TWI816052B - 用於源組件的殼體及包括此殼體的組件 - Google Patents

用於源組件的殼體及包括此殼體的組件 Download PDF

Info

Publication number
TWI816052B
TWI816052B TW109132285A TW109132285A TWI816052B TW I816052 B TWI816052 B TW I816052B TW 109132285 A TW109132285 A TW 109132285A TW 109132285 A TW109132285 A TW 109132285A TW I816052 B TWI816052 B TW I816052B
Authority
TW
Taiwan
Prior art keywords
cover
housing
rod
channel
cover plate
Prior art date
Application number
TW109132285A
Other languages
English (en)
Other versions
TW202117795A (zh
Inventor
詹姆士 卡度希
理查C 佛菲爾
拉瑞D 伊利薩格
錫爾弗斯特 羅德里格斯
泰正 蔡
菲利浦亞倫 克勞司
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW202117795A publication Critical patent/TW202117795A/zh
Application granted granted Critical
Publication of TWI816052B publication Critical patent/TWI816052B/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6447Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
    • H05B6/645Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors using temperature sensors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/686Circuits comprising a signal generator and power amplifier, e.g. using solid state oscillators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6402Aspects relating to the microwave cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6408Supports or covers specially adapted for use in microwave heating apparatus
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/647Aspects related to microwave heating combined with other heating techniques
    • H05B6/6473Aspects related to microwave heating combined with other heating techniques combined with convection heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • H05B6/806Apparatus for specific applications for laboratory use
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/04Heating using microwaves

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Pens And Brushes (AREA)

Abstract

本案揭露的實施例包括用於源組件的殼體。在一實施例中,殼體包括導電體與複數個開口,導電體具有第一表面和與第一表面相對的第二表面,複數個開口穿過第一表面和第二表面之間的導電體的厚度。在一實施例中,殼體進一步包括進入導電體的第一表面的通道以及在該通道上方的蓋件。在一實施例中,蓋件上方的第一桿遠離第一表面延伸,以及蓋件上方的第二桿遠離第一表面延伸。在一實施例中,第一桿和第二桿通向通道。

Description

用於源組件的殼體及包括此殼體的組件
實施例係關於半導體製造領域,且具體言之,係關於具有用於高頻源的整合式溫度控制的單塊源陣列。
一些高頻電漿源包括穿過介電板中的開口的施加器(applicator)。穿過介電板的開口允許施加器(如介電腔諧振器)暴露於電漿環境。然而,已經表示,在圍繞施加器的空間中的介電板的開口中也產生了電漿。這有可能在處理腔室內產生電漿不均勻性。此外,將施加器暴露於電漿環境可能導致施加器的更快降解(degradation)。
在一些實施例中,施加器定位在介電板上方或進入(但不穿過)介電板的腔(cavity)內。這樣的配置減少了與腔室內部的耦接,因此不能提供最佳的電漿產生。部分地由於高頻電磁輻射所需要通過其傳播的介電板和施加器之間的額外介面,而減少了高頻電磁輻射與腔室內部的耦接。另外,在每個施加器處以及在橫跨(across)不同的處理工具上的介面(如,施加器的定位、施加器和/或介電板的表面粗糙度、施加器相對於介電板的角度等)變化可能引起電漿不均勻性。
具體而言,當施加器是與介電板離散的(discrete)部件時,(在單一處理腔室內和/或橫跨不同處理腔室(如腔室匹配))更可能發生電漿不均勻性。例如,具有離散的部件,小的變化(如,組裝的變化、加工公差等)可能會引起對腔室內的處理條件產生負面影響的電漿不均勻性。
本案揭露的實施例包括用於源組件的殼體。在一實施例中,殼體包括導電體與複數個開口,導電體具有第一表面和與第一表面相對的第二表面,複數個開口穿過第一表面和第二表面之間的導電體的厚度。在一實施例中,殼體進一步包括進入導電體的第一表面的通道以及在該通道上方的蓋件。在一實施例中,蓋件上方的第一桿遠離第一表面延伸,以及蓋件上方的第二桿遠離第一表面延伸。在一實施例中,第一桿和第二桿通向通道。
實施例還可包括用於處理工具的組件。在一實施例中,組件包括單塊源陣列和殼體。在一實施例中,單塊源陣列包括具有第一表面和第二表面的介電板,以及從介電板的第一表面延伸出的複數個凸部。在一實施例中,殼體包括具有第三表面和第四表面的導電體,以及穿過該導電體的複數個開口。在一實施例中,每個凸部在不同的開口內。殼體還可包括通道與蓋件,該通道進入第三表面,該蓋件在該通道上方,該蓋件包含第一桿和第二桿。
本案揭露的實施例還可包括處理工具。在一實施例中,處理工具包括腔室和與腔室介接的組件。在一實施例中,該組件包括單塊源陣列、在單塊源陣列上方且圍繞單塊源陣列的殼體。在一實施例中,殼體包括由蓋件密封的通道。
100:處理工具
104:模組化高頻發射源
105:高頻發射模組
106:振盪器模組
130:放大模組
142:施加器
150:單塊源陣列
170:氣體管線
172:排氣管線
174:基板
176:吸盤
178:腔室
210:電壓控制電路
220:電壓受控振盪器
221:控制電路模組
234:驅動器/前置放大器
236:主功率放大器
238:循環器
239:電源供應
249:熱中斷器
281:檢測器模組
282:反射功率
283:前向功率
285:控制信號
286:控制信號
350:單塊源陣列
360:介電板
366:凸部
370:組件
372:殼體
373:導電體
374:開口
376:蓋板
379:導電體
416:溝槽
417:蓋件
417A:蓋件
417B:蓋件
418:孔
419:加熱元件
476:蓋板
479:導電體
530:熱流體通道
531:蓋件
533:第二表面
534:第一表面
535A:第一端
535B:第二端
537:桿
537A:第一桿
537B:第二桿
550:單塊源陣列
560:介電板
561:第一表面
565:孔
566:凸部
570:組件
572:殼體
573:導電體
574:開口
592:熱介面材料
617A:蓋件
617B:蓋件
619A:外部加熱元件
619B:內部加熱元件
630:通道
631:蓋件
637:桿
650:單塊源陣列
660:介電板
665:孔
666:凸部
668:單極天線
670:組件
672:殼體
673:導電體
676:蓋板
679:導電體
700:處理工具
717:蓋件
719:環形加熱元件
730:通道
731:蓋件
737A:輸入桿
737B:輸出桿
750:單塊源陣列
760:介電板
766:凸部
768:單極天線
770:組件
772:殼體
774:工件
776:蓋板
778:腔室
779:吸盤
781:O形環
782:電漿
783:內部空間
802:系統處理器
804:主記憶體
806:靜態記憶體
808:系統網路介面裝置
810:影像顯示單元
812:字母數字輸入裝置
814:光標控制裝置
816:信號產生裝置
818:輔助記憶體
820:網路
822:軟體
826:處理邏輯
830:總線
831:機器可存取儲存媒體
860:電腦系統
圖1是根據一實施例的處理工具的示意圖,該處理工具包括模組化高頻發射源,該模組化高頻發射源具有包含複數個施加器的單塊源陣列。
圖2是根據一實施例的模組化高頻發射模組的框圖。
圖3是根據一實施例的組件的分解立體圖。
圖4A是根據一實施例的具有嵌入式加熱元件的蓋板的平面示意圖。
圖4B是根據一實施例的沿線B-B'的圖4A中的蓋板的截面圖。
圖5A是根據一實施例的殼體的分解立體圖。
圖5B是根據一實施例的組件的一部分的立體圖。
圖5C是根據一實施例的沿線C-C'的圖5B中的組件的截面圖。
圖6是根據一實施例的組件的截面圖。
圖7是根據一實施例的處理工具的截面圖,該處理工具具有包括整合式溫度控制的組件。
圖8繪示根據一實施例的可與高頻電漿工具結合使用的示例性電腦系統的框圖。
本案所述之系統包括具有用於高頻源的整合式溫度控制的單塊源陣列。在以下描述中,闡述了許多具體細節以提供對實施例的透徹理解。對於本發明所屬領域中具有通常知識者彰顯的是,可在沒有這些具體細節的情況下實踐實施例。在其他實例中,未詳細描述習知的態樣,以免不必要地混淆實施例。此外,應當理解的是,所附圖式中所示的各種實施例是說明性表示,且不一定按比例繪製。
如上所述,具有離散的施加器的高頻電漿源可能引起腔室內的電漿不均勻性,以及引起高頻電磁輻射向腔室內的非最佳注入。電漿中的不均勻性可能由於不同的原因而發生,如組裝問題、製造公差、降解等。高頻電磁輻射向腔室的非最佳注入可能(部分地)係由於施加器和介電板之間的介面所引起的。
因此,本案揭露的實施例包括單塊源陣列。在一實施例中,單塊源陣列包括介電板和從介電板的表面向上延伸的複數個凸部。具體言之,凸部和介電板形成單塊(monolithic)零件。即,凸部和介電板由單一塊(single block)材料製成。凸部具有適合用作施加器的尺寸。例如,可製造進入凸部的孔,以容納單極天線。因此,凸部可用作介電腔諧振器。
將源陣列實現為單塊零件具有若干優點。一個好處是可保持嚴格的加工公差,以在零件之間提供高度的均勻性。離散的施加器需要組裝,而單塊源陣列避免了可能的組裝變化。另外,因為在施加器和介電板之間不再存在物理介面,所以使用單塊源陣列改善了向腔室注入高頻電磁輻射的能力。
單塊源陣列還改善了腔室中的電漿均勻性。具體言之,暴露於電漿的介電板的表面不包括任何間隙以容納施加器。此外,凸部和介電板之間缺乏實體介面(physical interface),改善了在介電板中的橫向電場擴散。
對於許多應用,除了電漿均勻性之外,另一個要求是工件的溫度均勻性。沒有適當的溫度控制,處理結果可能無法達到規格。對於某些應用,電漿源的表面直接位於工件上方,只有很小的間隙(如約5cm或更小)將兩個表面分開。這樣小的間隙有利於從工件到源或從源到工件的熱傳遞(即,輻射和對流)。因此,在源表面處提供均勻溫度的能力是非常有益的。溫度均勻性對於某些處理操作尤其重要,如原子層沉積(ALD)、化學氣相沉積(CVD)和電漿處置等。
因此,本案揭露的實施例包括具有整合式溫度控制的單塊源陣列。在一些實施例中,圍繞單塊源陣列的凸部的殼體包括複數個通道,該複數個通道用於使熱流體輸送(routing)通過殼體的導電體。實施例還可包括嵌入式加熱器。如此一來,可提高或降低單塊源陣列的溫度。
現在參考圖1,表示根據一實施例的電漿處理工具100的截面圖。在一些實施例中,處理工具100可以是適合於利用電漿的任何類型的處理操作的處理工具。例如,處理工具100可以是用於電漿增強化學氣相沉積(PECVD)、電漿增強原子層沉積(PEALD)、蝕刻和選擇性去除製程及電漿清洗的處理工具。額外的實施例可包括一種處理工具100,其利用高頻電磁輻射而不產生電漿(如微波加熱等)。如本案所用的「高頻」電磁輻射包括射頻輻射、特高頻(very-high-frequency)輻射、超高頻(ultra-high-frequency)輻射和微波輻射。「高頻」可以指的是0.1MHz至300GHz之間的頻率。
一般來說,實施例包括具有腔室178的處理工具100。在處理工具100中,腔室178可以是真空腔室。真空腔室可包括用於從腔室去除氣體以提供期望的真空之泵(未圖示)。額外的實施例可包括腔室178,該腔室178包括一個或多個氣體管線170與排氣管線172,氣體管線170用於提供處理氣體到腔室178中,排氣管線172用於從腔室178中去除副產物。儘管未圖示,但是應當理解,氣體也可透過單塊源陣列150(如作為噴頭)注入到腔室178中,以將處理氣體均勻地分佈在基板174上方。
在一實施例中,基板174可被支撐在吸盤176上。例如,吸盤176可以是任何合適的吸盤,如靜電吸盤。吸盤176還可包括冷卻管線和/或加熱器,以在處理期間向基板174提供溫度控制。由於本案所述之高頻發射模組的 模組化配置,實施例允許處理工具100容納任何尺寸的基板174。例如,基板174可以是半導體晶圓(如200mm、300mm、450mm或更大)。替代實施例進一步包括除半導體晶圓之外的基板174。例如,實施例可包括經配置用於處理玻璃基板(如用於顯示技術)的處理工具100。
根據一實施例,處理工具100包括模組化高頻發射源104。模組化高頻發射源104可包括高頻發射模組105的陣列。在一實施例中,每個高頻發射模組105可包括振盪器模組106、放大模組130和施加器142。如圖所示,施加器142被示意性地表示為整合到單塊源陣列150中。然而,應當理解,單塊源陣列150可以是單塊結構,其包括施加器142的一個或多個部分(如介電諧振體)和面向腔室178內部的介電板。
在一實施例中,振盪器模組106和放大模組130可包括為固態電子部件的電子部件。在一實施例中,複數個振盪器模組106中的各者可通信地耦接到不同的放大模組130。在一些實施例中,振盪器模組106和放大模組130之間可有1:1的比率。例如,每個振盪器模組106可電耦接到單一放大模組130。在一實施例中,複數個振盪器模組106可產生非同相的(incoherent)電磁輻射。因此,在腔室178中感應的電磁輻射將不會以引起不期望的干涉圖案的方式相互作用。
在一實施例中,每個振盪器模組106產生高頻電磁輻射,該高頻電磁輻射被傳輸到放大模組130。在藉由 放大模組130處理之後,電磁輻射被傳輸至施加器142。在一實施例中,施加器142各自將電磁輻射發射到腔室178中。在一些實施例中,施加器142將電磁輻射耦接到腔室178中的處理氣體以產生電漿。
現在參考圖2,表示根據一實施例的固態高頻發射模組105的示意圖。在一實施例中,高頻發射模組105包括振盪器模組106。振盪器模組106可包括電壓控制電路210,該電壓控制電路210用於向電壓受控振盪器(voltage controlled oscillator)220提供輸入電壓,以便產生期望頻率的高頻電磁輻射。實施例可包括在約1V至10V DC之間的輸入電壓。電壓受控振盪器220是電子振盪器,其振盪頻率由輸入電壓控制。根據一實施例,來自電壓控制電路210的輸入電壓導致電壓受控振盪器220以期望的頻率振盪。在一實施例中,高頻電磁輻射可具有約0.1MHz至30MHz之間的頻率。在一實施例中,高頻電磁輻射可具有約30MHz至300MHz之間的頻率。在一實施例中,高頻電磁輻射可具有約300MHz至1GHz之間的頻率。在一實施例中,高頻電磁輻射可具有約1GHz至300GHz之間的頻率。
根據一實施例,電磁輻射從電壓受控振盪器220傳輸到放大模組130。放大模組130可包括各自耦接到電源供應239的驅動器/前置放大器234和主功率放大器236。根據一實施例,放大模組130可以以脈衝模式操作。例如,放大模組120可具有1%至99%之間的工作週期。在更為特 定的實施例中,放大模組130可具有約15%至50%之間的工作週期。
在一實施例中,在藉由放大模組130處理之後,電磁輻射可被傳輸到熱中斷器(thermal break)249和施加器142。然而,由於輸出阻抗的不匹配,傳輸到熱中斷器249的功率的部分可能被反射回去。因此,一些實施例包括檢測器模組281,該檢測器模組281允許感測前向功率283和反射功率282的位準並將其反饋回控制電路模組221。應當理解,檢測器模組281可位於系統中的一個或多個不同位置(如在循環器238和熱中斷器249之間)。在一實施例中,控制電路模組221解讀(interpret)前向功率283和反射功率282,以及決定通信地耦接到振盪器模組106的控制信號285的位準及通信地耦接到放大模組130的控制信號286的位準。在一實施例中,控制信號285調整振盪器模組106以最佳化耦接到放大模組130的高頻輻射。在一實施例中,控制信號286調整放大模組130以最佳化經過熱中斷器249耦接到施加器142的輸出功率。在一實施例中,除了對熱中斷器249中的阻抗匹配作定制之外,振盪器模組106和放大模組130的反饋控制可允許反射功率的位準小於前向功率的約5%。在一些實施例中,振盪器模組106和放大模組130的反饋控制可允許反射功率的位準小於前向功率的約2%。
因此,實施例允許增加待耦接到處理腔室178中的前向功率的百分比,以及增加耦接到電漿的可用功率。 此外,使用反饋控制作阻抗調整優於典型的槽-板天線(slot-plate antenna)中的阻抗調整。在槽-板天線中,阻抗調整涉及移動在施加器中形成的兩個介電塊(slug)。這涉及施加器中兩個獨立部件的機械運動,這增加了施加器的複雜性。此外,機械運動的精度可能不如電壓受控振盪器220所提供的頻率變化那麼精確。
現在參考圖3,表示根據一實施例的組件370的分解立體圖。在一實施例中,組件370包括單塊源陣列350、殼體372和蓋板376。如箭頭所示,殼體372裝配在單塊源陣列350上方並圍繞單塊源陣列350,且蓋板376覆蓋殼體372。在所示的實施例中,組件370所示為具有實質圓形的形狀。然而,應當理解,組件370可具有任何期望的形狀(如,多邊形、橢圓形、楔形或類似形狀)。
在一實施例中,單塊源陣列350可包括介電板360和從介電板360向上延伸的複數個凸部366。在一實施例中,介電板360和複數個凸部366是單塊結構。也就是說,在凸部366的底部和介電板360之間沒有實體介面。如本案所使用的「實體介面(physical interface)」是指與第二離散主體的第二表面接觸之第一離散主體的第一表面。
每個凸部366是施加器142的一部分,用於將高頻電磁輻射注入處理腔室178中。具體言之,凸部366用作施加器142的介電腔諧振器。在一實施例中,單塊源陣列350包括介電材料。例如,單塊源陣列350可以是陶瓷材 料。在一實施例中,可用於單塊源陣列350的一種合適的陶瓷材料是Al2O3。單塊結構可由單一塊材料製成。在其他實施例中,可用模製製程來形成單塊源陣列350的粗略形狀,然後對其進行機械加工以提供具有期望尺寸的最終結構。例如,綠色狀態加工(green state machining)和燒製(firing)可用於提供單塊源陣列350的期望形狀。在所示的實施例中,凸部366所示出為具有圓形橫截面(當沿著平行於介電板360的平面觀察時)。然而,應當理解,凸部366可包括許多不同的橫截面。例如,凸部366的橫截面可具有中心對稱的(centrally symmetric)任何形狀。
在一實施例中,殼體372包括導電體373。例如,導電體373可以是鋁或類似物。殼體包括複數個開口374。開口374可完全穿過導電體373的厚度。可調整開口374的尺寸以容納凸部366。例如,隨著殼體372朝著單塊源陣列350位移(如箭頭所示),凸部366將被插入開口374中。在一實施例中,開口374可具有約15mm或更大的直徑。
在所示的實施例中,殼體372所示為單一導電體373。然而,應當理解,殼體372可包括一個或多個離散的導電部件。離散的部件可個別地接地,或者離散的部件可機械地結合或藉由任何形式的金屬接合而結合,以形成單一導電體373。
在一實施例中,蓋板376可包括導電體379。在一實施例中,導電體379由與殼體372的導電體373相同的 材料形成。例如,蓋板376可包括鋁。在一實施例中,可使用任何合適的緊固機構將蓋板376固定於殼體372。例如,可用螺栓或類似物將蓋板376固定於殼體372。在一些實施例中,蓋板376和殼體372也可被實現為單一單塊結構。在一實施例中,在處理工具的操作期間,蓋板376和殼體皆電接地。
現在參考圖4A和4B,根據一實施例,分別表示蓋板476的更詳細的平面圖和截面圖。在一實施例中,蓋板476包括導電體479。導電體479可包括一個或多個溝槽416以容納加熱元件419。例如,加熱元件419可以是電阻加熱元件。加熱元件419可被蓋件417覆蓋。在一實施例中,蓋件417可包括任何合適的材料。例如,蓋件417可以是剛性材料。在一實施例中,蓋件417可以是分配在加熱元件419上方的環氧樹脂或膠。
在所示的實施例中,表示一對加熱元件419。蓋件417A所覆蓋的第一加熱元件419靠近蓋板476的周邊,且蓋件417B所覆蓋的第二加熱元件419靠近蓋板476的軸向中心。一對加熱元件419為組件的外部區域和內部區域提供溫度控制。因此,可更精確的溫度控制以校正整個工件表面的不均勻性。儘管所示一對環形的加熱元件,但是應當理解,實施例包括任何數量的加熱元件419(如一個或多個)且可以為任何配置方式。例如,可以以蛇形圖案、螺旋圖案或任何其他合適的圖案佈置加熱元件419。
在一實施例中,蓋板476可包括一個或多個孔418。孔418可穿過導電體479的整個厚度。在一實施例中,孔418經定位以容納從殼體中的熱流體通道向上延伸的桿(未圖示)。桿和熱流體通道將在下面詳細介紹。在一實施例中,所示六個孔418。六個孔418可容納三個單獨的熱流體通道(即,為每個通道提供入口和出口)。然而,應當理解,可使用任何數量的孔418來容納不同數量的熱流體通道迴路(loop)。
現在參考圖5A,表示根據一實施例的殼體572的分解立體圖。所示的實施例繪示殼體572的第一表面534。第一表面534是面向蓋板476的表面,及第二表面533是面向單塊源陣列的表面。如圖所示,殼體572包括具有複數個開口574的導電體573。在該圖示中,導電體573所示為一個零件,且複數個蓋件531自第一表面534抬離,以繪示進入第一表面534的熱流體通道530(也簡稱為「通道、)。通道530延伸到導電體573中,但是不完全穿過導電體573的厚度。此外,應當理解,開口574和通道530沒有彼此流體地耦接。即,在熱流體流過通道530的操作期間,熱流體可不通過開口574。
如圖所示,通道530具有第一端535A和第二端535B。第一端535A和第二端535B之間的通道530的長度可通過導電體573在該等開口574之間佈線(route)。例如,每個通道530可圍繞(encircle)一個或多個開口574。在所示的實施例中,通道530圍繞一對開口574。在 一實施例中,每個通道530可具有實質相同的形狀。例如,圖5A中的三個通道530中的各者在形狀上是實質均勻的(substantially uniform in shape)。然而,其他實施例可包括具有不均勻形狀的通道530。
在一實施例中,蓋件531可包括第一桿537A和第二桿537B。第一桿537A定位於通道530的第一端535A上方,第二桿537B定位於通道530的第二端535B上方。桿537提供進入/離開通道530的入口和出口。因此,熱流體(如冷卻劑等)可流過通道530,以調節殼體572的溫度。在一實施例中,桿537穿過蓋板476中的孔418。
現在參考圖5B,表示根據一實施例的組件570的一部分的立體圖。所示組件570包括單塊源陣列550和在單塊源陣列550上方且圍繞(around)單塊源陣列550的殼體572。介電板560在殼體572下方,且凸部566向上延伸穿過殼體572。凸部566在其軸向中心處包括孔565。調整孔565的尺寸以容納單極天線(未圖示)。在圖5B中,蓋件531已放置在通道530上方。在一實施例中,蓋件531被焊接到殼體572。桿537從蓋件531向上延伸遠離第一表面534。
現在參考圖5C,表示根據一實施例的沿線C-C'的圖5B中的組件570的截面圖。橫截面圖更清楚地繪示通道530和蓋件531。通道530延伸進入和離開橫截面的平面,以連接在一起並形成圍繞凸部566的圈(loop)。在 一實施例中,通道530經形成進入第一表面534中,但是不完全延伸穿過導電體573的厚度。
在一實施例中,殼體572可由介電板560的第一表面561支撐。在一些實施例中,可在介電板560的第一表面561與殼體572的第二表面533的介面處提供熱介面材料592。例如,熱介面材料592可以是熱墊圈或類似物。熱介面材料592的使用改善了殼體572與單塊源陣列550之間的熱傳遞。在一實施例中,熱介面材料592可以是單一連續層,或者熱介面材料592可包括跨介面的複數個離散墊。
現在參考圖6,表示根據一實施例的組件670的截面圖。所示的實施例繪示單塊源陣列650、殼體672和蓋板676。在一實施例中,殼體672由介電板660支撐,且殼體672包覆(wrap)在凸部666周圍。殼體672的導電體673包括由蓋件631密封的通道630。蓋板676靜置在殼體672和凸部666上方。在一實施例中,單極天線668可穿過蓋板676,並裝配到蓋板676下方的凸部666中的孔665中。
在一實施例中,桿637穿過蓋板676的導電體679。桿637可流體地耦接至熱流體源(未圖示)。第二桿637(在圖6的平面之外)可以是用於熱流體的出口。在一實施例中,蓋板676可包括一個或多個加熱元件619。例如,所示外部加熱元件619A和內部加熱元件619B在進入導電體679的溝槽中。加熱元件619可被蓋件617A、617B覆蓋。
現在參考圖7,表示根據一實施例的包括組件770的處理工具700的截面圖。在一實施例中,處理工具包括由組件770密封的腔室778。例如,組件770可抵靠一個或多個O形環781靜置,以向腔室778的內部空間783提供真空密封。在其他實施例中,組件770可與腔室778介接。即,組件770可以是密封腔室778的蓋件的部分。在一實施例中,處理工具700可包括複數個處理空間(可流體地耦接在一起),其中每個處理空間具有不同的組件770。在一實施例中,吸盤779或類似物可支撐工件774(如晶圓、基板等)。在一實施例中,腔室空間783可適合用於撞擊(striking)電漿782。即,腔室778可以是真空腔室。
在一實施例中,組件770可與上述組件670實質相似。例如,組件770包括單塊源陣列750、殼體772和蓋板776。單塊源陣列750可包括介電板760和從介電板760向上延伸的複數個凸部766。殼體772可具有開口,調整該等開口的尺寸以容納凸部766。在一實施例中,單極天線768可延伸到凸部766中的孔中。單極天線768可穿過殼體772和凸部766上方的蓋板776。單極天線768各自電耦接至電源(如高頻發射模組105)。
在一實施例中,組件770可包括整合式溫度控制系統。在一些實施例中,組件770包括冷卻系統和/或加熱系統。具體言之,面向工件的介電板760的表面的溫度可由組件控制。控制介電板760的溫度的一種方法是使熱流體流過殼體772中的通道730。通道730可具有輸入桿 737A和輸出桿737B。桿737可穿過蓋板776的厚度。在一實施例中,通道730可由蓋件731密封。
在一實施例中,用於溫度控制的第二途徑(avenue)是具有加熱元件719。在一實施例中,一個或多個加熱元件719可嵌入在蓋板776中。加熱元件719可被蓋件717覆蓋。在所示的實施例中,表示一對環形加熱元件719,但是可使用任何數量和配置的加熱元件719。
現在參考圖8,表示根據一實施例的處理工具的示例性電腦系統860的框圖。在一實施例中,電腦系統860耦接到處理工具並控制處理工具中的處理。電腦系統860可連接(如網路連接)到區域網路(LAN)、內聯網、外聯網或網際網路中的其他機器。電腦系統860可以以在主從架構網路環境中的伺服器或客戶端機器的能力來操作,或者在點對點(或分佈式)網路環境中作為同級機器(peer machine)來操作。電腦系統860可以是個人電腦(PC)、平板電腦、機上盒(STB)、個人數位助理(PDA)、蜂窩式電話、網路設備、伺服器、網路路由器、交換機或橋接器、或能夠執行指定該機器所欲採取的動作之一組指令(順序的或其他方式)的任何機器。此外,儘管僅針對電腦系統860繪示單一機器,但是術語「機器(machine)」也應被認為包括個別地或共同地執行一組(或多組)指令以施行本案所述的任何一個或多個方法之任何機器集合(如電腦)。
電腦系統860可包括電腦程式產品或軟體822,其具有在其上儲存有指令的非暫態機器可讀取媒體,其可用於程式化電腦系統860(或其他電子裝置)以施行根據實施例的製程。機器可讀取媒體包括用於以機器(如電腦)可讀取的形式儲存或傳輸資訊的任何機制。例如,機器可讀取(如電腦可讀取)媒體包括機器(如電腦)可讀取儲存媒體(如唯讀記憶體(「ROM」)、隨機存取記憶體(「RAM」))、磁碟儲存媒體、光學儲存媒體、快閃記憶裝置等)、機器(如電腦)可讀取傳輸媒體(電、光學、聲學或其他形式的傳播信號(如紅外信號、數位信號)等))等。
在一實施例中,電腦系統860包括經由總線(bus)830彼此通信的系統處理器802、主記憶體804(如唯讀記憶體(ROM)、快閃記憶體、動態隨機存取記憶體(DRAM)(如同步DRAM(SDRAM)或Rambus DRAM(RDRAM)等)、靜態記憶體806(如快閃記憶體、靜態隨機存取記憶體(SRAM)等)以及輔助記憶體818(如資料儲存裝置)。
系統處理器802代表一個或多個通用處理裝置,如微系統處理器、中央處理單元或類似物。更具體地說,系統處理器可以是複雜指令集計算(CISC)微系統處理器、簡化指令集計算(RISC)微系統處理器、超長指令字集(VLIW)微系統處理器、施行其他指令集的系統處理器或施行指令集的組合之系統處理器。系統處理器802還 可以是一個或多個專用處理裝置,例如特殊應用積體電路(ASIC)、場式可程式閘陣列(FPGA)、數位信號系統處理器(DSP)、網路系統處理器或類似物。系統處理器802經配置執行用於施行本案描述的操作的處理邏輯826。
電腦系統860可進一步包括用於與其他裝置或機器通信的系統網路介面裝置808。電腦系統860還可包括影像顯示單元810(如液晶顯示器(LCD)、發光二極體顯示器(LED)或陰極射線管(CRT))、字母數字輸入裝置812(如鍵盤)、光標控制裝置814(如滑鼠)和信號產生裝置816(如揚聲器)。
輔助記憶體818可包括機器可存取儲存媒體831(或更具體地,電腦可讀取儲存媒體),其上儲存體現本案所述的任何一個或多個方法或功能的一組或多組指令(如軟體822)。在由電腦系統860執行軟體822的期間,軟體822也可全部地或至少部分地駐留在主記憶體804內和/或系統處理器802內,主記憶體804和系統處理器802也構成機器可讀取儲存媒體。可經由系統網路介面裝置808在網路820上進一步發送或接收軟體822。在一實施例中,網路介面裝置808可使用RF耦接、光學耦接、聲學耦接或電感耦接來操作。
儘管在示例性實施例中將機器可存取儲存媒體831示為單一媒體,但是術語「機器可讀取儲存媒體」應被認為包括儲存一組或多組指令的單一媒體或多個媒體 (如集中式或分散式資料庫、和/或相關聯的快取和伺服器)。術語「機器可讀取儲存媒體」也應被認為包括能夠儲存或編碼用於機器執行並使該機器施行任何一個或多個方法的一組指令之任何媒體。因此,術語「機器可讀取儲存媒體」應被認為包括但不限於固態記憶體以及光學媒體和磁性媒體。
在前述說明書中,已經描述了特定的示例性實施例。顯然地,在不背離以下申請專利範圍的範圍的情況下,可對實施例作各種修改。因此,說明書和圖式應被認為是說明性的而不是限制性的。
100:處理工具
104:模組化高頻發射源
105:高頻發射模組
106:振盪器模組
130:放大模組
142:施加器
150:單塊源陣列
170:氣體管線
172:排氣管線
174:基板
176:吸盤
178:腔室

Claims (15)

  1. 一種殼體,包括:一導電體,該導電體具有一第一表面和與該第一表面相對的一第二表面;複數個開口,該複數個開口穿過該第一表面和該第二表面之間的該導電體的一厚度;一通道,該通道進入該導電體的該第一表面;一蓋件,該蓋件在該通道上方;一第一桿,該第一桿在該蓋件上方並遠離(away from)該第一表面延伸,其中該第一桿通向(open into)該通道;及一第二桿,該第二桿在該蓋件上方並遠離該第一表面延伸,其中該第二桿通向該通道,其中該第一桿在該蓋件的一第一端處,且該第二桿在該蓋件的一第二端處。
  2. 如請求項1所述之殼體,其中該通道圍繞該複數個開口中的至少一個。
  3. 如請求項1所述之殼體,其中該等開口的各者的一直徑為約15mm或更大。
  4. 如請求項1所述之殼體,進一步包括:一蓋板,該蓋板在該導電體的該第一表面上方。
  5. 如請求項4所述之殼體,其中該蓋板包括:一第一孔,該第一孔穿過該蓋板的一厚度;及一第二孔,該第二孔穿過該蓋板的該厚度。
  6. 如請求項5所述之殼體,其中該第一桿延伸 穿過該第一孔,及其中該第二桿延伸穿過該第二孔。
  7. 如請求項4所述之殼體,其中該蓋板包括:一加熱元件。
  8. 如請求項7所述之殼體,其中該加熱元件以被埋入一溝槽中,該溝槽進入該蓋板的一第一表面中,該蓋板的該第一表面背離(face away from)該導電體。
  9. 如請求項1所述之殼體,進一步包括:複數個通道;及複數個蓋件,其中每個蓋件在該等通道中的不同通道上方。
  10. 一種組件,包括:一單塊(monolithic)源陣列,包含:一介電板,該介電板具有一第一表面和一第二表面;複數個凸部,該複數個凸部從該介電板的該第一表面延伸出;及一殼體,包含:一導電體,該導電體具有一第三表面和一第四表面;複數個開口,該複數個開口穿過該導電體,其中該等凸部的各者在該等開口中的不同開口內;一通道,該通道進入該第三表面;及一蓋件,該蓋件在該通道上方,該蓋件包含一第一 桿和一第二桿,其中該第一桿在該蓋件的一第一端處,及該第二桿在該蓋件的一第二端處。
  11. 如請求項10所述之組件,進一步包括在該殼體上方的一蓋板,其中該蓋板包括:一第一孔和一第二孔,其中該第一桿通過該第一孔,及該第二桿通過該第二孔;及一加熱元件,其中該加熱元件在一溝槽中,該溝槽進入該蓋板的一表面中,該蓋板的該表面背離該殼體。
  12. 如請求項10所述之組件,進一步包括:複數個通道,該複數個通道進入該導電體的該第三表面。
  13. 如請求項11所述之組件,進一步包括:複數個加熱元件,該複數個加熱元件在該蓋板中。
  14. 如請求項10所述之組件,進一步包括:一熱介面材料,該熱介面材料在該介電板的該第一表面和該導電體的該第四表面之間。
  15. 如請求項10所述之組件,進一步包括:複數個單極天線,其中每個單極天線在該等凸部中的不同凸部的一軸向中心的一不同孔內。
TW109132285A 2019-09-27 2020-09-18 用於源組件的殼體及包括此殼體的組件 TWI816052B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/586,548 US11564292B2 (en) 2019-09-27 2019-09-27 Monolithic modular microwave source with integrated temperature control
US16/586,548 2019-09-27

Publications (2)

Publication Number Publication Date
TW202117795A TW202117795A (zh) 2021-05-01
TWI816052B true TWI816052B (zh) 2023-09-21

Family

ID=75162429

Family Applications (2)

Application Number Title Priority Date Filing Date
TW109132285A TWI816052B (zh) 2019-09-27 2020-09-18 用於源組件的殼體及包括此殼體的組件
TW112132220A TW202401499A (zh) 2019-09-27 2020-09-18 用於源組件的殼體及包括此殼體的組件

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW112132220A TW202401499A (zh) 2019-09-27 2020-09-18 用於源組件的殼體及包括此殼體的組件

Country Status (7)

Country Link
US (2) US11564292B2 (zh)
EP (1) EP4035196A4 (zh)
JP (2) JP7332796B2 (zh)
KR (1) KR20220066961A (zh)
CN (1) CN114514794B (zh)
TW (2) TWI816052B (zh)
WO (1) WO2021061463A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11488796B2 (en) * 2019-04-24 2022-11-01 Applied Materials, Inc. Thermal break for high-frequency antennae

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004032176A1 (en) * 2002-10-04 2004-04-15 Kyu-Wang Lee Nanoporous dielectrics for plasma generator
US20100065214A1 (en) * 2003-12-23 2010-03-18 Lam Research Corporation Showerhead electrode assembly for plasma processing apparatuses
TW201813453A (zh) * 2011-10-05 2018-04-01 美商應用材料股份有限公司 對稱電漿處理腔室
TW201911974A (zh) * 2017-08-10 2019-03-16 美商應用材料股份有限公司 用於電漿處理的分佈式電極陣列
CN109564843A (zh) * 2016-08-16 2019-04-02 应用材料公司 模块式微波等离子体源

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172792A (ja) * 1996-12-05 1998-06-26 Tokyo Electron Ltd プラズマ処理装置
JP4567148B2 (ja) * 2000-06-23 2010-10-20 東京エレクトロン株式会社 薄膜形成装置
US20020127853A1 (en) 2000-12-29 2002-09-12 Hubacek Jerome S. Electrode for plasma processes and method for manufacture and use thereof
JP5519105B2 (ja) * 2004-08-02 2014-06-11 ビーコ・インストゥルメンツ・インコーポレイテッド 化学気相成長の方法及び化学気相成長リアクタ用のガス供給システム
US20070283709A1 (en) * 2006-06-09 2007-12-13 Veeco Instruments Inc. Apparatus and methods for managing the temperature of a substrate in a high vacuum processing system
KR101245430B1 (ko) * 2008-07-11 2013-03-19 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치 및 플라즈마 처리 방법
US20110180233A1 (en) * 2010-01-27 2011-07-28 Applied Materials, Inc. Apparatus for controlling temperature uniformity of a showerhead
KR101246191B1 (ko) 2011-10-13 2013-03-21 주식회사 윈텔 플라즈마 장치 및 기판 처리 장치
US10825708B2 (en) * 2011-12-15 2020-11-03 Applied Materials, Inc. Process kit components for use with an extended and independent RF powered cathode substrate for extreme edge tunability
US9948214B2 (en) * 2012-04-26 2018-04-17 Applied Materials, Inc. High temperature electrostatic chuck with real-time heat zone regulating capability
FR2993428B1 (fr) * 2012-07-11 2014-08-08 Centre Nat Rech Scient Applicateur d'onde de surface pour la production de plasma
US20140061039A1 (en) * 2012-09-05 2014-03-06 Applied Materials, Inc. Target cooling for physical vapor deposition (pvd) processing systems
WO2014204598A1 (en) * 2013-06-17 2014-12-24 Applied Materials, Inc. Enhanced plasma source for a plasma reactor
US10039157B2 (en) * 2014-06-02 2018-07-31 Applied Materials, Inc. Workpiece processing chamber having a rotary microwave plasma source
US10707058B2 (en) * 2017-04-11 2020-07-07 Applied Materials, Inc. Symmetric and irregular shaped plasmas using modular microwave sources
US11037764B2 (en) 2017-05-06 2021-06-15 Applied Materials, Inc. Modular microwave source with local Lorentz force
US10685821B2 (en) * 2017-08-18 2020-06-16 Applied Materials, Inc. Physical vapor deposition processing systems target cooling
US11881384B2 (en) * 2019-09-27 2024-01-23 Applied Materials, Inc. Monolithic modular microwave source with integrated process gas distribution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004032176A1 (en) * 2002-10-04 2004-04-15 Kyu-Wang Lee Nanoporous dielectrics for plasma generator
US20100065214A1 (en) * 2003-12-23 2010-03-18 Lam Research Corporation Showerhead electrode assembly for plasma processing apparatuses
TW201813453A (zh) * 2011-10-05 2018-04-01 美商應用材料股份有限公司 對稱電漿處理腔室
CN109564843A (zh) * 2016-08-16 2019-04-02 应用材料公司 模块式微波等离子体源
TW201911974A (zh) * 2017-08-10 2019-03-16 美商應用材料股份有限公司 用於電漿處理的分佈式電極陣列

Also Published As

Publication number Publication date
CN114514794A (zh) 2022-05-17
US20230135935A1 (en) 2023-05-04
CN114514794B (zh) 2024-05-10
WO2021061463A1 (en) 2021-04-01
TW202117795A (zh) 2021-05-01
US20210100076A1 (en) 2021-04-01
US11564292B2 (en) 2023-01-24
JP2022549829A (ja) 2022-11-29
KR20220066961A (ko) 2022-05-24
TW202401499A (zh) 2024-01-01
JP7332796B2 (ja) 2023-08-23
EP4035196A4 (en) 2023-11-01
JP2023166392A (ja) 2023-11-21
EP4035196A1 (en) 2022-08-03

Similar Documents

Publication Publication Date Title
US11670489B2 (en) Modular microwave source with embedded ground surface
JP2024016016A (ja) 一体化されたガス分配装置を有するモジュール型高周波源
TWI817043B (zh) 用於具有整合式處理氣體分配的整體式模組化微波源的外殼、組件以及處理工具
JP2023166392A (ja) 統合温度制御を有するモノリシックモジュラーマイクロ波源
JP7492636B2 (ja) モノリシックモジュラー高周波プラズマ源
KR20230019976A (ko) 다수의 금속 하우징들을 갖는 모듈식 마이크로파 소스
US20240186118A1 (en) Monolithic modular microwave source with integrated process gas distribution
TW202418347A (zh) 單片式模組化高頻電漿源的單片式源陣列、組件及處理工具