (Glucose). The molecular weight, polymerization degree and viscosity of the second polymer material 40 are higher than those of the first polymer material 20 . The carbon nanotubes 50 are 15~25 μm array carbon tubes with excellent conductivity and relatively complete structure.

將該混合的第一階碳矽球100、第二高分子材質40及奈米碳管50(少量)經過特殊的成形步驟,如VC混漿(即由V字形混合機進行混合)或噴霧乾燥的方式,而形成第二階碳矽球(步驟705)。 The mixed first-stage carbon silicon balls 100, the second polymer material 40 and the carbon nanotubes 50 (a small amount) are subjected to special forming steps, such as VC mixing (ie, mixing by a V-shaped mixer) or spray drying In this way, second-stage carbon silicon balls are formed (step 705).

將該第二階碳矽球在燒結爐內經過燒結後形成無定型碳披覆之第三階碳矽球300(步驟706)。 The second-stage carbon silicon balls are sintered in a sintering furnace to form amorphous carbon-coated third-stage carbon silicon balls 300 (step 706).

其中該第三階碳矽球300的結構係為該第一階碳矽球100的外層包覆一層該第二高分子材質40(如圖2所示),在該第二高分子材質40所形成的外層的外面則由奈米碳管50緊緊包裹。其中該包覆的第二高分子材質40因為在燒結程序中經過燒結,使得醣類產生碳化,所以也增加整體第三階碳矽球300的電容能力。由圖3中顯示該奈米碳管50包裹該第二高分子材質40所形成的外層,其具有緊束的作用,使得其內部的該第一階碳矽球100不易膨脹。所以更進一步增加整體結構的結合力。 The structure of the third-stage carbon silicon ball 300 is that the outer layer of the first-stage carbon silicon ball 100 is coated with a layer of the second polymer material 40 (as shown in FIG. 2 ). The outside of the formed outer layer is tightly wrapped by carbon nanotubes 50 . Since the coated second polymer material 40 is sintered during the sintering process, the sugars are carbonized, thereby increasing the capacitance of the overall third-stage carbon silicon ball 300 . As shown in FIG. 3 , the outer layer formed by wrapping the second polymer material 40 with the carbon nanotube 50 has a tight binding effect, making it difficult for the first-stage carbon silicon ball 100 inside to expand. Therefore, the bonding force of the overall structure is further increased.

如圖5及圖6所示,本案尚包含由上述製造方法所形成之複合型碳矽負極基體1,其包含: As shown in Figures 5 and 6, this case also includes a composite carbon silicon negative electrode matrix 1 formed by the above manufacturing method, which includes:

一第一階碳矽球100,包含複數個石墨烯片10、複數個奈米級矽與氧化矽之複合單體30及複數個第一高分子材質20。該第一高分子材質20做為黏著劑用於連結該複數個石墨烯片10及該多個奈米級矽與氧化矽之複合單體 30,如圖5中所示者。其中該複數個石墨烯片10、該複數個奈米級矽與氧化矽之複合單體30及該複數個第一高分子材質20的含量均大於0,可視需要調整其重量的比例。該重量的比例例如為石墨烯片10:奈米級矽與氧化矽之複合單體30:第一高分子材質20=(0.19~0.33):(0.47~0.59):(0.20~0.22)。 A first-stage carbon silicon ball 100 includes a plurality of graphene sheets 10 , a plurality of composite monomers 30 of nanoscale silicon and silicon oxide, and a plurality of first polymer materials 20 . The first polymer material 20 is used as an adhesive to connect the plurality of graphene sheets 10 and the plurality of composite monomers of nanoscale silicon and silicon oxide. 30, as shown in Figure 5. The contents of the plurality of graphene sheets 10 , the plurality of composite monomers 30 of nanoscale silicon and silicon oxide, and the plurality of first polymer materials 20 are all greater than 0, and the proportions of their weights can be adjusted as needed. The weight ratio is, for example, graphene sheet 10: composite monomer 30 of nanoscale silicon and silicon oxide: first polymer material 20=(0.19~0.33): (0.47~0.59): (0.20~0.22).

其中該複數個石墨烯片10、該複數個奈米級矽與氧化矽之複合單體30及該複數個第一高分子材質20之間形成多個蜂窩狀之緩衝空隙60。 A plurality of honeycomb-shaped buffer gaps 60 are formed between the plurality of graphene sheets 10 , the plurality of composite monomers 30 of nanoscale silicon and silicon oxide, and the plurality of first polymer materials 20 .

其中該石墨烯片10係由石墨烯(graphene)裂解成最大尺寸小於3微米(micrometer)的片狀體;該奈米級矽與氧化矽之複合單體30係由粉狀的矽粉表面披覆氧化矽所形成。其中該第一高分子材質20選自高分子纖維素醣類物質或高分子不飽和醣類物質。而該高分子纖維素醣類物質或高分子不飽和醣類物質比如可為羧甲基纖維素海藻酸鹽、聚乙烯吡咯烷酮、聚乙烯醇、葡萄糖等。 The graphene sheet 10 is cracked from graphene into flakes with a maximum size of less than 3 micrometers; the composite monomer 30 of nanoscale silicon and silicon oxide is made of powdery silicon powder surface-coated Formed by coating silicon oxide. The first polymer material 20 is selected from polymer cellulose sugar materials or polymer unsaturated sugar materials. The polymeric cellulose sugar material or the polymeric unsaturated sugar material can be, for example, carboxymethylcellulose alginate, polyvinylpyrrolidone, polyvinyl alcohol, glucose, etc.

一第二高分子材質層45其包覆在該第一階碳矽球100的外部。該第二高分子材質層45為高分子可聚醣,比如為羧甲基纖維素(CMC,Carboxymethyl cellulose)、海藻酸鹽(Alginate)、聚乙烯吡咯烷酮(PVP,Polyvinylpyrrolidone)、聚乙烯醇(PVA,Polyvinyl alcohol)、葡萄糖(Glucose)。該第二高分子材質層45的分子量、聚合度與黏性比上述該第一高分子材質20高。該第二高分子材質層45經過燒結,使得醣類產生碳化,以增加整體複合型碳矽負極基體1的導電能力,無定型化之碳膜也強化了複合材料的結構性與抗膨脹能力。 A second polymer material layer 45 covers the outside of the first-stage carbon silicon ball 100 . The second polymer material layer 45 is a polymeric polysaccharide, such as carboxymethyl cellulose (CMC), alginate (Alginate), polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA) , Polyvinyl alcohol), glucose (Glucose). The molecular weight, polymerization degree and viscosity of the second polymer material layer 45 are higher than those of the first polymer material 20 . The second polymer material layer 45 is sintered to carbonize the sugars to increase the electrical conductivity of the overall composite carbon silicon negative electrode matrix 1. The amorphous carbon film also strengthens the structure and anti-expansion ability of the composite material.

複數個奈米碳管50緊緊包裹該第二高分子材質層45。由圖6中顯示該奈米碳管50包裹該第二高分子材質層45,其具有緊束的作用,使得其內部的該第一階碳矽球100不易膨脹。所以更進一步增加整體結構的結合力。其中該奈米碳管50為具備優良導電性與較完整結構性之15~25μm之陣列式碳管。 A plurality of carbon nanotubes 50 tightly wrap the second polymer material layer 45 . As shown in FIG. 6 , the carbon nanotube 50 wraps the second polymer material layer 45 , which has a tight binding effect so that the first-stage carbon silicon ball 100 inside the carbon nanotube 50 does not easily expand. Therefore, the bonding force of the overall structure is further increased. The carbon nanotubes 50 are 15~25 μm array carbon tubes with excellent conductivity and relatively complete structure.

應用上述之步驟所製成的複合型碳矽負極基體1中,該石墨烯片10為具韌性及彈性的結構體,不會輕易產生形變,所以可以限制該奈米級矽與氧化矽之複合單體30的膨脹,因此使得該奈米級矽與氧化矽之複合單體30不會輕易變形或者產生脆裂的狀態。另外整個第一階碳矽球100中的該複數個石墨烯片10、該複數個第一高分子材質20及該複數個奈米級矽與氧化矽之複合單體30之間所形成的多個蜂窩狀之緩衝空隙60可以吸收該奈米級矽與氧化矽之複合單體30的膨脹,所以整個第一階碳矽球100可以長時間維持較小之體積膨脹。在該第一階碳矽球100的外層包覆一層該第二高分子材質層45,在該第二高分子材質層45的外面則經燒結後藉由混漿工藝由該奈米碳管50緊緊包裹。其中該第二高分子材質層45因為經過燒結,使得醣類產生碳化,所以也增加整體複合型碳矽負極基體1的電化學循環能力進而提升更持久的高效電容與結構維持能力。 In the composite carbon silicon negative electrode matrix 1 made by applying the above steps, the graphene sheet 10 is a tough and elastic structure that will not easily deform, so it can limit the composite of nanoscale silicon and silicon oxide. The expansion of the monomer 30 prevents the composite monomer 30 of nanoscale silicon and silicon oxide from easily deforming or becoming brittle. In addition, the plurality of graphene sheets 10 , the plurality of first polymer materials 20 and the plurality of composite monomers 30 of nanoscale silicon and silicon oxide in the entire first-stage carbon silicon ball 100 are formed between The honeycomb buffer gaps 60 can absorb the expansion of the composite monomer 30 of nanoscale silicon and silicon oxide, so the entire first-stage carbon silicon ball 100 can maintain a small volume expansion for a long time. The first-stage carbon silicon ball 100 is coated with a second polymer material layer 45 on its outer layer, and the carbon nanotubes 50 are formed on the outside of the second polymer material layer 45 through a mixing process after sintering. Wrap tightly. The second polymer material layer 45 is sintered to carbonize the sugars, thereby increasing the electrochemical cycle capability of the overall composite carbon silicon negative electrode matrix 1 and thereby improving longer-lasting high-efficiency capacitance and structure maintenance capabilities.

因此用本案的材料作為負極材料時,即具有較高的電容量,再者又可以具有較長的電池壽命。 Therefore, when the material in this case is used as a negative electrode material, it has a higher capacitance and a longer battery life.

綜上所述,本案人性化之體貼設計,相當符合實際需求。其具體改進現有缺失,相較於習知技術明顯具有突破性之進步優點,確實具有功效之增進,且非易於達成。本案未曾公開或揭露於國內與國外之文獻與市場上,已符合專利法規定。 To sum up, the humanized and considerate design of this case is quite in line with actual needs. Its specific improvement has the existing deficiencies, and it has obvious breakthrough advantages compared to the conventional technology, and it does have an improvement in efficacy, and it is not easy to achieve. This case has not been published or disclosed in domestic or foreign documents or markets, and it complies with the provisions of the patent law.

上列詳細說明係針對本發明之一可行實施例之具體說明,惟該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實施或變更,均應包含於本案之專利範圍中。 The above detailed description is a specific description of one possible embodiment of the present invention. However, this embodiment is not intended to limit the patent scope of the present invention. Any equivalent implementation or modification that does not depart from the technical spirit of the present invention shall be included in within the scope of the patent in this case.

1:複合型碳矽負極基體 1: Composite carbon silicon negative electrode matrix

45:第二高分子材質層 45: The second polymer material layer

50:奈米碳管 50:Carbon nanotubes

Claims (15)

一種複合型碳矽負極基材的製造方法,包含下列步驟:步驟A:將石墨烯(graphene)裂解成複數個石墨烯片;步驟B:將該複數個石墨烯片混合乙醇及第一高分子材質並加以混拌後產生具黏滯性的高分子石墨烯母液;該第一高分子材質選自高分子纖維素醣類物質或高分子不飽和醣類物質,該高分子纖維素醣類物質或高分子不飽和醣類物質選自羧甲基纖維素、海藻酸鹽、聚乙烯吡咯烷酮、聚乙烯醇、葡萄糖;步驟C:將矽、氧化矽粉末分散裂解成多個奈米級矽與氧化矽之複合單體,再將該高分子石墨烯母液混合該多個奈米級矽與氧化矽之複合單體,而形成碳矽母液;步驟D:將上述碳矽母液進行噴霧乾燥過程;即將該碳矽母液噴出後形成微粒,在微粒態下予以乾燥;其目的用於蒸發原來該碳矽母液中的乙醇;所以形成第一階碳矽球,其主要結構即包含該複數個石墨烯片、該多個奈米級矽與氧化矽之複合單體及該第一高分子材質;其中該第一高分子材質做為黏著劑,用於連結該複數個石墨烯片及該多個奈米級矽與氧化矽之複合單體;其中該第一階碳矽球中存在多數個凹陷及緩衝空缺的位置,而形成多個蜂窩狀之緩衝空隙,用以吸收該奈米級矽與氧化矽之複合單體的膨脹;步驟E:進行混合燒結步驟,係先將該第一階碳矽球、第二高分子材質混合燒結後再混合奈米碳管;該第二高分子材質為高分子可聚醣;其中該高分子可聚醣選自羧甲基纖維素、海藻酸鹽、聚乙烯吡咯烷酮、聚乙烯醇、葡萄糖;步驟F:將該混合的第一階碳矽球、第二高分子材質及奈米碳管經過VC混漿或噴霧乾燥的方式,而形成第二階碳矽球;步驟G:將該第二階碳矽球在燒結爐內經過燒結後形成無定型碳披覆之第三階碳矽球; 其中該第三階碳矽球的結構係為該第一階碳矽球的外層包覆一層該第二高分子材質,在該第二高分子材質所形成的外層的外面則由奈米碳管包裹;其中該包覆的第二高分子材質因為在燒結程序中經過燒結,使得醣類產生碳化,所以也增加整體第三階碳矽球的電容能力。 A method for manufacturing a composite carbon silicon negative electrode base material, including the following steps: Step A: Crack graphene into a plurality of graphene sheets; Step B: Mix the plurality of graphene sheets with ethanol and a first polymer Materials are mixed to produce a viscous polymer graphene mother liquor; the first polymer material is selected from polymer cellulose sugars or polymer unsaturated sugars, and the polymer cellulose sugars Or the polymer unsaturated sugar material is selected from carboxymethyl cellulose, alginate, polyvinylpyrrolidone, polyvinyl alcohol, and glucose; step C: disperse and crack the silicon and silicon oxide powder into multiple nanoscale silicon and oxidize The composite monomer of silicon is then mixed with the polymer graphene mother liquor and the composite monomers of nanoscale silicon and silicon oxide to form a carbon silicon mother liquor; Step D: The above carbon silicon mother liquor is spray-dried; that is, After the carbon silicon mother liquor is sprayed out, it forms particles and is dried in the particle state; the purpose is to evaporate the ethanol originally in the carbon silicon mother liquor; therefore, a first-order carbon silicon ball is formed, the main structure of which includes the plurality of graphene sheets. , the plurality of composite monomers of nanoscale silicon and silicon oxide and the first polymer material; wherein the first polymer material is used as an adhesive to connect the plurality of graphene sheets and the plurality of nanometer A composite monomer of nano-grade silicon and silicon oxide; there are a plurality of depressions and buffer vacancies in the first-stage carbon silicon ball, forming a plurality of honeycomb-shaped buffer voids for absorbing the nano-grade silicon and silicon oxide. The expansion of the composite monomer; Step E: Perform a mixing and sintering step, which is to first mix and sinter the first-stage carbon silicon balls and the second polymer material, and then mix the carbon nanotubes; the second polymer material is a polymer Polysaccharide; wherein the polymer polysaccharide is selected from carboxymethylcellulose, alginate, polyvinylpyrrolidone, polyvinyl alcohol, and glucose; Step F: Combine the mixed first-stage carbon silicon balls, the second-highest The molecular material and carbon nanotubes are mixed with VC or spray dried to form second-stage carbon silicon balls; Step G: The second-stage carbon silicon balls are sintered in a sintering furnace to form amorphous carbon coating The third stage carbon silicon ball; The structure of the third-stage carbon silicon ball is that the outer layer of the first-stage carbon silicon ball is coated with a layer of the second polymer material, and the outer layer formed of the second polymer material is wrapped by carbon nanotubes. ; Among them, the second polymer material of the coating is sintered during the sintering process, causing the sugar to be carbonized, so it also increases the capacitance capacity of the overall third-order carbon silicon ball. 如請求項1所述之複合型碳矽負極基材的製造方法,其中在步驟A中每個石墨烯片的最大尺寸小於3微米(micrometer)。 The manufacturing method of composite carbon silicon negative electrode substrate as described in claim 1, wherein in step A, the maximum size of each graphene sheet is less than 3 micrometers. 如請求項1所述之複合型碳矽負極基材的製造方法,其中在步驟A中,該石墨烯裂解的方式選自行星式混拌、濕式研磨、高壓均質研磨等方式中的任一種。 The manufacturing method of composite carbon silicon negative electrode substrate as described in claim 1, wherein in step A, the graphene cracking method is selected from any one of planetary mixing, wet grinding, high-pressure homogeneous grinding, etc. . 如請求項1所述之複合型碳矽負極基材的製造方法,其中在步驟B中,該複數個石墨烯片、乙醇、第一高分子材質其重量的比例為石墨烯片:乙醇:第一高分子材質=(0.15~0.20):(0.01~0.015):(0.77~0.84)。 The manufacturing method of composite carbon silicon negative electrode substrate as described in claim 1, wherein in step B, the weight ratio of the plurality of graphene sheets, ethanol, and the first polymer material is graphene sheet: ethanol: first A polymer material = (0.15~0.20): (0.01~0.015): (0.77~0.84). 如請求項1所述之複合型碳矽負極基材的製造方法,其中在步驟C中,將該高分子石墨烯母液混合該多個奈米級矽與氧化矽之複合單體的方式選自氣動式均質混合或行星式混和中的任一種。 The manufacturing method of composite carbon silicon negative electrode substrate as claimed in claim 1, wherein in step C, the method of mixing the polymer graphene mother liquor with the plurality of composite monomers of nanoscale silicon and silicon oxide is selected from the group consisting of: Either pneumatic homogeneous mixing or planetary mixing. 如請求項1所述之複合型碳矽負極基材的製造方法,其中在步驟C中,該氧化矽粉末為SiOx,其中x小於2。 The manufacturing method of composite carbon silicon negative electrode substrate as described in claim 1, wherein in step C, the silicon oxide powder is SiO x , where x is less than 2. 如請求項1所述之複合型碳矽負極基材的製造方法,其中在步驟E中,該第一階碳矽球、該第二高分子材質及該奈米碳管的重量的比例為第一階碳矽球:第二高分子材質:奈米碳管=(0.80~0.84):(0.16~0.19):(0.0001~0.005)。 The manufacturing method of composite carbon silicon negative electrode substrate as described in claim 1, wherein in step E, the weight ratio of the first-stage carbon silicon ball, the second polymer material and the carbon nanotube is First-order carbon silicon ball: second polymer material: carbon nanotube = (0.80~0.84): (0.16~0.19): (0.0001~0.005). 如請求項1所述之複合型碳矽負極基材的製造方法,其中在步驟E中,該第二高分子材質的分子量、聚合度與黏性比該第一高分子材質高。 The manufacturing method of composite carbon silicon negative electrode substrate as claimed in claim 1, wherein in step E, the molecular weight, degree of polymerization and viscosity of the second polymer material are higher than those of the first polymer material. 如請求項1所述之複合型碳矽負極基材的製造方法,其中在步驟E中,該奈米碳管為具備導電性與完整結構性之15~25μm之陣列式碳管。 The manufacturing method of composite carbon silicon negative electrode substrate as described in claim 1, wherein in step E, the carbon nanotubes are 15~25 μm array carbon tubes with conductivity and complete structure. 一種由請求項1至9任一項所述的製造方法製備而成的複合型碳矽負極基體,包含:一第一階碳矽球,包含複數個石墨烯片、複數個奈米級矽與氧化矽之複合單體及複數個第一高分子材質;該第一高分子材質做為黏著劑用於連結該複數個石墨烯片及該複數個奈米級矽與氧化矽之複合單體;其中該複數個石墨烯片、該複數個奈米級矽與氧化矽之複合單體及該複數個第一高分子材質之間形成多個蜂窩狀之緩衝空隙;該第一高分子材質選自高分子纖維素醣類物質或高分子不飽和醣類物質;該高分子纖維素醣類物質或高分子不飽和醣類物質選自羧甲基纖維素、海藻酸鹽、聚乙烯吡咯烷酮、聚乙烯醇、葡萄糖;一第二高分子材質層其包覆在該第一階碳矽球的外部;該第二高分子材質層經過燒結,使得醣類產生碳化,以增加整體複合型碳矽負極基體的導電能力;該第二高分子材質層為高分子可聚醣;其中該高分子可聚醣選自羧甲基纖維素、海藻酸鹽、聚乙烯吡咯烷酮、聚乙烯醇、葡萄糖;以及複數個奈米碳管包裹該第二高分子材質層;該奈米碳管包裹該第二高分子材質層,其具有緊束的作用,使得其內部的該第一階碳矽球不易膨脹。 A composite carbon silicon negative electrode matrix prepared by the manufacturing method described in any one of claims 1 to 9, including: a first-order carbon silicon ball, including a plurality of graphene sheets, a plurality of nanoscale silicon and A composite monomer of silicon oxide and a plurality of first polymer materials; the first polymer material is used as an adhesive to connect the plurality of graphene sheets and the plurality of composite monomers of nanoscale silicon and silicon oxide; A plurality of honeycomb buffer gaps are formed between the plurality of graphene sheets, the plurality of composite monomers of nanoscale silicon and silicon oxide, and the plurality of first polymer materials; the first polymer material is selected from High molecular cellulose sugar material or high molecular unsaturated sugar material; the high molecular cellulose sugar material or high molecular unsaturated sugar material is selected from carboxymethyl cellulose, alginate, polyvinylpyrrolidone, polyethylene Alcohol, glucose; a second polymer material layer coating the outside of the first-stage carbon silicon ball; the second polymer material layer is sintered to carbonize the sugars to increase the overall composite carbon silicon negative electrode matrix The conductive ability; the second polymer material layer is a polymer polysaccharide; wherein the polymer polysaccharide is selected from carboxymethylcellulose, alginate, polyvinylpyrrolidone, polyvinyl alcohol, glucose; and a plurality of The carbon nanotube wraps the second polymer material layer; the carbon nanotube wraps the second polymer material layer, which has a tight binding effect so that the first-order carbon silicon ball inside is not easy to expand. 如請求項10所述之複合型碳矽負極基體,其中該複數個石墨烯片、該複數個奈米級矽與氧化矽之複合單體及該複數個第一高分子材質的重量的比例為石墨烯片:奈米級矽與氧化矽之複合單體:第一高分子材質=(0.19~0.33):(0.47~0.59):(0.20~0.22)。 The composite carbon silicon negative electrode matrix according to claim 10, wherein the weight ratio of the plurality of graphene sheets, the plurality of composite monomers of nanoscale silicon and silicon oxide, and the plurality of first polymer materials is Graphene sheet: composite monomer of nanoscale silicon and silicon oxide: first polymer material = (0.19~0.33): (0.47~0.59): (0.20~0.22). 如請求項10所述之複合型碳矽負極基體,其中該石墨烯片係由石墨烯(graphene)裂解成最大尺寸小於3微米(micrometer)的片狀體。 The composite carbon silicon negative electrode matrix according to claim 10, wherein the graphene sheet is cracked from graphene into flakes with a maximum size of less than 3 micrometers. 如請求項10所述之複合型碳矽負極基體,其中該奈米級矽與氧化矽之複合單體係由粉狀的矽粉表面披覆氧化矽所形成。 The composite carbon silicon negative electrode matrix according to claim 10, wherein the composite single system of nanoscale silicon and silicon oxide is formed by coating the surface of powdery silicon powder with silicon oxide. 如請求項10所述之複合型碳矽負極基體,其中該第二高分子材質層的分子量、聚合度與黏性比該第一高分子材質高。 The composite carbon silicon negative electrode matrix according to claim 10, wherein the molecular weight, polymerization degree and viscosity of the second polymer material layer are higher than those of the first polymer material. 如請求項10所述之複合型碳矽負極基體,其中該奈米碳管為具備導電性與完整結構性之15~25μm之陣列式碳管。 The composite carbon silicon negative electrode matrix as described in claim 10, wherein the carbon nanotubes are 15~25 μm array carbon tubes with conductivity and complete structure.
TW108119006A 2019-05-31 2019-05-31 Manufacturing method of composite carbon silicon negative electrode base material and composite carbon silicon negative electrode base material made by the manufacturing method TWI820144B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108119006A TWI820144B (en) 2019-05-31 2019-05-31 Manufacturing method of composite carbon silicon negative electrode base material and composite carbon silicon negative electrode base material made by the manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108119006A TWI820144B (en) 2019-05-31 2019-05-31 Manufacturing method of composite carbon silicon negative electrode base material and composite carbon silicon negative electrode base material made by the manufacturing method

Publications (2)

Publication Number Publication Date
TW202046535A TW202046535A (en) 2020-12-16
TWI820144B true TWI820144B (en) 2023-11-01

Family

ID=74668139

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108119006A TWI820144B (en) 2019-05-31 2019-05-31 Manufacturing method of composite carbon silicon negative electrode base material and composite carbon silicon negative electrode base material made by the manufacturing method

Country Status (1)

Country Link
TW (1) TWI820144B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633295A (en) * 2012-08-23 2014-03-12 上海杉杉科技有限公司 Silicon-carbon composite material, lithium ion battery, and preparation method and application of silicon-carbon composite material
CN106025219A (en) * 2016-06-24 2016-10-12 中天储能科技有限公司 Spherical silicon-oxygen-carbon negative electrode composite material and preparation method and application thereof
CN108899485A (en) * 2018-06-13 2018-11-27 同济大学 A kind of graphene-based core-shell structure Si-C composite material and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633295A (en) * 2012-08-23 2014-03-12 上海杉杉科技有限公司 Silicon-carbon composite material, lithium ion battery, and preparation method and application of silicon-carbon composite material
CN106025219A (en) * 2016-06-24 2016-10-12 中天储能科技有限公司 Spherical silicon-oxygen-carbon negative electrode composite material and preparation method and application thereof
CN108899485A (en) * 2018-06-13 2018-11-27 同济大学 A kind of graphene-based core-shell structure Si-C composite material and preparation method thereof

Also Published As

Publication number Publication date
TW202046535A (en) 2020-12-16

Similar Documents

Publication Publication Date Title
JP7427149B2 (en) How to prepare battery plates
US7567429B2 (en) Electrode material for electric double layer capacitor and process for producing the same
CN109546127B (en) Silicon-carbon cathode slurry and preparation method thereof
JP7055476B2 (en) Positive electrode and secondary battery containing the positive electrode
CN104715937B (en) A kind of preparation method of stacking type electrode, carbon membrane and preparation method thereof
CN107845797A (en) A kind of lithium ion battery nano-silicone wire/carbon composite negative pole material and preparation method thereof
CN115275191B (en) Negative electrode material, negative plate and sodium ion battery
KR20200083808A (en) Silicon-carbon composite negative active material for lithium secondary battery, method for preparing the same and lithium secondary battery including the same
CN115088098A (en) Negative electrode for lithium ion battery and method for manufacturing same
CN114156602B (en) Solid electrolyte membrane with multiple coatings, preparation method and application
JP2022531997A (en) Prelithiated negative electrodes, their fabrication methods, lithium-ion batteries containing prelithiated negative electrodes, and supercapacitors.
CN115785849B (en) Polymer micro-nano binder and preparation and application thereof
CN113964288A (en) Preparation method of fiber membrane and pole piece
CN113173582B (en) Flexible self-supporting active carbon microchip/carbon nano tube composite material, preparation method and application
TWI820144B (en) Manufacturing method of composite carbon silicon negative electrode base material and composite carbon silicon negative electrode base material made by the manufacturing method
CN113328063A (en) Lithium battery pole piece and preparation method and application thereof
CN112086624B (en) Manufacturing method of composite carbon-silicon negative electrode base material and composite carbon-silicon negative electrode base body manufactured by manufacturing method
KR100917408B1 (en) Electrode for electrochemical capacitor and process for preparing the same
US20220336787A1 (en) Silicon-Based Negative Electrode and Method of Manufacturing the Same
WO2011074269A1 (en) Coating liquid
CN221961006U (en) Microporous aluminum foil for sodium ion battery
CN116014141B (en) Porous silicon negative electrode material, silicon negative electrode sheet and lithium ion battery
CN116995221B (en) Porous composite negative electrode and preparation method and application thereof
TWI756982B (en) Secondary granulated silicon carbon base battery negative electrode material and preparation method thereof
CN114243015A (en) MoO2Amorphous carbon coated silicon-carbon composite material and preparation method and application thereof