TWI819831B - 電池檢測方法及裝置 - Google Patents

電池檢測方法及裝置 Download PDF

Info

Publication number
TWI819831B
TWI819831B TW111137594A TW111137594A TWI819831B TW I819831 B TWI819831 B TW I819831B TW 111137594 A TW111137594 A TW 111137594A TW 111137594 A TW111137594 A TW 111137594A TW I819831 B TWI819831 B TW I819831B
Authority
TW
Taiwan
Prior art keywords
curve
battery
characteristic
characteristic curve
less
Prior art date
Application number
TW111137594A
Other languages
English (en)
Other versions
TW202343013A (zh
Inventor
吳登峻
龍彥先
謝卓帆
蔡閔安
張修銘
莊豐銘
劉子安
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to US18/152,771 priority Critical patent/US20230333168A1/en
Application granted granted Critical
Publication of TWI819831B publication Critical patent/TWI819831B/zh
Publication of TW202343013A publication Critical patent/TW202343013A/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

一種電池檢測方法及裝置。所述方法包括下列步驟:利用資料擷取裝置擷取在電池的操作期間內自電池測得的多個特性值,並用以形成特性曲線;對特性曲線執行曲線擬合以獲得曲線誤差;根據曲線誤差的大小,判定電池是否為正常;以及若判定結果為異常,對特性曲線執行步長曲率半徑分析,以判定電池是否為正常。

Description

電池檢測方法及裝置
本發明是有關於一種電池檢測方法及裝置。
隨著再生能源設置容量的提升,全球儲能市場快速成長。然而,由於電池系統缺陷、應對電氣故障的保護系統不周、運營環境管理不足、儲能系統綜合管理體系欠缺等因素,導致儲能系統發生許多事故。
現有的電池管理系統例如是以已知健康電池的電性當作標的,通過長期監控電壓/電流/溫度等參數來監控電池異常,此監控手法須花費時間建置健康電池的電性資料庫,且須結合長期監控來判斷異常,這類監控方式整體耗時。
本發明提供一種電池檢測方法及裝置,可增加電池檢測的準確性,以及判定電池是否為正常或異常。
本發明一實施例提供一種電池檢測方法,適用於包括資料擷取裝置及處理器的電子裝置,所述方法包括下列步驟:利用資料擷取裝置擷取在電池的操作期間內自電池測得的多個特性值,並用以形成特性曲線;對特性曲線執行曲線擬合(Curve Fitting)以獲得曲線誤差;根據曲線誤差的大小,判定電池是否為正常;以及若判定結果為異常,對特性曲線執行步長曲率半徑分析(Step-Curvature Radius Analysis),以判定電池是否為正常。
本發明一實施例提供一種電池檢測裝置,其包括資料擷取裝置及處理器。處理器係耦接資料擷取裝置,且經配置以利用資料擷取裝置擷取在電池的操作期間內自電池測得的多個特性值,並用以形成特性曲線,對特性曲線執行曲線擬合以獲得曲線誤差,根據曲線誤差的大小,判定電池是否為正常,以及在判定結果為異常時,對特性曲線執行步長曲率半徑分析,以判定電池是否為正常。
基於上述,本發明的電池檢測方法及裝置通過結合曲線擬合、多項式擬合(Polynomial Fitting)、波峰擬合(Peak Fitting)以及步長曲率半徑分析(Step-Curvature Radius Analysis)等技術,可針對電池充電或放電曲線中的不同區段計算誤差並檢測突波,可有效地檢測出電池異常並判斷異常種類。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
本發明實施例是以現有的儲能電池量測架構為基礎,提出一種電池檢測裝置及方法,可藉由曲線擬合(Curve fitting)、多項式擬合(Polynomial Fitting)以及波峰擬合(Peak Fitting)等技術,以根據電池的充電或放電曲線進一步有效地檢測電池異常。
圖1是根據本發明一實施例所繪示的電池檢測裝置的方塊圖。請參照圖1,本實施例的電池檢測裝置10例如是具備運算功能的個人電腦、伺服器、工作站或其他電子裝置,其中包括資料擷取裝置12與處理器14,其功能分述如下:
資料擷取裝置12例如是通用序列匯流排(universal serial bus,USB)、RS232、通用非同步連接裝置/傳送器(universal asynchronous receiver/transmitter,UART)、內部整合電路(I2C)、序列周邊介面(serial peripheral interface,SPI)、顯示埠(display port)、雷電埠(thunderbolt)或區域網路(local area network,LAN)介面等有線的連接裝置,或是支援無線保真(wireless fidelity,Wi-Fi)、RFID、藍芽、紅外線、近場通訊(near-field communication,NFC)或裝置對裝置(device-to-device,D2D)等通訊協定的無線連接裝置,在此不設限。資料擷取裝置12可連接本地端或遠端的電池20或設置於電池20上的感測器(例如電壓計、電流計、電阻計、溫度計等),用以擷取電池20運作時的特性值,例如電壓值、電流值、電阻值或溫度值,在此不設限。在一些實施例中,在對電池20進行檢測時,例如是將電池20放置於密閉的腔室中,並維持腔室中的溫度、溼度、壓力等環境參數,以檢測電池20於特定環境下操作的特性值。
處理器14耦接資料擷取裝置12,用以控制效率電池檢測裝置10的操作。在一些實施例中,處理器14例如是中央處理單元(central processing unit,CPU),或是其他可程式化之一般用途或特殊用途的微處理器(microprocessor)、數位訊號處理器(digital signal processor,DSP)、可程式化控制器、特殊應用積體電路(application specific integrated circuit,ASIC)、場域可程式閘陣列(field programmable gate array,FPGA)、可程式化邏輯控制器(programmable logic controller,PLC)或其他類似裝置或這些裝置的組合,而可載入並執行儲存於硬體或記憶體中的電腦程式,以執行本發明實施例的電池檢測方法。
圖2是根據本發明一實施例所繪示的電池檢測方法的流程圖。請同時參照圖1及圖2,本實施例的方法適用於圖1的電池檢測裝置10,以下即搭配電池檢測裝置10的各項元件說明本發明實施例之電池檢測方法的詳細步驟。
在步驟S202中,由電池檢測裝置10的處理器14利用資料擷取裝置12擷取在電池20的操作期間內自電池20測得的多個特性值,並用以形成特性曲線。前述操作期間例如是電池的充電期間或放電期間,而自電池20擷取的特性值則可包括電壓值、電流值、電阻值等電性參數,或是溫度值、壓力值等環境參數。舉例來說,處理器14可擷取電池20充電時的開路電壓或是電池20放電時的短路電流,在此不設限。處理器14可將所擷取的這些特性值分別形成特性曲線,用以分析電池20的狀態。
在步驟S204中,處理器14對特性曲線執行曲線擬合(Curve Fitting)以獲得曲線誤差,並在步驟S206中,根據曲線誤差的大小,判定電池20是否為正常。具體而言,處理器14可將特性曲線分成多個區段以執行曲線擬合,並將各區段之間的誤差作為曲線誤差,與預設的門檻值進行比較,來判定電池20是否為正常。前述的門檻值例如是取各區段曲線的特性值平均的1%,但不限於此。
若曲線誤差小於門檻值,則進入步驟S208,處理器14可判定電池20為正常;反之,若曲線誤差大於等於門檻值,則處理器14將初步判定電池20為異常,並進入步驟S210,進一步對特性曲線執行步長曲率半徑分析(Step-Curvature Radius Analysis),以判定電池20是否為正常。
具體而言,處理器14可將特性曲線依步長分成多個區段,並找出各個區段中的有效點的特性值,以判定這些特性值是否有集中性或是離散性。若判定特性值具有集中性,處理器14可根據特性值的集合值誤差,進一步判斷電池正常或異常,並根據集合值誤差發生異常的區段在特性曲線中的位置,判斷電池異常的種類;反之,若判定特性值不具有集中性(即,具有離散性),處理器14可判定電池20為正常。
通過對特性曲線進行曲線擬合及步長曲率半徑分析兩階段的分析,本實施例的電池檢測裝置10可有效地檢測出異常的電池20。
圖3是根據本發明一實施例所繪示的曲線擬合方法的流程圖。請同時參照圖1、圖2及圖3,本實施例進一步說明圖2步驟S204中所述的曲線擬合的實施方式,其步驟如下:
在步驟S302中,處理器14計算特性曲線的全範圍曲線誤差,並在步驟S304中,判斷全範圍曲線誤差與特性曲線的平均曲率的比值是否小於預設比值。具體而言,處理器14可將特性曲線分成多個區段以執行曲線擬合,計算各區段之間的誤差作為曲線誤差,並計算這些區段的曲線誤差的平均作為全範圍曲線誤差,通過將此全範圍曲線誤差除以特性曲線的平均曲率,並將比值與預設比值進行比較,即可判定電池20是否為正常。前述的預設比值例如是1%,但不限於此。
在步驟S304中,若全範圍曲線誤差與特性曲線的平均曲率的比值小於所述預設比值,則進入步驟S306,處理器14判定電池20為正常。
在步驟S304中,若全範圍曲線誤差與特性曲線的平均曲率的比值不小於所述預設比值,則進入步驟S308,處理器14對特性曲線執行多項式擬合(Polynomial Fitting),並調整多項式次方,使得由經調整多項式函數所構建的函數曲線擬合特性曲線。
詳細而言,曲線擬合是指用曲線趨近平面上的多個離散點(即,特性值),而多項式擬合則是推求一個多項式函數,使得由此多項式函數所構建的函數曲線能夠最佳地吻合這些特性值。而通過增加多項式次方,可使得函數曲線更精確地擬合特性曲線,但會增加擬合運算的運算量,且對於特性值發散的情況,可能無法獲得精確擬合的結果。因此,需要根據誤差適當調整多項式次方,以獲得能夠最佳地擬合特性曲線的多項式函數。
在步驟S310中,處理器14判斷經調整多項式函數的多項式次方是否小於預設次方。其中,若多項式次方小於所述預設次方,則在步驟S312中,處理器14對特性曲線執行步長曲率半徑分析。
在步驟S310中,若多項式次方不小於所述預設次方,則在步驟S314中,處理器14使用至少一個波峰函數(Peak Function)對特性曲線執行波峰擬合(Peak Fitting),以找出特性曲線中符合波峰函數的至少一個突波。
在步驟S316中,處理器14判斷所找出突波的數目是否小於預設突波數,所述的預設突波數例如為2或大於2的正整數,在此不設限。其中,若突波的數目小於預設突波數,則在步驟S312中,處理器14對特性曲線執行步長曲率半徑分析。
若突波的數目不小於預設突波數,則在步驟S318中,處理器14使用自然函數構建自然函數曲線,並在步驟S320中,確認特性曲線中是否包括自然函數曲線。
若特性曲線中包括自然函數曲線,則進入步驟S306,處理器14判定電池20為正常。若特性曲線中不包括自然函數曲線,則進入步驟S312,處理器14對特性曲線執行步長曲率半徑分析。
通過上述的多項式擬合、波峰擬合、自然函數擬合等方式綜合分析特性曲線,本實施例的電池檢測裝置10將可獲得更精確的擬合結果。
圖4是根據本發明一實施例所繪示的步長曲率半徑分析方法的流程圖。請同時參照圖1、圖2及圖4,本實施例進一步說明圖2步驟S210中所述的步長曲率半徑分析的實施方式,其步驟如下:
在步驟S402中,由處理器14將特性曲線區分為多個區段,其中各個區段中所包括的多個有效點的數目大於預設數目(例如為5或其他正整數)。
在步驟S404中,處理器14根據各個區段的特性值,找出多個特性值群,計算特性值群之間的集合值誤差。以短路電流曲線(Isc)為例,處理器14可計算此短路電流曲線的各個區段的特性值(例如特性值的平均值、標準差等統計值),而通過比較這些區段的特性值,可找出多個特性值群,並計算這些特性值群之間的集合值誤差,用以判定特性值是否有集中性或是離散性。
在步驟S406中,處理器14根據特性值群之間的集合值誤差,判斷特性值群是否有集中性。具體而言,處理器14例如是將集合值誤差與預設誤差比較,在集合值誤差小於預設誤差時,判定特性值群不具有集中性,並在步驟S408中,判定電池20為正常。其中,所述的預設誤差例如是1%至3%之間的任意值,在此不設限。
在步驟S406中,若集合值誤差不小於預設誤差,處理器14判定特性值群具有集中性,並在步驟S410中,根據特性值群的集合值誤差,判斷電池是否正常。其中,處理器14例如是計算特性曲線的所有區段的集合值誤差的總和與特性曲線的平均曲率的比率,並將所計算的比率與預設比率比較。其中,當所計算的比率大於預設比率時,處理器14判定電池20為正常;而當所計算的比率不大於預設比率時,處理器14判定電池20為異常。所述的比率例如為2%、5%或其他比率,在此不設限。
通過上述方法,本實施例的電池檢測裝置10可從特性曲線的各個區段中檢測出突波,而更精確地檢測出電池正常或異常。
圖5是根據本發明一實施例所繪示的步長曲率半徑分析方法的流程圖。請同時參照圖1、圖2及圖5,本實施例進一步說明圖2步驟S210中所述的步長曲率半徑分析的實施方式,其步驟如下:
在步驟S502中,由處理器14將特性曲線區分為多個第一區段,其中各個第一區段中所包括的多個有效點的數目大於預設數目(例如為5或其他正整數)。在步驟S504中,處理器14根據各個區段的特性值,找出多個特性值群,計算特性值群之間的集合值誤差。上述步驟S502~S504與前述實施例的步驟S402~S404相同或相似,故其詳細內容在此不再贅述。
與前述實施例不同的是,本實施例在步驟S506中,處理器14會判斷不同區段的集合值誤差是否小於預設比率,且各個第一區段沒有突波。其中,所述的預設比率例如為1%或其他任意比率,在此不設限。所述突波例如是藉由計算各個第一區段的曲率變化並與特性曲線的平均曲率比較,以判斷各個第一區段中是否有突波。
若判斷集合值誤差小於預設比率且沒有突波,則在步驟S508中,處理器14判定電池20為正常;若判斷集合值誤差不小於預設比率或有突波,則在步驟S510中,處理器14會將特性曲線區分為多個第二區段,其中第二區段的長度小於第一區段的長度,並在步驟S512中,判斷各個第二區段中的特性曲線的斜率變化是否小於預設比率。
詳細而言,處理器14通過在步驟S506中將特性曲線區分為多個第一區段進行初步分析,而在步驟S512中將特性曲線區分為長度較短的多個第二區段進行細部分析,可在減少運算量的同時,增加檢測的準確性。
在步驟S512中,若判斷特性曲線各個第二區段的斜率變化小於預設比率,處理器14可判斷電池20為正常;而若判斷特性曲線各個第二區段的斜率變化不小於預設比率,處理器14則會在步驟S514中,進一步判斷集合值誤差及溫度曲線中是否包括異常點。
其中,處理器14例如會通過資料擷取裝置12擷取電池20操作時的溫度值,以形成溫度曲線,並將溫度曲線區分為多個區段以計算曲率變化,並根據所計算的曲率變化判斷溫度曲線中是否包括異常點。此外,處理器14也會計算特性曲線的所有區段的集合值誤差的總和與特性曲線的平均曲率的比率來判斷特性曲線是否異常。當特性曲線未出現異常或溫度曲線未出現異常點時,處理器14在步驟S508中,仍判定電池20為正常。
而當特性曲線出現異常且溫度曲線有異常點時,即處理器14則判定電池20發生異常,並在步驟S516中,根據集合值誤差發生異常的區段在特性曲線中的位置,判斷電池異常的種類。舉例來說,若出現異常的區段在特性曲線的前半部,處理器14可判定電池20的電極(electrode)出現異常;而若出現異常的區段在特性曲線的後半部,處理器14則可判定電池20的介面(interface)(即,電離層)出現異常。
在一些實施例中,處理器14在判斷集合值誤差及溫度曲線中是否包括異常點時,例如是採用不同權重的方式衡量這兩個因素對於判斷結果的權重。舉例來說,處理器14例如是以特性曲線的異常作為主要因素,並以溫度曲線的異常作為次要因素,分別將特性曲線是否異常的判斷結果與溫度曲線是否異常的判斷結果乘上對應的權重並相加後,再根據計算結果判定電池20是否正常。其中,特性曲線是否異常與溫度曲線是否異常的權重比例如為4:1或是其他比例,在此不設限。藉此,電池檢測裝置10可在檢測電池電性異常的同時,也考慮到溫度異常的情況,從而作出較為準確的判斷。
綜上所述,本發明實施例的電池檢測方法及裝置通過結合曲線擬合、多項式擬合、波峰擬合等技術,可根據電池的充電或放電曲線的曲率變化有效地檢測出電池異常,而採用步長曲率半徑分析技術將特性曲線區分為不同長度的區段進行分析,則可在減少運算量的同時,增加電池異常檢測的準確性。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
10:電池檢測裝置 12:資料擷取裝置 14:處理器 20:電池 S202~S210、S302~S320、S402~S410、S502~S516:步驟
圖1是根據本發明一實施例所繪示的電池檢測裝置的方塊圖。 圖2是根據本發明一實施例所繪示的電池檢測方法的流程圖。 圖3是根據本發明一實施例所繪示的曲線擬合方法的流程圖。 圖4是根據本發明一實施例所繪示的步長曲率半徑分析方法的流程圖。 圖5是根據本發明一實施例所繪示的步長曲率半徑分析方法的流程圖。
S202~S210:步驟

Claims (20)

  1. 一種電池檢測方法,適用於包括資料擷取裝置及處理器的電子裝置,所述方法包括下列步驟:利用所述資料擷取裝置擷取在電池的一操作期間內自所述電池測得的多個特性值,並用以形成一特性曲線;對所述特性曲線執行曲線擬合(Curve Fitting)以獲得曲線誤差;根據所述曲線誤差的大小,判定所述電池是否為正常;以及若判定結果為異常,對所述特性曲線執行步長曲率半徑分析(Step-Curvature Radius Analysis),以判定所述電池是否為正常。
  2. 如請求項1所述的電池檢測方法,其中對所述特性曲線執行所述曲線擬合的步驟包括:對所述特性曲線執行多項式擬合(Polynomial Fitting),並調整多項式次方,使得由經調整多項式函數所構建的函數曲線擬合所述特性曲線;判斷所述經調整多項式函數的所述多項式次方是否小於預設次方;以及若所述多項式次方小於所述預設次方,對所述特性曲線執行所述步長曲率半徑分析。
  3. 如請求項2所述的電池檢測方法,其中對所述特性曲線執行所述曲線擬合的步驟包括: 計算所述特性曲線的全範圍曲線誤差,並判斷所述全範圍曲線誤差與所述特性曲線的平均曲率的比值是否小於預設比值;若所述比值小於所述預設比值,判定所述電池為正常;以及若所述比值不小於所述預設比值,對所述多個特性值執行所述多項式擬合。
  4. 如請求項2所述的電池檢測方法,其中對所述特性曲線執行所述曲線擬合的步驟包括:使用至少一波峰函數(Peak Function)對所述特性曲線執行波峰擬合(Peak Fitting),以找出所述特性曲線中符合所述至少一突波函數的至少一突波;判斷所找出的所述至少一突波的數目是否小於預設突波數;以及若所述至少一突波的數目小於所述預設突波數,對所述特性曲線執行所述步長曲率半徑分析。
  5. 如請求項4所述的電池檢測方法,其中對所述特性曲線執行所述曲線擬合的步驟更包括:若判斷所述多項式次方不小於所述預設次方且所述至少一突波的數目不小於所述預設突波數,使用自然函數構建自然函數曲線;確認所述特性曲線中是否包括所述自然函數曲線;以及若所述特性曲線中不包括所述自然函數曲線,對所述特性曲線執行所述步長曲率半徑分析。
  6. 如請求項1所述的電池檢測方法,其中對所述特性曲線執行所述步長曲率半徑分析的步驟包括:區分所述特性曲線為多個第一區段,其中各所述第一區段中所包括的多個有效點的數目大於預設數目;根據各所述第一區段中的所述有效點的特性值,找出多個特性值群,並計算所述特性值群之間的集合值誤差,以判斷所述特性值群是否具有集中性;以及若判定所述特性值群具有集中性,根據所述特性值群的所述集合值誤差,判斷所述電池是否正常。
  7. 如請求項6所述的電池檢測方法,其中對所述特性曲線執行所述步長曲率半徑分析的步驟更包括:在判定所述特性值群具有所述集中性時,區分所述特性曲線為多個第二區段,所述第二區段的長度小於所述第一區段的長度;判斷各所述第二區段中的所述特性曲線的斜率變化是否小於預設比率;以及若所述斜率變化不小於所述預設比率,根據所述特性值群的所述集合值誤差,判斷所述電池是否正常。
  8. 如請求項7所述的電池檢測方法,其中對所述特性曲線執行所述步長曲率半徑分析的步驟更包括:在所述斜率變化不小於所述預設比率時,根據所述特性值群的所述集合值誤差及所述電池的溫度曲線中是否包括異常點,判斷所述電池是否正常。
  9. 如請求項6所述的電池檢測方法,其中對所述特性曲線執行所述步長曲率半徑分析的步驟更包括:根據各所述第一區段的所述特性曲線的斜率變化,判斷是否包括突波;以及若判定所述特性值群具有集中性且所述特性曲線包括所述突波,根據所述特性值群的所述集合值誤差,判斷所述電池是否正常。
  10. 如請求項6所述的電池檢測方法,其中根據所述特性值群的所述集合值誤差,判斷所述電池是否正常的步驟更包括:在判斷所述電池為異常時,根據所述集合值誤差發生異常的所述第一區段在所述特性曲線中的位置,判斷電池異常的種類。
  11. 一種電池檢測裝置,包括:資料擷取裝置;以及處理器,耦接所述資料擷取裝置,經配置以:利用所述資料擷取裝置擷取在電池的一操作期間內自所述電池測得的多個特性值,並用以形成一特性曲線;對所述特性曲線執行曲線擬合以獲得曲線誤差;根據所述曲線誤差的大小,判定所述電池是否為正常;以及若判定結果為異常,對所述特性曲線執行步長曲率半徑分析,以判定所述電池是否為正常。
  12. 如請求項11所述的電池檢測裝置,其中所述處理器包括:對所述特性曲線執行多項式擬合,並調整多項式次方,使得由經調整多項式函數所構建的函數曲線擬合所述特性曲線;判斷所述經調整多項式函數的所述多項式次方是否小於預設次方;以及若所述多項式次方小於所述預設次方,對所述特性曲線執行所述步長曲率半徑分析。
  13. 如請求項12所述的電池檢測裝置,其中所述處理器包括:計算所述特性曲線的全範圍曲線誤差,並判斷所述全範圍曲線誤差與所述特性曲線的平均曲率的比值是否小於預設比值;若所述比值小於所述預設比值,判定所述電池為正常;以及若所述比值不小於所述預設比值,對所述多個特性值執行所述多項式擬合。
  14. 如請求項12所述的電池檢測裝置,其中所述處理器包括:使用至少一波峰函數對所述特性曲線執行波峰擬合,以找出所述特性曲線中符合所述至少一突波函數的至少一突波;判斷所找出的所述至少一突波的數目是否小於預設突波數;以及 若所述至少一突波的數目小於所述預設突波數,對所述特性曲線執行所述步長曲率半徑分析。
  15. 如請求項14所述的電池檢測裝置,其中所述處理器包括:若判斷所述多項式次方不小於所述預設次方且所述至少一突波的數目不小於所述預設突波數,使用自然函數構建自然函數曲線;確認所述特性曲線中是否包括所述自然函數曲線;以及若所述特性曲線中不包括所述自然函數曲線,對所述特性曲線執行所述步長曲率半徑分析。
  16. 如請求項11所述的電池檢測裝置,其中所述處理器包括:區分所述特性曲線為多個第一區段,其中各所述第一區段中所包括的多個有效點的數目大於預設數目;根據各所述第一區段中的所述有效點的特性值,找出多個特性值群,並計算所述特性值群之間的集合值誤差,以判斷所述特性值群是否具有集中性;以及若判定所述特性值群具有集中性,根據所述特性值群的所述集合值誤差,判斷所述電池是否正常。
  17. 如請求項16所述的電池檢測裝置,其中所述處理器包括: 在判定所述特性值群具有所述集中性時,區分所述特性曲線為多個第二區段,所述第二區段的長度小於所述第一區段的長度;判斷各所述第二區段中的所述特性曲線的斜率變化是否小於預設比率;以及若所述斜率變化不小於所述預設比率,根據所述特性值群的所述集合值誤差,判斷所述電池是否正常。
  18. 如請求項17所述的電池檢測裝置,其中所述處理器更包括:在所述斜率變化不小於所述預設比率時,根據所述特性值群的所述集合值誤差及所述電池的溫度曲線中是否包括異常點,判斷所述電池是否正常。
  19. 如請求項16所述的電池檢測裝置,其中所述處理器更包括:根據各所述第一區段的所述特性曲線的斜率變化,判斷是否包括突波;以及若判定所述特性值群具有集中性且所述特性曲線包括所述突波,根據所述特性值群的所述集合值誤差,判斷所述電池是否正常。
  20. 如請求項16所述的電池檢測裝置,其中所述處理器在判斷所述電池為異常時,更根據所述集合值誤差發生異常的所述第一區段在所述特性曲線中的位置,判斷電池異常的種類。
TW111137594A 2022-04-15 2022-10-03 電池檢測方法及裝置 TWI819831B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/152,771 US20230333168A1 (en) 2022-04-15 2023-01-11 Method and device for battery detection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263331260P 2022-04-15 2022-04-15
US63/331,260 2022-04-15

Publications (2)

Publication Number Publication Date
TWI819831B true TWI819831B (zh) 2023-10-21
TW202343013A TW202343013A (zh) 2023-11-01

Family

ID=88360819

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111137594A TWI819831B (zh) 2022-04-15 2022-10-03 電池檢測方法及裝置

Country Status (2)

Country Link
CN (1) CN116908687A (zh)
TW (1) TWI819831B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117706387B (zh) * 2023-12-15 2024-08-09 佛山数港科技有限公司 电池健康状态监测方法、装置、电子设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5923148A (en) * 1996-02-01 1999-07-13 Aims System, Inc. On-line battery monitoring system with defective cell detection capability
CN1848515A (zh) * 2005-04-04 2006-10-18 杰生自动技术有限公司 具有电池能量障壁测量功能的充电与诊断方法及其充电装置
US20100013489A1 (en) * 1999-11-01 2010-01-21 Vonderhaar J David Electronic battery tester
TW202142886A (zh) * 2020-05-11 2021-11-16 台達電子工業股份有限公司 檢查電力單元的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5923148A (en) * 1996-02-01 1999-07-13 Aims System, Inc. On-line battery monitoring system with defective cell detection capability
US20100013489A1 (en) * 1999-11-01 2010-01-21 Vonderhaar J David Electronic battery tester
CN1848515A (zh) * 2005-04-04 2006-10-18 杰生自动技术有限公司 具有电池能量障壁测量功能的充电与诊断方法及其充电装置
TW202142886A (zh) * 2020-05-11 2021-11-16 台達電子工業股份有限公司 檢查電力單元的方法

Also Published As

Publication number Publication date
CN116908687A (zh) 2023-10-20
TW202343013A (zh) 2023-11-01

Similar Documents

Publication Publication Date Title
CN112578298B (zh) 电池温度估算方法、装置、电子设备及存储介质
WO2021143592A1 (zh) 电池等效电路模型的建立方法、健康状态估算方法及装置
US10126373B2 (en) Inspection method of secondary battery
TWI819831B (zh) 電池檢測方法及裝置
CN105548895B (zh) 一种电池组性能测试方法和装置
CN107132481B (zh) 一种识别电池组中单体一致的方法及系统
JP2016170034A (ja) 電池残量予測装置及びバッテリパック
JP7543552B2 (ja) バッテリー診断装置、バッテリーシステム及びバッテリー診断方法
CN103529402A (zh) 高寒地区功率型动力锂离子电池低温充放电性能检测系统及方法
CN111487553A (zh) 一种电池单体一致性评价的方法及其装置
CN112378597A (zh) 电池包测试分析方法、装置及系统
CN114879066A (zh) 一种电池包一致性评估方法及系统
CN110780260A (zh) 一种用于对直流充电机的电能误差进行校验的系统及方法
TWI754943B (zh) 智慧電池裝置
US20130158912A1 (en) Apparatus for Measuring the State of Health of a Cell Pack
US20230333168A1 (en) Method and device for battery detection
CN103135063A (zh) 一种铅酸蓄电池的检测及监控方法
CN108761371B (zh) 基于线性度分析的冲击电压发生器校准方法
CN112666478A (zh) 一种梯次利用动力电池健康状态监测方法
CN115752846A (zh) 一种电池膨胀力检测方法、电池安全检测装置及系统
CN114649565A (zh) 一种锂电池化成分容设备的控制方法及系统
CN110297189B (zh) 一种电池模组中单串电池的一致性评估方法
KR102637308B1 (ko) 배터리 팩 불량 검출방법 및 이를 실행하는 장치
CN112964994A (zh) 一种电池最大电流测量方法及装置
CN113900034A (zh) 一种动力电池的检测方法及装置