TWI816370B - Optical system and aiming equipment - Google Patents

Optical system and aiming equipment Download PDF

Info

Publication number
TWI816370B
TWI816370B TW111114866A TW111114866A TWI816370B TW I816370 B TWI816370 B TW I816370B TW 111114866 A TW111114866 A TW 111114866A TW 111114866 A TW111114866 A TW 111114866A TW I816370 B TWI816370 B TW I816370B
Authority
TW
Taiwan
Prior art keywords
coupling
light
waveguide
optical system
optical
Prior art date
Application number
TW111114866A
Other languages
Chinese (zh)
Other versions
TW202242486A (en
Inventor
袁俊旗
馬玉勝
Original Assignee
大陸商南昌三極光電有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商南昌三極光電有限公司 filed Critical 大陸商南昌三極光電有限公司
Publication of TW202242486A publication Critical patent/TW202242486A/en
Application granted granted Critical
Publication of TWI816370B publication Critical patent/TWI816370B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G1/00Sighting devices
    • F41G1/06Rearsights
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B27/0103Head-up displays characterised by optical features comprising holographic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1842Gratings for image generation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B2005/1804Transmission gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • G02B2027/0174Head mounted characterised by optical features holographic

Abstract

The present invention discloses an optical system and aiming device. The optical system comprises: a wavefront modulation element having opposing first and second surfaces, the first surface of the wavefront modulation element is used for receiving a first light wave without a complete plane wavefront, and the second surface of the wavefront modulation element is used for emitting a second light wave with a complete plane wavefront which is beam shaped by the wavefront modulation element from the first light wave. The aiming equipment includes a housing and an optical system disposed in the housing. In the embodiment of the present invention, the size constraint of each element of the optical system can be reduced, while at the same time ensuring that the image quality will not be degraded.

Description

一種光學系統和瞄準設備An optical system and aiming device

本發明屬於光電子技術領域,特別涉及一種光學系統和瞄準設備。The invention belongs to the field of optoelectronics technology, and in particular relates to an optical system and aiming equipment.

波導承載入射光柵和出射光柵構成的光學系統被應用到了很多領域。在這樣的光學系統中,光線通過入射光柵入射到波導,入射到波導內的光線為平行光,平行光在波導內傳播,當平行光傳播到出射光柵時被耦合出波導。耦合出波導的光線在不具有完整平面波的情況下,影像品質不高。Optical systems composed of waveguides carrying incident gratings and exit gratings are used in many fields. In such an optical system, light enters the waveguide through the incident grating. The light incident into the waveguide is parallel light. The parallel light propagates in the waveguide. When the parallel light propagates to the exit grating, it is coupled out of the waveguide. The image quality of the light coupled out of the waveguide is not high without a complete plane wave.

本發明的實施例提供了一種光學系統和瞄準設備,該光學系統包括:具有相對的第一表面和第二表面的波前調製元件,波前調製元件的第一表面設置為接收不具有完整平面波前的第一光波,波前調製元件的第二表面設置為出射經過波前調製元件對非完整平面波前進行光束整形的具有完整平面波前的第二光波。瞄準設備包括殼體和設置在殼體中的上述光學系統。Embodiments of the present invention provide an optical system and a sighting device. The optical system includes: a wavefront modulation element having opposite first and second surfaces, the first surface of the wavefront modulation element being configured to receive a wave without a complete plane. In front of the first light wave, the second surface of the wavefront modulation element is configured to emit a second light wave with a complete plane wavefront that passes through the wavefront modulation element to perform beam shaping on the non-complete plane wavefront. The aiming device includes a housing and the above-mentioned optical system arranged in the housing.

本發明的目標,和特徵在某種程度上將在隨後的說明書中進行闡述,並且在某種程度上,基於對下文的考察研究對所屬技術領域中具有通常知識者而言將是顯而易見的,或者可以從本發明的實踐中得到教導。本發明的目標和其他優點可以通過下面的說明書,申請專利範圍,以及圖式中所特別指出的結構來實現和獲得。The objects, and features of the present invention will be set forth in the description which follows, to the extent that they will become apparent to those of ordinary skill in the art upon examination of the following, Or may be taught by practicing the invention. The objectives and other advantages of the present invention may be realized and obtained by the structure particularly pointed out in the following description, claims, and drawings.

以下將結合圖式及實施例來詳細說明本發明的實施方式,借此對本發明如何應用技術手段來解決技術問題,並達成相應技術效果的實現過程能充分理解並據以實施。本發明實施例以及實施例中的各個特徵,在不相衝突前提下可以相互結合,所形成的技術手段均在本發明的保護範圍之內。The embodiments of the present invention will be described in detail below with reference to the drawings and examples, so that the implementation process of how to apply technical means to solve technical problems and achieve corresponding technical effects of the present invention can be fully understood and implemented accordingly. The embodiments of the present invention and various features in the embodiments can be combined with each other without conflict, and the resulting technical means are within the protection scope of the present invention.

請參考圖1,H1為耦合輸入光柵,H2為耦合輸出光柵,耦合輸出光柵H2具有圖像。耦合輸入光柵H1和耦合輸出光柵H2分別貼合在波導300′的同一面。耦合輸入光柵H1、耦合輸出光柵H2和波導300′組成光學系統。平行光入射到耦合輸入光柵H1,並通過耦合輸入光柵H1耦合進入波導300′,平行光在波導裡進行全反射傳輸。平行光到達耦合輸出光柵H2時,耦合輸出光柵H2將平行光從波導300′耦合出射到人眼。從耦合輸出光柵H2出射的平行光的範圍稱為眼盒Eyebox。其中,入射的平行光的光束寬度PD與出射的平行光的光束寬度PD一致,光線在波導300′中傳輸的角度為θ,光線在波導300′中傳輸的全反射週期為 是波導300′的厚度。 Please refer to Figure 1. H1 is the coupling input grating, H2 is the coupling output grating, and the coupling output grating H2 has an image. The coupling-in grating H1 and the coupling-out grating H2 are respectively attached to the same surface of the waveguide 300'. The coupling input grating H1, the coupling output grating H2 and the waveguide 300' form an optical system. The parallel light is incident on the coupling-in grating H1 and is coupled into the waveguide 300' through the coupling-in grating H1. The parallel light is transmitted through total reflection in the waveguide. When the parallel light reaches the coupling output grating H2, the coupling output grating H2 couples the parallel light from the waveguide 300' to the human eye. The range of parallel light emitted from the coupling output grating H2 is called the Eyebox. Among them, the beam width PD of the incident parallel light is consistent with the beam width PD of the outgoing parallel light, the angle at which the light propagates in the waveguide 300' is θ, and the total reflection period of the light propagating in the waveguide 300' is is the thickness of the waveguide 300'.

上述光學系統可以應用在波導全息瞄準設備中,從波導300′中輸入到耦合輸出光柵H2表面的光線需要具有平面波前(wavefront),此時耦合輸出光柵H2才可以在遠場處無畸變清晰地衍射出圖像(因為記錄時採用的是平面波),平面波前代表光波的相位分佈為線性分佈。通常人眼觀察要求較大的眼盒Eyebox尺寸,例如25mm*25mm,為了保證平面波前,因此要求波導300′上的耦合輸入光柵H1需要和耦合輸出光柵H2的尺寸一樣大,也即是25mm*25mm,且波導300′中傳播的平行光的光束寬度PD在耦合輸入光柵H1表面和耦合輸出光柵H2表面的口徑要一樣大,傳輸的全反射週期為L要大於等於入射平行光的光束寬度PD,傳輸的全反射週期L與波導300′的厚度D有關。如果波導300′中傳輸的角度θ不改變,則還要求波導300′的厚度D較厚才可以保證平面波前。這些因素都導致為了獲取足夠好的圖像品質和足夠的眼盒Eyebox,必須要增加光學系統中各元件的橫向尺寸或縱向尺寸,這無疑導致光學系統體積大的缺點。如果平面波前無法保證,則最終得到的圖像將產生畸變和模糊,影響最終瞄準的效果。The above optical system can be applied in a waveguide holographic aiming device. The light input from the waveguide 300' to the surface of the coupling output grating H2 needs to have a plane wavefront (wavefront). At this time, the coupling output grating H2 can be clearly seen without distortion in the far field. The image is diffracted (because plane waves are used for recording), and the plane wavefront represents a linear distribution of the phase distribution of the light wave. Normally, human eye observation requires a larger eyebox size, such as 25mm*25mm. In order to ensure a plane wavefront, it is required that the coupling input grating H1 on the waveguide 300' needs to be the same size as the coupling output grating H2, that is, 25mm* 25mm, and the beam width PD of the parallel light propagating in the waveguide 300' must be the same size on the surface of the coupling input grating H1 and the surface of the coupling output grating H2, and the total reflection period of transmission L must be greater than or equal to the beam width PD of the incident parallel light. , the total reflection period L of transmission is related to the thickness D of the waveguide 300'. If the angle θ of transmission in the waveguide 300' does not change, the thickness D of the waveguide 300' is also required to be thicker to ensure a plane wave front. These factors all lead to the need to increase the horizontal or vertical size of each element in the optical system in order to obtain good enough image quality and enough eyeboxes, which undoubtedly leads to the disadvantage of a large optical system. If the plane wavefront cannot be guaranteed, the final image will be distorted and blurred, affecting the final aiming effect.

為了提供一種新的可降低光學系統各元件尺寸約束的手段,解決波導瞄準設備中的以上問題,且可以同時保證圖像品質不降低,本發明實施例公開了一種光學系統,其包括:具有相對的第一表面和第二表面的波前調製元件500,波前調製元件500的第一表面設置為接收不具有完整平面波前的第一光波,波前調製元件500的第二表面設置為出射經過波前調製元件500對第一光波進行光束整形的具有完整平面波前的第二光波。In order to provide a new method that can reduce the size constraints of each element of the optical system, solve the above problems in the waveguide aiming device, and ensure that the image quality is not reduced at the same time, an embodiment of the present invention discloses an optical system, which includes: A first surface and a second surface of the wavefront modulation element 500, the first surface of the wavefront modulation element 500 is configured to receive the first light wave that does not have a complete plane wavefront, and the second surface of the wavefront modulation element 500 is configured to emit through The wavefront modulation element 500 beam-shapes the first light wave into a second light wave having a complete plane wavefront.

波前調製元件500對不具有完整平面波前的第一光波進行光束整形,可以通過對第一光波的振幅和相位進行光束整形得到第二光波,第二光波具有完整平面波前。通過波前調製元件500的第二表面出射的第二光波可以設置為照射圖層元件600(傅立葉全息圖),圖層元件600設置為接收第二光波並呈現圖層元件600記錄的圖像,圖層元件600可以高品質呈現圖像。由於波前調製元件500可以將不具有完整平面波前的第一光波調製為具有完整平面波前的第二光波,波前調製元件500可以配合出射不具有完整平面波前的第一光波的光學系統使用,出射不具有完整平面波前的第一光波的光學系統的尺寸則不受橫向尺寸或縱向尺寸的限制,這樣的光學系統的體積可以更加緊湊。The wavefront modulation element 500 performs beam shaping on the first light wave that does not have a complete plane wavefront, and can obtain a second light wave by performing beam shaping on the amplitude and phase of the first light wave, and the second light wave has a complete plane wavefront. The second light wave emerging through the second surface of the wavefront modulation element 500 may be arranged to illuminate the layer element 600 (Fourier hologram), the layer element 600 being arranged to receive the second light wave and present the image recorded by the layer element 600 , the layer element 600 Images can be rendered with high quality. Since the wavefront modulation element 500 can modulate a first light wave without a complete plane wavefront into a second light wave with a complete plane wavefront, the wavefront modulation element 500 can be used with an optical system that emits a first light wave without a complete plane wavefront, The size of the optical system that emits the first light wave without a complete plane wavefront is not limited by the lateral size or the longitudinal size, and the volume of such an optical system can be more compact.

在一些實施例中,第一光波包括多個分段的平面波,多個分段的平面波中的至少兩個相鄰的平面波部分交疊。分段的平面波不具有完整平面波前,例如,圖2示出的光學系統,光學系統包括波導300,以及貼合在波導300同一面的耦合輸入光柵401和耦合輸出光柵402。平行光入射到耦合輸入光柵401,並通過耦合輸入光柵401耦合進入波導300,平行光在波導300裡進行全反射傳輸。平行光到達耦合輸出光柵402時,耦合輸出光柵402將平行光從波導300耦合出射到人眼。從耦合輸出光柵402出射的平行光的範圍稱為眼盒Eyebox。入射的平行光的光束寬度PD可以大於光線在波導300中傳輸的全反射週期為 ,光線在波導300中傳輸的角度為θ,D是波導300的厚度。通過耦合輸出光柵402出射的第一光波中,包括第一分段的平面波(1st)和第二分段的平面波(2nd),第一分段的平面波和第二分段的平面波發生交疊,第一光波的光束複振幅場包括了兩個分段的平面波的和,每個分段的平面波場具有不同振幅和不同相位的總的波場。 In some embodiments, the first light wave includes a plurality of segmented plane waves, and at least two adjacent plane waves in the plurality of segmented plane waves partially overlap. Segmented plane waves do not have a complete plane wavefront. For example, the optical system shown in FIG. 2 includes a waveguide 300 and a coupling-in grating 401 and a coupling-out grating 402 attached to the same surface of the waveguide 300 . The parallel light is incident on the coupling-in grating 401 and is coupled into the waveguide 300 through the coupling-in grating 401. The parallel light is transmitted through total reflection in the waveguide 300. When the parallel light reaches the coupling-out grating 402, the coupling-out grating 402 couples the parallel light out from the waveguide 300 to the human eye. The range of parallel light emitted from the coupling-out grating 402 is called an eyebox. The beam width PD of the incident parallel light may be greater than the total reflection period of the light propagating in the waveguide 300 as , the angle at which light propagates in the waveguide 300 is θ, and D is the thickness of the waveguide 300 . The first light wave emitted through the coupling output grating 402 includes a first segmented plane wave (1st) and a second segmented plane wave (2nd). The first segmented plane wave and the second segmented plane wave overlap. The beam complex amplitude field of the first light wave includes the sum of two segmented plane waves, and each segmented plane wave field has a total wave field with different amplitudes and different phases.

第一分段的平面波具有平面波波前 ,其中, 為第一分段的平面波在 位置處的振幅分佈, 為第一分段的平面波在 位置處的相位分佈。第二分段的平面波具有平面波波前 ,其中, 為第二分段的平面波在 位置處的振幅分佈, 為第二分段的平面波在 位置處的相位分佈。第一光波的波前 為第一光波在 位置處的振幅分佈, 為第一光波在 位置處的相位分佈。通過對第一光波的振幅和相位進行光束整形,波前調製元件500可以將不具有完整平面波前的第一光波調製為具有完整平面波前的第二光波。 The first segmented plane wave has a plane wave front ,in, is the first segmented plane wave in Amplitude distribution at location, is the first segmented plane wave in Phase distribution at location. The second segmented plane wave has a plane wave front ,in, is the second segmented plane wave in Amplitude distribution at location, is the second segmented plane wave in Phase distribution at location. wavefront of first light wave , for the first light wave in Amplitude distribution at location, for the first light wave in Phase distribution at location. By beam shaping the amplitude and phase of the first light wave, the wavefront modulation element 500 can modulate the first light wave without a complete plane wavefront into a second light wave with a complete plane wavefront.

在一些實施例中,為了增加使用舒適度,可以增加眼盒Eyebox的尺寸,例如通過在波導300中對光束進行多次擴展,第一光波不具有完整平面波前,第一光波為 ,其中, 為第 個分段的在 位置處的光波, 為第一光波在 位置處的振幅分佈, 為第一光波在 位置處的相位分佈。為了使經波前調製元件500的第二表面出射的第二光波具有平面波前,第二光波為 ,其中, 為常數, 為正比例函數,波前調製元件500具有複振幅透過率 ,其中,波前調製元件500的振幅透過率分佈 ,波前調製元件500的相位分佈 ,其中, 為整數。 In some embodiments, in order to increase the comfort of use, the size of the Eyebox can be increased, for example, by expanding the light beam multiple times in the waveguide 300. The first light wave does not have a complete plane wavefront, and the first light wave is ,in, for the first segmented in The light wave at the location, for the first light wave in Amplitude distribution at location, for the first light wave in Phase distribution at location. In order to make the second light wave emitted through the second surface of the wavefront modulation element 500 have a plane wavefront, the second light wave is ,in, is a constant, is a proportional function, and the wavefront modulation element 500 has a complex amplitude transmittance , where the amplitude transmittance distribution of the wavefront modulation element 500 , the phase distribution of the wavefront modulation element 500 ,in, is an integer.

經波前調製元件500的第二表面出射的第二光波 ,為了保證出射的第二光波為平面波前,要求 的振幅為常數, 的相位為線性相位,也即是: 。其中, 為常數, 為正比例函數,例如, 為波數, 為入射到圖層元件600的角度,當正入射時, 。圖層元件600的記錄光的波前相位分佈為 。波前調製元件500在每一個位置 上達到複振幅透過率為 的調製,其中,波前調製元件500的振幅透過率 ,波前調製元件500的相位分佈 為相位設計自由度,其不影響相位調整的效果。 The second light wave emitted through the second surface of the wavefront modulation element 500 , in order to ensure that the emitted second light wave is a plane wavefront, it is required The amplitude of is constant, The phase of is a linear phase, that is: . in, is a constant, is a proportional function, for example, , is the wave number, is the angle of incidence to layer element 600. When the incidence is normal, . The wavefront phase distribution of the recording light of the layer element 600 is . Wavefront modulation element 500 achieves complex amplitude transmittance at each position modulation, where the amplitude transmittance of the wavefront modulation element 500 , the phase distribution of the wavefront modulation element 500 , It is a degree of freedom for phase design, which does not affect the effect of phase adjustment.

在一些實施例中,圖層元件600接收第二光波並呈現圖層元件600記錄的圖像。圖層元件600(傅立葉全息圖)可以通過平面波前記錄。記錄傅立葉全息圖,選擇平面波,一方面在於平面波容易獲取,另一方面原因在於平面波前可以附加常數相位,因而實際使用時,只需要入射到全息圖上角度正確即可。經波前調製元件500調製出射的第二光波 為平面波前,當其照射到圖層元件600上時,便可以獲得物體的傅立葉頻譜光 ,圖層元件600記錄光的波前相位分佈為 ,因而人眼便可以觀察到圖像強度分佈 ,也即是: ,FT為傅立葉變換過程,||為求模運算。 In some embodiments, layer element 600 receives the second light wave and renders the image recorded by layer element 600 . Layer element 600 (Fourier hologram) can be recorded by a planar wavefront. To record Fourier holograms, plane waves are chosen. On the one hand, plane waves are easy to obtain, and on the other hand, a constant phase can be added to the plane wave front. Therefore, in actual use, it only needs to be incident on the hologram at the correct angle. The second light wave emitted is modulated by the wavefront modulation element 500 is a plane wavefront. When it is illuminated on the layer element 600, the Fourier spectrum light of the object can be obtained. , the wavefront phase distribution of the light recorded by the layer element 600 is , so the human eye can observe the image intensity distribution , that is: , FT is the Fourier transform process, || is the modular operation.

在一些實施例中,波前調製元件500可以通過全息製作工藝加工而成。利用全息製作工藝使波前調製元件500具有複振幅透過率 In some embodiments, the wavefront modulation element 500 can be fabricated through a holographic fabrication process. The wavefront modulation element 500 is provided with complex amplitude transmittance using a holographic manufacturing process. .

在一些實施例中,參考圖3,波前調製元件500包括第一光學元件501和第二光學元件502,第一光學元件501具有振幅透過率分佈 ,第二光學元件502具有相位分佈 。波前調製元件500可以是通過兩個光學元件分別對振幅和相位進行調製。第一光學元件501和第二光學元件502可以是利用全息製作工藝製成。 In some embodiments, referring to Figure 3, wavefront modulation element 500 includes a first optical element 501 and a second optical element 502, the first optical element 501 having an amplitude transmittance distribution , the second optical element 502 has a phase distribution . The wavefront modulation element 500 can respectively modulate the amplitude and phase through two optical elements. The first optical element 501 and the second optical element 502 may be made using a holographic manufacturing process.

在一些實施例中,第一光學元件501和第二光學元件502貼合在一起,第一表面位於第一光學元件501的遠離第二光學元件502的一側或位於第二光學元件502的遠離第一光學元件501的一側,第二表面位於第二光學元件502的遠離第一光學元件501的一側或位於第一光學元件501的遠離第二光學元件502的一側。第一光學元件501設置為對振幅進行調製,第二光學元件502設置為對相位進行調製。第一光波可以先進入第二光學元件502進行相位調製,然後再進入第一光學元件501進行振幅調製得到第二光波,或者,第一光波可以先進入第一光學元件501進行振幅調製,然後再進入第二光學元件502進行相位調製得到第二光波。In some embodiments, the first optical element 501 and the second optical element 502 are bonded together, and the first surface is located on a side of the first optical element 501 away from the second optical element 502 or on a side far away from the second optical element 502 On one side of the first optical element 501 , the second surface is located on the side of the second optical element 502 away from the first optical element 501 or on the side of the first optical element 501 away from the second optical element 502 . The first optical element 501 is configured to modulate the amplitude, and the second optical element 502 is configured to modulate the phase. The first light wave may first enter the second optical element 502 for phase modulation, and then enter the first optical element 501 for amplitude modulation to obtain the second light wave. Alternatively, the first light wave may first enter the first optical element 501 for amplitude modulation, and then enter the first optical element 501 for amplitude modulation. It enters the second optical element 502 for phase modulation to obtain a second light wave.

在一些實施例中,參考圖4和圖5,光學系統包括波前調製元件500以及光源101、耦合輸入元件401、波導300、耦合輸出光柵402、圖層元件600。光源101設置為發射光線;耦合輸入元件401設置為接收光源101發射的光線並將光線折轉;波導300設置為接收耦合輸入元件401折轉的光線並在波導300內以大於全反射角的方式傳播光線;耦合輸出光柵402設置為將波導300內傳播的光線耦合出波導300,波導300出射的光線為第一光波;圖層元件600設置為接收第二光波並呈現圖層元件600記錄的圖像。第一光波被波前調製元件500調製形成第二光波,第二光波照射到圖層元件600,圖像進入人眼700,人眼700可以觀察到清晰無畸變的圖像701。In some embodiments, referring to FIGS. 4 and 5 , the optical system includes a wavefront modulation element 500 as well as a light source 101 , a coupling-in element 401 , a waveguide 300 , a coupling-out grating 402 , and a layer element 600 . The light source 101 is configured to emit light; the coupling element 401 is configured to receive the light emitted by the light source 101 and refract the light; the waveguide 300 is configured to receive the light refracted by the coupling element 401 and transmit it in the waveguide 300 in a manner that is greater than the total reflection angle. Propagate light; the coupling-out grating 402 is configured to couple the light propagating in the waveguide 300 out of the waveguide 300, and the light emitted from the waveguide 300 is the first light wave; the layer element 600 is configured to receive the second light wave and present the image recorded by the layer element 600. The first light wave is modulated by the wavefront modulation element 500 to form a second light wave. The second light wave irradiates the layer element 600, and the image enters the human eye 700. The human eye 700 can observe a clear and distortion-free image 701.

耦合輸入元件401將光源101發射的光線折轉為平行光射入波導300中,平行光在波導300中傳播直到遇到耦合輸出光柵402將平行光耦合出波導300。通過耦合輸出光柵402出射的第一光波可以不具有完整平面波前,因此耦合輸入元件401和耦合輸出光柵402的光束尺寸不要求一致,耦合輸出光柵402的表面光束的口徑可以遠大於耦合輸入元件401的表面光束輸入口徑,光線在波導300內傳輸的全反射週期為L可小於入射光束的寬度PD,參考圖2,兩次擊中耦合輸出光柵402的光束可以發生交疊,最終從耦合輸出光柵402表面的出射光線不具有完整平面波前(而是分段的)。光學系統的各元件的尺寸可以減小,光學系統的整體體積可以更加緊湊,例如,有效降低對耦合輸入元件401的尺寸,波導300厚度,以及常產生輸入光的準直系統的體積,同時圖層元件600出射的影像品質也能得到保證。The coupling-in element 401 refracts the light emitted by the light source 101 into parallel light and enters the waveguide 300 . The parallel light propagates in the waveguide 300 until it encounters the coupling-out grating 402 and couples the parallel light out of the waveguide 300 . The first light wave emitted through the coupling-out grating 402 may not have a complete plane wavefront, so the beam sizes of the coupling-in element 401 and the coupling-out grating 402 are not required to be consistent. The surface beam diameter of the coupling-out grating 402 may be much larger than that of the coupling-in element 401 The surface beam input aperture, the total reflection period L of light propagating in the waveguide 300 can be smaller than the width PD of the incident beam. Referring to Figure 2, the beams hitting the coupling output grating 402 twice can overlap, and finally the coupling output grating 402 can overlap. The emerging ray from the 402 surface does not have a complete plane wavefront (but is segmented). The size of each element of the optical system can be reduced, and the overall volume of the optical system can be more compact. For example, the size of the coupling input element 401, the thickness of the waveguide 300, and the volume of the collimation system that often generates input light can be effectively reduced, while the layer The quality of the image emitted by the element 600 can also be guaranteed.

其中,耦合輸入元件401和耦合輸出光柵402分別與波導300的至少一個平面平行設置。例如,耦合輸入元件401為耦合輸入光柵時,耦合輸入光柵和耦合輸出光柵402分別與波導300的兩個相對的平面平行設置,或者,耦合輸入光柵和耦合輸出光柵402均與波導300的一個平面平行設置。耦合輸入元件401和耦合輸出光柵402均與波導300貼合設置。例如,耦合輸入元件401為耦合輸入光柵時,耦合輸入光柵可以和耦合輸出光柵402貼合在波導300的一面(參考圖4),耦合輸入光柵也可以和耦合輸出光柵402分別貼合在波導300的兩面。耦合輸入光柵可以和耦合輸出光柵402貼合在波導300靠近人眼700的一面,耦合輸入光柵也可以和耦合輸出光柵402貼合在波導300遠離人眼700的一面。Wherein, the coupling-in element 401 and the coupling-out grating 402 are respectively arranged parallel to at least one plane of the waveguide 300 . For example, when the coupling-in element 401 is a coupling-in grating, the coupling-in grating and the coupling-out grating 402 are respectively arranged parallel to two opposite planes of the waveguide 300 , or the coupling-in grating and the coupling-out grating 402 are both aligned with one plane of the waveguide 300 . Parallel setting. Both the coupling-in element 401 and the coupling-out grating 402 are arranged closely with the waveguide 300 . For example, when the coupling-in element 401 is a coupling-in grating, the coupling-in grating and the coupling-out grating 402 can be attached to one side of the waveguide 300 (refer to FIG. 4 ), or the coupling-in grating and the coupling-out grating 402 can be attached to the waveguide 300 respectively. both sides. The coupling-in grating can be attached to the coupling-out grating 402 on the side of the waveguide 300 close to the human eye 700 , and the coupling-in grating can also be attached to the coupling-out grating 402 on the side of the waveguide 300 away from the human eye 700 .

波前調製元件500和圖層元件600設置在靠近人眼700的一側。波前調製元件500和圖層元件600平行設置。波前調製元件500和耦合輸出光柵402平行設置。如果耦合輸出光柵402設置在波導300的靠近人眼700的一側,則波前調製元件500的第一表面可以貼合在耦合輸出光柵402上。耦合輸出光柵402可以設置在波導300的遠離人眼700的一側,波前調製元件500的第一表面可以與波導300有預定間隔。The wavefront modulation element 500 and the layer element 600 are disposed on the side close to the human eye 700 . The wavefront modulation element 500 and the layer element 600 are arranged in parallel. The wavefront modulation element 500 and the coupling-out grating 402 are arranged in parallel. If the outcoupling grating 402 is disposed on the side of the waveguide 300 close to the human eye 700 , the first surface of the wavefront modulation element 500 can be attached to the outcoupling grating 402 . The coupling-out grating 402 may be disposed on a side of the waveguide 300 away from the human eye 700 , and the first surface of the wavefront modulation element 500 may have a predetermined distance from the waveguide 300 .

波導300可以是透明光學塑膠或者玻璃材質,其具有折射率n,光線在波導300的傳輸角度θ滿足 ,光線可以在波導300中以全反射的方式傳播。耦合輸出光柵402、波前調製元件500和圖層元件600均可以透射環境光,人眼700可以通過波導300、耦合輸出光柵402、波前調製元件500和圖層元件600看到真實環境光。 The waveguide 300 can be made of transparent optical plastic or glass, which has a refractive index n, and the transmission angle θ of light in the waveguide 300 satisfies , the light can propagate in the waveguide 300 in a total reflection manner. The coupling-out grating 402, the wavefront modulation element 500 and the layer element 600 can all transmit ambient light, and the human eye 700 can see the real ambient light through the waveguide 300, the coupling-out grating 402, the wavefront modulation element 500 and the layer element 600.

在一些實施例中,波前調製元件500的第二表面與圖層元件600貼合設置。波前調製元件500的第二表面出射第二光波,第二光波具有完整平面波前,第二光波照射到圖層元件600,人眼700可以看到圖層元件600記錄的圖像。In some embodiments, the second surface of the wavefront modulation element 500 is disposed in contact with the layer element 600 . The second surface of the wavefront modulation element 500 emits a second light wave. The second light wave has a complete plane wavefront. The second light wave irradiates the layer element 600 and the human eye 700 can see the image recorded by the layer element 600 .

在一些實施例中,參考圖4,光源101可以是點光源。點光源101發射單色光進入耦合輸入光柵,經耦合輸入光柵折轉進入波導300得到在波導300中傳輸的平行光。In some embodiments, referring to Figure 4, light source 101 may be a point light source. The point light source 101 emits monochromatic light into the coupling grating, and is refracted into the waveguide 300 through the coupling grating to obtain parallel light transmitted in the waveguide 300 .

在一些實施例中,光學系統還包括準直元件201,準直元件201設置在光源101和耦合輸入元件401之間的光路中,準直元件201設置為將光源101發射的光線進行準直並將準直後的光線朝耦合輸入元件401發射。準直元件201可以將點光源101發射的光線準直在平行光,耦合輸入光柵將平行光折轉入波導300中。In some embodiments, the optical system further includes a collimating element 201. The collimating element 201 is disposed in the optical path between the light source 101 and the coupling-in element 401. The collimating element 201 is configured to collimate the light emitted by the light source 101 and The collimated light is emitted toward the coupling-in element 401 . The collimating element 201 can collimate the light emitted by the point light source 101 into parallel light, and the coupled input grating refracts the parallel light into the waveguide 300 .

在一些實施例中,參考圖5,光學系統包括的耦合輸入元件401可以是耦合輸入稜鏡,耦合輸入稜鏡將光源101發射的光線折轉進波導300中。耦合輸入稜鏡可以跟波導300的一個側面貼合,耦合輸出光柵402跟波導300的另一個面貼合,這兩個面不平行。另外,光學系統還可以包括準直元件201,準直元件201設置在光源101和耦合輸入稜鏡之間的光路中,準直元件201用於將光源101發射的光線進行準直並將準直後的光線朝耦合輸入稜鏡發射,耦合輸入稜鏡將準直的光線折轉入波導300中。準直元件201和光源101均可以設置在靠近所述波導的側面位置處。耦合輸入稜鏡替代耦合輸入光柵,可以提高光能利用率。In some embodiments, referring to FIG. 5 , the coupling element 401 included in the optical system may be a coupling element that refracts the light emitted by the light source 101 into the waveguide 300 . The coupling input grating 402 can be coupled to one side of the waveguide 300, and the coupling output grating 402 can be coupled to the other side of the waveguide 300. The two surfaces are not parallel. In addition, the optical system may also include a collimating element 201. The collimating element 201 is disposed in the optical path between the light source 101 and the coupling input lens. The collimating element 201 is used to collimate the light emitted by the light source 101 and collimate the light. The light rays are emitted toward the coupling inlet, which refracts the collimated light into the waveguide 300 . Both the collimating element 201 and the light source 101 may be positioned close to the side of the waveguide. Coupling input gratings instead of coupling input gratings can improve light energy utilization.

在一些實施例中,耦合輸出光柵402與波導300貼合的長度大於耦合輸入元件401與波導300貼合的長度。光學系統的尺寸可以減小,但是影像品質不會降低,人眼700可以看到清晰無畸變的圖像。In some embodiments, the length at which the coupling-out grating 402 is coupled to the waveguide 300 is greater than the length at which the coupling-in element 401 is coupled to the waveguide 300 . The size of the optical system can be reduced, but the image quality will not be reduced. The human eye can see clear and distortion-free images.

在上述的光學系統中,圖層元件600呈現瞄準影像(圖像)可以用於全息瞄準設備。全息瞄準設備包括殼體和上述的光學系統,光學系統設置在殼體中。這樣的全息瞄準設備可以利用全息波導折疊光路和光柵易集成優勢,降低了全息瞄準設備的體積,解除傳統波導瞄準對部件的限制,同時不降低影像品質。In the above-mentioned optical system, the layer element 600 presents a aiming image (image) that can be used in a holographic aiming device. The holographic aiming device includes a housing and the above-mentioned optical system, and the optical system is arranged in the housing. Such a holographic aiming device can take advantage of the foldable optical path of the holographic waveguide and the easy integration of gratings, reducing the size of the holographic aiming device and lifting the limitations of traditional waveguide aiming on components without reducing image quality.

以上所述,僅為本發明較佳的具體實施方式,但本發明的保護範圍並不局限於此,任何所屬技術領域中具有通常知識者在本發明所揭露的技術範圍內,可輕易想到的變化或替換,都應涵蓋在本發明的保護範圍之內。因此,本發明的保護範圍應該以申請專利範圍的保護範圍為準。The above are only preferred specific embodiments of the present invention, but the protection scope of the present invention is not limited thereto. Anyone with ordinary knowledge in the relevant technical field can easily think of various solutions within the technical scope disclosed in the present invention. Any changes or substitutions shall be included in the protection scope of the present invention. Therefore, the protection scope of the present invention should be subject to the protection scope of the patent application.

101:光源 201:準直元件 300,300′:波導 401:耦合輸入元件(圖2) 500:波前調製元件 501:第一光學元件 502:第二光學元件 600:圖層元件 700:人眼 701:圖像 D:厚度 PD:光束寬度 H 1,401:耦合輸入光柵(圖4) H 2,402:耦合輸出光柵 L:傳輸的全反射週期 2nd:第二分段的平面波 1st:第一分段的平面波 101: Light source 201: Collimation element 300, 300': Waveguide 401: Coupling element (Fig. 2) 500: Wavefront modulation element 501: First optical element 502: Second optical element 600: Layer element 700: Human eye 701: Figure Image D: thickness PD: beam width H 1 , 401: coupling input grating (Fig. 4) H 2 , 402: coupling output grating L: total reflection period of transmission 2nd: second segmented plane wave 1st: first segmented plane wave

圖式用來提供對本發明的技術手段或先前技術的進一步理解,並且構成說明書的一部分。其中,表達本發明實施例的圖式與本發明的實施例一起用於解釋本發明的技術手段,但並不構成對本發明技術手段的限制。 〔圖1〕是一種光學系統的結構示意圖。 〔圖2〕是另一光學系統的結構示意圖。 〔圖3〕是本發明實施例的波前調製元件的結構示意圖。 〔圖4〕是根據本發明實施例的光學系統的結構示意圖。 〔圖5〕是根據本發明另一實施例的光學系統的結構示意圖。 〔圖6〕是根據本發明一實施例的瞄準設備的示意圖。 The drawings are used to provide a further understanding of the technical means of the present invention or the prior art, and constitute a part of the specification. Among them, the drawings expressing the embodiments of the present invention are used together with the embodiments of the present invention to explain the technical means of the present invention, but do not constitute a limitation on the technical means of the present invention. [Figure 1] is a schematic structural diagram of an optical system. [Figure 2] is a schematic structural diagram of another optical system. [Fig. 3] is a schematic structural diagram of a wavefront modulation element according to an embodiment of the present invention. [Fig. 4] is a schematic structural diagram of an optical system according to an embodiment of the present invention. [Fig. 5] is a schematic structural diagram of an optical system according to another embodiment of the present invention. [Fig. 6] is a schematic diagram of a aiming device according to an embodiment of the present invention.

101:光源 101:Light source

201:準直元件 201:Collimation element

300:波導 300:Waveguide

401:耦合輸入元件 401: Coupling input element

402:耦合輸出光柵 402: Coupling output grating

500:波前調製元件 500: Wavefront modulation element

600:圖層元件 600:Layer component

700:人眼 700: human eye

701:圖像 701:Image

Claims (10)

一種光學系統,其特徵係包括:具有相對的第一表面和第二表面的波前調製元件(500),其中,該波前調製元件(500)的該第一表面設置為接收波導(300)上的耦合輸出光柵(402)出射的不具有完整平面波前的第一光波,該波前調製元件(500)的該第二表面設置為出射經過該波前調製元件(500)對該第一光波進行光束整形的具有完整平面波前的第二光波;其中,該第一光波包括多個分段的平面波,多個分段的平面波中的至少兩個相鄰的平面波部分交疊。 An optical system, characterized by comprising: a wavefront modulation element (500) having opposite first and second surfaces, wherein the first surface of the wavefront modulation element (500) is configured as a receiving waveguide (300) The first light wave that does not have a complete plane wavefront is emitted from the coupling output grating (402), and the second surface of the wavefront modulation element (500) is configured to emit the first light wave through the wavefront modulation element (500). A second light wave having a complete plane wavefront for beam shaping; wherein the first light wave includes a plurality of segmented plane waves, and at least two adjacent plane waves in the plurality of segmented plane waves partially overlap. 如請求項1所述之光學系統,其中,該第一光波為
Figure 111114866-A0305-02-0014-1
,其中,W n (x)為第n個分段的在x位置處的光波,A(x)為該第一光波在x位置處的振幅分佈,φ(x)為該第一光波在x位置處的相位分佈;該第二光波為V(x)=α exp[(x)],其中,α為常數,β(x)為正比例函數,該波前調製元件(500)具有複振幅透過率
Figure 111114866-A0305-02-0014-4
,其中,該波前調製元件(500)的振幅透過率分佈
Figure 111114866-A0305-02-0014-2
,該波前調製元件(500)的相位分佈
Figure 111114866-A0305-02-0014-3
,其中,m為整數。
The optical system as claimed in claim 1, wherein the first light wave is
Figure 111114866-A0305-02-0014-1
, where W n ( x ) is the n -th segmented light wave at the x position, A ( x ) is the amplitude distribution of the first light wave at the x position, φ ( x ) is the first light wave at the x position The phase distribution at the position; the second light wave is V ( x ) = α exp [ ( x )], where α is a constant, β ( x ) is a proportional function, and the wavefront modulation element (500) has a complex amplitude transmittance
Figure 111114866-A0305-02-0014-4
, where the amplitude transmittance distribution of the wavefront modulation element (500)
Figure 111114866-A0305-02-0014-2
, the phase distribution of the wavefront modulation element (500)
Figure 111114866-A0305-02-0014-3
, where m is an integer.
如請求項2所述之光學系統,其中,該波前調製元件(500)通過全息製作工藝加工而成。 The optical system according to claim 2, wherein the wavefront modulation element (500) is processed through a holographic manufacturing process. 如請求項2所述之光學系統,其中,該波前調製元件(500)包括第一光學元件(501)和第二光學元件(502),該第一光學元件(501)具有 振幅透過率分佈
Figure 111114866-A0305-02-0015-5
,該第二光學元件(502)具有相位分佈
Figure 111114866-A0305-02-0015-6
The optical system according to claim 2, wherein the wavefront modulation element (500) includes a first optical element (501) and a second optical element (502), and the first optical element (501) has an amplitude transmittance distribution
Figure 111114866-A0305-02-0015-5
, the second optical element (502) has a phase distribution
Figure 111114866-A0305-02-0015-6
.
如請求項4所述之光學系統,其中,該第一光學元件(501)和該第二光學元件(502)貼合在一起,該第一表面位於該第一光學元件(501)的遠離該第二光學元件(502)的一側或位於該第二光學元件(502)的遠離該第一光學元件(501)的一側,該第二表面位於該第二光學元件(502)的遠離該第一光學元件(501)的一側或位於該第一光學元件(501)的遠離該第二光學元件(502)的一側。 The optical system of claim 4, wherein the first optical element (501) and the second optical element (502) are bonded together, and the first surface is located away from the first optical element (501). One side of the second optical element (502) or a side of the second optical element (502) away from the first optical element (501), and the second surface is located on a side of the second optical element (502) away from the first optical element (501). One side of the first optical element (501) or a side of the first optical element (501) away from the second optical element (502). 如請求項1至5中任一項所述之光學系統,其中,該光學系統還包括:光源(101),該光源(101)設置為發射光線;耦合輸入元件(401),該耦合輸入元件(401)設置為接收該光源(101)發射的光線並將光線折轉;該波導(300),該波導(300)設置為接收該耦合輸入元件(401)折轉的光線並在該波導(300)內以大於全反射角的方式傳播光線;該耦合輸出光柵(402),該耦合輸出光柵(402)設置為將該波導(300)內傳播的光線耦合出該波導(300),其中,該波導(300)出射的光線為該第一光波;圖層元件(600),該圖層元件(600)設置為接收該第二光波並呈現該圖層元件(600)記錄的圖像;其中,該耦合輸入元件(401)和該耦合輸出光柵(402)均與該波導(300) 貼合設置。 The optical system according to any one of claims 1 to 5, wherein the optical system further includes: a light source (101) configured to emit light; a coupling-in element (401), the coupling-in element (401) is configured to receive the light emitted by the light source (101) and refract the light; the waveguide (300), the waveguide (300) is configured to receive the refracted light of the coupling input element (401) and refract the light in the waveguide (300). The light propagates in 300) in a manner greater than the total reflection angle; the coupling output grating (402), the coupling output grating (402) is configured to couple the light propagating in the waveguide (300) out of the waveguide (300), where, The light emitted from the waveguide (300) is the first light wave; the layer element (600) is configured to receive the second light wave and present the image recorded by the layer element (600); wherein, the coupling The input element (401) and the coupling output grating (402) are both connected to the waveguide (300) Fit settings. 如請求項6所述之光學系統,其中,該耦合輸入元件(401)選自耦合輸入光柵、耦合輸入稜鏡構成的組中的一個;其中,該光學系統還包括準直元件(201),該準直元件(201)設置在該光源(101)和該耦合輸入元件(401)之間的光路中,該準直元件(201)設置為將該光源(101)發射的光線進行準直並將準直後的光線朝該耦合輸入元件(401)發射。 The optical system as claimed in claim 6, wherein the coupling-in element (401) is selected from the group consisting of a coupling-in grating and a coupling-in lens; wherein the optical system further includes a collimating element (201), The collimating element (201) is arranged in the optical path between the light source (101) and the coupling element (401). The collimating element (201) is arranged to collimate the light emitted by the light source (101) and The collimated light is emitted toward the coupling-in element (401). 如請求項6所述之光學系統,其中,該波前調製元件(500)的該第二表面與該圖層元件(600)貼合設置。 The optical system as claimed in claim 6, wherein the second surface of the wavefront modulation element (500) is arranged in contact with the layer element (600). 如請求項6所述之光學系統,其中,該耦合輸出光柵(402)與該波導(300)貼合的長度大於該耦合輸入元件(401)與該波導(300)貼合的長度。 The optical system as claimed in claim 6, wherein the coupling-out grating (402) and the waveguide (300) are bonded together for a length greater than the coupling-in element (401) and the waveguide (300). 一種瞄準設備,其特徵係包括殼體和如請求項1所述之光學系統,其中,該光學系統設置在該殼體中。A sighting device is characterized by including a housing and the optical system as described in claim 1, wherein the optical system is disposed in the housing.
TW111114866A 2021-04-21 2022-04-19 Optical system and aiming equipment TWI816370B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110416339.X 2021-04-21
CN202110416339.XA CN112904585B (en) 2021-04-21 2021-04-21 Optical system

Publications (2)

Publication Number Publication Date
TW202242486A TW202242486A (en) 2022-11-01
TWI816370B true TWI816370B (en) 2023-09-21

Family

ID=76110631

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111114866A TWI816370B (en) 2021-04-21 2022-04-19 Optical system and aiming equipment

Country Status (7)

Country Link
US (1) US20220342138A1 (en)
EP (1) EP4089450A3 (en)
JP (1) JP7441446B2 (en)
KR (1) KR20220145270A (en)
CN (1) CN112904585B (en)
TW (1) TWI816370B (en)
WO (1) WO2022222302A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112904585B (en) * 2021-04-21 2022-11-08 南昌三极光电有限公司 Optical system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4057319A (en) * 1976-04-05 1977-11-08 National Research Development Corporation Optical system using a hologram coupler
US20120120469A1 (en) * 2010-11-16 2012-05-17 Olympus Corporation Illumination optical system
TW201617679A (en) * 2014-11-14 2016-05-16 華錦光電科技股份有限公司 DOE and laser diode-DOE module
CN105929560A (en) * 2016-07-04 2016-09-07 中国科学院光电技术研究所 Broadband far field super-resolution imaging apparatus
CN110488490A (en) * 2019-07-22 2019-11-22 渭南正和电子科技有限公司 A kind of nearly eye display device of compact augmented reality
WO2020162258A1 (en) * 2019-02-08 2020-08-13 ソニー株式会社 Image display device and head mount display

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3283608B2 (en) * 1993-01-28 2002-05-20 財団法人電力中央研究所 Laser beam shaping device
TW460758B (en) * 1998-05-14 2001-10-21 Holographic Lithography System A holographic lithography system for generating an interference pattern suitable for selectively exposing a photosensitive material
JP4203635B2 (en) 1999-10-21 2009-01-07 パナソニック株式会社 Laser processing apparatus and laser processing method
JP2002049002A (en) 2000-08-03 2002-02-15 Hamamatsu Photonics Kk Laser beam machine
US20040165268A1 (en) * 2001-07-16 2004-08-26 Jari Turunen Diffractive shaping of the intensity distribution of a spatially partially coherent light beam
EP1421421A4 (en) * 2001-07-20 2005-10-05 Essex Corp Method and apparatus for optical signal processing using an optical tapped delay line
US9423397B2 (en) * 2006-03-10 2016-08-23 Indx Lifecare, Inc. Waveguide-based detection system with scanning light source
DE102007051521A1 (en) 2007-10-19 2009-04-23 Seereal Technologies S.A. Dynamic Waveform Unit
US8508848B2 (en) * 2007-12-18 2013-08-13 Nokia Corporation Exit pupil expanders with wide field-of-view
CN101614876B (en) * 2009-07-29 2011-09-28 中国人民解放军国防科学技术大学 New method and device for arbitrary beam shaping
US9395690B2 (en) * 2010-07-06 2016-07-19 Seereal Technologies S.A. Beam divergence and various collimators for holographic or stereoscopic displays
WO2012062681A1 (en) * 2010-11-08 2012-05-18 Seereal Technologies S.A. Display device, in particular a head-mounted display, based on temporal and spatial multiplexing of hologram tiles
US9291825B2 (en) 2013-03-22 2016-03-22 Applied Materials Israel, Ltd. Calibratable beam shaping system and method
JP2014224977A (en) 2013-04-23 2014-12-04 オリンパスイメージング株式会社 Imaging device and telescope
CN105917277B (en) * 2014-01-07 2020-04-17 视瑞尔技术公司 Display device for holographic reconstruction
CN103838123B (en) * 2014-03-03 2016-08-24 苏州银河激光科技股份有限公司 The laser hologram art work, preparation method and using method thereof
CN104375271B (en) * 2014-11-21 2017-12-22 北京理工大学 Waveguide augmented reality display methods and system based on complex amplitude modulation
CN105137598B (en) * 2015-07-24 2018-07-17 浙江大学 Transparent display screen and preparation method thereof, optical system and application
DE102015122055B4 (en) * 2015-12-17 2018-08-30 Carl Zeiss Ag Optical system and method for transmitting a source image
US11300924B2 (en) * 2016-03-02 2022-04-12 Seereal Technologies S.A. Illumination device
CN107703571B (en) * 2017-09-22 2020-05-19 东南大学 Holographic waveguide display system doped with gold nanoparticles and grating preparation method thereof
CN107748407B (en) * 2017-10-25 2019-08-27 北京理工大学 A kind of diffraction waveguide display methods and system
CN111602025A (en) 2017-11-10 2020-08-28 夏尔特银斯公司D.B.A.涡流光学 Device and method for calculating aiming point information
CN108803023A (en) * 2018-02-13 2018-11-13 成都理想境界科技有限公司 The nearly eye display module of simple eye big visual field, display methods and head-mounted display apparatus
CN208139945U (en) 2018-04-26 2018-11-23 厦门大学 A kind of sight line type variable holographic diffraction sight
EP3803502A4 (en) * 2018-07-02 2021-08-18 Vuzix Corporation Waveguide turning grating designs for optimal efficiency
GB2569208B (en) * 2018-07-19 2019-12-04 Envisics Ltd A head-up display
AU2019384075A1 (en) 2018-08-15 2021-04-08 Marsupial Holdings , Inc. Direct enhanced view optic
US11022799B2 (en) * 2018-08-23 2021-06-01 Facebook Technologies, Llc Projector-combiner display with beam replication
CN109888491A (en) * 2019-01-15 2019-06-14 杭州电子科技大学 Three beam antenna systems based on SIW
CN109901298A (en) * 2019-02-28 2019-06-18 京东方科技集团股份有限公司 Optical waveguide and display equipment
US11567263B2 (en) 2019-04-19 2023-01-31 Ase Sailing, Inc. Optical targeting device
CN110244463A (en) * 2019-05-23 2019-09-17 天津大学 A kind of waveguide display grating coupler with nature vignetting compensation effect
CN110503019A (en) * 2019-08-16 2019-11-26 深圳阜时科技有限公司 Optical detection apparatus
CN110524875B (en) * 2019-08-23 2022-03-08 源秩科技(上海)有限公司 Photocuring 3D printing device
CN110579876A (en) * 2019-09-16 2019-12-17 东南大学 Method for exit pupil uniformity of holographic waveguide display system
CN111175971A (en) * 2019-10-30 2020-05-19 北京理工大学 Near-to-eye optical display system and augmented reality glasses
CN211348864U (en) * 2020-02-12 2020-08-25 苏州苏大维格科技集团股份有限公司 Double-channel waveguide lens module and AR display device
CN111649623B (en) 2020-06-11 2023-02-28 北京光谱印宝科技有限责任公司 Holographic sighting telescope
CN215006082U (en) * 2021-04-21 2021-12-03 南昌三极光电有限公司 Optical system and holographic aiming equipment
CN112904585B (en) * 2021-04-21 2022-11-08 南昌三极光电有限公司 Optical system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4057319A (en) * 1976-04-05 1977-11-08 National Research Development Corporation Optical system using a hologram coupler
US20120120469A1 (en) * 2010-11-16 2012-05-17 Olympus Corporation Illumination optical system
TW201617679A (en) * 2014-11-14 2016-05-16 華錦光電科技股份有限公司 DOE and laser diode-DOE module
CN105929560A (en) * 2016-07-04 2016-09-07 中国科学院光电技术研究所 Broadband far field super-resolution imaging apparatus
WO2020162258A1 (en) * 2019-02-08 2020-08-13 ソニー株式会社 Image display device and head mount display
CN110488490A (en) * 2019-07-22 2019-11-22 渭南正和电子科技有限公司 A kind of nearly eye display device of compact augmented reality

Also Published As

Publication number Publication date
EP4089450A3 (en) 2023-02-22
TW202242486A (en) 2022-11-01
US20220342138A1 (en) 2022-10-27
EP4089450A2 (en) 2022-11-16
CN112904585B (en) 2022-11-08
JP7441446B2 (en) 2024-03-01
KR20220145270A (en) 2022-10-28
JP2022166823A (en) 2022-11-02
CN112904585A (en) 2021-06-04
WO2022222302A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
TWI769210B (en) Optical system for near-eye displays
US11187902B2 (en) Two-dimensional light homogenization
RU2717897C2 (en) Information display system which generates a uniform image
CN113835145B (en) Holographic grating manufacturing device, holographic grating and two-dimensional holographic grating optical waveguide
US20230101961A1 (en) Apparatus for displaying augmented reality image, and system comprising apparatus
TWI816370B (en) Optical system and aiming equipment
CN110927975A (en) Waveguide display system and augmented reality glasses
CN114280790B (en) Diffraction optical waveguide device and near-to-eye display equipment
CN215006082U (en) Optical system and holographic aiming equipment
CN103336331B (en) Zigzag optical waveguide device
CN112649963A (en) Imaging module and augmented reality equipment
WO2022178987A1 (en) Optical system and mixed reality apparatus
CN218675520U (en) Waveguide-based holographic imaging system and electronic display device
WO2017077978A1 (en) Light guide element, coupling optical element, image display device, and head mounted display
KR102264211B1 (en) AR Holographic Display using Optical Waveguide and HOE
CN214335368U (en) Optical system and mixed reality equipment
EP4089466A1 (en) Waveguide
CN112684536A (en) Optical waveguide device and near-to-eye display equipment
CN116909028A (en) Holographic waveguide display device
EP4338001A1 (en) Waveguide
Yu et al. P‐98: Incorporating Space‐variant Holographic Grating in Waveguide Display
CN116774334A (en) Curved period nano grating optical waveguide chip and application thereof
CN117930419A (en) Optical waveguide and display device