TWI815968B - Integration of microdevices into system substrate - Google Patents

Integration of microdevices into system substrate Download PDF

Info

Publication number
TWI815968B
TWI815968B TW108133933A TW108133933A TWI815968B TW I815968 B TWI815968 B TW I815968B TW 108133933 A TW108133933 A TW 108133933A TW 108133933 A TW108133933 A TW 108133933A TW I815968 B TWI815968 B TW I815968B
Authority
TW
Taiwan
Prior art keywords
microdevice
substrate
layer
microdevices
conductive
Prior art date
Application number
TW108133933A
Other languages
Chinese (zh)
Other versions
TW202030829A (en
Inventor
格拉姆瑞札 查吉
伊莎諾拉 法西
Original Assignee
加拿大商弗瑞爾公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/542,019 external-priority patent/US10998352B2/en
Application filed by 加拿大商弗瑞爾公司 filed Critical 加拿大商弗瑞爾公司
Publication of TW202030829A publication Critical patent/TW202030829A/en
Application granted granted Critical
Publication of TWI815968B publication Critical patent/TWI815968B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76895Local interconnects; Local pads, as exemplified by patent document EP0896365
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/30Structure, shape, material or disposition of the layer connectors prior to the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0045Devices characterised by their operation the devices being superluminescent diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/034Manufacturing methods by blanket deposition of the material of the bonding area
    • H01L2224/0343Manufacturing methods by blanket deposition of the material of the bonding area in solid form
    • H01L2224/03436Lamination of a preform, e.g. foil, sheet or layer
    • H01L2224/0344Lamination of a preform, e.g. foil, sheet or layer by transfer printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/271Manufacture and pre-treatment of the layer connector preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/30Structure, shape, material or disposition of the layer connectors prior to the connecting process of a plurality of layer connectors
    • H01L2224/301Disposition
    • H01L2224/3012Layout
    • H01L2224/3013Square or rectangular array
    • H01L2224/30132Square or rectangular array being non uniform, i.e. having a non uniform pitch across the array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting

Abstract

In a micro-device integration process, a donor substrate is provided on which to conduct the initial manufacturing and pixelation steps to define the micro devices, including functional, e.g. light emitting layers, sandwiched between top and bottom conductive layers. The micro-devices are then transferred to a system substrate for finalizing and electronic control integration. The transfer may be facilitated by various means, including providing a continuous light emitting functional layer, breakable anchors on the donor substrates, temporary intermediate substrates enabling a thermal transfer technique, or temporary intermediate substrates with a breakable substrate bonding layer.

Description

整合微裝置於系統基板中Integrate microdevices into system substrates

本發明係關於光電微裝置,且更具體言之係關於將光電微裝置整合至具有增強的鍵合及導電能力的系統基板中。The present invention relates to optoelectronic microdevices, and more particularly to the integration of optoelectronic microdevices into system substrates with enhanced bonding and conductivity capabilities.

本發明之目的是藉由提供用於將微裝置自供體基板轉移至系統基板的系統及方法來克服先前技術的缺點。It is an object of the present invention to overcome the shortcomings of the prior art by providing a system and method for transferring microdevices from a donor substrate to a system substrate.

根據本發明之一個實施例,一種製造像素化結構的方法包括:提供供體基板;在該供體基板上沈積第一導電層;在該第一導電層上沈積完全或部分連續的發光功能層;在該功能層上沈積第二導電層;圖案化該第二導電層以形成像素化結構;提供用於各像素化結構的鍵合觸點;將該鍵合觸點固定至系統基板;以及移除該供體基板。According to an embodiment of the present invention, a method for manufacturing a pixelated structure includes: providing a donor substrate; depositing a first conductive layer on the donor substrate; and depositing a completely or partially continuous light-emitting functional layer on the first conductive layer. ; depositing a second conductive layer on the functional layer; patterning the second conductive layer to form pixelated structures; providing bonding contacts for each pixelated structure; securing the bonding contacts to the system substrate; and Remove the donor substrate.

在一個實施例中,使用連續像素化使該微裝置變成陣列。In one embodiment, the microdevice is made into an array using continuous pixelation.

在另一個實施例中,藉由填充該微裝置之間的空位將該裝置分離且轉移至中間基板。In another embodiment, the devices are separated and transferred to an intermediate substrate by filling the voids between the microdevices.

在另一個實施例中,在轉移至中間基板之後對該微裝置進行後處理。In another embodiment, the microdevice is post-processed after transfer to the intermediate substrate.

根據一個實施例,可提供一種鍵合結構。該鍵合結構可包括供體基板上的多個微裝置,其中各微裝置包括形成於微裝置的表面上的一或多個導電焊盤;且臨時材料覆蓋各微裝置或該一或多個導電焊盤的至少一部分。在一種情況下,臨時材料充當錨固件,其將該多個微裝置固持在供體基板中的殼體結構內部。According to one embodiment, a bonding structure may be provided. The bonding structure may include a plurality of microdevices on a donor substrate, wherein each microdevice includes one or more conductive pads formed on a surface of the microdevice; and the temporary material covers each microdevice or the one or more At least a portion of the conductive pad. In one case, the temporary material acts as an anchor that holds the plurality of microdevices inside the housing structure in the donor substrate.

根據一個實施例,可提供一種將微裝置整合在背板上的方法,該方法包括:提供由一或多個微裝置構成的微裝置基板;連接微裝置上的焊盤及背板上的對應焊盤以將來自基板的一組選擇性微裝置鍵合至背板;以及使微裝置基板分離以在背板上留下鍵合的選定組的微裝置。According to one embodiment, a method for integrating a microdevice on a backplane can be provided. The method includes: providing a microdevice substrate composed of one or more microdevices; connecting pads on the microdevice and corresponding pads on the backplane. bonding pads to bond a selected set of microdevices from the substrate to the backplane; and detaching the microdevice substrate to leave the bonded selected set of microdevices on the backplane.

相關申請案的交叉引用Cross-references to related applications

本申請案是2017年11月22日提交的美國申請案第15/820,683號的部分接續申請案且主張其優先權,該美國申請案第15/820,683號主張以下申請案的優先權及權益:2016年11月25日提交的美國臨時專利申請案第62/426,353號、2017年3月20日提交的美國臨時專利申請案第62/473,671號、2017年4月7日提交的美國臨時專利申請案第62/482,899號及2017年6月5日提交的美國臨時專利申請案第62/515,185號,以及2017年10月30日提交的加拿大專利申請案第2,984,214號,此等申請案中的每一者以全文引用的方式併入本文中。This application is a partial continuation of U.S. Application No. 15/820,683 filed on November 22, 2017 and claims its priority. The U.S. Application No. 15/820,683 claims the priority and rights of the following applications: U.S. Provisional Patent Application No. 62/426,353 filed on November 25, 2016, U.S. Provisional Patent Application No. 62/473,671 filed on March 20, 2017, U.S. Provisional Patent Application filed on April 7, 2017 No. 62/482,899 and U.S. Provisional Patent Application No. 62/515,185 filed on June 5, 2017, and Canadian Patent Application No. 2,984,214 filed on October 30, 2017, each of which One is incorporated herein by reference in its entirety.

本申請案亦主張2018年9月21日提交的美國臨時專利申請案第62/734,679號及2019年2月22日提交的美國臨時專利申請案第62/809,161號的權益,該等臨時專利申請案以全文引用的方式併入本文中。This application also claims the rights and interests of U.S. Provisional Patent Application No. 62/734,679 filed on September 21, 2018 and U.S. Provisional Patent Application No. 62/809,161 filed on February 22, 2019. These provisional patent applications The case is incorporated by reference in its entirety.

本申請案進一步主張2018年10月16日提交的美國臨時專利申請案第62/746,300號的權益,該臨時專利申請案以全文引用的方式併入本文中。This application further claims U.S. Provisional Patent Application No. 62/746,300, filed on October 16, 2018, which is incorporated herein by reference in its entirety.

雖然結合各個實施例及實例對本發明教導進行描述,但本發明教導不旨在受限於此些實施例。相反,本發明教導涵蓋各種替代方案及等同物,如熟習此項技術者將理解。Although the present teachings are described in conjunction with various embodiments and examples, the present teachings are not intended to be limited to these embodiments. On the contrary, the present teachings cover various alternatives and equivalents, as those skilled in the art will understand.

除非另外定義,否則本文中所用的所有技術及科學術語均具有與本發明一般技術者通常所理解的相同含義。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the invention.

如本說明書及申請專利範圍中所用,除非上下文另外明確規定,否則單數形式「一(a/an)」及「該」包含多個指代物。As used in this specification and claims, the singular forms "a/an" and "the" include plural referents unless the context clearly dictates otherwise.

在本說明書中,術語「裝置」、「豎直裝置」及「微裝置」可互換地使用。然而,熟習此項技術者應瞭解,此處描述的實施例與裝置尺寸無關。In this specification, the terms "device", "vertical device" and "micro device" are used interchangeably. However, those skilled in the art will appreciate that the embodiments described herein are independent of device size.

在本說明書中,術語「供體基板」及「臨時基板」可互換地使用。In this specification, the terms "donor substrate" and "temporary substrate" are used interchangeably.

在本說明書中,術語「受體基板」、「系統基板」及「背板」可互換地使用。In this specification, the terms "receptor substrate", "system substrate" and "backplane" are used interchangeably.

光電裝置的實例為感測器及發光裝置,例如發光二極體(LED)。Examples of optoelectronic devices are sensors and light emitting devices, such as light emitting diodes (LEDs).

本發明係關於微裝置陣列顯示裝置,其中微裝置陣列可利用可靠的方法鍵合至背板。可在微裝置基板上方製造微裝置。微裝置基板可包括微LED、無機LED、有機LED、感測器、固態裝置、整合電路、微機電系統(MEMS)及/或其他電子組件。The present invention relates to a microdevice array display device in which the microdevice array can be bonded to a backplane using a reliable method. Microdevices can be fabricated above microdevice substrates. Microdevice substrates may include microLEDs, inorganic LEDs, organic LEDs, sensors, solid state devices, integrated circuits, microelectromechanical systems (MEMS), and/or other electronic components.

LED及LED陣列可分類為豎直固態裝置。微裝置可為感測器、LED或在基板上生長、沈積或整體式製造的任何其他固體裝置。基板可為將裝置層或固態裝置轉移至的裝置層的固有基板或受體基板。LEDs and LED arrays can be classified as vertical solid-state devices. The microdevice can be a sensor, LED, or any other solid device grown, deposited, or monolithically fabricated on a substrate. The substrate may be a native substrate or a receptor substrate for the device layer to which the device layer or solid state device is transferred.

受體基板可為任何基板,且可為剛性的或可撓性的。受體基板可包含(但不限於)印刷電路板、薄膜電晶體(TFT)背板、整合電路基板,或在例如LED等光學微裝置的一種情況下,例如驅動電路背板等顯示器的組件。裝置供體及受體基板上的微裝置圖案化可與例如抓放等具有不同機構(例如,靜電轉移頭、彈性體轉移頭)或直接轉移機構(例如,雙功能焊盤)的不同轉移技術組合使用。The receptor substrate can be any substrate and can be rigid or flexible. The receptor substrate may include, but is not limited to, a printed circuit board, a thin film transistor (TFT) backplane, an integrated circuit substrate, or in the case of an optical microdevice such as an LED, a component of a display such as a driver circuit backplane. Microdevice patterning on device donor and acceptor substrates can be performed with different transfer techniques such as pick-and-place with different mechanisms (e.g., electrostatic transfer heads, elastomeric transfer heads) or direct transfer mechanisms (e.g., dual-function pads) Use in combination.

在本發明中,受體基板中的接觸焊盤指代微裝置轉移至的受體基板中的指定區域。接觸焊盤可包括永久地固持微裝置的鍵合材料。接觸焊盤可堆疊為多層以提供具有改進的鍵合及導電能力的機械上較穩定的結構。In this disclosure, a contact pad in the receptor substrate refers to a designated area in the receptor substrate to which the microdevice is transferred. The contact pads may include bonding material that permanently retains the microdevice. Contact pads can be stacked in multiple layers to provide a mechanically stable structure with improved bonding and electrical conductivity capabilities.

系統基板可由玻璃、矽、塑膠或任何其他常用材料製成。系統基板亦可具有有源電子組件,例如(但不限於)電晶體、電阻器、電容器或系統基板中常用的任何其他電子組件。在一些情況下,系統基板可為具有電信號列及行的基板。系統基板可為具有用以導出微LED裝置的電路的背板。System substrates can be made of glass, silicon, plastic, or any other commonly used material. The system substrate may also have active electronic components such as (but not limited to) transistors, resistors, capacitors, or any other electronic components commonly used in system substrates. In some cases, the system substrate may be a substrate having columns and rows of electrical signals. The system substrate may be a backplane with circuitry to derive the micro-LED devices.

圖1A展示具有側向功能結構的供體基板110的實施例,該側向功能結構包括底部平面或片狀導電層112;功能層114,例如發光量子井;以及頂部像素化導電層116。導電層112及116可由摻雜半導體材料或其他合適類型的導電層構成。頂部導電層116可包括幾個不同的層。在一個實施例中,如圖1B所示,在導電層116的頂部沈積有電流分佈層118。可圖案化電流分佈層118。在一個實施例中,可藉由剝離(lift off)進行圖案化。在另一種情況下,可藉由光刻進行圖案化。在實施例中,可首先沈積及圖案化介電層且接著將其用作硬掩模來圖案化電流分佈層118。在圖案化電流分佈層118之後,亦可圖案化頂部導電層116,以形成像素結構。在圖案化電流分佈層118及/或導電層116之後,可在圖案化後導電層116及電流分佈層118上方及之間沈積最終介電層120,如圖1C所示。亦可圖案化介電層120以產生如圖1D所示之開口130,以提供至電流分佈層118的通路。亦可提供另外的調平層128以平整上表面,如圖1E所示。Figure 1A shows an embodiment of a donor substrate 110 with lateral functional structures including a bottom planar or sheet-like conductive layer 112; a functional layer 114, such as a luminescent quantum well; and a top pixelated conductive layer 116. Conductive layers 112 and 116 may be composed of doped semiconductor materials or other suitable types of conductive layers. Top conductive layer 116 may include several different layers. In one embodiment, as shown in FIG. 1B , a current distribution layer 118 is deposited on top of the conductive layer 116 . Current distribution layer 118 may be patterned. In one embodiment, patterning can be performed by lift off. In another case, patterning can be performed by photolithography. In embodiments, the dielectric layer may be deposited and patterned first and then used as a hard mask to pattern the current distribution layer 118 . After patterning the current distribution layer 118, the top conductive layer 116 can also be patterned to form a pixel structure. After patterning the current distribution layer 118 and/or the conductive layer 116, a final dielectric layer 120 may be deposited over and between the patterned conductive layer 116 and the current distribution layer 118, as shown in FIG. 1C. The dielectric layer 120 may also be patterned to create openings 130 as shown in FIG. 1D to provide access to the current distribution layer 118 . An additional leveling layer 128 may also be provided to flatten the upper surface, as shown in Figure 1E.

如圖1E所示,在電流分佈層118的頂部、在每個開口130中沈積有焊盤132。具有焊盤132的所產生結構鍵合至具有焊盤154的系統基板150,如圖1F所示。可藉由介電層156分離系統基板150中的焊盤154。在系統基板焊盤154與系統基板150之間可存在其他層152,如電路系統、平面化層、導電跡線。可藉由熔融鍵合、陽極鍵合、熱壓鍵合、共晶鍵合或黏合劑鍵合將系統基板焊盤154鍵合至焊盤132。在系統裝置與側向裝置之間亦可沈積一或多個其他層。As shown in FIG. 1E , a pad 132 is deposited in each opening 130 on top of the current distribution layer 118 . The resulting structure with pads 132 is bonded to system substrate 150 with pads 154, as shown in Figure IF. Pads 154 in system substrate 150 may be separated by dielectric layer 156 . Other layers 152 may be present between the system substrate pads 154 and the system substrate 150, such as circuitry, planarization layers, conductive traces. System substrate pad 154 may be bonded to pad 132 by fusion bonding, anodic bonding, thermocompression bonding, eutectic bonding, or adhesive bonding. One or more other layers may also be deposited between the system device and the lateral device.

如圖1G所示,可自側向功能裝置,例如導電層112移除供體基板110。可薄化及/或部分或完全圖案化導電層112。可沈積及圖案化反射層或黑色矩陣170以覆蓋導電層112上介於像素之間的區域。在此階段之後,可根據裝置的功能沈積及圖案化其他層。例如,可沈積顏色轉換層以調整系統基板150中的側向裝置及像素產生的光的顏色。亦可在顏色轉換層之前及/或之後沈積一或多個濾色器。此等裝置中的介電層,例如介電層120可為如聚醯胺等有機物或如SiN、SiO2 、Al2 O3 等無機物。可用不同的製程進行該沈積,如等離子體增強化學汽相沈積(PECVD)、原子層沈積(ALD)及其他方法。每個層可為一種沈積材料或單獨或一起沈積的不同材料的組合物。可將鍵合材料僅沈積為供體基板110的焊盤132或系統基板焊盤154的一部分。對於該層中的一些而言,亦可存在某個退火過程。例如,可根據材料對電流分佈層118進行退火。在一個實例中,可在500℃下對電流分佈層118進行退火10分鐘。亦可在不同步驟之後進行退火。As shown in FIG. 1G , the donor substrate 110 may be removed from the lateral functional devices, such as the conductive layer 112 . Conductive layer 112 may be thinned and/or partially or fully patterned. A reflective layer or black matrix 170 may be deposited and patterned to cover the areas on conductive layer 112 between pixels. After this stage, other layers can be deposited and patterned according to the functionality of the device. For example, a color conversion layer may be deposited to adjust the color of light produced by lateral devices and pixels in system substrate 150. One or more color filters may also be deposited before and/or after the color conversion layer. The dielectric layer in these devices, such as the dielectric layer 120, can be an organic material such as polyamide or an inorganic material such as SiN, SiO 2 , Al 2 O 3 or the like. This deposition can be performed using different processes, such as plasma enhanced chemical vapor deposition (PECVD), atomic layer deposition (ALD), and other methods. Each layer may be one deposited material or a combination of different materials deposited separately or together. The bonding material may be deposited only as a portion of the pads 132 of the donor substrate 110 or the system substrate pads 154 . There may also be some annealing process for some of the layers. For example, current distribution layer 118 may be annealed depending on the material. In one example, current distribution layer 118 may be annealed at 500°C for 10 minutes. Annealing can also be performed after different steps.

圖2A展示具有側向功能結構的供體基板210的示範性實施例,該側向功能結構包括第一頂部平面或片狀導電層212;功能層214,例如發光層;第二底部像素化導電層216;電流分佈層218;及/或鍵合焊盤層232。圖2B展示圖案化層216、218、232中的全部或一個,以形成像素結構。導電層212及216可由包含高摻雜半導體層的多個層構成。在圖案化後層216、218及232之間可使用一些層228,例如電介質以平整側向功能結構的上表面,如圖2C所示。層228亦可具有其他功能,如黑色矩陣。具有焊盤232的所產生結構鍵合至具有基板焊盤254的系統基板250,如圖2D所示。亦可藉由介電層256分離系統基板中的焊盤254。在系統基板焊盤254與系統基板250之間可存在其他層252,如電路系統、平面化層及導電跡線。可例如藉由熔融鍵合、陽極鍵合、熱壓鍵合、共晶鍵合或黏合劑鍵合進行該鍵合。在系統裝置與側向裝置之間亦可沈積其他層。Figure 2A shows an exemplary embodiment of a donor substrate 210 with lateral functional structures including a first top planar or sheet-like conductive layer 212; a functional layer 214, such as a light emitting layer; and a second bottom pixelated conductive layer. layer 216; current distribution layer 218; and/or bonding pad layer 232. Figure 2B shows patterning all or one of layers 216, 218, 232 to form pixel structures. Conductive layers 212 and 216 may be composed of multiple layers including highly doped semiconductor layers. Layers 228, such as dielectric, may be used between patterned layers 216, 218, and 232 to flatten the upper surfaces of the lateral functional structures, as shown in Figure 2C. Layer 228 may also have other functions, such as a black matrix. The resulting structure with pads 232 is bonded to system substrate 250 with substrate pads 254, as shown in Figure 2D. The pads 254 in the system substrate may also be separated by a dielectric layer 256 . Other layers 252 may be present between system substrate pads 254 and system substrate 250, such as circuitry, planarization layers, and conductive traces. The bonding can be performed, for example, by melt bonding, anodic bonding, thermocompression bonding, eutectic bonding or adhesive bonding. Other layers may also be deposited between the system device and the lateral device.

可自側向功能裝置移除供體基板210。可薄化及/或圖案化導電層212。可沈積及圖案化反射層或黑色矩陣270以覆蓋導電層212上介於像素之間的區域。在此階段之後,可根據裝置的功能沈積及圖案化其他層。例如,可沈積顏色轉換層以調整系統基板250中的側向裝置及像素產生的光的顏色。亦可在顏色轉換層之前及/或之後沈積一或多個濾色器。此等裝置中的介電層,例如228及256可為如聚醯胺等有機物或如SiN、SiO2 、Al2 O3 等無機物。可用不同的製程進行該沈積,如PECVD、ALD及其他方法。每個層可為一種沈積材料或單獨或一起沈積的不同材料的組合物。鍵合焊盤232的材料可沈積為供體基板210的焊盤232或系統基板焊盤254的一部分。對於該層中之一些而言,亦可存在某種退火過程。例如,可根據材料對電流分佈層218進行退火。在實例中,可在500℃下對電流分佈層進行退火10分鐘。亦可在不同步驟之後進行退火。Donor substrate 210 is removable from the lateral functional device. Conductive layer 212 may be thinned and/or patterned. A reflective layer or black matrix 270 may be deposited and patterned to cover the areas on conductive layer 212 between pixels. After this stage, other layers can be deposited and patterned according to the functionality of the device. For example, a color conversion layer may be deposited to adjust the color of light produced by lateral devices and pixels in system substrate 250. One or more color filters may also be deposited before and/or after the color conversion layer. The dielectric layers in these devices, such as 228 and 256, can be organic materials such as polyamide or inorganic materials such as SiN, SiO 2 , Al 2 O 3 and other materials. Different processes can be used to perform this deposition, such as PECVD, ALD and other methods. Each layer may be one deposited material or a combination of different materials deposited separately or together. The material of bond pad 232 may be deposited as part of pad 232 of donor substrate 210 or system substrate pad 254 . There may also be some annealing process for some of the layers. For example, current distribution layer 218 may be annealed depending on the material. In an example, the current distribution layer may be annealed at 500°C for 10 minutes. Annealing can also be performed after different steps.

在圖3A中示出的另一個實施例中,在供體基板310上產生台面結構。藉由蝕刻穿過不同的層,例如第一底部導電層312、功能層314以及第二頂部導電層316形成有微裝置結構。可在頂部導電層316的頂部進行蝕刻之前或之後沈積頂部觸點332。在另一種情況下,可使用多層觸點332。在此情況下,可在蝕刻之前沈積接觸層332的一部分,且可在蝕刻之後沈積接觸層的一部分。例如,可首先沈積藉由對導電層316進行退火產生歐姆接觸的初始接觸層。在一個實例中,初始接觸層可為金或鎳。在台面結構之間亦可使用如電介質或金屬絕緣體結構(MIS)等其他層372以隔離及/或絕緣每個結構。在形成微裝置之後,可沈積如聚醯胺等填料層374,如圖3B所示。若在接下來的步驟期間僅將所選微裝置轉移至盒式(臨時)基板376,則可圖案化填料層374。亦可在將裝置轉移至臨時基板之後沈積填料層374。填料層374可充當微裝置的殼體。若在轉移之前使用填料層374,則剝離過程可能更可靠。In another embodiment shown in Figure 3A, a mesa structure is created on a donor substrate 310. Microdevice structures are formed by etching through different layers, such as the first bottom conductive layer 312, the functional layer 314, and the second top conductive layer 316. Top contact 332 may be deposited before or after etching on top of top conductive layer 316 . In another case, multi-layer contacts 332 may be used. In this case, a portion of the contact layer 332 may be deposited before etching, and a portion of the contact layer 332 may be deposited after etching. For example, an initial contact layer that creates an ohmic contact by annealing the conductive layer 316 may be deposited first. In one example, the initial contact layer may be gold or nickel. Other layers 372, such as dielectric or metal insulator structures (MIS), may also be used between mesa structures to isolate and/or insulate each structure. After forming the microdevice, a filler layer 374, such as polyamide, may be deposited, as shown in Figure 3B. Fill layer 374 may be patterned if only selected microdevices are transferred to cassette (temporary) substrate 376 during subsequent steps. The filler layer 374 may also be deposited after the device is transferred to the temporary substrate. The filler layer 374 may serve as a housing for the microdevice. The peeling process may be more reliable if the filler layer 374 is used prior to transfer.

裝置鍵合至臨時基板(盒)376。例如,鍵合來源可發生變化且可包括以下中的一或多個:靜電鍵合、電磁鍵合、黏合劑鍵合、範德華力(Van-Der-Waals force)鍵合或熱鍵合。對於熱鍵合,可使用熔化溫度為T1的基板鍵合層378。鍵合層378可為導電的或可包括導電層及鍵合層,該鍵合層可為黏合劑鍵合、熱鍵合或光輔助鍵合。導電層可用於偏置基板376上的裝置以識別缺陷及表徵裝置性能。此結構可用於此處呈現的其他實施例。為了解決某種表面輪廓不均勻性,可在鍵合過程期間施加壓力。可移除臨時基板376或供體基板310且將裝置留在其中任一者上。本文中解釋的過程係基於將裝置留在臨時基板376上,然而,當裝置留在供體基板310上時,可使用類似的步驟。在此之後,可在微裝置上進行額外過程,如薄化裝置、在底部導電層312上產生接觸鍵合層380或移除填料層374。可將裝置轉移至系統基板390,如圖3D及3E所示。可使用不同技術來進行該轉移。在一種情況下,使用熱鍵合來進行轉移。在此情況下,系統基板接觸焊盤382上的接觸鍵合層380的熔點為T2,其中T2 > T1。此處,高於T2的溫度將熔化基板鍵合層378及焊盤382上的接觸鍵合層380兩者。The device is bonded to a temporary substrate (cassette) 376 . For example, the source of bonding may vary and may include one or more of the following: electrostatic bonding, electromagnetic bonding, adhesive bonding, Van-Der-Waals force bonding, or thermal bonding . For thermal bonding, a substrate bonding layer 378 with a melting temperature T1 may be used. Bonding layer 378 may be conductive or may include a conductive layer and a bonding layer, which may be adhesive bonding, thermal bonding, or light-assisted bonding. The conductive layer may be used to bias devices on substrate 376 to identify defects and characterize device performance. This structure can be used with other embodiments presented here. To account for certain surface profile non-uniformities, pressure can be applied during the bonding process. Temporary substrate 376 or donor substrate 310 can be removed and the device left on either. The process explained herein is based on leaving the device on the temporary substrate 376, however, similar steps may be used when the device is left on the donor substrate 310. After this, additional processes may be performed on the microdevice, such as thinning the device, creating a contact bonding layer 380 on the bottom conductive layer 312, or removing the filler layer 374. The device may be transferred to system substrate 390, as shown in Figures 3D and 3E. Different techniques can be used to perform this transfer. In one case, thermal bonding is used to perform the transfer. In this case, the melting point of the contact bonding layer 380 on the system substrate contact pad 382 is T2, where T2 > T1. Here, temperatures above T2 will melt both the substrate bonding layer 378 and the contact bonding layer 380 on the pad 382.

在隨後的步驟中,溫度降至介於T1與T2之間。此時,裝置藉由接觸鍵合層380鍵合至系統基板390,使得接觸鍵合層380固化,但基板鍵合層378熔化。因此,移動臨時基板376使微裝置留在系統基板390上,如圖3E所示。可藉由對所選焊盤382施加局部加熱來使該過程具有選擇性。而且,除了局部加熱之外,可使用全局溫度,例如將基板376及390置於烤爐中且藉由提高其中的整體氣氛進行該過程,從而提高轉移速度。此處,臨時基板376或系統基板390上的全局溫度可使溫度接近接觸鍵合層380的熔點,例如比該熔點低5℃及10℃之間,且局部溫度可用於熔化與所選裝置相對應的接觸鍵合層380及基板鍵合層378。在另一種情況下,可使溫度升高為接近基板鍵合層378的熔點(高於接觸鍵合層378的熔點),例如比該熔點低5℃及10℃之間,且對於與加熱後焊盤382接觸的裝置而言,藉由裝置自焊盤382進行的溫度傳遞熔化基板鍵合層378的所選區域。In subsequent steps, the temperature is reduced to between T1 and T2. At this time, the device is bonded to the system substrate 390 through the contact bonding layer 380, so that the contact bonding layer 380 is solidified, but the substrate bonding layer 378 is melted. Therefore, temporary substrate 376 is moved such that the microdevice remains on system substrate 390, as shown in Figure 3E. This process can be made selective by applying localized heating to selected pads 382 . Furthermore, in addition to local heating, global temperature can be used, such as placing the substrates 376 and 390 in an oven and performing the process by increasing the overall atmosphere therein, thereby increasing the transfer speed. Here, the global temperature on the temporary substrate 376 or the system substrate 390 can bring the temperature close to the melting point of the contact bonding layer 380, for example, between 5°C and 10°C below the melting point, and the local temperature can be used to melt the material in contact with the selected device. Corresponding contact bonding layer 380 and substrate bonding layer 378. In another case, the temperature may be raised close to the melting point of the substrate bonding layer 378 (higher than the melting point of the contact bonding layer 378), for example, between 5°C and 10°C lower than the melting point, and for the same purpose as after heating For devices in contact with pad 382 , selected areas of substrate bonding layer 378 are melted by temperature transfer from the device to pad 382 .

圖3F示出熱曲線的實例,熔化溫度Tr熔化接觸鍵合層380及基板鍵合層378,且固化溫度Ts使具有鍵合焊盤382的接觸鍵合層380固化,同時基板鍵合層378仍熔化。熔化可為局部的或可至少使鍵合層軟至足以釋放微裝置或激活形成合金之過程。此處,亦可組合地或單獨地使用其他力以將裝置固持在鍵合焊盤382上。在另一種情況下,溫度曲線可藉由施加電流通過裝置來產生。因為在鍵合之前,接觸電阻將較高,所以在鍵合焊盤382及裝置上耗散的功率將很高,從而熔化接觸鍵合層380及基板鍵合層378。隨著鍵合形成,電阻將下降,且功率耗散亦將下降,由此降低局部溫度。通過焊盤382的電壓或電流可用於指示鍵合質量以及何時停止該過程。供體基板310及臨時基板376可相同或不同。在將裝置轉移至系統基板390之後,可進行不同製程步驟。此等額外的處理步驟可為平面化、電極沈積、顏色轉換沈積及圖案化、濾色器沈積及圖案化等。FIG. 3F shows an example of a thermal profile where the melting temperature Tr melts the contact bonding layer 380 and the substrate bonding layer 378 and the solidification temperature Ts solidifies the contact bonding layer 380 with the bonding pad 382 while the substrate bonding layer 378 Still melted. Melting may be localized or may at least soften the bonding layer enough to release the microdevice or activate the alloy forming process. Here, other forces may also be used in combination or alone to retain the device on bond pad 382. In another instance, a temperature profile can be generated by applying electrical current through the device. Because the contact resistance will be high prior to bonding, the power dissipated on bond pad 382 and the device will be high, melting contact bonding layer 380 and substrate bonding layer 378 . As the bond forms, the resistance will decrease and power dissipation will decrease, thereby lowering the local temperature. The voltage or current across pad 382 can be used to indicate the quality of the bond and when to stop the process. Donor substrate 310 and temporary substrate 376 may be the same or different. After the device is transferred to the system substrate 390, various process steps may be performed. These additional processing steps may be planarization, electrode deposition, color conversion deposition and patterning, color filter deposition and patterning, etc.

在另一個實施例中,用於自盒式基板376釋放微裝置的溫度隨著合金開始形成而增加。在此情況下,在鍵合合金形成於受體基板390的鍵合焊盤382上且鍵合層固化時,可使溫度保持恆定,由此使微裝置保持處於受體基板390上的適當位置處。同時,盒376上連接至所選微裝置的鍵合層378仍熔化(或足夠軟)以釋放該裝置。此處,材料的形成合金所需的一部分可處於微裝置上,且另一部分沈積在鍵合焊盤382上。In another embodiment, the temperature used to release the microdevice from the cassette substrate 376 increases as the alloy begins to form. In this case, the temperature can be held constant while the bonding alloy is formed on the bonding pads 382 of the receptor substrate 390 and the bonding layer solidifies, thereby keeping the microdevice in place on the receptor substrate 390 at. At the same time, the bonding layer 378 on the cartridge 376 connected to the selected microdevice is still melted (or soft enough) to release the device. Here, a portion of the material required to form the alloy can be on the microdevice and another portion is deposited on bond pad 382 .

在另一個實施例中,可將填料層374沈積在盒式基板376的頂部以形成聚合物填料/鍵合層374/378。接著,可將來自供體基板310的微裝置推至聚合物填料/鍵合層374/378中。接著,可選擇性地或總體上將微裝置與供體基板310分離。在將微裝置與供體基板310分離之前或之後,可使聚合物填料/鍵合層374/378固化。可圖案化聚合物填料/鍵合層374/378,在多個不同的裝置整合至盒式基板376中的情況下尤其如此。在此情況下,聚合物填料/鍵合層374/378可為針對一種類型而創建的,微裝置埋在該層中且與其供體310分離。接著,針對下一種類型的微裝置沈積及圖案化另一個聚合物填料/鍵合層374/378。接著,可將第二微裝置埋在相關聯層374/378中。在所有情況下,聚合物填料/鍵合層374/378可覆蓋微裝置中的一部分或所有裝置。In another embodiment, a filler layer 374 may be deposited on top of the cassette substrate 376 to form a polymer filler/bonding layer 374/378. Next, the microdevice from the donor substrate 310 can be pushed into the polymer filler/bonding layer 374/378. Next, the microdevice may be selectively or generally separated from the donor substrate 310. The polymer filler/bonding layer 374/378 may be cured before or after separating the microdevice from the donor substrate 310. The polymer filler/bonding layers 374/378 may be patterned, especially where multiple different devices are integrated into the cassette substrate 376. In this case, the polymer filler/bonding layer 374/378 may be created for one type, with the microdevice buried in this layer and separated from its donor 310. Next, another polymer filler/bonding layer 374/378 is deposited and patterned for the next type of microdevice. Next, the second microdevice can be buried in the associated layer 374/378. In all cases, the polymer filler/bonding layer 374/378 may cover some or all of the microdevice.

另一種增加溫度的方法可為使用微波或燈。因此,可在以下各者上沈積層:鍵合焊盤382;焊盤382中的一部分;微裝置;或盒376的吸收微波或光且局部加熱微裝置的一部分。可替代地,盒376及/或受體基板390可包含可選擇性地及/或全局地加熱微裝置的加熱元件。Another method of increasing temperature can be the use of microwaves or lamps. Thus, a layer may be deposited on: bonding pad 382; a portion of bonding pad 382; a microdevice; or a portion of box 376 that absorbs microwaves or light and locally heats the microdevice. Alternatively, cartridge 376 and/or receptor substrate 390 may contain heating elements that can selectively and/or globally heat the microdevice.

亦可使用其他方法來將微裝置與臨時基板376分離,如化學力、光學力或機械力。在一個實例中,可用犧牲層覆蓋微裝置,該犧牲層可藉由化學力、光學力、熱學力或機械力與臨時基板376解鍵合。解鍵合過程可為選擇性的或全局的。到系統基板390的全局解鍵合轉移是選擇性的。若裝置與臨時基板(盒)376的解鍵合過程是選擇性的,則可選擇性地或全局地向系統基板390施加轉移力。Other methods may also be used to separate the microdevice from the temporary substrate 376, such as chemical, optical, or mechanical forces. In one example, the microdevice may be covered with a sacrificial layer that may be debonded to the temporary substrate 376 by chemical, optical, thermal, or mechanical forces. The debonding process can be selective or global. Global debonding transfer to system substrate 390 is optional. If the debonding process of the device from the temporary substrate (cassette) 376 is selective, transfer forces may be applied to the system substrate 390 selectively or globally.

自盒376至受體基板390的轉移過程可基於不同的機制。在一種情況下,盒376具有鍵合材料,該鍵合材料在存在光的情況下釋放裝置,同時相同的光使裝置至受體基板的鍵合固化。The transfer process from the cartridge 376 to the receptor substrate 390 can be based on different mechanisms. In one case, the cartridge 376 has a bonding material that releases the device in the presence of light while the same light cures the bond of the device to the receptor substrate.

在另一個實施例中,用於固化裝置至受體基板390的鍵合層380的溫度使裝置自盒376釋放。In another embodiment, the temperature used to cure the bonding layer 380 of the device to the receptor substrate 390 causes the device to be released from the cartridge 376 .

在另一種情況下,電流或電壓使裝置至供體基板310的鍵合層380固化。相同的電流或電壓可使裝置自盒376釋放。此處,釋放可為由電流產生的壓電效應或溫度的函數。In another instance, the electrical current or voltage solidifies the device-to-donor substrate 310 bonding layer 380 . The same current or voltage can cause the device to be released from box 376. Here, the release can be a function of the piezoelectric effect produced by electrical current or temperature.

在另一種方法中,在固化裝置至受體基板390的鍵合之後,鍵合後裝置自盒376拉出。此處,將裝置固持至盒376的力小於將裝置鍵合至受體基板390的力。In another approach, after the bonding of the device to the receptor substrate 390 is cured, the bonded device is pulled from the cassette 376 . Here, the force holding the device to the box 376 is less than the force bonding the device to the receptor substrate 390.

在另一種方法中,盒376具有過孔,該過孔可用於將裝置推出盒376,進入至受體基板390中。可藉由不同的方式進行該推動,如使用微米棒陣列或藉由氣動方式。對於氣動結構,使所選裝置斷開連接。對於微米棒,藉由使微米棒穿過所選裝置的相關聯過孔來使所選裝置朝著受體基板390移動。微米棒可具有不同溫度以促進轉移。在對所選裝置的轉移完成之後,微米棒縮回,相同的棒與另一組微裝置的過孔對齊,或使用與新的所選微裝置對齊的一組過孔來轉移新裝置。In another approach, the box 376 has vias that can be used to push the device out of the box 376 and into the receptor substrate 390. This pushing can be done in different ways, such as using microrod arrays or by pneumatic means. For pneumatic structures, disconnect the selected device. For microrods, the selected device is moved toward the receptor substrate 390 by passing the microrod through its associated via. The microrods can have different temperatures to facilitate transfer. After the transfer of the selected device is complete, the micrometer rods are retracted and the same rods are aligned with the vias of another set of microdevices, or a new device is transferred using the set of vias aligned with the new selected microdevice.

在一個實施例中,盒376可拉伸以增加盒376中的裝置間距,以提高生產量。例如,若盒376為1 × 1 cm2 ,其中裝置間距為5微米,且受體基板390(例如,顯示器)的像素間距為50微米,則盒376一次可填充200 × 200(40,000)個像素。然而,若盒376拉伸為2 × 2 cm2 ,其中裝置間距為10微米,則盒376一次可填充400 × 400(160,000)個像素。在另一種情況下,盒376可拉伸為使得盒376上的至少兩個微裝置變得與受體基板中的兩個對應位置對齊。可在一或多個方向上進行該拉伸。盒式基板376可包括可拉伸聚合物或由可拉伸聚合物組成。微裝置亦固定於另一個層或與盒式基板376相同的層中。In one embodiment, the box 376 can be stretched to increase device spacing within the box 376 to increase throughput. For example, if the box 376 is 1 × 1 cm 2 with a device pitch of 5 microns and a pixel pitch of the receptor substrate 390 (e.g., a display) of 50 microns, the box 376 can be filled with 200 × 200 (40,000) pixels at a time . However, if the box 376 is stretched to 2 × 2 cm 2 with a device pitch of 10 microns, the box 376 can be filled with 400 × 400 (160,000) pixels at a time. In another instance, the cartridge 376 may be stretched such that at least two microdevices on the cartridge 376 become aligned with two corresponding locations in the receptor substrate. This stretching can be done in one or more directions. Cassette substrate 376 may include or consist of a stretchable polymer. The microdevice is also fixed in another layer or the same layer as the cassette substrate 376.

亦可將上文描述的方法的組合用於將微裝置自盒376轉移至受體基板390。Combinations of the methods described above may also be used to transfer microdevices from cassette 376 to receptor substrate 390.

在產生盒(臨時基板)376期間,可對微裝置進行測試以識別不同的缺陷及裝置性能。在一個實施例中,在分離頂部電極之前,可對裝置進行偏置及測試。若裝置是發射型裝置,可使用相機(或感測器)來提取缺陷及裝置性能。若裝置是感測器,可對裝置施加刺激以提取缺陷及性能。在另一個實施例中,在圖案化成單獨的裝置之前,可將頂部電極332圖案化成組以進行測試。在另一個實例中,多於一個裝置之間的臨時共同電極沈積或耦合至裝置以提取裝置性能及/或提取缺陷。During the production of the cassette (temporary substrate) 376, the microdevice can be tested to identify different defects and device performance. In one embodiment, the device can be biased and tested before the top electrode is separated. If the device is an emissive device, a camera (or sensor) can be used to extract defects and device performance. If the device is a sensor, stimulation can be applied to the device to extract defects and performance. In another embodiment, top electrodes 332 may be patterned into groups for testing before patterning into individual devices. In another example, a temporary common electrode between more than one device is deposited or coupled to the device to extract device performance and/or extract defects.

上文關於圖3A-3D描述的方法--包含但不限於分離、形成填料層、填料層的不同作用、測試及其他結構--可用於包含下文所述的結構的其他結構。The methods described above with respect to Figures 3A-3D - including but not limited to separation, formation of filler layers, different actions of filler layers, testing, and other structures - can be used for other structures including the structures described below.

此處所討論的用於將微裝置自盒(臨時基板)376轉移至受體基板390的方法可應用於此處呈現的所有盒及受體基板配置。The methods discussed here for transferring microdevices from cassette (temporary substrate) 376 to receptor substrate 390 are applicable to all cassette and receptor substrate configurations presented here.

供體基板310上的裝置可產生為在背對供體基板310的同一側具有兩個觸點332及380。在此實施例中,可將盒376上的導電層圖案化以獨立地偏置裝置的兩個觸點332及380。在一種情況下,可將裝置自盒式基板376直接轉移至受體基板390。此處,觸點332及380可不直接鍵合至受體基板390,即受體基板390不需要具有特殊的焊盤。在此情況下,導電層沈積及圖案化以將觸點332及380連接至受體基板390中的適當連接。在另一個實施例中,可在轉移至受體基板390之前首先將裝置自盒376轉移至臨時基板。此處,觸點332及380可直接鍵合至受體基板焊盤382。可在盒376中或在臨時基板中對裝置進行測試。The device on the donor substrate 310 can be produced with two contacts 332 and 380 on the same side facing away from the donor substrate 310 . In this embodiment, the conductive layer on box 376 may be patterned to independently bias the two contacts 332 and 380 of the device. In one case, the device may be transferred directly from the cassette substrate 376 to the receptor substrate 390. Here, the contacts 332 and 380 may not be directly bonded to the receptor substrate 390, that is, the receptor substrate 390 does not need to have special pads. In this case, a conductive layer is deposited and patterned to connect contacts 332 and 380 to the appropriate connections in receptor substrate 390. In another embodiment, the device may first be transferred from the cassette 376 to a temporary substrate before being transferred to the recipient substrate 390. Here, contacts 332 and 380 may be bonded directly to receptor substrate pad 382. The device can be tested in the box 376 or on a temporary substrate.

在圖4A中示出的另一個實施例中,在供體基板上產生如上文所述的台面結構,其中藉由蝕刻穿過不同的層,例如第一底部導電層412;功能層414,例如發光層;及第二頂部導電層416形成有微裝置結構。可在頂部導電層416的頂部進行蝕刻之前或之後沈積頂部觸點432。In another embodiment shown in Figure 4A, a mesa structure as described above is created on a donor substrate by etching through different layers, such as a first bottom conductive layer 412; a functional layer 414, e.g. the light-emitting layer; and the second top conductive layer 416 formed with microdevice structures. Top contact 432 may be deposited before or after etching on top of top conductive layer 416 .

臨時基板476包含初始地填充有填充材料,例如如聚合物等軟材料或如SiO2 、SiN等固體材料的多個槽476-2。槽476-2處於表面及/或基板鍵合層478下方。將裝置轉移至槽476-2頂部的臨時基板476,且裝置包含接觸焊盤432。而且,每個微裝置可包含圍繞每個微裝置的其他鈍化層及/或MIS層472以進行隔離及/或保護。可用填充材料474來填充裝置之間的空間。在對裝置進行後處理之後,可在裝置的對置表面上沈積另一個下部接觸焊盤480。在沈積下部接觸焊盤480之前,可薄化接觸層412。接著,可移除填充材料474,且可藉由如例如化學蝕刻或蒸發等各種適當的方式將槽排空以引起或促進鍵合層478的表面及/或所選區段的釋放。可使用與之前在上文中描述的過程類似的過程來將裝置轉移至系統(受體)基板490。另外,在另一個實施例中,自焊盤432施加的力,例如推力或拉力可能破壞排空的槽476-2上方的表面及/或鍵合層478,同時保持未選擇的台面結構附接至臨時基板。此力亦可將裝置自臨時基板476釋放,如圖4B及圖4C所示。可選擇槽476-2的深度以管理一些微裝置高度差。例如,若高度差為H,則槽的深度可大於H。The temporary substrate 476 includes a plurality of grooves 476-2 initially filled with a filler material, such as a soft material such as a polymer or a solid material such as SiO2 , SiN, or the like. Groove 476-2 is beneath the surface and/or substrate bonding layer 478. The device is transferred to temporary substrate 476 on top of slot 476-2 and includes contact pads 432. Furthermore, each microdevice may include other passivation layers and/or MIS layers 472 surrounding each microdevice for isolation and/or protection. Filling material 474 may be used to fill the spaces between devices. After post-processing the device, another lower contact pad 480 may be deposited on an opposing surface of the device. Prior to depositing lower contact pad 480, contact layer 412 may be thinned. Next, the filler material 474 may be removed, and the trench may be evacuated by any suitable means, such as chemical etching or evaporation, to cause or facilitate release of the surface and/or selected regions of the bonding layer 478 . The device can be transferred to the system (receptor) substrate 490 using a process similar to that previously described above. Additionally, in another embodiment, forces exerted from pad 432, such as push or pull forces, may damage the surface above evacuated trench 476-2 and/or bonding layer 478 while maintaining unselected mesa structures attached. to the temporary baseboard. This force can also release the device from the temporary base plate 476, as shown in Figures 4B and 4C. The depth of slot 476-2 may be selected to manage some microdevice height differences. For example, if the height difference is H, the depth of the groove can be greater than H.

基板310上的裝置可經產生為在背對基板310的同一側上具有兩個觸點432及480。在此情況下,可將盒476上的導電層圖案化以獨立地偏置裝置的該兩個觸點。在一種情況下,可將裝置自盒式基板476直接轉移至受體基板。此處,觸點432及480將不會直接鍵合至受體基板(受體基板不需要具有特殊的焊盤)。在此情況下,導電層經沈積及圖案化以將觸點432及380連接至受體基板中的適當連接。在另一種情況下,可在轉移至受體基板之前先將裝置自盒476轉移至臨時基板。此處,觸點432及480可直接鍵合至受體基板焊盤。可在盒中或在臨時基板中對裝置進行測試。The device on the substrate 310 can be produced with two contacts 432 and 480 on the same side facing away from the substrate 310 . In this case, the conductive layer on box 476 can be patterned to independently bias the two contacts of the device. In one case, the device can be transferred directly from the cassette substrate 476 to the recipient substrate. Here, contacts 432 and 480 will not be directly bonded to the receptor substrate (the receptor substrate does not need to have special pads). In this case, a conductive layer is deposited and patterned to connect contacts 432 and 380 to the appropriate connections in the receptor substrate. In another case, the device may be transferred from the cassette 476 to the temporary substrate before being transferred to the recipient substrate. Here, contacts 432 and 480 can be bonded directly to the receptor substrate pads. The device can be tested in a box or on a temporary substrate.

在圖5A中示出的另一個實施例中,在供體基板510上產生如上文所述的台面結構,其中藉由蝕刻穿過不同的層,例如第一底部導電層512;功能層514,例如發光層;及第二頂部導電層516形成有微裝置結構。可在頂部導電層516的頂部進行蝕刻之前或之後沈積頂部接觸焊盤532。而且,每個微裝置可包含圍繞每個微裝置的其他鈍化層及/或MIS層572以進行隔離及/或保護。在此實施例中,裝置可設置有不同的錨固件,藉此,在裝置剝離之後,錨固件將裝置固持至供體基板510。可藉由雷射進行該剝離。在實例中,雷射器僅掃描裝置。在實施例中,可使用掩模,該掩模僅在供體基板510的背面具有用於裝置的開口以阻擋來自其他區域的雷射。掩模可與供體基板510分離或可為供體基板的一部分。在另一種情況下,可在剝離過程之前將另一個基板連接至裝置以固持裝置。在另一種情況下,在裝置之間可使用填料層574,例如電介質。In another embodiment shown in Figure 5A, a mesa structure as described above is created on a donor substrate 510 by etching through different layers, such as a first bottom conductive layer 512; a functional layer 514, For example, the light emitting layer; and the second top conductive layer 516 is formed with a microdevice structure. Top contact pad 532 may be deposited before or after etching on top of top conductive layer 516 . Furthermore, each microdevice may include additional passivation and/or MIS layers 572 surrounding each microdevice for isolation and/or protection. In this embodiment, the device may be provided with different anchors whereby the anchors retain the device to the donor substrate 510 after the device is peeled off. This peeling can be performed by laser. In the example, the laser only scans the device. In embodiments, a mask may be used that has openings for the device only on the backside of the donor substrate 510 to block laser light from other areas. The mask may be separate from the donor substrate 510 or may be part of the donor substrate. In another case, another substrate can be attached to the device to hold the device before the stripping process. In another case, a filler layer 574, such as a dielectric, may be used between devices.

在第一種所展示的情況下,層592提供用於將裝置固持至供體基板510。層592可為單獨的層或是微裝置的層中、在台面結構產生期間未經蝕刻的一部分。在另一種情況下,層592可為層572之一的延續。在此情況下,層592可為金屬層或介電層(SiN或SiO2 或其他材料)。在另一種情況下,錨固件產生為包括延伸部594、空隙/間隙596及/或橋598的單獨結構。此處,沈積及圖案化形狀與空隙/間隙596相同之犧牲層。接著,錨固層沈積及圖案化以形成橋598及/或延伸部594。稍後可移除犧牲材料以產生空隙/間隙596。亦可避免延伸部594。類似於之前的錨固件592,另一個錨固件可由不同的結構層構成。在另一種情況下,填充層574充當錨固件。在此情況下,可對填充層574進行蝕刻或圖案化,或使其保持原樣。In the first illustrated case, layer 592 provides for retaining the device to donor substrate 510 . Layer 592 may be a separate layer or a portion of the layers of the microdevice that was not etched during creation of the mesa structure. In another case, layer 592 may be a continuation of one of layers 572. In this case, layer 592 may be a metal layer or a dielectric layer (SiN or SiO 2 or other materials). In another case, the anchor is created as a separate structure including extensions 594, voids/gaps 596, and/or bridges 598. Here, a sacrificial layer having the same shape as void/gap 596 is deposited and patterned. Next, an anchoring layer is deposited and patterned to form bridges 598 and/or extensions 594. The sacrificial material may later be removed to create void/gap 596. Extension 594 may also be avoided. Similar to the previous anchor 592, the other anchor may be constructed from different structural layers. In another case, the filling layer 574 acts as an anchor. In this case, fill layer 574 may be etched or patterned, or left as is.

圖5B展示在移除填料層574及/或蝕刻填料層以形成錨固件之後的樣品。在另一種情況下,在剝離之後,橋接層598的黏附力足以將裝置固持在適當位置且充當錨固件。僅出於說明目的,在一個基板510中示出處於圖5B的右側的最終裝置。可在基板中使用該裝置之一或其組合。Figure 5B shows the sample after the filler layer 574 is removed and/or etched to form anchors. In another instance, after peeling off, the adhesion of the bridging layer 598 is sufficient to hold the device in place and act as an anchor. For illustration purposes only, the final device is shown on the right side of Figure 5B in one substrate 510. One or a combination of these devices can be used in the substrate.

如圖5C所示,錨固件可覆蓋裝置的周邊的至少一部分或裝置的整個周邊,或其可圖案化以形成臂594及592。該結構中任一者可用於任何錨固結構。As shown in Figure 5C, the anchors can cover at least a portion of the perimeter of the device or the entire perimeter of the device, or they can be patterned to form arms 594 and 592. Either of these structures can be used with any anchoring structure.

圖5D展示將裝置轉移至受體基板590的一個實例。此處,微裝置鍵合至焊盤582或置於無任何焊盤的預定區域中。壓力或分離力可藉由破壞錨固件來將錨固件釋放。在另一種情況下,亦可使用溫度來釋放錨固件。可藉由控制溫度來增加微裝置的剝離與供體基板510之間的層的黏度以充當錨固件。圖5E展示在裝置轉移至受體基板590之後的該裝置,且示出錨固件中的可能釋放點598-2。錨固件亦可直接地或藉由其他層間接地連接至供體基板510。Figure 5D shows an example of transferring a device to a receptor substrate 590. Here, the microdevice is bonded to pad 582 or placed in a predetermined area without any pads. Pressure or separation forces can release the anchor by breaking it. In another case, temperature can also be used to release the anchor. The temperature can be controlled to increase the viscosity of the layer between the microdevice exfoliation and the donor substrate 510 to act as an anchor. Figure 5E shows the device after transfer to the recipient substrate 590 and shows possible release points 598-2 in the anchor. Anchors may also be connected to the donor substrate 510 directly or indirectly through other layers.

供體基板510上的裝置可產生為在背對供體基板510的同一側具有兩個觸點532及480。在一種情況下,可將裝置自供體基板510直接轉移至受體基板590。此處,觸點532及480可直接鍵合至受體基板焊盤582。可在供體基板510中或在盒中對裝置進行測試。在另一個實施例中,可在轉移至受體基板590之前首先將裝置自供體基板510轉移至盒式基板。此處,觸點532將不會直接鍵合至受體基板590,即受體基板590不需要具有特殊的焊盤582。在此情況下,導電層沈積及圖案化以將觸點532連接至受體基板590中的適當連接。The device on the donor substrate 510 can be produced with two contacts 532 and 480 on the same side facing away from the donor substrate 510 . In one case, the device can be transferred directly from donor substrate 510 to acceptor substrate 590. Here, contacts 532 and 480 may be bonded directly to receptor substrate pad 582. The device can be tested in the donor substrate 510 or in a cassette. In another embodiment, the device may first be transferred from the donor substrate 510 to the cassette substrate before being transferred to the acceptor substrate 590. Here, the contacts 532 will not be directly bonded to the receptor substrate 590 , ie, the receptor substrate 590 does not need to have special pads 582 . In this case, a conductive layer is deposited and patterned to connect contacts 532 to the appropriate connections in receptor substrate 590.

系統基板或受體基板390、490及590可包括微LED、有機LED、感測器、固態裝置、整合電路、MEMS(微機電系統)及/或其他電子部件。其他實施例涉及關於像素陣列圖案化及放置微裝置以優化選擇性轉移過程中的微裝置利用。系統基板或受體基板390、490及590可為但不限於印刷電路板(PCB)、薄膜電晶體背板、整合電路基板或在如LED等光學微裝置的一種情況下是顯示器的部件,例如驅動電路系統背板。圖案化微裝置供體基板及受體基板可與不同的轉移技術組合使用,包含但不限於用不同的機構(例如,靜電轉移頭、彈性體轉移頭)或如雙重功能焊盤等直接轉移機構進行的拾放(pick and place)。System substrates or receptor substrates 390, 490, and 590 may include micro-LEDs, organic LEDs, sensors, solid-state devices, integrated circuits, MEMS (micro-electromechanical systems), and/or other electronic components. Other embodiments relate to pixel array patterning and placement of microdevices to optimize microdevice utilization during selective transfer. The system substrate or receptor substrate 390, 490 and 590 may be, but is not limited to, a printed circuit board (PCB), a thin film transistor backplane, an integrated circuit substrate, or in one case an optical microdevice such as an LED, a component of a display, e.g. Drive circuit system backplane. Patterned microdevice donor and acceptor substrates can be used in combination with different transfer techniques, including but not limited to using different mechanisms (e.g., electrostatic transfer heads, elastomeric transfer heads) or direct transfer mechanisms such as dual-function pads Pick and place.

圖6A展示圖3A至3F的台面結構的替代性實施例,其中台面結構初始地未經蝕刻穿過所有層。此處,緩衝層312及/或接觸層312的某個部分在初始步驟期間可保留。台面結構產生於供體基板310上。藉由蝕刻穿過不同的層,例如第一底部導電層312、功能層314及第二頂部導電層316形成有微裝置結構。可在頂部導電層316的頂部進行蝕刻之前或之後沈積頂部觸點332。台面結構可包含將在形成台面結構之前或之後沈積及圖案化的其他層372。此等層可為電介質、MIS、觸點、犧牲等。在台面結構產生之後,在微裝置之間及周圍使用一或多個填料層374,例如介電材料以將微裝置固定在一起。微裝置藉由一或多個基板鍵合層378鍵合至臨時基板376。一或多個鍵合層378可提供一或多種不同的力,如靜電力、化學力、物理力、熱學力等。在自供體基板310移除裝置之後,如上文所述,可蝕刻掉底部導電層312的額外部分或對其進行圖案化以分離裝置(圖6C)。可沈積及圖案化如接觸鍵合層380等其他層。此處,可蝕刻填料層374以分離微裝置,或可移除犧牲層以分離裝置。在另一個實施例中,可施加溫度以將裝置與填料層374分離且使其準備好轉移至受體基板390。可選擇性地進行該分離,如上文所述。在另一個實施例中,可蝕刻填料層374以形成例如呈截錐體或截頭角錐形狀的至少部分地圍繞每個微裝置的殼體、基部或錨固件375,如圖6E所示。可在基部375上方沈積另一個層且可將該層用於形成錨固件598-2。在形成額外的層598-2之後,可將填料基部層375留下或將其自錨固裝置移除。圖6G示出具有犧牲層372-2的裝置。可藉由蝕刻移除犧牲層372-2或可使其熱變形或熱移除。Figure 6A shows an alternative embodiment of the mesa structure of Figures 3A-3F, wherein the mesa structure is initially unetched through all layers. Here, some portion of buffer layer 312 and/or contact layer 312 may remain during the initial steps. The mesa structure is created on the donor substrate 310. Microdevice structures are formed by etching through different layers, such as the first bottom conductive layer 312, the functional layer 314, and the second top conductive layer 316. Top contact 332 may be deposited before or after etching on top of top conductive layer 316 . The mesa structure may include other layers 372 that will be deposited and patterned before or after forming the mesa structure. These layers can be dielectric, MIS, contacts, sacrificial, etc. After the mesa structure is created, one or more filler layers 374, such as dielectric material, are used between and around the microdevices to hold the microdevices together. The microdevice is bonded to temporary substrate 376 via one or more substrate bonding layers 378 . One or more bonding layers 378 may provide one or more different forces, such as electrostatic force, chemical force, physical force, thermal force, etc. After removing the device from the donor substrate 310, as described above, additional portions of the bottom conductive layer 312 may be etched away or patterned to separate the device (Fig. 6C). Other layers such as contact bonding layer 380 may be deposited and patterned. Here, the filler layer 374 can be etched to separate the microdevices, or the sacrificial layer can be removed to separate the devices. In another embodiment, temperature may be applied to separate the device from the filler layer 374 and prepare it for transfer to the receptor substrate 390. This separation can optionally be performed as described above. In another embodiment, the filler layer 374 may be etched to form a housing, base, or anchor 375 that at least partially surrounds each microdevice, such as in the shape of a frustum or truncated pyramid, as shown in Figure 6E. Another layer may be deposited over base 375 and used to form anchor 598-2. After the additional layer 598-2 is formed, the filler base layer 375 may be left in place or removed from the anchoring device. Figure 6G shows a device with sacrificial layer 372-2. The sacrificial layer 372-2 may be removed by etching or may be thermally deformed or thermally removed.

在另一個實施例中,錨固件與殼體375相同,且在微裝置轉移至盒376之後由聚合物層、有機層或其他層構建。殼體375可具有不同的形狀。在一種情況下,殼體可與裝置形狀相匹配。殼體側壁可比微裝置高度更短。可在轉移循環之前將殼體側壁連接至微裝置以便為盒376中的不同微裝置後處理以及對微裝置盒的包裝以供運輸及儲存提供支持。可分離殼體側壁,或可在轉移循環之前或期間藉由如加熱、蝕刻或曝光等不同的方式自裝置弱化至微裝置的連接。In another embodiment, the anchors are the same as the housing 375 and are constructed from polymer, organic, or other layers after the microdevice is transferred to the cartridge 376 . Housing 375 can have different shapes. In one case, the housing may match the shape of the device. The housing side walls can be shorter than the microdevice height. The housing side walls may be connected to the microdevices prior to the transfer cycle to provide support for post-processing of the different microdevices in the box 376 and packaging of the microdevice boxes for shipping and storage. The housing sidewalls may be detached, or the connection from the device to the microdevice may be weakened before or during the transfer cycle by various means such as heating, etching, or exposure.

供體基板310上的裝置可產生為在背對供體基板310的同一側具有兩個觸點332及380。在此情況下,可將盒376上的導電層圖案化以獨立地偏置裝置的兩個觸點332及380。在一種情況下,可將裝置自盒式基板376直接轉移至受體基板390。此處,觸點332及380將不直接鍵合至受體基板390,即受體基板390不需要具有特殊的焊盤。在此情況下,導電層沈積及圖案化以將觸點332及380連接至受體基板390中的適當連接。在另一個實施例中,可在轉移至受體基板390之前首先將裝置自盒376轉移至臨時基板。因此,觸點332及380可直接鍵合至受體基板焊盤。可在盒376中或在臨時基板中對裝置進行測試。The device on the donor substrate 310 can be produced with two contacts 332 and 380 on the same side facing away from the donor substrate 310 . In this case, the conductive layer on box 376 can be patterned to independently bias the two contacts 332 and 380 of the device. In one case, the device may be transferred directly from the cassette substrate 376 to the receptor substrate 390. Here, contacts 332 and 380 will not be directly bonded to receptor substrate 390, ie, receptor substrate 390 does not need to have special pads. In this case, a conductive layer is deposited and patterned to connect contacts 332 and 380 to the appropriate connections in receptor substrate 390. In another embodiment, the device may first be transferred from the cassette 376 to a temporary substrate before being transferred to the recipient substrate 390. Therefore, contacts 332 and 380 can be bonded directly to the receptor substrate pads. The device can be tested in the box 376 or on a temporary substrate.

由於基板晶格與微裝置層之間的不匹配,層的生長含有如位錯、空隙等若干缺陷。為了減少缺陷,首先可在供體基板6110上沈積在其之間或其附近具有分離層6116的至少一個第一緩衝層6114及/或第二緩衝層6118,且隨後在緩衝層6114及/或6118上方沈積有源層6112。緩衝層6114及6118的厚度可相當大,例如,與供體基板6110一樣厚。在將微裝置與供體基板6110分離(剝離)期間,亦可分離緩衝層6114/6118。因此,每次均應重複緩衝層沈積。圖6H展示基板6110上之結構,其中分離層6116介於第一緩衝層6114與實際裝置層6112之間。在分離層6116與裝置層6112之間可存在第二緩衝層6118。第二緩衝層6118亦可阻止來自分離層6116的污染物滲透至裝置層6112。緩衝層6114及6118均可包括多於一個層。分離層6116亦可包括不同材料的堆疊。在一個實例中,分離層6116對其他層不響應的光波長做出反應。此光源可用於將實際裝置6112與一或多個緩衝層6114/6118以及供體基板6110分離。在另一個實例中,分離層6116對化學物質做出反應,而相同的化學物質不影響其他層。此化學物質可用於移除分離層6116或改變其性質以將裝置與一或多個緩衝層6114/6118以及基板6110分離。此方法使第一緩衝層6114在供體基板6110上保持完整,且因此,該第一緩衝層可重複用於下一次裝置產生。在下一次裝置沈積之前,可進行一些如清潔或緩衝等表面處理。在另一個實例中,一或多個緩衝層6114/6118可包括氧化鋅。Due to the mismatch between the substrate lattice and the microdevice layer, the layer growth contains several defects such as dislocations, voids, etc. To reduce defects, at least one first buffer layer 6114 and/or second buffer layer 6118 may first be deposited on the donor substrate 6110 with a separation layer 6116 therebetween or adjacent thereto, and then the buffer layer 6114 and/or An active layer 6112 is deposited over 6118. The thickness of buffer layers 6114 and 6118 may be considerable, for example, as thick as donor substrate 6110. During separation (peeling) of the microdevice from the donor substrate 6110, the buffer layers 6114/6118 may also be separated. Therefore, buffer layer deposition should be repeated each time. FIG. 6H shows the structure on the substrate 6110, in which the separation layer 6116 is between the first buffer layer 6114 and the actual device layer 6112. A second buffer layer 6118 may be present between the separation layer 6116 and the device layer 6112. The second buffer layer 6118 can also prevent contaminants from the separation layer 6116 from penetrating into the device layer 6112. Buffer layers 6114 and 6118 may each include more than one layer. Separation layer 6116 may also include a stack of different materials. In one example, separation layer 6116 responds to wavelengths of light that other layers do not respond to. This light source can be used to separate the actual device 6112 from one or more buffer layers 6114/6118 and the donor substrate 6110. In another example, separation layer 6116 reacts to a chemical, while the same chemical does not affect the other layers. This chemical may be used to remove or change the properties of separation layer 6116 to separate the device from one or more buffer layers 6114/6118 and substrate 6110. This approach allows the first buffer layer 6114 to remain intact on the donor substrate 6110, and therefore, the first buffer layer can be reused for the next device generation. Some surface treatment such as cleaning or buffering can be performed before the next device deposition. In another example, one or more buffer layers 6114/6118 may include zinc oxide.

在分離過程(剝離)之前,可藉由不同的蝕刻製程分離微裝置,如圖6I所示。蝕刻可蝕刻第二緩衝層6118(若存在),而且可蝕刻分離層6116的一部分或全部以及裝置層6112。在另一個實例中,不對第二緩衝層6118或分離層6116進行蝕刻。在蝕刻步驟之後,微裝置臨時(或永久)鍵合至另一基板6150,且分離層6116經移除或改性以使微裝置與第一緩衝層6114及第二緩衝層6118分離。如圖6J所示,第一緩衝層6114可在供體基板6110上保持基本完整。Before the separation process (stripping), the microdevices can be separated by different etching processes, as shown in Figure 6I. The etching may etch second buffer layer 6118, if present, and may etch part or all of separation layer 6116 and device layer 6112. In another example, the second buffer layer 6118 or the separation layer 6116 is not etched. After the etching step, the microdevice is temporarily (or permanently) bonded to another substrate 6150, and the separation layer 6116 is removed or modified to separate the microdevice from the first and second buffer layers 6114, 6118. As shown in Figure 6J, the first buffer layer 6114 can remain substantially intact on the donor substrate 6110.

在圖6K至6M所示之另一個實施例中,可在供體基板6210上以島狀物6212的形式形成層,例如第一底部導電層312、功能層314及第二頂部導電層316。圖6K展示形成於微裝置陣列中的島狀物6212的俯視圖。島狀物6212的大小可與盒大小相同或是盒大小的倍數。島狀物6212可自緩衝層6114/6118開始形成或在緩衝層之後形成。此處,可在表面上進行表面處理或形成間隙6262、6263以啟動薄膜生長為島狀物(圖6L)。為了處理微裝置,可藉由填料層6220填充間隙,如圖6M中所示。填料6220可由聚合物層、金屬層或介電層構成。在對微裝置進行處理之後,可移除填料層6220。In another embodiment shown in FIGS. 6K to 6M , layers, such as a first bottom conductive layer 312 , a functional layer 314 and a second top conductive layer 316 , may be formed in the form of islands 6212 on the donor substrate 6210 . Figure 6K shows a top view of islands 6212 formed in a microdevice array. The size of the islands 6212 can be the same as the box size or a multiple of the box size. Islands 6212 may be formed starting from or after the buffer layer 6114/6118. Here, surface treatments or gaps 6262, 6263 can be created on the surface to initiate film growth into islands (Figure 6L). To process the microdevice, the gaps may be filled with a filler layer 6220, as shown in Figure 6M. Filler 6220 may be composed of a polymer layer, a metal layer, or a dielectric layer. After processing the microdevice, filler layer 6220 may be removed.

圖7強調產生微裝置盒的過程。在第一步驟702期間,在供體基板,例如310或510上製備微裝置。在此步驟期間,形成該裝置,且對該裝置執行後處理。在第二步驟704期間,將該裝置製備成待與供體基板310或510分離。此步驟可涉及藉由使用錨固件,例如,375、476-1、592、594、598或598-2及填充物,例如374、472及574來固定微裝置。在第三步驟706期間,由來自第一步驟702及第二步驟704的預處理後微裝置形成盒或臨時基板,例如376或476。在一種情況下,在此步驟期間,藉由鍵合層,例如378或478將微裝置直接或間接鍵合至盒式基板376或476。接著,將微裝置與微裝置盒式基板376或476分離。在另一個實施例中,盒形成於微裝置供體基板,例如510上。在將裝置固定在盒式基板376、476或510上之後,可進行其他處理步驟,如移除一些層,例如312、374、472、574;或添加電氣層(例如,觸點380或480)或光學層(透鏡、反射器等)。在第四步驟708期間,盒376或476移動至受體基板,例如390、490或590以將裝置轉移至受體基板390、490或590。可重新安排或合併一些此等步驟。當微裝置仍處於盒式基板,例如376或476上時或在微裝置已轉移至受體基板上,例如390、490或590之後,可對微裝置執行測試步驟707A以確定微裝置是否有缺陷。可在步驟707B中移除或原地修理有缺陷的微裝置。例如,可對預定數目的一組微裝置進行測試,且若缺陷數目超過預定閾值,則可移除整組微裝置,可移除有缺陷的微裝置中的至少一些及/或可修理有缺陷的微裝置中的至少一些。Figure 7 highlights the process of producing a microdevice cartridge. During a first step 702, a microdevice is prepared on a donor substrate, such as 310 or 510. During this step, the device is formed and post-processing is performed on the device. During a second step 704, the device is prepared to be separated from the donor substrate 310 or 510. This step may involve securing the microdevice by using anchors, such as 375, 476-1, 592, 594, 598, or 598-2, and fillers, such as 374, 472, and 574. During the third step 706, a cassette or temporary substrate, such as 376 or 476, is formed from the preprocessed microdevices from the first step 702 and the second step 704. In one case, during this step, the microdevice is directly or indirectly bonded to the cassette substrate 376 or 476 via a bonding layer, such as 378 or 478. Next, the microdevice is separated from the microdevice cartridge substrate 376 or 476. In another embodiment, a cartridge is formed on a microdevice donor substrate, such as 510. After the device is secured to the cassette substrate 376, 476, or 510, additional processing steps may be performed, such as removing layers, such as 312, 374, 472, 574; or adding electrical layers (eg, contacts 380 or 480) or optical layers (lenses, reflectors, etc.). During a fourth step 708 , the cassette 376 or 476 is moved to a receptor substrate, such as 390 , 490 or 590 to transfer the device to the receptor substrate 390 , 490 or 590 . Some of these steps can be rearranged or combined. While the microdevice is still on a cassette substrate, such as 376 or 476, or after the microdevice has been transferred to a recipient substrate, such as 390, 490, or 590, testing step 707A may be performed on the microdevice to determine whether the microdevice is defective. . The defective microdevice may be removed or repaired in situ in step 707B. For example, a predetermined number of a set of microdevices may be tested, and if the number of defects exceeds a predetermined threshold, the entire set of microdevices may be removed, at least some of the defective microdevices may be removed, and/or the defective microdevices may be repaired at least some of the microdevices.

圖8展示將裝置自盒376、476或510轉移至受體基板390、490或590的步驟。此處,在第一步驟802期間,裝載(或拾取)盒376、476或510,或在另一個實施例中,使備用設備臂預裝載有盒376、476或510。在第二步驟804期間,將盒376、476或510與受體基板的一部分(或全部)對齊。可使用盒376、476或510及受體基板390、490或590上的專用對齊標記或使用微裝置以及受體基板390、490或590上的著陸區域進行該對齊。在第三步驟期間,將微裝置轉移至所選著陸區域。在第四步驟808期間,若受體基板390、490或590經完全填充,則在步驟810中將盒式基板376、476或510移動至接下來的步驟,例如另一受體基板390、490或590。若當前受體基板390、490或590需要進一步填充,則使用一或多個另外的盒376、476或510進行另外的轉移步驟。在新轉移循環之前,若盒376、476或510不具有足夠的裝置,則循環自第一步驟802開始。若在步驟812中盒376、476或510具有足夠的裝置,則在步驟814中將盒376、476或510偏移(或移動及對齊)至受體基板390、490或590的新區域,且新循環繼續至步驟806。可合併及/或重新安排此等步驟中的一些。Figure 8 shows the steps of transferring the device from the cassette 376, 476 or 510 to the receptor substrate 390, 490 or 590. Here, during a first step 802, the cassette 376, 476 or 510 is loaded (or picked up) or, in another embodiment, the backup equipment arm is preloaded with the cassette 376, 476 or 510. During a second step 804, the cartridge 376, 476, or 510 is aligned with a portion (or all) of the receptor substrate. This alignment can be performed using dedicated alignment marks on the cartridge 376, 476 or 510 and the receptor substrate 390, 490 or 590 or using a microdevice and landing areas on the receptor substrate 390, 490 or 590. During the third step, the microdevice is transferred to the selected landing area. During the fourth step 808, if the receptor substrate 390, 490, or 590 is completely filled, the cassette substrate 376, 476, or 510 is moved to the next step, such as another receptor substrate 390, 490, in step 810. or 590. If the current receptor substrate 390, 490 or 590 requires further filling, additional transfer steps are performed using one or more additional cassettes 376, 476 or 510. Before a new transfer cycle, if the cassette 376, 476 or 510 does not have enough devices, the cycle begins with the first step 802. If the cassette 376, 476, or 510 has sufficient devices in step 812, then in step 814 the cassette 376, 476, or 510 is offset (or moved and aligned) to a new area of the receptor substrate 390, 490, or 590, and The new loop continues to step 806. Some of these steps may be combined and/or rearranged.

圖9展示將裝置自盒,例如,臨時基板376、476或510轉移至受體基板,例如390、490或590的步驟。此處,在第一步驟902期間,裝載(或拾取)盒376或476,或在另一個實施例中,使備用設備臂預裝載有盒。在第二步驟902-2期間,在盒376、476或510中選擇一組微裝置,使得其中的缺陷數目小於閾值。在第三步驟904期間,將盒376、476或510與受體基板的一部分(或全部)對齊。可使用盒376、476或510及/或受體基板390、490或590上的專用對齊標記或使用微裝置以及受體基板390、490或590上的著陸區域進行該對齊。接著,在第三步驟906期間,可將微裝置轉移至所選著陸區域。在視情況存在之步驟906-1中,盒中的選定微裝置可連接至受體基板。在視情況存在之步驟906-2中,可例如藉助於藉由受體基板390、490或590進行偏置來接通微裝置以對微裝置與受體基板的連接進行測試。若發現個別微裝置有缺陷或無功能,則可執行另外的調整步驟906-3以糾正或修理無功能的微裝置中的一些或全部。Figure 9 shows the steps of transferring a device from a cassette, such as temporary substrate 376, 476 or 510, to a recipient substrate, such as 390, 490 or 590. Here, during a first step 902, the cassette 376 or 476 is loaded (or picked up), or in another embodiment, the backup equipment arm is preloaded with the cassette. During the second step 902-2, a set of microdevices is selected in the bin 376, 476 or 510 such that the number of defects therein is less than a threshold. During a third step 904, the cartridge 376, 476, or 510 is aligned with a portion (or all) of the receptor substrate. This alignment can be performed using dedicated alignment marks on the cassette 376, 476 or 510 and/or the receptor substrate 390, 490 or 590 or using a microdevice and landing areas on the receptor substrate 390, 490 or 590. Next, during a third step 906, the microdevice may be transferred to the selected landing area. In optional step 906-1, selected microdevices in the cartridge may be connected to the receptor substrate. In optional step 906-2, the connection of the microdevice to the receptor substrate may be tested, for example by turning on the microdevice by biasing through the receptor substrate 390, 490 or 590. If individual microdevices are found to be defective or non-functional, an additional adjustment step 906-3 may be performed to correct or repair some or all of the non-functional microdevices.

若受體基板經完全填充,則受體基板390、490或590移動至接下來的步驟。若受體基板390、490或590需要進一步填充,則執行自一或多個另外的盒376、476或510進行的另外的轉移步驟。在新轉移循環之前,若376、476或510不具有足夠的裝置,則循環自第一步驟902開始。若盒376、476或510具有足夠的裝置,則在步驟902-2中,將盒376、476或510偏移(或移動及對齊)至受體基板390、490或590的新區域。If the receptor substrate is completely filled, the receptor substrate 390, 490 or 590 moves to the next step. If the receptor substrate 390, 490 or 590 requires further filling, additional transfer steps from one or more additional cassettes 376, 476 or 510 are performed. If 376, 476 or 510 does not have sufficient devices before a new transfer cycle, the cycle begins with the first step 902. If the cassette 376, 476 or 510 has sufficient devices, then in step 902-2, the cassette 376, 476 or 510 is offset (or moved and aligned) to a new area of the receptor substrate 390, 490 or 590.

圖10展示產生多類型微裝置盒376、476、510或1108的示範性處理步驟。在第一步驟1002期間,在不同的供體基板,例如310或510上製備至少兩個不同的微裝置。在此步驟期間,形成該裝置,且對該裝置執行後處理。在第二步驟1004期間,將該裝置製備成待與供體基板,例如310或510分離。此步驟可涉及藉由使用錨固件,例如,375、476-1、592、594、598及598-2及填充物,例如374、472及574來固定微裝置。在第三步驟1006期間,將第一裝置移動至盒376、476、510或1108。在第四步驟1008期間,將至少第二微裝置移動至盒376、476、510或1108。在一種情況下,在此步驟期間,將微裝置藉由鍵合層,例如378或478直接或間接鍵合至盒式基板376、476、510或1108。接著,將微裝置與微裝置盒式基板310或510分離。對於直接轉移,不同類型的微裝置可具有不同的高度。例如,轉移至盒376、476、510或1108的第二類型的微裝置可略高於第一類型的微裝置(或對於第二微裝置類型而言,在盒376、476、510或1108上的位置可略高一些)。此處,在盒376、476、510或1108經完全填充之後,可調節微裝置高度以使盒376、476、510或1108的表面平坦。可藉由向較短的微裝置添加材料或自較高的裝置移除材料來進行此操作。在另一種情況下,受體基板390、490或590上的著陸區域可具有與盒376、476、510或1108的差異相關聯的不同高度。另一種填充盒376、476、510或1108的方法基於拾取。可利用拾取過程將微裝置移動至盒376、476、510或1108。此處,對於盒376、476、510或1108中之一者集群中的微裝置而言,拾取頭上的力元件可為統一的,或可將單個力元件用於每個微裝置。而且,可以其他方式將微裝置移動至盒376、476、510或1108。在另一個實施例中,將額外裝置移動遠離第一或第二(或第三或其他)微裝置的盒式基板376、476、510或1108,且將其他類型的微裝置轉移至盒376、476、510或1108上的空白區域中。在將裝置固定在盒式基板376、476、510或1108上之後,可進行其他處理步驟,如添加填料層374、474或574;移除一些層;或添加電氣層(例如,觸點380、480或580)或光學層(透鏡、反射器)。可在裝置用於填充受體基板390、490或590之後或之前對裝置進行測試。該測試可為電氣測試或光學測試或兩者的組合。該測試可識別盒上的裝置的缺陷及/或性能。在最後一個步驟1010期間,將盒376、476、510或1108移動至受體基板390、490或590以將裝置轉移至受體基板390、490或590。可重新安排或合併一些此等步驟。Figure 10 shows exemplary process steps for generating multiple types of microdevice boxes 376, 476, 510, or 1108. During a first step 1002, at least two different microdevices are prepared on different donor substrates, such as 310 or 510. During this step, the device is formed and post-processing is performed on the device. During a second step 1004, the device is prepared to be separated from a donor substrate, such as 310 or 510. This step may involve securing the microdevice by using anchors, such as 375, 476-1, 592, 594, 598, and 598-2, and fillers, such as 374, 472, and 574. During a third step 1006, the first device is moved to box 376, 476, 510, or 1108. During a fourth step 1008, at least a second microdevice is moved to box 376, 476, 510, or 1108. In one case, during this step, the microdevice is directly or indirectly bonded to the cassette substrate 376, 476, 510, or 1108 via a bonding layer, such as 378 or 478. Next, the microdevice is separated from the microdevice cassette substrate 310 or 510. For direct transfer, different types of microdevices can have different heights. For example, a second type of microdevice transferred to cassette 376, 476, 510, or 1108 may be slightly higher than a first type of microdevice (or, for the second microdevice type, on cassette 376, 476, 510, or 1108 The position can be slightly higher). Here, after the box 376, 476, 510, or 1108 is completely filled, the microdevice height may be adjusted to flatten the surface of the box 376, 476, 510, or 1108. This can be done by adding material to shorter microdevices or removing material from taller devices. In another instance, the landing areas on the receptor substrate 390, 490, or 590 may have different heights associated with differences in the cartridges 376, 476, 510, or 1108. Another method of filling boxes 376, 476, 510 or 1108 is based on picking. The microdevice can be moved to cassette 376, 476, 510, or 1108 using a pick-up process. Here, the force elements on the pick-up head may be uniform for microdevices in a cluster of one of cassettes 376, 476, 510, or 1108, or a single force element may be used for each microdevice. Furthermore, the microdevice may be moved to box 376, 476, 510, or 1108 in other ways. In another embodiment, additional devices are moved away from the cassette substrate 376, 476, 510, or 1108 of the first or second (or third or other) microdevice and other types of microdevices are transferred to the cassette 376, In the empty space on 476, 510 or 1108. After the device is secured to the cassette substrate 376, 476, 510, or 1108, other processing steps may be performed, such as adding filler layers 374, 474, or 574; removing some layers; or adding electrical layers (e.g., contacts 380, 480 or 580) or optical layer (lens, reflector). The device can be tested after or before it is used to fill receptor substrate 390, 490, or 590. The test can be electrical or optical or a combination of both. This test identifies defects and/or performance of the device on the box. During the last step 1010, the cassette 376, 476, 510 or 1108 is moved to the receptor substrate 390, 490 or 590 to transfer the device to the receptor substrate 390, 490 or 590. Some of these steps can be rearranged or combined.

此處描述的轉移過程(例如圖7、8、9及10)可包含用於增加盒376、476、510或1108上的微裝置的間距的拉伸步驟。此步驟可在對齊之前進行或可作為對齊步驟的一部分。此步驟可增加與受體基板390、490或590上的著陸區域(或焊盤)對齊的微裝置的數目。此外,該步驟可匹配盒376、476、510或1108上的包括至少兩個微裝置的微裝置陣列之間的間距以匹配受體基板390、490或590上的著陸區域(或焊盤382)的間距。The transfer process described herein (eg, Figures 7, 8, 9, and 10) may include a stretching step to increase the spacing of the microdevices on the cartridge 376, 476, 510, or 1108. This step can be performed before alignment or as part of the alignment step. This step can increase the number of microdevices aligned with the landing areas (or pads) on the receptor substrate 390, 490, or 590. Additionally, this step may match the spacing between microdevice arrays including at least two microdevices on the cassette 376, 476, 510, or 1108 to match the landing areas (or pads 382) on the receptor substrate 390, 490, or 590 spacing.

圖11展示類似於臨時基板376、476或510的多類型微裝置盒1108的一個實例。盒1108包含三種不同的類型,例如顏色(紅色、綠色及藍色)的微裝置1102、1104、1106。但可存在更多的裝置類型。微裝置之間的距離x1、x2、x3與受體基板390、490或590中的著陸區域的間距相關。在可能與受體基板390、490或590中的像素間距相關的幾個裝置之後,可存在不同的間距x4、y2。此間距補償像素間距與微裝置間距(著陸區域間距)之間的不匹配。在此情況下,若將拾放用於產生盒1108,則力元件可採用與每種微裝置類型的列相對應的列的形式,或力元件可為用於每個微裝置的單獨元件。FIG. 11 shows an example of a multi-type microdevice cassette 1108 similar to temporary substrate 376, 476, or 510. Box 1108 contains three different types, eg, colors (red, green, and blue) of microdevices 1102, 1104, 1106. But many more device types can exist. The distances x1, x2, x3 between the microdevices are related to the spacing of the landing areas in the receptor substrate 390, 490 or 590. There may be different spacings x4, y2 after several devices that may be related to the pixel spacing in the receptor substrate 390, 490 or 590. This pitch compensates for the mismatch between pixel pitch and microdevice pitch (landing area pitch). In this case, if pick and place is used to create the cassette 1108, the force elements may take the form of columns corresponding to each microdevice type, or the force elements may be separate elements for each microdevice.

圖12示出類似於臨時基板376、476或510的多類型微裝置盒1208的一個實例。盒1208包含三種不同的類型,例如顏色(紅色、綠色及藍色)的微裝置1202、1204、1206。其他區域1206-2可為空的、填充有備用微裝置或包含第四不同類型的微裝置。微裝置之間的距離x1、x2、x3與受體基板390、490或590中的著陸區域的間距相關。在可能與受體基板390、490或590中的像素間距相關的幾個裝置陣列之後,可存在不同的間距x4、y2。此間距補償像素間距與微裝置間距(著陸區域間距)之間的不匹配。FIG. 12 shows an example of a multi-type microdevice cassette 1208 similar to temporary substrate 376, 476, or 510. Box 1208 contains three different types, eg, colors (red, green, and blue) of microdevices 1202, 1204, 1206. Other areas 1206-2 may be empty, filled with spare microdevices, or contain a fourth different type of microdevices. The distances x1, x2, x3 between the microdevices are related to the spacing of the landing areas in the receptor substrate 390, 490 or 590. There may be different spacings x4, y2 after several arrays of devices possibly related to the pixel spacing in the receptor substrate 390, 490 or 590. This pitch compensates for the mismatch between pixel pitch and microdevice pitch (landing area pitch).

圖13展示在轉移至多類型微裝置盒376、476、510、1108、1208之前在類似於供體基板310或510的供體基板1304上製備的微裝置1302的一個實例。此處,可將支撐層1306及1308用於單獨的裝置或一組裝置。此處,間距可與盒376、476、510、1108、1208中的間距相匹配,或該間距可為盒間距的倍數。Figure 13 shows an example of a microdevice 1302 prepared on a donor substrate 1304 similar to donor substrate 310 or 510 prior to transfer to a multi-type microdevice cassette 376, 476, 510, 1108, 1208. Here, support layers 1306 and 1308 may be used with a single device or a group of devices. Here, the spacing may match the spacing in the boxes 376, 476, 510, 1108, 1208, or the spacing may be a multiple of the box pitch.

在上述所有結構中,在使用微裝置填充基板之前,可將微裝置自第一盒移動至第二盒。在轉移之後可進行額外的處理步驟,或可在第一盒式結構與第二盒式結構之間對處理步驟中的一些進行劃分。In all of the above structures, the microdevice can be moved from the first cassette to the second cassette before filling the substrate with the microdevice. Additional processing steps may be performed after the transfer, or some of the processing steps may be divided between the first cassette structure and the second cassette structure.

圖14A展示類似於供體基板310或510的供體基板1480中的微裝置的實施例。由於製造缺陷及材料缺陷,在供體基板1480上,微裝置的輸出功率可能逐漸降低或增加,即存在不均勻性,如藉由自深至淺的著色所示。由於可將裝置一起轉移至塊,例如塊1482中或可按順序一次一或多個地將裝置轉移至受體基板390、490或590中,因此受體基板390、490或590中的相鄰裝置逐漸退化。然而,在一個塊,例如1482或一系列相鄰塊結束且另一個塊,例如1483或另一系列塊開始的地方,例如沿著交線1484的地方可能出現更糟的問題,此可能導致輸出性能的突然變化,如圖14B所示。此突然變化可能導致如顯示器等光電子裝置的視覺假像。Figure 14A shows an embodiment of a microdevice in a donor substrate 1480 similar to donor substrate 310 or 510. Due to manufacturing defects and material defects, the output power of the microdevice may gradually decrease or increase on the donor substrate 1480, that is, there is a non-uniformity, as shown by the coloration from dark to light. Since devices may be transferred together into a block, such as block 1482, or devices may be transferred sequentially one or more at a time into receptor substrates 390, 490, or 590, adjacent ones of receptor substrates 390, 490, or 590 The device gradually degrades. However, a worse problem may occur where one block, such as 1482, or a series of adjacent blocks ends and another block, such as 1483, or another series of blocks begins, such as along the intersection line 1484, which may result in the output A sudden change in performance, as shown in Figure 14B. This sudden change can cause visual artifacts in optoelectronic devices such as displays.

為了解決不均勻性的問題,圖14C所示之一個實施例包含在顯示器中使用單獨的塊1482及1483上方及下方的塊來使該單獨的塊偏斜或交錯,使得該塊的邊緣或交叉線不是清晰線條,從而消除交叉線1484,且藉此,裝置塊在顯示器上形成偏斜圖案。因此,急劇轉變的平均影響顯著降低。偏斜可為隨機的且可具有不同的輪廓。To address the issue of non-uniformity, one embodiment shown in Figure 14C includes using separate blocks 1482 and 1483 above and below the display to deflect or stagger the individual blocks so that the edges or intersections of the blocks The lines are not clear lines, thus eliminating the crossing lines 1484, and thereby, the device blocks create a skewed pattern on the display. Therefore, the average impact of sharp transitions is significantly reduced. The skew can be random and can have different profiles.

圖14D展示另一個實施例,其中相鄰塊中的微器裝置翻轉,使得具有類似性能的裝置彼此相鄰,例如,第一塊1482中的性能自第一外側A至第一內側B減小,而第二相鄰塊1483的性能自鄰近第一內側B的第二內側B至第二外側A增加,此可使塊之間的變化及轉變保持非常平滑且消除長的急劇交叉1484。Figure 14D shows another embodiment in which micromechanical devices in adjacent blocks are flipped so that devices with similar performance are adjacent to each other, for example, the performance in the first block 1482 decreases from the first outside A to the first inside B , while the performance of the second adjacent block 1483 increases from the second inner side B adjacent to the first inner side B to the second outer side A, this can keep the changes and transitions between blocks very smooth and eliminate long sharp intersections 1484 .

圖14E展示翻轉裝置的示範性組合,例如,在內側交替高性能裝置及低性能裝置以及使邊緣偏斜以進一步提高平均均勻性。在所示實施例中,裝置性能在兩個方向上,即在相鄰的水平塊及相鄰的豎直塊中在高與低之間交替。Figure 14E shows an exemplary combination of flipping devices, eg, alternating high performance devices with low performance devices on the inside and beveling the edges to further improve average uniformity. In the embodiment shown, the device performance alternates between high and low in both directions, namely in adjacent horizontal blocks and in adjacent vertical blocks.

在一種情況下,在轉移至受體基板390、490或590之前,針對相鄰的經轉移塊(陣列)對塊邊緣處的微裝置的性能進行匹配。In one case, the performance of the microdevices at the edge of the block is matched to adjacent transferred blocks (arrays) prior to transfer to receptor substrate 390, 490, or 590.

圖15A展示使用兩個或更多個塊1580、1582來填充受體基板1590中的塊。在所示實施例中,可使用偏斜或翻轉方法進一步提高平均均勻性,如圖15B所示。分別來自塊1580及1582的較高(或較低)輸出功率側B及C可定位成彼此相鄰,除此之外,亦使用塊上方及下方的塊的連接來使塊之間的連接偏斜或交錯。而且,可使用隨機或限定的圖案來填充具有多於一個塊的盒或受體基板1590。Figure 15A shows the use of two or more blocks 1580, 1582 to populate blocks in a receptor substrate 1590. In the embodiment shown, skew or flip methods can be used to further improve average uniformity, as shown in Figure 15B. The higher (or lower) output power sides B and C from blocks 1580 and 1582 respectively can be positioned adjacent to each other, in addition to biasing the connections between blocks using the connections of the blocks above and below the blocks. Oblique or staggered. Furthermore, a random or defined pattern may be used to fill a box or receptor substrate 1590 with more than one block.

圖16A展示具有多於一個塊1680、1682及1684的樣品。塊1680、1682及1684可來自同一供體基板310或510或來自不同的供體基板310或510。圖16B展示由不同的塊1680、1682及1684填充盒1690以消除任何塊中發現的不均勻性的實例。Figure 16A shows a sample with more than one block 1680, 1682, and 1684. Blocks 1680, 1682, and 1684 may be from the same donor substrate 310 or 510 or from different donor substrates 310 or 510. Figure 16B shows an example of filling box 1690 with different blocks 1680, 1682, and 1684 to eliminate any non-uniformity found in the blocks.

圖17A及17B展示具有多個盒1790的結構。如上所述,盒1790的位置是以在不同的轉移循環期間消除受體基板390、490、590或1590中的同一區域與具有相同微裝置的盒1790重疊的方式選擇的。在一個實例中,盒1790可為獨立的,此意謂著單獨的臂或控制器獨立地處理每個盒。在另一個實施例中,可獨立地進行該對齊,但可同步進行其他操作。在此實施例中,受體基板390、490、590或1590可移動以便在對齊後易於轉移。在另一個實例中,盒1790一起移動以便在對齊之後易於轉移。在另一個實例中,盒1790及受體基板390、490、590或1590均可移動以易於轉移。在另一種情況下,可提前對盒1790進行組裝。在此情況下,框架或基板可固持組裝後盒1790。Figures 17A and 17B show a structure with multiple boxes 1790. As described above, the location of the cartridge 1790 is selected in a manner that eliminates overlap of the same area in the receptor substrate 390, 490, 590, or 1590 with a cartridge 1790 having the same microdevice during different transfer cycles. In one example, the cassettes 1790 can be independent, meaning that a separate arm or controller handles each cassette independently. In another embodiment, the alignment may be performed independently, but other operations may be performed simultaneously. In this embodiment, the receptor substrate 390, 490, 590, or 1590 is movable for easy transfer after alignment. In another example, the boxes 1790 are moved together for easy transfer after alignment. In another example, both the cartridge 1790 and the receptor substrate 390, 490, 590, or 1590 are removable to facilitate transfer. In another case, the box 1790 may be assembled in advance. In this case, a frame or base plate may hold the assembled box 1790.

盒1790之間的距離X3、Y3可為盒1790的寬度X1、X2或長度Y1、Y2的倍數。該距離可為不同方向上的移動步長的函數。例如,X3 = KX1 + HX2,其中K是為了填充受體基板390、490、590或1590而向左(直接或間接)進行的移動步長,且H是為了填充該受體基板而向右(直接或間接)進行的移動步長。同樣道理可用於盒1790之間的距離Y3以及長度Y1及Y2。如圖17A所示,盒1790可在一個或兩個方向上對齊。如圖17B所示,在另一個實例中,盒1790在至少一個方向上未經對齊。每個盒1790可具有用於向受體基板390、490、590或1590施加壓力及溫度的獨立控制。根據受體基板390、490、590或1590與盒1790之間的移動方向,其他佈置亦為可能的。The distances X3, Y3 between boxes 1790 may be multiples of the widths X1, X2 or lengths Y1, Y2 of the boxes 1790. The distance can be a function of movement steps in different directions. For example, Movement steps made directly or indirectly). The same applies to the distance Y3 between boxes 1790 and the lengths Y1 and Y2. As shown in Figure 17A, the box 1790 can be aligned in one or two directions. As shown in Figure 17B, in another example, the box 1790 is misaligned in at least one direction. Each cartridge 1790 may have independent controls for applying pressure and temperature to the receptor substrate 390, 490, 590, or 1590. Other arrangements are possible depending on the direction of movement between receptor substrate 390, 490, 590 or 1590 and cartridge 1790.

在另一個實例中,盒1790可具有不同的裝置且因此用不同裝置填充受體基板390、490、590或1590中的不同區域。在此情況下,盒1790及受體基板390、490、590或1590的相對位置在每個轉移循環之後發生變化以用來自不同盒1790的所有所需微裝置填充不同區域。In another example, the cartridge 1790 may have different devices and thus fill different areas in the receptor substrate 390, 490, 590, or 1590 with different devices. In this case, the relative positions of the cassette 1790 and the receptor substrate 390, 490, 590 or 1590 change after each transfer cycle to fill the different areas with all the required microdevices from the different cassettes 1790.

在另一個實施例中,製備若干盒陣列1790。此處,在將裝置自第一盒陣列轉移至受體基板390、490、590或1590之後,受體基板390、490、590或1590移動至下一微裝置陣列以填充受體基板390、490、590或1590中的剩餘區域或接收不同裝置。In another embodiment, several arrays of boxes 1790 are prepared. Here, after transferring the devices from the first cassette array to the receptor substrate 390, 490, 590 or 1590, the receptor substrate 390, 490, 590 or 1590 is moved to the next microdevice array to fill the receptor substrates 390, 490 , 590 or the remaining areas in 1590 or receive different devices.

在另一個實例中,盒1790可處於曲面上,且因此圓周移動將提供接觸點以將微裝置轉移至受體基板390、490、590或1590中。In another example, the cassette 1790 may be on a curved surface, and thus circular movement will provide contact points to transfer the microdevice into the receptor substrate 390, 490, 590, or 1590.

豎直光電子堆疊層包含基板、有源層、介於有源層與基板之間的至少一個緩衝層以及介於緩衝層與有源層之間的至少一個分離層,其中可在緩衝層保持處於該基板上的同時藉由改變分離層的性質將有源層自基板物理地移除。The vertical optoelectronic stack layer includes a substrate, an active layer, at least one buffer layer between the active layer and the substrate, and at least one separation layer between the buffer layer and the active layer, wherein the buffer layer can be maintained at On the substrate, the active layer is physically removed from the substrate by changing the properties of the separation layer.

在一個實施例中,改變該一或多個分離層的性質的過程包含化學反應蝕刻或使分離層變形。In one embodiment, the process of changing the properties of the one or more separation layers includes chemically reactive etching or deformation of the separation layers.

在另一個實施例中,改變該一或多個分離層的性質的過程包含曝光於光電子波,從而使分離層變形。In another embodiment, changing the properties of the one or more separation layers includes exposure to photoelectron waves, thereby deforming the separation layers.

在另一個實施例中,改變該一或多個分離層的性質的過程包含改變溫度,從而使分離層變形。In another embodiment, changing the properties of the one or more separation layers includes changing the temperature, thereby deforming the separation layers.

在一個實施例中,重複使用緩衝層以產生新的光電子堆疊層包含表面處理。In one embodiment, reusing the buffer layer to create new optoelectronic stack layers involves surface treatment.

在一個實施例中,表面處理使用化學或物理蝕刻或磨光。In one embodiment, the surface treatment uses chemical or physical etching or polishing.

在另一個實施例中,表面處理使用沈積額外的薄層或緩衝層以重新形成表面。In another embodiment, surface treatment uses deposition of additional thin or buffer layers to reform the surface.

在一個實施例中,光電子裝置是LED。In one embodiment, the optoelectronic device is an LED.

在一個實施例中,分離層是氧化鋅。In one embodiment, the separation layer is zinc oxide.

本發明之實施例包括連續的像素化結構,該像素化結構包含完全或部分連續的有源層、像素化接觸層及/或電流散佈層。Embodiments of the present invention include continuous pixelated structures that include fully or partially continuous active layers, pixelated contact layers, and/or current spreading layers.

在此實施例中,在像素化接觸層及/或電流散佈層的頂部可存在焊盤層及/或鍵合層。In this embodiment, there may be a pad layer and/or a bonding layer on top of the pixelated contact layer and/or current spreading layer.

在以上實施例中,在每個像素化接觸層及/或電流散佈層頂部可存在介電開口。In the above embodiments, there may be a dielectric opening on top of each pixelated contact layer and/or current spreading layer.

另一個實施例包括供體基板,該供體基板包含具有鍵合焊盤的微裝置及填充微裝置之間的空間的填料層。Another embodiment includes a donor substrate including microdevices having bonding pads and a filler layer filling spaces between the microdevices.

另一個實施例包括臨時基板,該臨時基板包含鍵合層,來自供體基板的微裝置鍵合至該鍵合層。Another embodiment includes a temporary substrate that includes a bonding layer to which microdevices from the donor substrate are bonded.

另一個實施例包括熱傳遞技術,該熱傳遞技術包含以下步驟:Another embodiment includes a heat transfer technique that includes the following steps:

1) 將臨時基板上的微裝置與系統基板的鍵合焊盤對齊;1) Align the microdevice on the temporary substrate with the bonding pads on the system substrate;

2) 驗證系統基板上的鍵合焊盤的熔點高於臨時基板中的鍵合層的熔點;2) Verify that the melting point of the bonding pads on the system substrate is higher than the melting point of the bonding layer in the temporary substrate;

3) 產生熔化該鍵合焊盤及鍵合層兩者且在此之後使鍵合層保持熔化且使鍵合焊盤保持固化的熱曲線;以及3) Produce a thermal profile that melts both the bonding pad and the bonding layer and thereafter causes the bonding layer to remain melted and the bonding pad to remain solid; and

4) 將臨時基板與系統基板分離。4) Separate the temporary base board from the system base board.

在轉移技術的另一個實施例中,熱曲線是藉由局部或全局熱源或兩者產生的。In another embodiment of the transfer technique, the thermal profile is generated by local or global heat sources or both.

另一個實施例包括微裝置結構,其中在藉由剝離過程的形式將微裝置自供體基板釋放之後,至少一個錨固件將該裝置固持至供體基板。Another embodiment includes a microdevice structure wherein at least one anchor retains the microdevice to the donor substrate after the microdevice is released from the donor substrate by a lift-off process.

另一個實施例包括用於微裝置結構的轉移技術,其中在藉由推力或拉力將微裝置鍵合至受體基板中的焊盤之後或期間,錨固件釋放微裝置。Another embodiment includes a transfer technique for a microdevice structure in which an anchor releases the microdevice after or during bonding of the microdevice to a pad in a recipient substrate by push or pull force.

在另一個實施例中,根據微裝置結構的錨固件由自微裝置的側面延伸至基板的至少一個層構成。In another embodiment, the anchor according to the microdevice structure consists of at least one layer extending from the side of the microdevice to the substrate.

在另一個實施例中,根據微裝置結構的錨固件由空隙或空隙頂部的至少一個層構成。In another embodiment, the anchor according to the microdevice structure consists of a void or at least one layer on top of a void.

在另一個實施例中,根據微裝置結構的錨固件由圍繞裝置的填充層構成。In another embodiment, an anchor according to a microdevice structure consists of a filling layer surrounding the device.

另一個實施例包括根據微裝置結構的結構,其中藉由控制溫度來增加剝離微裝置與供體基板之間的層的黏度以充當錨固件。Another embodiment includes a structure according to a microdevice structure, wherein the viscosity of the layer between the exfoliated microdevice and the donor substrate is increased by controlling the temperature to act as an anchor.

另一個實施例包括用於微裝置結構中的錨固件的釋放過程,其中溫度調整以減小錨固件與微裝置之間的力。Another embodiment includes a release process for an anchor in a microdevice structure, where the temperature is adjusted to reduce the force between the anchor and the microdevice.

另一個實施例包括將微裝置轉移至受體基板中的過程,其中微裝置形成於盒中;將盒與受體基板中的所選著陸區域對齊;以及將盒中與所選著陸區域相關聯的微裝置轉移至受體基板。Another embodiment includes a process of transferring a microdevice into a receptor substrate, wherein the microdevice is formed in a cassette; aligning the cassette with a selected landing area in the receptor substrate; and associating the cassette with the selected landing area The microdevice is transferred to the receptor substrate.

另一個實施例包括將微裝置轉移至受體基板中的過程,其中微裝置形成於盒中;選擇有缺陷的微裝置小於閾值的一組微裝置;將盒中的所選一組微裝置與受體基板中的所選著陸區域對齊;以及將盒中與所選著陸區域相關聯的微裝置轉移至受體基板。Another embodiment includes a process of transferring microdevices into a recipient substrate, wherein the microdevices are formed in a cassette; selecting a set of microdevices in which defective microdevices are less than a threshold; and combining the selected set of microdevices in the cassette with Aligning the selected landing area in the receptor substrate; and transferring the microdevice associated with the selected landing area in the cassette to the receptor substrate.

實施例包含具有轉移至其中的多種類型的微裝置的盒。Embodiments include cassettes with multiple types of microdevices transferred therein.

實施例包括微裝置盒,其中犧牲層將微裝置的至少一側與填料層或鍵合層分離。Embodiments include microdevice cassettes in which a sacrificial layer separates at least one side of the microdevice from a filler layer or a bonding layer.

實施例中,移除犧牲層以將微裝置自填料層或鍵合層釋放。In embodiments, the sacrificial layer is removed to release the microdevice from the filler layer or bonding layer.

實施例中,犧牲層在如高溫等一些條件下將微裝置自填料釋放。In embodiments, the sacrificial layer releases the microdevice from the filler under certain conditions such as high temperature.

可對微裝置進行測試以提取與微裝置相關的信息,包含但不限於缺陷、均勻性、運行狀況等。在一個實施例中,一或多個微裝置臨時鍵合至盒,該盒具有用於測試微裝置的一或多個電極。在一個實施例中,在微裝置定位在盒中之後沈積另一個電極。可在圖案化之前或之後將此電極用於測試微裝置。在一個實施例中,盒置於預定位置中(該預定位置可為固持器)。盒及/或受體基板移動以進行對齊。至少一個所選裝置轉移至受體基板。若在盒上/中可獲得更多微裝置,則盒或受體基板移動以便與同一受體基板中的新區域或新受體基板對齊,且至少另一個所選裝置轉移至新位置。此過程可繼續,直至盒不具有足夠的微裝置,此時,可將新盒置於預定位置中。在一個實例中,對所選裝置的轉移是基於自盒中提取的信息進行控制的。在一個實例中,自盒中提取的缺陷信息可用於藉由消除對缺陷數目超過閾值的一組裝置的轉移將轉移至受體基板的有缺陷的裝置的數目限制為低於閾值數目,或所轉移缺陷的累計數目將超過閾值。在另一個實例中,將基於一或多個所提取參數對盒進行分倉(binned),且每個倉將用於不同應用。在另一種情況下,基於一或多個參數具有相近性能的盒將用於一個受體基板中。可組合此處呈現的實例以提高盒轉移性能。The microdevice can be tested to extract information related to the microdevice, including but not limited to defects, uniformity, operating conditions, etc. In one embodiment, one or more microdevices are temporarily bonded to a cartridge having one or more electrodes for testing the microdevices. In one embodiment, the other electrode is deposited after the microdevice is positioned in the cassette. This electrode can be used to test microdevices before or after patterning. In one embodiment, the cartridge is placed in a predetermined position (the predetermined position may be a holder). The cassette and/or receptor substrate are moved for alignment. At least one selected device is transferred to the receptor substrate. If more microdevices become available on/in the cassette, the cassette or receptor substrate is moved to align with a new area or receptor substrate in the same receptor substrate, and at least one other selected device is moved to the new location. This process can continue until the cartridge does not have enough microdevices, at which point a new cartridge can be placed in the predetermined position. In one example, transfer to the selected device is controlled based on information extracted from the box. In one example, defect information extracted from the cassette can be used to limit the number of defective devices transferred to the recipient substrate to below a threshold number by eliminating transfers to a set of devices with a number of defects above a threshold, or so The cumulative number of transfer defects will exceed the threshold. In another example, the boxes will be binned based on one or more extracted parameters, and each bin will be used for a different application. In another case, cassettes with similar performance based on one or more parameters will be used in a receptor substrate. The examples presented here can be combined to improve cartridge transfer performance.

在實施例中,可使用物理接觸及壓力及/或溫度將裝置自盒轉移至受體基板中。此處,壓力及/或溫度可產生用於將微裝置固持至受體基板的鍵合力(夾持力),及/或而且溫度可減小微裝置與盒之間的接觸力。因此,實現將微裝置轉移至受體基板。在此情況下,分配給受體基板上的微裝置的位置相比於受體的其餘部分可具有較高的輪廓以增強轉移過程。在實施例中,在如在轉移過程期間分配給其他類型的微裝置的位置等可能與受體基板的無用區域接觸的區域中,盒不具有微裝置。可組合此兩個實例。在實施例中,可能已經用黏合劑潤濕基板上的微裝置的所分配位置或可能已經用鍵合合金覆蓋該位置,或在所分配位置上放置有額外的結構。在衝壓過程中,可使用單獨的盒、印刷或其他製程。在實施例中,可將盒上的所選微裝置移動為更靠近受體基板以增強選擇性轉移。在另一種情況下,受體基板施加拉力以輔助或啟動自盒進行的微裝置轉移。拉力可與其他力組合。In embodiments, physical contact and pressure and/or temperature may be used to transfer the device from the cassette to the receptor substrate. Here, pressure and/or temperature can create bonding forces (clamping forces) for holding the microdevice to the receptor substrate, and/or temperature can reduce the contact force between the microdevice and the cartridge. Thus, transfer of the microdevice to the receptor substrate is achieved. In this case, the location assigned to the microdevice on the receptor substrate may have a higher profile compared to the rest of the receptor to enhance the transfer process. In an embodiment, the cassette does not have microdevices in areas that may come into contact with unused areas of the receptor substrate, such as locations assigned to other types of microdevices during the transfer process. These two instances can be combined. In embodiments, the assigned location of the microdevice on the substrate may have been wetted with an adhesive or may have been covered with a bonding alloy, or additional structures may have been placed at the assigned location. During the stamping process, separate boxes, printing or other processes may be used. In embodiments, selected microdevices on the cartridge can be moved closer to the receptor substrate to enhance selective transfer. In another case, the receptor substrate exerts a pulling force to assist or initiate transfer of the microdevice from the cassette. Pull forces can be combined with other forces.

在一個實施例中,殼體可支撐盒中的微裝置。殼體可製作在供體基板或盒式基板上的微裝置周圍或單獨製作,且接著微裝置移動至內部且鍵合至盒。在一個實施例中,可在盒式基板的頂部沈積至少一種聚合物(或另一種類型的材料)。來自供體基板的微裝置推至聚合物層中。微裝置選擇性地或總體上與供體基板分離。可在裝置與供體基板分離之前或之後固化該層。可圖案化此層,在將多個不同裝置整合至盒中的情況下尤其如此。在此情況下,該層可為針對一種類型而創建的,微裝置埋在該層中且與其供體分離。接著,針對下一種類型的微裝置沈積及圖案化另一個層。接著,第二微裝置埋在相關聯層中。在所有情況下,此層可覆蓋微裝置中的一部分或所有裝置。在另一種情況下,殼體在微裝置轉移至盒之後由聚合物層、有機層或其他層構建。殼體可具有不同的形狀。在一種情況下,殼體可與裝置形狀相匹配。殼體側壁可比微裝置高度更短。可在轉移循環之前將殼體側壁連接至微裝置以便為盒中的不同微裝置後處理以及用於運輸及儲存的微裝置盒包裝提供支持。可分離殼體側壁,或可在轉移循環之前或期間藉由如加熱、蝕刻或曝光等不同的方式自裝置弱化至微裝置的連接。可存在將微裝置固持至盒式基板的接觸點。至盒的接觸點可為裝置的底側或頂側。可在轉移之前或期間藉由如加熱、化學過程或曝光等不同方式弱化或消除接觸點。可對一些所選裝置執行此過程或可對盒上的所有微裝置全局地執行此過程。觸點亦可為導電的以實現藉由偏置觸點處的裝置及連接至微裝置的其他電極來測試微裝置。在轉移循環期間,盒可處於受體基板下方以防止微裝置在觸點經全局移除或弱化的情況下自殼體上落下。In one embodiment, the housing may support the microdevice in the cartridge. The housing can be made around or separately from the microdevice on the donor substrate or cassette substrate, and then the microdevice is moved inside and bonded to the cassette. In one embodiment, at least one polymer (or another type of material) can be deposited on top of the cassette substrate. Microdevices from the donor substrate are pushed into the polymer layer. The microdevice is selectively or generally separated from the donor substrate. This layer can be cured before or after separation of the device from the donor substrate. This layer can be patterned, especially if multiple different devices are integrated into the box. In this case, the layer may be created for one type, in which the microdevice is buried and separated from its donor. Next, another layer is deposited and patterned for the next type of microdevice. Next, the second microdevice is buried in the associated layer. In all cases, this layer may cover some or all of the microdevices. In another case, the housing is constructed from polymer, organic, or other layers after the microdevice is transferred to the cartridge. The housing can have different shapes. In one case, the housing may match the shape of the device. The housing side walls can be shorter than the microdevice height. The housing side walls can be attached to the microdevice prior to the transfer cycle to provide support for post-processing of different microdevices in the cassette and packaging of the microdevice cassette for shipping and storage. The housing sidewalls may be detached, or the connections from the device to the microdevice may be weakened before or during the transfer cycle by various means such as heating, etching, or exposure. There may be contact points holding the microdevice to the cassette substrate. The contact point to the box can be the bottom or top side of the device. Contact points can be weakened or eliminated before or during transfer by various means such as heat, chemical processes or exposure. This process can be performed for a few selected devices or it can be performed globally for all microdevices on the box. The contacts may also be conductive to enable testing of the microdevice by biasing the device at the contacts and other electrodes connected to the microdevice. During the transfer cycle, the cassette can be under the receptor substrate to prevent the microdevice from falling out of the housing if the contacts are globally removed or weakened.

在一個實施例中,微裝置盒可包含將微裝置固持至盒表面的至少一個錨固件。盒及/或受體基板經移動以使得盒中的一些微裝置與受體基板中的一些位置對齊。在將盒及受體基板推向彼此或藉由受體基板拉動裝置期間,此錨固件可在壓力下斷裂。微裝置可永久停留在受體基板上。錨固件可處於微裝置的側面或處於微裝置的頂部(或底部)。In one embodiment, a microdevice cassette may include at least one anchor to secure the microdevice to a surface of the cassette. The cassette and/or receptor substrate are moved such that some microdevices in the cassette are aligned with certain locations in the receptor substrate. This anchor can break under pressure during pushing of the cassette and receptor substrate toward each other or pulling the device by the receptor substrate. The microdevice can remain permanently on the receptor substrate. The anchors can be on the sides of the microdevice or on the top (or bottom) of the microdevice.

頂側是裝置的面向盒的一側,且底部是微裝置的對置側。其他側稱為側面或側壁。The top side is the side of the device facing the box and the bottom side is the opposite side of the microdevice. The other sides are called sides or side walls.

在一個實施例中,可對微裝置進行測試以提取與微裝置相關的信息,包含但不限於缺陷、均勻性、運行狀況等。可將盒置於預定位置中(該預定位置可為固持器)。可移動盒及/或受體基板以進行對齊。可將至少一個所選微裝置轉移至受體基板。若在盒上/中可獲得更多微裝置,則可移動盒或受體基板以便與同一受體基板中的新區域或新受體基板對齊,且可將至少另一個所選裝置轉移至新位置。此過程可繼續,直至盒不具有足夠的微裝置,此時,新盒將置於預定位置中。在一種情況下,對所選裝置的轉移可基於自盒中提取的信息進行控制。在一種情況下,自盒中提取的缺陷信息可用於藉由消除缺陷數目超過閾值或所轉移缺陷的累計數目超過閾值的一組微裝置的轉移將轉移至受體基板的有缺陷的裝置的數目限制為低於閾值數目。在另一種情況下,將基於一或多個所提取參數對盒進行分倉,且每個倉可用於不同應用。在另一種情況下,基於一或多個參數具有相近性能的盒可用於一個受體基板中。可組合此處呈現的實例以提高盒轉移性能。In one embodiment, a microdevice may be tested to extract information related to the microdevice, including but not limited to defects, uniformity, operating conditions, etc. The box can be placed in a predetermined position (which can be a holder). The cassette and/or receptor substrate can be moved for alignment. At least one selected microdevice can be transferred to the recipient substrate. If more microdevices become available on/in the cassette, the cassette or receptor substrate can be moved to align with a new area or new receptor substrate in the same receptor substrate, and at least one other selected device can be transferred to the new Location. This process can continue until the box does not have enough microdevices, at which point a new box will be placed in the predetermined position. In one case, transfer to the selected device may be controlled based on information extracted from the box. In one case, defect information extracted from the cassette may be used to transfer a number of defective devices to be transferred to a recipient substrate by eliminating a set of microdevices where the number of defects exceeds a threshold or the cumulative number of transferred defects exceeds a threshold. Limit to below threshold number. In another case, the boxes will be binned based on one or more extracted parameters, and each bin can be used for a different application. In another instance, cassettes with similar performance based on one or more parameters can be used in one receptor substrate. The examples presented here can be combined to improve cartridge transfer performance.

一個實施例包括將裝置轉移至受體基板的方法。該方法包含:One embodiment includes a method of transferring a device to a receptor substrate. This method contains:

a) 製備盒,該盒具有基板,其中微裝置定位在盒式基板的至少一個表面上,且該基板在對應於受體基板中的區域的相同大小的微裝置位置之外的區域中具有更多微裝置。a) Preparing a cassette having a substrate, wherein a microdevice is positioned on at least one surface of the cassette substrate, and the substrate has a greater Multiple microdevices.

b) 藉由提取至少一個參數測試盒上的裝置。b) Test the device on the box by extracting at least one parameter.

c) 拾取盒或將該盒轉移至具有面向受體基板的微裝置的位置。c) Pick up the cassette or transfer the cassette to a location with the microdevice facing the receptor substrate.

d) 使用測試資料來選擇盒上的一組微裝置。d) Use the test data to select a set of microdevices on the box.

e) 將盒上的所選一組微裝置與受體基板上的所選位置對齊。將該一組微裝置自盒轉移至受體基板。e) Align the selected set of microdevices on the cassette with the selected locations on the receptor substrate. The set of microdevices is transferred from the cassette to the recipient substrate.

f) 過程d及e可繼續,直至盒不具有任何有用的裝置或受體基板經完全填充。f) Processes d and e can continue until the box does not have any useful devices or the receptor substrate is completely filled.

一個實施例包括盒,該盒具有以與受體基板中相同的間距定位在盒中的多於一種類型的微裝置。One embodiment includes a cassette having more than one type of microdevice positioned in the cassette at the same spacing as in the receptor substrate.

一個實施例包括盒,該盒具有基板,其中微裝置(直接或間接)定位在其表面上,且微裝置在任一列或行中偏斜,使得至少任一列或行的邊緣不與至少另一列或行的邊緣對齊。One embodiment includes a cartridge having a substrate with microdevices positioned (directly or indirectly) on a surface thereof, and the microdevices are skewed in any column or row such that at least one edge of any column or row is not aligned with at least one other column or row. Row edges aligned.

一個實施例是將裝置轉移至受體基板的方法。該方法包含將微裝置陣列轉移至基板中,其中至少任一列或行的所轉移微裝置的邊緣不與至少另一列或行的所轉移裝置的邊緣對齊。One embodiment is a method of transferring a device to a receptor substrate. The method includes transferring an array of microdevices into a substrate, wherein edges of the transferred microdevices of at least any column or row are not aligned with edges of transferred devices of at least another column or row.

一個實施例包括將裝置轉移至受體基板的方法。該方法包含將裝置陣列自供體基板轉移至受體基板,其中在受體基板上與所轉移陣列的大小類似的任何區域中,至少存在具有來自供體基板的與所轉移陣列相對應的兩個不同區域的微裝置的任一列或行。One embodiment includes a method of transferring a device to a receptor substrate. The method includes transferring an array of devices from a donor substrate to a recipient substrate, wherein in any area on the acceptor substrate that is similar in size to the transferred array, there are at least two devices from the donor substrate corresponding to the transferred array. Any column or row of microdevices in different areas.

一個實施例包括將微裝置陣列轉移至受體基板中的過程,其中微裝置在陣列的邊緣處經偏斜以消除突然變化。One embodiment includes a process of transferring an array of microdevices into a receptor substrate, where the microdevices are deflected at the edges of the array to eliminate sudden changes.

另一個實施例包括將微裝置陣列轉移至受體基板中的過程,其中在轉移之前對兩個微裝置陣列的相鄰邊緣處的微裝置的性能進行匹配。Another embodiment includes a process for transferring a microdevice array into a recipient substrate, wherein the properties of the microdevices at adjacent edges of the two microdevice arrays are matched prior to transfer.

另一個實施例包括將微裝置陣列轉移至受體基板中的過程,其中至少自微裝置供體基板的兩個不同區域對微裝置陣列進行填充。Another embodiment includes a process of transferring a microdevice array into a recipient substrate, wherein the microdevice array is populated from at least two different areas of a microdevice donor substrate.

另一個實施例包括將微裝置陣列自盒轉移至受體基板中的過程,其中將若干微裝置盒置於與受體基板的不同區域相對應的不同位置中,接著將盒與受體基板對齊,且將微裝置自盒轉移至受體基板。用於將微裝置固定在供體基板上的不同 錨固件 方案 Another embodiment includes a process of transferring a microdevice array from a cassette into a receptor substrate, wherein a number of microdevice cassettes are placed in different locations corresponding to different areas of the receptor substrate, followed by aligning the cassettes with the receptor substrate , and transfer the microdevice from the cassette to the receptor substrate. Different anchor solutions for fixing microdevices to donor substrates

將微裝置整合至系統基板中的過程涉及產生及製備供體基板,將預先選定的微裝置陣列轉移至受體基板,隨後(或同時)使微裝置與系統基板電學上或機械上鍵合。在兩個基板之間的鍵合期間,在微裝置及系統基板的對齊之前或之後施加固化劑輔助形成強鍵合。固化劑包括以下中之一者:聚醯胺、SU8、PMMA、BCB薄膜層、環氧樹脂及UV可固化黏合劑,且在以下中之一者中執行固化:電流、光、熱或機械力或化學反應。然而,用於固化的電流/電壓要求可能高於微裝置可承受的電流/電壓要求。The process of integrating microdevices into a system substrate involves creating and preparing a donor substrate, transferring a preselected array of microdevices to a recipient substrate, and subsequently (or simultaneously) electrically or mechanically bonding the microdevices to the system substrate. During bonding between two substrates, curing agents are applied before or after alignment of the microdevice and system substrates to assist in the formation of strong bonds. Curing agents include one of the following: polyamide, SU8, PMMA, BCB film layers, epoxy resins, and UV curable adhesives, and curing is performed in one of the following: electric current, light, heat, or mechanical force or chemical reaction. However, the current/voltage requirements for curing may be higher than the microdevice can withstand.

為了避免損壞微裝置,需要將微裝置整合至具有增強的鍵合及導電能力的系統基板中的結構及方法。且可形成另一/替代的電流/電壓路徑以避免損壞微裝置。To avoid damaging microdevices, structures and methods are needed to integrate microdevices into system substrates with enhanced bonding and conductivity capabilities. And another/alternative current/voltage path can be formed to avoid damage to the microdevice.

根據一個實施例,可提供一種鍵合結構。該鍵合結構可包括供體基板上的多個微裝置,各微裝置包括形成於微裝置的表面上的一或多個導電焊盤;且臨時材料覆蓋各微裝置或該一或多個導電焊盤的至少一部分。According to one embodiment, a bonding structure may be provided. The bonding structure may include a plurality of microdevices on a donor substrate, each microdevice including one or more conductive pads formed on a surface of the microdevice; and a temporary material covering each microdevice or the one or more conductive pads At least part of the pad.

在一種情況下,臨時材料充當錨固件,其將該多個微裝置固持在供體基板中的殼體結構內部。In one case, the temporary material acts as an anchor that holds the plurality of microdevices inside the housing structure in the donor substrate.

在另一情況下,微裝置的全部或部分可經臨時導電材料覆蓋,此可重導向電流穿過臨時導電材料而非微裝置,且因此避免損壞微裝置。In another instance, all or part of a microdevice can be covered with a temporary conductive material, which can redirect electrical current through the temporary conductive material rather than the microdevice, and thus avoid damaging the microdevice.

在一種情況下,微裝置可在微裝置的各側上具有一個導電焊盤。在另一情況下,微裝置可在一側上具有一個以上導電焊盤。In one case, the microdevice may have one conductive pad on each side of the microdevice. In another case, a microdevice may have more than one conductive pad on one side.

圖18示出根據本發明之實施例的經由供體力元件固持多個微裝置的供體基板1802。供體基板1802可為其已轉移至上面的生長基板(其中製造或生長微裝置)或另一臨時基板。參考基於氮化鎵(GaN)的LED描述下文,然而當前描述的結構可用於具有不同材料系統的任何類型的LED。Figure 18 illustrates a donor substrate 1802 holding a plurality of microdevices via a donor force element in accordance with an embodiment of the present invention. Donor substrate 1802 may be a growth substrate onto which the microdevice is fabricated or grown or another temporary substrate that has been transferred thereon. The following is described with reference to gallium nitride (GaN) based LEDs, however the structure currently described can be used for any type of LED with different material systems.

大體而言,藉由在藍寶石基板上沈積材料的堆疊來製造基於GaN微LED。慣用GaN LED裝置包含例如藍寶石等基板、形成於基板上的n型GaN層,或緩衝層(例如GaN)、有源層/半導體層,例如多量子井(MQW)層及p型GaN層。Basically, GaN-based microLEDs are fabricated by depositing stacks of materials on a sapphire substrate. Conventional GaN LED devices include a substrate such as sapphire, an n-type GaN layer or buffer layer (such as GaN) formed on the substrate, an active layer/semiconductor layer such as a multi-quantum well (MQW) layer, and a p-type GaN layer.

如圖18中所示出,供體基板1802上的該多個微裝置可具有半導體層的堆疊1806的頂部及底部兩者上的導電焊盤1814、1816。受體基板1808具有用於經挑選以轉移至受體基板1808的各選定微裝置的至少一個受體力元件1818。在一種情況下,受體力元件為電流/電壓可固化組件。此處,電流/電壓1810施加至選定受體力元件(例如,1818),從而致使其硬化且將微裝置固持在適當位置。在一個實例中,受體力元件可包括在可適用的電荷下形成聚合物的單體。在另一實例中,受體力元件是具有在可適用的電流/電壓下產生熱的高電阻跡線的介質,且所產生的熱使介質局部固化。As shown in FIG. 18 , the plurality of microdevices on the donor substrate 1802 may have conductive pads 1814 , 1816 on both the top and bottom of the stack 1806 of semiconductor layers. The receptor substrate 1808 has at least one receptor force element 1818 for each selected microdevice selected for transfer to the receptor substrate 1808 . In one case, the force-receiving element is a current/voltage curable component. Here, current/voltage 1810 is applied to the selected force-receptive element (eg, 1818), causing it to harden and hold the microdevice in place. In one example, the force-receptor element may include monomers that form polymers under applicable charges. In another example, the force-receiving element is a medium with high resistance traces that generate heat under applicable current/voltage, and the heat generated causes local solidification of the medium.

供體基板1802具有至少一個供體力元件1804。供體力元件1804是在電流或電壓下失去其黏合屬性的元件。此處,電壓/電流1812施加至固持用於轉移的選定裝置的供體力元件1804。在一個實例中,供體力元件是在電荷施加下分解(氧化)的聚合物。在另一實例中,供體力元件是在可適用的電流/電壓下燃燒的高電阻性跡線。Donor substrate 1802 has at least one donor force element 1804. Force-donor element 1804 is an element that loses its adhesive properties when exposed to electrical current or voltage. Here, voltage/current 1812 is applied to the donor force element 1804 holding the selected device for transfer. In one example, the force-donor element is a polymer that decomposes (oxidizes) under the application of a charge. In another example, the force donor element is a highly resistive trace that ignites at the applicable current/voltage.

圖19示出根據本發明之實施例的一側上具有一個以上導電焊盤的微裝置。此處,在一個實例中,微裝置可在供體基板1902上的半導體層堆疊的底部處具有兩個導電/接觸焊盤1904、1906。受體基板1908具有一個受體力元件1918,其對應於用於經挑選以轉移至受體基板1908的各微裝置的接觸焊盤。受體力元件是電流/電壓可固化組件。此處,電流/電壓1910施加至選定受體力元件(例如,1918),從而致使其硬化且將微裝置固持在適當位置。Figure 19 shows a microdevice with more than one conductive pad on one side in accordance with an embodiment of the present invention. Here, in one example, the microdevice may have two conductive/contact pads 1904, 1906 at the bottom of the semiconductor layer stack on the donor substrate 1902. The receptor substrate 1908 has a receptor force element 1918 that corresponds to a contact pad for each microdevice selected for transfer to the receptor substrate 1908 . The force-receiving element is a current/voltage curable component. Here, current/voltage 1910 is applied to the selected force-receptor element (eg, 1918), causing it to harden and hold the microdevice in place.

電壓/電流1910、1912可施加至選定受體力元件(例如,1918)以使其固化,從而致使其硬化且將微裝置固持在適當位置。Voltage/current 1910, 1912 may be applied to selected force-receptor elements (eg, 1918) to solidify them, causing them to harden and hold the microdevice in place.

在一種情況下,微裝置可用作偏置迴路的一部分。此處,可經由供體基板1902施加電壓/電流1914,或電壓/電流1910、1912可施加至受體基板1908,其通過微裝置且經過供體基板1902或受體基板1908的任一者。In one case, the microdevice can be used as part of a bias loop. Here, voltage/current 1914 may be applied via donor substrate 1902, or voltage/current 1910, 1912 may be applied to acceptor substrate 1908 through the microdevice and through either donor substrate 1902 or acceptor substrate 1908.

然而,固化受體力元件的電流/電壓要求可能高於微裝置可承受的電流/電壓要求。為了避免損壞微裝置,可形成另一/替代的電流/電壓路徑。在另一情況下,微裝置的部分或整個微裝置可經臨時導電材料覆蓋,此可重導向電流穿過臨時導電材料而非微裝置,且避免損壞微裝置。However, the current/voltage requirements for curing the force-receptor element may be higher than the microdevice can withstand. To avoid damaging the microdevice, another/alternative current/voltage path may be formed. In another instance, part of a microdevice or the entire microdevice can be covered with a temporary conductive material, which can redirect electrical current through the temporary conductive material instead of the microdevice and avoid damaging the microdevice.

圖20A-20I示出根據本發明之一些實施例的經臨時導電材料部分/完全覆蓋的微裝置的實例。20A-20I illustrate examples of microdevices partially/fully covered with temporary conductive material in accordance with some embodiments of the present invention.

微裝置的部分或全部可經臨時導電材料覆蓋,此可重導向電流穿過臨時導電材料而非微裝置,且因此避免損壞微裝置。在一種情況下,臨時材料可為臨時導電材料。該導電材料可作為片材或跡線與供體基板上的相同導電材料或不同導電材料連接。Part or all of the microdevice can be covered with a temporary conductive material, which can redirect electrical current through the temporary conductive material rather than the microdevice, and thus avoid damage to the microdevice. In one case, the temporary material may be a temporary conductive material. The conductive material can be connected as a sheet or trace to the same conductive material or a different conductive material on the donor substrate.

在一個實施例中,微裝置可在殼體結構內部。殼體壁及微裝置之間可存在某一犧牲層。在另一實施例中,亦可存在供體基板及微裝置及導電焊盤(一種與殼體壁類似的材料)或其組合之間的鍵合材料。In one embodiment, the microdevice may be inside the housing structure. There may be some sacrificial layer between the housing wall and the microdevice. In another embodiment, there may also be bonding material between the donor substrate and the microdevice and the conductive pad (a material similar to the housing wall) or a combination thereof.

在一個實施例中,臨時層亦可充當錨固件以將裝置固持在適當位置。在另一實施例中,可存在將微裝置固持至供體基板中的錨固件。錨固件可為與殼體材料相同或不同的材料。在一種情況下,殼體可幾乎延伸至微裝置的邊緣。在另一情況下,殼體壁短於微裝置。亦可能具有比微裝置高的殼體。In one embodiment, the temporary layer may also act as an anchor to hold the device in place. In another embodiment, there may be anchors holding the microdevice into the donor substrate. The anchors may be the same material as the shell material or a different material. In one case, the housing may extend almost to the edge of the microdevice. In another case, the housing wall is shorter than the microdevice. It is also possible to have a housing that is taller than the microdevice.

在另一情況下,臨時導電材料可經非導電材料代替。In another instance, the temporary conductive material may be replaced by a non-conductive material.

對於具有導電及不導電臨時材料兩者的情況,臨時材料可在移除或釋放犧牲層之後將微裝置固持在適當位置。微裝置可轉移至另一基板。在轉移過程期間,臨時材料經移除或與殼體結構分離。分離過程可為機械(例如,推或拉)、光學、熱或化學的。In the case of both conductive and non-conductive temporary materials, the temporary material can hold the microdevice in place after the sacrificial layer is removed or released. The microdevice can be transferred to another substrate. During the transfer process, temporary materials are removed or separated from the shell structure. The separation process can be mechanical (eg, push or pull), optical, thermal, or chemical.

微裝置可在轉移至受體基板之前經臨時材料/層覆蓋,或其可在轉移至受體基板之後經覆蓋。在一種情況下,殼體材料塗覆在基板上在微裝置之間。其可鍵合至供體基板,且接著殼體材料可固化。在另一情況下,可存在可電耦合至微裝置或臨時層的供體基板的表面上使用的不同材料。在另一情況下,殼體材料塗覆在供體基板的頂部上。接著,微裝置鍵合併推動至材料中,且接著材料固化。殼體材料可為環氧樹脂、聚合物或其他類型的材料。在一種情況下,BCB或聚醯胺可用作殼體材料。The microdevice can be covered with the temporary material/layer before being transferred to the recipient substrate, or it can be covered after being transferred to the recipient substrate. In one case, the housing material is coated on the substrate between microdevices. It can be bonded to the donor substrate, and then the shell material can be cured. In another instance, there may be different materials used on the surface of the donor substrate that may be electrically coupled to the microdevice or temporary layer. In another case, the housing material is coated on top of the donor substrate. Next, the microdevice is bonded and pushed into the material, and the material then solidifies. The shell material can be epoxy, polymer, or other types of materials. In one case, BCB or polyamide can be used as the shell material.

臨時材料可圖案化以在供體基板的頂部上形成開口。此開口可促進例如移除犧牲層等某一處理以使微裝置與殼體側壁分離。The temporary material can be patterned to create openings on top of the donor substrate. This opening may facilitate certain processes, such as removal of the sacrificial layer, to separate the microdevice from the housing sidewall.

圖20A1-20A2示出根據本發明之一些實施例的突顯臨時導電材料覆蓋微裝置的表面的實例。20A1-20A2 illustrate examples of highlighting temporary conductive material covering the surface of a microdevice in accordance with some embodiments of the invention.

參看圖20A1,此處,微裝置在殼體結構2006a內部。殼體結構/壁2006a及微裝置2016之間可存在某一犧牲層。在一種情況下,犧牲層2008a可為圖案化犧牲層以覆蓋至殼體的長度。在另一情況下,犧牲層2008b可設置至微裝置的長度。供體基板及微裝置之間可為鍵合材料2010a、導電焊盤2004a,或與殼體壁類似的材料或其組合。且錨固件2014a可將微裝置固持在供體基板中。錨固件可為與殼體材料相同或不同的材料。臨時導電材料2002a可覆蓋包含導電焊盤2004a及殼體2006a的微裝置2016的表面。此結構促進轉移微裝置,從而檢查系統基板上有缺陷的微裝置。Referring to Figure 20A1, here, the microdevice is inside a housing structure 2006a. There may be some sacrificial layer between the housing structure/wall 2006a and the microdevice 2016. In one case, the sacrificial layer 2008a may be a patterned sacrificial layer to cover the length of the housing. In another instance, sacrificial layer 2008b may be provided to the length of the microdevice. The bonding material 2010a, the conductive pad 2004a, or a material similar to the housing wall or a combination thereof may be used between the donor substrate and the microdevice. And the anchor 2014a can hold the microdevice in the donor substrate. The anchors may be the same material as the shell material or a different material. Temporary conductive material 2002a may cover the surface of microdevice 2016 including conductive pad 2004a and housing 2006a. This structure facilitates the transfer of microdevices to inspect defective microdevices on the system substrate.

在另一實施例中,殼體壁可幾乎延伸至微裝置的邊緣。In another embodiment, the housing wall may extend almost to the edge of the microdevice.

圖20A2展示根據本發明之實施例的裝置(供體)基板上的微裝置的橫截面視圖,其中臨時導電材料不覆蓋微裝置的整個表面。此處,殼體200b及犧牲層2008b可幾乎延伸至微裝置2016的邊緣。臨時導電材料2002a可包含導電焊盤2004a。供體基板或供體基板之間的導電層上的跡線可將導電材料耦合至電流/電壓源。Figure 20A2 shows a cross-sectional view of a microdevice on a device (donor) substrate in which the temporary conductive material does not cover the entire surface of the microdevice according to an embodiment of the present invention. Here, the housing 200b and the sacrificial layer 2008b may extend almost to the edge of the microdevice 2016. Temporary conductive material 2002a may include conductive pad 2004a. Traces on the donor substrate or the conductive layer between the donor substrates may couple the conductive material to the current/voltage source.

圖20B1展示根據本發明之實施例的裝置(供體)基板上的微裝置的橫截面視圖,其中臨時導電材料覆蓋微裝置的導電焊盤的一部分。此處,例如2004c等導電焊盤是圖案化導電焊盤,且犧牲層2008c亦為沈積在微裝置及導電焊盤周圍的圖案化犧牲層。臨時導電材料2002a可覆蓋包含導電焊盤2004a及殼體2006a的一部分的微裝置2016的表面。在另一情況下,犧牲層可僅延伸至微裝置的一部分。臨時導電材料2002a可耦合至電流源/電壓以促進固化或解鍵合。供體基板或供體基板之間的導電層上的跡線可將導電材料耦合至電流/電壓源。20B1 shows a cross-sectional view of a microdevice on a device (donor) substrate with a temporary conductive material covering a portion of the microdevice's conductive pad in accordance with an embodiment of the present invention. Here, the conductive pads such as 2004c are patterned conductive pads, and the sacrificial layer 2008c is also a patterned sacrificial layer deposited around the microdevice and the conductive pads. Temporary conductive material 2002a may cover the surface of microdevice 2016 including conductive pad 2004a and a portion of housing 2006a. In another case, the sacrificial layer may extend to only a portion of the microdevice. Temporary conductive material 2002a may be coupled to a current source/voltage to promote curing or debonding. Traces on the donor substrate or the conductive layer between the donor substrates may couple the conductive material to the current/voltage source.

圖20B2展示根據本發明之實施例的裝置(供體)基板上的微裝置的橫截面視圖,其中臨時導電材料不覆蓋微裝置的整個表面。此處,殼體2006b可幾乎在微裝置的邊緣處延伸。臨時導電材料2002a可包含導電焊盤2004b的一部分。Figure 20B2 shows a cross-sectional view of a microdevice on a device (donor) substrate in which the temporary conductive material does not cover the entire surface of the microdevice according to an embodiment of the present invention. Here, housing 2006b may extend almost to the edge of the microdevice. Temporary conductive material 2002a may include a portion of conductive pad 2004b.

圖20C1示出形成導電焊盤2004c、2006c之間的電流/電壓路徑的臨時導電材料的實例,其中導電焊盤可在微裝置的頂部及底部或相同側上。此處,臨時導電材料2002c亦覆蓋微裝置,此促進將微裝置選擇性地轉移至系統基板。此結構幫助重導向電流穿過臨時導電材料,而非微裝置,且因此避免損壞微裝置。Figure 20C1 shows an example of temporary conductive material forming a current/voltage path between conductive pads 2004c, 2006c, which may be on the top and bottom or the same side of the microdevice. Here, temporary conductive material 2002c also covers the microdevice, which facilitates selective transfer of the microdevice to the system substrate. This structure helps redirect electrical current through the temporary conductive material rather than the microdevice, and thus avoids damage to the microdevice.

圖20C2示出其中供體基板及微裝置之間不存在鍵合材料的實例。臨時導電材料在導電焊盤2004c、2006c之間形成電流/電壓路徑,其中導電焊盤可在微裝置的頂部及底部或相同側上。臨時導電材料2002c亦覆蓋微裝置的表面中之一者。此處,臨時導電材料充當至微裝置的鍵合材料。Figure 20C2 shows an example where there is no bonding material between the donor substrate and the microdevice. The temporary conductive material forms a current/voltage path between conductive pads 2004c, 2006c, which may be on the top and bottom or the same side of the microdevice. Temporary conductive material 2002c also covers one of the surfaces of the microdevice. Here, the temporary conductive material acts as a bonding material to the microdevice.

圖20D示出當臨時導電材料2002d及導電焊盤不覆蓋微裝置的整個表面時在微裝置的導電焊盤2004d、2006d之間形成電流/電壓路徑的臨時導電材料2002d的另一實例。此處,例如2004d等導電焊盤是圖案化導電焊盤,且臨時材料沈積於圖案化導電焊盤上。20D shows another example of temporary conductive material 2002d forming a current/voltage path between conductive pads 2004d, 2006d of a microdevice when the temporary conductive material 2002d and conductive pads do not cover the entire surface of the microdevice. Here, the conductive pad, such as 2004d, is a patterned conductive pad, and temporary material is deposited on the patterned conductive pad.

圖20E示出另一實例,其中臨時導電材料2002e在微裝置的表面上形成用於一個以上焊盤的電流/電壓路徑。此處,導電材料將導電焊盤短接在微裝置的表面上。導電材料覆蓋焊盤2004e、2006e或連接至焊盤2008e、2010e。且(直接或間接)在供體基板上的跡線可將一些導電材料連接在一起。此處,導電材料可根據電壓及電流要求而部分或完全覆蓋導電焊盤。Figure 2OE shows another example where temporary conductive material 2002e forms a current/voltage path for more than one pad on the surface of a microdevice. Here, the conductive material shorts the conductive pads to the surface of the microdevice. Conductive material covers or is connected to pads 2004e, 2006e, 2008e, 2010e. And traces (directly or indirectly) on the donor substrate can connect some conductive materials together. Here, the conductive material can partially or completely cover the conductive pad depending on the voltage and current requirements.

圖20F示出未藉由導電層2002f短接在一起的表面上的導電焊盤2008f、2010f的實例。此處,焊盤可完全或部分經導電層2002f覆蓋,如所示。且供體基板及微裝置之間不存在鍵合材料。臨時導電材料充當用於微裝置的鍵合材料。Figure 2OF shows an example of conductive pads 2008f, 201Of on a surface that are not shorted together by conductive layer 2002f. Here, the pad may be fully or partially covered by conductive layer 2002f, as shown. And there is no bonding material between the donor substrate and the microdevice. The temporary conductive material acts as a bonding material for the microdevice.

圖20G示出另一實例,其中臨時導電材料2002g在微裝置的表面上形成用於一個以上焊盤的電流/電壓路徑。此處,導電材料在面朝供體基板的表面及遠離供體基板的面之間形成通路。且在一種情況下,其將焊盤短接在表面上。此處,導電材料覆蓋導電焊盤2012g、2014g或連接至導電焊盤2008g、2010g。Figure 20G shows another example where temporary conductive material 2002g forms a current/voltage path for more than one pad on the surface of a microdevice. Here, the conductive material forms a path between the surface facing the donor substrate and the surface remote from the donor substrate. And in one case, it shorted the pads to the surface. Here, the conductive material covers conductive pads 2012g, 2014g or is connected to conductive pads 2008g, 2010g.

圖20H示出未藉由導電層2002h短接在一起的表面上的導電焊盤2008h、2010h的實例。此處,導電焊盤2012h、2014h可經完全覆蓋,或導電焊盤2008h、2010h可經部分覆蓋,如所示。在所有情況下,導電材料2004h可將遠離供體基板的表面直接耦合至供體基板處的導電層。在另一情況下,其將遠離供體基板的表面間接耦合至供體基板處的導電層2006h。Figure 20H shows an example of conductive pads 2008h, 2010h on a surface that are not shorted together by conductive layer 2002h. Here, conductive pads 2012h, 2014h may be fully covered, or conductive pads 2008h, 2010h may be partially covered, as shown. In all cases, conductive material 2004h may directly couple the surface remote from the donor substrate to the conductive layer at the donor substrate. In another case, it will indirectly couple a surface remote from the donor substrate to the conductive layer 2006h at the donor substrate.

圖20I1及圖20I2示出其中遠離供體基板的表面上不存在導電焊盤的實例。此處,微裝置的遠離供體基板的表面上不存在導電焊盤。在此情況下,臨時材料2002h在移除犧牲層2006a、2008a之後將裝置固持在適當位置。在微裝置轉移至另一基板中之後移除臨時材料或使其與殼體分離,使得自供體基板釋放微裝置。20I1 and 20I2 illustrate examples in which there are no conductive pads on the surface away from the donor substrate. Here, there are no conductive pads on the surface of the microdevice away from the donor substrate. In this case, the temporary material 2002h holds the device in place after the sacrificial layers 2006a, 2008a are removed. The temporary material is removed or separated from the housing after the microdevice is transferred to another substrate, releasing the microdevice from the donor substrate.

圖21A-21D示出根據本發明之實施例的以臨時材料(導電或不導電)構造的不同微裝置的俯視圖。臨時材料可圖案化以在供體基板的頂部上形成開口。此開口可促進例如移除犧牲層等某一處理以使微裝置與殼體側壁分離。此處理可在微裝置轉移至受體基板中之前或之後進行。在一種情況下,可使用化學蝕刻來移除(或修改)犧牲層。在另一情況下,電磁信號(例如微波或光)可用於藉由移除/修改犧牲層而釋放裝置。此處,臨時層亦可充當錨固件以將裝置固持在適當位置。若臨時層不輔助鍵合過程,則其不需要連接(或覆蓋)微裝置上的焊盤。21A-21D show top views of different microdevices constructed from temporary materials (conductive or non-conductive) in accordance with embodiments of the present invention. The temporary material can be patterned to create openings on top of the donor substrate. This opening may facilitate certain processes, such as removal of the sacrificial layer, to separate the microdevice from the housing sidewall. This treatment can be performed before or after the microdevice is transferred into the recipient substrate. In one case, chemical etching may be used to remove (or modify) the sacrificial layer. In another case, electromagnetic signals (eg, microwaves or light) can be used to release the device by removing/modifying the sacrificial layer. Here, the temporary layer can also act as an anchor to hold the device in place. If the temporary layer does not assist in the bonding process, it does not need to connect (or cover) the pads on the microdevice.

圖21A示出根據本發明之實施例的圖20A的示例性俯視圖表示。此處,供體基板2104上的微裝置2102具有由臨時導電材料2108及犧牲層2110環繞的導電焊盤2106。此處,供體基板的頂部上的導電材料的跡線可作為網、列或行連接。供體基板的頂部上可存在接入點以經由跡線使臨時層偏置。Figure 21A shows an exemplary top view representation of Figure 20A in accordance with an embodiment of the present invention. Here, microdevice 2102 on donor substrate 2104 has conductive pad 2106 surrounded by temporary conductive material 2108 and sacrificial layer 2110. Here, traces of conductive material on top of the donor substrate may be connected as meshes, columns or rows. There may be access points on top of the donor substrate to bias the temporary layer via traces.

圖21B1示出圖20B的示例性俯視圖表示。此處,供體基板的頂部上的跡線可作為網、列或行連接。供體基板的頂部上可存在接入點以經由跡線使臨時層偏置。供體基板2104上的微裝置2102具有由犧牲層2110環繞的圖案化導電焊盤2106-1。供體基板的頂部上的臨時導電材料的跡線可作為網、列或行連接。供體基板的頂部上可存在接入點以經由跡線使臨時層偏置。Figure 21B1 shows an exemplary top view representation of Figure 20B. Here, the traces on the top of the donor substrate can be connected as meshes, columns or rows. There may be access points on top of the donor substrate to bias the temporary layer via traces. Microdevice 2102 on donor substrate 2104 has patterned conductive pad 2106-1 surrounded by sacrificial layer 2110. Traces of temporary conductive material on top of the donor substrate may be connected as meshes, columns, or rows. There may be access points on top of the donor substrate to bias the temporary layer via traces.

圖21B2示出其中臨時材料不連接至焊盤的實例。供體基板2104上的微裝置2102具有由犧牲層2110環繞的導電焊盤2106-2,且供體基板的頂部上的臨時導電材料的跡線可作為網、列或行連接。此可用於本發明中的其他實施例或相關結構。Figure 21B2 shows an example where the temporary material is not connected to the pad. Microdevice 2102 on donor substrate 2104 has conductive pad 2106-2 surrounded by sacrificial layer 2110, and traces of temporary conductive material on top of the donor substrate may be connected as meshes, columns, or rows. This may be used for other embodiments or related structures in the invention.

圖21C示出圖20E的示例性俯視圖表示,其中微裝置2102具有一個以上焊盤(2106-3、2106-4)在由臨時導電材料2108及犧牲層2110環繞的供體基板2104上。此處,供體基板2104的頂部上的跡線可作為網、列或行連接。且各焊盤的跡線可在單獨連接群組中處理。供體基板的頂部上可存在接入點以經由跡線使臨時層偏置。21C shows the exemplary top view representation of FIG. 20E where microdevice 2102 has more than one pad (2106-3, 2106-4) on donor substrate 2104 surrounded by temporary conductive material 2108 and sacrificial layer 2110. Here, the traces on the top of the donor substrate 2104 may be connected as meshes, columns, or rows. And the traces for each pad can be handled in separate connection groups. There may be access points on top of the donor substrate to bias the temporary layer via traces.

圖21D示出圖20F的示例性俯視圖表示,其中微裝置2102具有一個以上的圖案化導電焊盤(2106-3、2106-4)在由臨時導電材料2108及犧牲層2110環繞的供體基板2104上。此處,供體基板2104的頂部上的跡線可作為網、列或行連接。且各焊盤的跡線可在單獨連接群組中處理。供體基板的頂部上可存在接入點以經由跡線使臨時層偏置。經由可斷裂錨固件自供體基板釋放微裝置 21D shows the exemplary top view representation of FIG. 20F, wherein microdevice 2102 has one or more patterned conductive pads (2106-3, 2106-4) on donor substrate 2104 surrounded by temporary conductive material 2108 and sacrificial layer 2110. superior. Here, the traces on the top of the donor substrate 2104 may be connected as meshes, columns, or rows. And the traces for each pad can be handled in separate connection groups. There may be access points on top of the donor substrate to bias the temporary layer via traces. Release of microdevices from donor substrate via breakable anchors

本發明之一些實施例示出微裝置可具備不同臨時錨固件,藉此在剝離裝置之後,臨時錨固件將裝置固持至供體基板且可選擇性地朝向或遠離供體基板的表面移動。因此,當供體基板變得接近受體基板時,一些選定的裝置接近受體基板或與受體基板連接,而其他微裝置仍距受體基板顯著距離。在微裝置藉由推力或拉力的任一者鍵合至受體基板中的焊盤之後或期間,臨時錨固件釋放微裝置。錨固件可在朝向彼此推動供體基板及受體基板或藉由受體基板拉動微裝置期間在壓力下斷裂。微裝置可永久地保持在受體基板上。錨固件可在微裝置的一側上或微裝置的頂部(或底部)處。Some embodiments of the present invention illustrate that microdevices can be provided with different temporary anchors whereby the temporary anchors hold the device to the donor substrate and can selectively move toward or away from the surface of the donor substrate after the device is peeled off. Therefore, as the donor substrate becomes close to the acceptor substrate, some selected devices approach or are connected to the acceptor substrate, while other microdevices remain at a significant distance from the acceptor substrate. The temporary anchor releases the microdevice after or during bonding of the microdevice to the pad in the receptor substrate by either push or pull force. The anchor can break under pressure during pushing the donor and recipient substrates toward each other or pulling the microdevice by the recipient substrate. The microdevice can be permanently retained on the receptor substrate. The anchors can be on one side of the microdevice or at the top (or bottom) of the microdevice.

圖22A-22C示出根據本發明之實施例的供體基板上的微裝置,其中微裝置可選擇性地朝向或遠離供體基板的表面移動。22A-22C illustrate a microdevice on a donor substrate in which the microdevice is selectively movable toward or away from a surface of the donor substrate in accordance with embodiments of the present invention.

參看圖22A,根據一個實施例,堆疊包括形成在微裝置(例如供體基板2214的頂部上的2210、2212)下方的電極2204、2206及電活性聚合物(EPE)層2208。供體基板及/或受體基板移動使得供體基板中的一些微裝置變得與受體基板中的一些位置對齊。在一種情況下,將電壓施加至堆疊致使該堆疊變薄,且因此使裝置更接近受體基板的表面。Referring to Figure 22A, according to one embodiment, a stack includes electrodes 2204, 2206 and an electroactive polymer (EPE) layer 2208 formed under a microdevice (eg, 2210, 2212 on top of a donor substrate 2214). The movement of the donor substrate and/or the acceptor substrate causes some microdevices in the donor substrate to become aligned with some positions in the acceptor substrate. In one case, applying a voltage to the stack causes the stack to become thinner, and thus bring the device closer to the surface of the receptor substrate.

參看圖22B,根據另一實施例,堆疊包括在微裝置(例如供體基板2214的頂部上的2210、2212)下方形成的電極2208、2206及電活性聚合物(EPE)層2222。在一種情況下,電極可設置在EPE層周圍。EPE層可按照要求而為薄或厚的。當電壓施加至包括電極及EPE層的堆疊時,堆疊變厚。在一種情況下,殼體及錨固件亦可將微裝置2210、2212固持在適當位置。Referring to Figure 22B, according to another embodiment, a stack includes electrodes 2208, 2206 and an electroactive polymer (EPE) layer 2222 formed under a microdevice (eg, 2210, 2212 on top of a donor substrate 2214). In one case, electrodes may be disposed around the EPE layer. The EPE layer can be as thin or thick as desired. When a voltage is applied to the stack including the electrodes and the EPE layer, the stack becomes thicker. In one case, the housing and anchors may also hold the microdevices 2210, 2212 in place.

圖22C示出另一實例,其中堆疊的電極及EPE 2222、2220的頂部上的微裝置2210、2212結構經殼體結構2226環繞。此外,錨固件2234將微裝置2210、2212固持在殼體結構2226內部。在另一情況下,鍵合層可將微裝置固持在堆疊的EPE的頂部上。殼體可具有不同形狀。在一種情況下,殼體可與裝置形狀匹配。殼體側壁可短於微裝置高度。殼體側壁可在轉移循環之前連接至微裝置以為微裝置的不同後處理提供支持。Figure 22C shows another example where stacked electrodes and microdevice 2210, 2212 structures on top of EPE 2222, 2220 are surrounded by a housing structure 2226. Additionally, anchors 2234 retain microdevices 2210, 2212 within housing structure 2226. In another case, a bonding layer may hold the microdevice on top of the stacked EPE. The housing can have different shapes. In one case, the housing may match the shape of the device. The housing side walls can be shorter than the microdevice height. The housing sidewalls can be connected to the microdevice prior to the transfer cycle to provide support for different post-processing of the microdevice.

在微裝置2210、2212自供體基板2214轉移至受體基板期間,EPE堆疊2222向前推動微裝置2210。該推力釋放錨固件2234,且微裝置可放置在受體基板的表面上。During the transfer of microdevices 2210, 2212 from the donor substrate 2214 to the recipient substrate, the EPE stack 2222 pushes the microdevice 2210 forward. This push releases the anchor 2234 and the microdevice can be placed on the surface of the receptor substrate.

圖23A-23B示出供體基板上的微裝置的另一實施例,其中微裝置可選擇性地朝向或遠離供體基板的表面移動。Figures 23A-23B illustrate another embodiment of a microdevice on a donor substrate, wherein the microdevice is selectively movable toward or away from the surface of the donor substrate.

在圖23A中,根據另一實施例,在供體基板2320的頂部上分別在微裝置2312、2314、2318下方形成具有不同熱膨脹係數的不同材料2304、2308、2310的堆疊。當堆疊2308的溫度改變時,堆疊2308變得扭曲且推動裝置2314更遠離供體基板的表面。在一種情況下,施加電流穿過堆疊會改變溫度。此處,電極2302、2306可輸送電流。在另一情況下,作為堆疊的一部分的光吸收層將光轉換為熱能。在另一情況下,堆疊可諧振至例如微波或超聲波等特定信號頻率。此諧振可增加溫度或直接使堆疊變形。In Figure 23A, according to another embodiment, stacks of different materials 2304, 2308, 2310 with different coefficients of thermal expansion are formed on top of a donor substrate 2320 below microdevices 2312, 2314, 2318, respectively. As the temperature of the stack 2308 changes, the stack 2308 becomes distorted and pushes the device 2314 further away from the surface of the donor substrate. In one case, applying a current through the stack changes the temperature. Here, electrodes 2302, 2306 can carry electrical current. In another instance, a light-absorbing layer that is part of the stack converts light into thermal energy. In another case, the stack can resonate to a specific signal frequency such as microwave or ultrasound. This resonance can increase the temperature or directly deform the stack.

圖23B示出另一實例,其中堆疊層2304、2308、2310的頂部上的微裝置2312、2314、2318結構由殼體2322環繞。此外,錨固件2332、2326將裝置2312、2314及2318固持在殼體結構內部。錨固件可連接至微裝置或殼體。在裝置2314自供體基板2320轉移至受體基板期間,堆疊2308向前推動微裝置2314。該推力釋放錨固件2326,且微裝置2314可放置在受體基板的表面上。Figure 23B shows another example where the microdevice 2312, 2314, 2318 structure on top of the stacked layers 2304, 2308, 2310 is surrounded by a housing 2322. Additionally, anchors 2332, 2326 retain devices 2312, 2314, and 2318 within the housing structure. The anchor can be connected to the microdevice or housing. During the transfer of device 2314 from donor substrate 2320 to recipient substrate, stack 2308 pushes microdevice 2314 forward. This push releases anchor 2326 and microdevice 2314 can be placed on the surface of the receptor substrate.

圖24示出根據本發明之實施例的供體基板上的微裝置的另一實例,其中微裝置可選擇性地朝向或遠離供體基板的表面移動。Figure 24 shows another example of a microdevice on a donor substrate in which the microdevice is selectively movable toward or away from a surface of the donor substrate in accordance with an embodiment of the present invention.

此處,堆疊層2404的頂部上的微裝置2410、2414、2418結構由殼體2422環繞。此外,錨固件2426、2428將裝置2410、2414及2418固持在殼體結構內部。在裝置2414自供體基板轉移至受體基板期間,電活性聚合物層變為氣體2456,且由該改變產生的壓力向前推動微裝置2414。該推/拉力釋放錨固件2426,且微裝置2414可放置在受體基板的表面上。熱、光學、電或化學力可使層2404改變為氣體。在一種情況下,吸收層2458可吸收光且加熱層2404-1且產生向前推動微裝置的氣體壓力。微裝置盒結構 Here, the microdevice 2410, 2414, 2418 structures on top of the stack 2404 are surrounded by a housing 2422. Additionally, anchors 2426, 2428 retain devices 2410, 2414, and 2418 within the housing structure. During the transfer of device 2414 from the donor substrate to the acceptor substrate, the electroactive polymer layer changes to gas 2456, and the pressure created by this change pushes microdevice 2414 forward. This push/pull force releases anchor 2426 and microdevice 2414 can be placed on the surface of the receptor substrate. Thermal, optical, electrical or chemical forces can cause layer 2404 to change into a gas. In one instance, absorbing layer 2458 can absorb light and heat layer 2404-1 and create gas pressure that pushes the microdevice forward. Microdevice box structure

本發明之一些實施例亦揭示將整體式微裝置陣列整合至系統基板中或將微裝置陣列選擇性地轉移至系統基板的方法。Some embodiments of the invention also disclose methods of integrating a monolithic microdevice array into a system substrate or selectively transferring a microdevice array to a system substrate.

根據一個實施例,可提供一種將微裝置整合在背板上的方法,包括:提供包括一或多個微裝置的微裝置基板;藉由連接微裝置上的焊盤及背板上的對應焊盤將一組選擇性微裝置自基板鍵合至背板;以及藉由分離微裝置基板在背板上留下鍵合的選擇性微裝置組。According to one embodiment, a method for integrating a microdevice on a backplane may be provided, including: providing a microdevice substrate including one or more microdevices; and connecting pads on the microdevice to corresponding solder pads on the backplane. The disk bonds a set of selective microdevices from the substrate to the backplane; and leaves the set of bonded selective microdevices on the backplane by separating the microdevice substrate.

在一個實施例中,可在微裝置基板上產生微裝置陣列,其中該微裝置可藉由蝕刻一或多個平面層來產生。In one embodiment, an array of microdevices can be produced on a microdevice substrate, where the microdevices can be produced by etching one or more planar layers.

在另一實施例中,一或多個平坦化層可形成於微裝置基板上且藉由溫度、光或其他源固化。In another embodiment, one or more planarization layers can be formed on the microdevice substrate and cured by temperature, light, or other sources.

在一個實施例中,可提供中間基板,其中,在一種情況下,一或多個鍵合層可形成於中間基板上或平坦化層上。In one embodiment, an intermediate substrate may be provided, wherein, in one case, one or more bonding layers may be formed on the intermediate substrate or on the planarization layer.

在另一實施例中,可藉由雷射或化學剝離移除微裝置基板。In another embodiment, the microdevice substrate may be removed by laser or chemical lift-off.

在一個實施例中,緩衝層中可存在使微裝置連接至平坦化層的開口。在一種情況下,電極可設置在平坦化層的頂部或底部上。In one embodiment, there may be openings in the buffer layer that allow the microdevice to connect to the planarization layer. In one case, the electrodes may be placed on top or bottom of the planarization layer.

在另一實施例中,在移除微裝置基板之後,可發生額外製程,例如移除額外共同層,或薄化平坦化層及/或微裝置。In another embodiment, after removing the microdevice substrate, additional processing may occur, such as removing additional common layers, or thinning the planarization layer and/or the microdevice.

在一種情況下,較多焊盤可添加至微裝置。焊盤可為導電的,或純粹用於鍵合至系統基板。在一種情況下,緩衝層可將至少一個微裝置連接至測試焊盤。測試焊盤可用於使微裝置偏置且測試其功能性。可在晶片層級或中間(盒)層級進行測試。在移除過多層之後在中間層級處可接近焊盤。In one case, more pads can be added to the microdevice. The pads can be conductive or purely used for bonding to the system substrate. In one case, the buffer layer may connect at least one microdevice to the test pad. Test pads can be used to bias the microdevice and test its functionality. Testing can be done at the wafer level or at the intermediate (cassette) level. The pads are accessible at intermediate levels after removing too many layers.

在一種情況下,微裝置可在頂側處具有一個以上觸點,緩衝層可經圖案化以將微裝置中的至少一個的觸點連接至測試焊盤。In one case, the microdevice can have more than one contact at the top side, and the buffer layer can be patterned to connect the contact of at least one of the microdevice to the test pad.

在一個實施例中,可提供背板。在一種情況下,背板可具有電晶體及供像素電路驅動微裝置的其他元件。在另一情況下,背板可為不具有組件的基板。In one embodiment, a backplane may be provided. In one case, the backplane may have transistors and other components for the pixel circuitry to drive the microdevice. In another case, the backplane may be a substrate without components.

在一個實施例中,一或多個焊盤可設置在背板上以用於鍵合過程。在一種情況下,背板上或微裝置上的焊盤可形成拉出微裝置的力。In one embodiment, one or more pads may be provided on the backplane for the bonding process. In one case, pads on the backplane or on the microdevice can create a force that pulls out of the microdevice.

在微裝置轉移至背板之後,有可能偵測微裝置的位置/定位,且調整其他層的圖案化以與轉移過程中的對齊匹配。在一種情況下,不同構件可用於偵測微裝置的位置,例如相機或探針尖端。在另一情況下,轉移設置中的偏移可用於識別系統基板上微裝置的位置的未對齊。在又一情況中,亦可基於微裝置的位置調整彩色濾波器或轉換層。在一種情況下,可在微裝置位置中引發一些隨機偏移來減小光學偽影。After the microdevice is transferred to the backplane, it is possible to detect the position/positioning of the microdevice and adjust the patterning of other layers to match the alignment during transfer. In one case, different components may be used to detect the position of the microdevice, such as a camera or probe tip. In another instance, offsets in transfer settings can be used to identify misalignments in the location of microdevices on a system substrate. In yet another case, the color filter or conversion layer may also be adjusted based on the location of the microdevice. In one case, some random shifts in microdevice position can be induced to reduce optical artifacts.

在一個實施例中,關於微裝置的圖案可經修改(例如,將微裝置耦合至信號的電極、例如彩色濾波器或顏色轉換等功能可調諧層、鈍化/平坦化層中打開的通孔,或背板層)。In one embodiment, the pattern on the microdevice can be modified (e.g., electrodes that couple the microdevice to a signal, functionally tunable layers such as color filters or color conversion, open vias in passivation/planarization layers, or backplane layer).

在一種情況下,可基於微裝置的位置修改電極的位置/形狀。在另一情況下,可存在位置或長度可基於微裝置的位置修改的各電極的一些延伸。In one case, the location/shape of the electrodes may be modified based on the location of the microdevice. In another case, there may be some extension of each electrode whose position or length may be modified based on the location of the microdevice.

圖25A示出根據本發明之一個實施例的微裝置基板上的微裝置陣列的橫截面視圖。此處,提供微裝置基板2502。微裝置陣列2504可在微裝置基板2502上產生。在一種情況下,微裝置可為微LED。在另一情況下,微裝置可為通常以平面批次製造的任何微裝置,包含LED、OLED、感測器、固態裝置、整合電路、MEMS及/或其他電子組件。Figure 25A shows a cross-sectional view of a microdevice array on a microdevice substrate according to one embodiment of the present invention. Here, a microdevice substrate 2502 is provided. Microdevice array 2504 may be produced on microdevice substrate 2502. In one case, the microdevice may be a microLED. In another instance, the microdevice may be any microdevice typically manufactured in planar batches, including LEDs, OLEDs, sensors, solid state devices, integrated circuits, MEMS, and/or other electronic components.

在一種情況下,一或多個平面有源層可形成於基板上。平面有源層可包括第一底部導電層、功能層(例如,發光層)及第二頂部導電層。微裝置可藉由蝕刻平面有源層來產生。在一種情況下,蝕刻可一直到達微裝置基板。在另一情況下,平面層上可存在部分蝕刻以在微裝置基板的表面上留下一些。可在形成微裝置之前或之後沈積及圖案化其他層。In one case, one or more planar active layers may be formed on the substrate. The planar active layer may include a first bottom conductive layer, a functional layer (eg, a light emitting layer), and a second top conductive layer. Microdevices can be created by etching planar active layers. In one case, the etching may reach all the way to the microdevice substrate. In another case, there may be partial etching on the planar layer to leave some on the surface of the microdevice substrate. Additional layers can be deposited and patterned before or after forming the microdevice.

圖25B示出根據本發明之一個實施例的具有緩衝層的微裝置陣列的橫截面視圖。此處,緩衝層2506可形成於微裝置陣列2504上。緩衝層2506可在微裝置基板2502的表面上方延伸。緩衝層可為導電的。在一種情況下,緩衝層可為圖案化緩衝層。在另一情況下,緩衝層可為共同緩衝層。在一個實施例中,緩衝層2506可包含可經圖案化或用作共同電極的電極。Figure 25B shows a cross-sectional view of a microdevice array with a buffer layer according to one embodiment of the invention. Here, buffer layer 2506 may be formed on microdevice array 2504. Buffer layer 2506 may extend over the surface of microdevice substrate 2502. The buffer layer can be electrically conductive. In one case, the buffer layer may be a patterned buffer layer. In another case, the buffer layer may be a common buffer layer. In one embodiment, buffer layer 2506 may include electrodes that may be patterned or used as a common electrode.

圖25C示出根據本發明之一個實施例的具有平坦化層的微裝置陣列的橫截面視圖。平坦化層2508可沈積於微裝置基板2502的頂部上在各微裝置2504周圍。平坦化層2508可用於微裝置的隔離及/或保護。平坦化層可包括例如聚醯胺、SU8或BCB等聚合物。平坦化層可固化。在一種情況下,平坦化層可經由溫度、光或某一其他源固化。Figure 25C shows a cross-sectional view of a microdevice array with a planarization layer according to one embodiment of the present invention. A planarization layer 2508 may be deposited on top of the microdevice substrate 2502 around each microdevice 2504 . Planarization layer 2508 may be used for isolation and/or protection of microdevices. The planarization layer may include polymers such as polyamide, SU8 or BCB. The planarization layer can be cured. In one case, the planarization layer may be cured via temperature, light, or some other source.

圖25D示出根據本發明之一個實施例的鍵合至中間基板的微裝置陣列的橫截面視圖。在一個實施例中,一或多個鍵合層2512可形成於平坦化層2508上。鍵合層2512可為與平坦化層相同或不同的層。在另一情況下,鍵合層可形成於中間基板(盒)2510的頂部上。鍵合層可提供例如靜電、化學、物理或熱等一或多種不同的力。鍵合層2512可接觸平坦化層2508。為了在平坦化層及鍵合層之間形成觸點,藉由壓力、溫度、光或其他源固化鍵合層。Figure 25D shows a cross-sectional view of a microdevice array bonded to an intermediate substrate according to one embodiment of the present invention. In one embodiment, one or more bonding layers 2512 may be formed on planarization layer 2508. Bonding layer 2512 may be the same or a different layer than the planarization layer. In another case, a bonding layer may be formed on top of the intermediate substrate (box) 2510. The bonding layer may provide one or more different forces such as electrostatic, chemical, physical or thermal. Bonding layer 2512 may contact planarization layer 2508. To form a contact between the planarization layer and the bonding layer, the bonding layer is cured by pressure, temperature, light, or other sources.

在一個實施例中,在鍵合層上方形成中間基板2510之後,可移除微裝置基板2502,此可藉由雷射或化學剝離來進行。In one embodiment, after the intermediate substrate 2510 is formed over the bonding layer, the microdevice substrate 2502 can be removed, which can be performed by laser or chemical lift-off.

在一種情況下,緩衝層2506中可存在開口,其允許微裝置2504連接至平坦化層2508。此連接可充當錨固件。在一種情況下,緩衝層可經蝕刻以形成至少部分環繞各微裝置的殼體、基底或錨固件。在剝離之後,錨固件可將微裝置固持至基板。在另一情況下,緩衝層可將微裝置焊盤中的至少一個耦合至電極。電極可放置在平坦化層的頂部或底部上。In one case, there may be openings in buffer layer 2506 that allow microdevice 2504 to connect to planarization layer 2508 . This connection acts as an anchor. In one case, the buffer layer can be etched to form a housing, substrate, or anchor that at least partially surrounds each microdevice. After peeling off, the anchors can hold the microdevice to the substrate. In another instance, the buffer layer may couple at least one of the microdevice pads to the electrode. Electrodes can be placed on top or bottom of the planarization layer.

圖25E示出根據本發明之一個實施例的具有焊盤的微裝置陣列的橫截面視圖。可移除微裝置基板以實現靈活的系統或用於在系統的朝向基板的一側上執行的後處理步驟。在移除基板之後,可進行額外製程。此等製程包括以下中之一者:移除額外共同層或薄化平坦化層及/或微裝置。在一種情況下,一或多個焊盤2520可添加至微裝置2504。在一種情況下,此等焊盤可為導電的。在另一情況下,此等焊盤純粹用於鍵合至系統基板。在一種情況下,緩衝層2506可為導電的。Figure 25E shows a cross-sectional view of a microdevice array with pads according to one embodiment of the invention. The microdevice substrate can be removed to enable a flexible system or for post-processing steps performed on the side of the system facing the substrate. After the substrate is removed, additional processes can be performed. These processes include one of the following: removing additional common layers or thinning planarization layers and/or microdevices. In one case, one or more pads 2520 may be added to microdevice 2504. In one case, these pads may be conductive. In another case, these pads are used purely for bonding to the system substrate. In one case, buffer layer 2506 may be conductive.

在一個實施例中,緩衝層2506可將一或多個微裝置連接至測試焊盤。測試焊盤可用於偏置微裝置且測試其功能性。在一種情況下,可在晶片/基板層級處進行測試。在另一情況下,可在中間(盒)層級處進行測試。在移除過多層之後在中間層級處可接近焊盤。In one embodiment, buffer layer 2506 may connect one or more microdevices to test pads. Test pads can be used to bias microdevices and test their functionality. In one case, testing can be performed at the wafer/substrate level. In another case, testing can be performed at the intermediate (box) level. The pads are accessible at intermediate levels after removing too many layers.

在一種情況下,若微裝置在頂側處具有一個以上觸點,則緩衝層可經圖案化以將微裝置中的至少一個的觸點連接至測試焊盤。In one case, if the microdevice has more than one contact at the top side, the buffer layer can be patterned to connect the contact of at least one of the microdevice to the test pad.

圖26示出根據本發明之一個實施例的鍵合至中間基板及背板的微裝置陣列的橫截面視圖。此處,可提供背板2630。在一種情況下,可利用TFT製程製造背板。在另一情況下,可利用以互補金屬氧化物半導體(CMOS)或其他製程製造的小晶片(chiplet)製造背板。Figure 26 shows a cross-sectional view of a microdevice array bonded to an intermediate substrate and a backplane in accordance with one embodiment of the present invention. Here, backplane 2630 is available. In one case, the backplane can be manufactured using a TFT process. In another case, the backplane may be fabricated using chiplets fabricated using complementary metal oxide semiconductor (CMOS) or other processes.

在一個實施例中,背板可具有電晶體及供像素電路驅動微裝置的其他元件。在另一實施例中,背板可為不具有元件的基板。一或多個焊盤2622可形成於背板2630上以將背板鍵合至微裝置陣列。在一種情況下,背板上的該一或多個焊盤可為導電的。In one embodiment, the backplane may have transistors and other components for the pixel circuitry to drive the microdevice. In another embodiment, the backplane may be a substrate without components. One or more pads 2622 may be formed on the backplane 2630 to bond the backplane to the microdevice array. In one case, the one or more pads on the backplane may be conductive.

在一個實施例中,可移除緩衝層2606或使其變形以釋放微裝置。背板上的焊盤2622或微裝置上的焊盤2620可形成拉出選定微裝置2640的力。在另一實施例中,緩衝層2606或殼體可經蝕刻回去,減小或移除。殼體可自空LED點移除。In one embodiment, buffer layer 2606 may be removed or deformed to release the microdevice. Pads 2622 on the backplane or pads 2620 on the microdevice can create a force that pulls the selected microdevice 2640 out. In another embodiment, the buffer layer 2606 or housing may be etched back, reduced, or removed. The housing can be removed from the empty LED spot.

圖27A示出根據本發明之一個實施例的提取微裝置位置的過程步驟。在微裝置轉移至背板之後,可偵測背板上的微裝置位置,且若轉移期間存在未對齊,則可調整其他層的圖案化以與此轉移未對齊匹配。過程步驟包括:步驟2702,將微裝置放置在系統基板上;步驟2704,使用相機、表面輪廓儀(光學、超聲波、電)或其他構件提取系統基板上微裝置的位置;步驟2706,可能修改關於微裝置的圖案,其中該圖案可包含以下中之一者:將微裝置耦合至信號的電極、功能可調諧層(例如顏色轉換或彩色濾波器)、鈍化/平坦化層中打開的通孔,或背板層。系統基板上可存在某一參考結構以首先校準用於提取微裝置位置的工具,或該參考可用於找到微裝置的相對位置。Figure 27A illustrates process steps for extracting a microdevice location according to one embodiment of the present invention. After the microdevice is transferred to the backplane, the position of the microdevice on the backplane can be detected, and if there is a misalignment during the transfer, the patterning of other layers can be adjusted to match this transfer misalignment. The process steps include: step 2702, placing the microdevice on the system substrate; step 2704, using a camera, surface profilometer (optical, ultrasonic, electrical) or other means to extract the position of the microdevice on the system substrate; step 2706, possibly modifying the a pattern of microdevices, wherein the pattern may include one of the following: electrodes coupling the microdevice to a signal, a functionally tunable layer (such as a color conversion or color filter), an open via in a passivation/planarization layer, or backplane layer. Some reference structure may be present on the system substrate to first calibrate the tools used to extract the position of the microdevice, or the reference may be used to find the relative position of the microdevice.

在一個實施例中,不同構件可偵測微裝置的位置。舉例而言,相機、探針尖端、表面輪廓儀(光學、超聲波、電)或其他構件可偵測/提取微裝置的位置/定位。在另一實施例中,轉移設置中的偏移可識別系統基板/背板上微裝置的位置的未對齊。In one embodiment, different components may detect the location of the microdevice. For example, a camera, probe tip, surface profilometer (optical, ultrasonic, electrical) or other means may detect/extract the position/positioning of the microdevice. In another embodiment, a shift in the transfer setting may identify a misalignment of the location of the microdevice on the system substrate/backplane.

舉例而言,在一種情況下,金屬化圖案化可避免短路。在另一情況下,亦可基於微裝置的位置調整彩色濾波器或顏色轉換。此可減小放置微裝置所需的容差。亦可在微裝置位置中引發某一隨機偏移來減少光學偽影。For example, in one case, metallization patterning can avoid short circuits. In another case, color filters or color transitions may also be adjusted based on the location of the microdevice. This can reduce the tolerance required to place the microdevice. It is also possible to induce some random offset in the position of the microdevice to reduce optical artifacts.

圖27B示出根據本發明之一個實施例的基於微裝置的位置修改電極的位置/形狀。一或多個微裝置2710、2712或2714可具有接觸焊盤2706。在一種情況下,電極2702、2704的位置/形狀可基於微裝置2710、2712、2714的位置來修改。在另一情況下,電極的位置/形狀可基於通孔的位置來修改。在另一情況下,可根據微裝置位置修改平面化/鈍化層中的通孔的位置。Figure 27B illustrates position/shape modification of an electrode based on a microdevice according to one embodiment of the present invention. One or more microdevices 2710, 2712, or 2714 may have contact pads 2706. In one instance, the position/shape of electrodes 2702, 2704 may be modified based on the position of microdevice 2710, 2712, 2714. In another case, the location/shape of the electrodes may be modified based on the location of the vias. In another case, the location of the vias in the planarization/passivation layer may be modified based on the microdevice location.

圖27C示出根據本發明之一個實施例的提供至電極的延伸部。在一種情況下,可修改電極2702的位置。且對於各電極可存在某一延伸部2720,使得可基於微裝置2710、2712或2714的位置修改其位置或長度。此可用於共同電極或個別電極。Figure 27C shows an extension provided to an electrode according to one embodiment of the invention. In one case, the location of electrode 2702 may be modified. And there may be some extension 2720 for each electrode such that its position or length may be modified based on the location of the microdevice 2710, 2712, or 2714. This can be used for common electrodes or individual electrodes.

根據一個實施例,可提供一種鍵合結構。鍵合結構可包括供體基板上的多個微裝置,各微裝置包括形成於微裝置的表面上的一或多個導電焊盤;以及用以覆蓋各微裝置或該一或多個導電焊盤的至少一部分的臨時材料,其中該臨時材料耦合至電流/電壓源以重導向電流穿過該臨時材料至該一或多個導電焊盤。臨時材料包括導電材料或非導電材料,且其中臨時導電材料進一步完全或部分覆蓋該一或多個導電焊盤。According to one embodiment, a bonding structure may be provided. The bonding structure may include a plurality of microdevices on a donor substrate, each microdevice including one or more conductive pads formed on a surface of the microdevice; and a surface for covering each microdevice or the one or more conductive pads. Temporary material for at least a portion of the pad, wherein the temporary material is coupled to a current/voltage source to redirect current through the temporary material to the one or more conductive pads. The temporary material includes conductive material or non-conductive material, and wherein the temporary conductive material further completely or partially covers the one or more conductive pads.

根據另一實施例,該方法可進一步包括供體基板處的導電層,用以將臨時導電材料耦合至電流/電壓源;殼體結構,用以覆蓋供體基板上的各微裝置的至少一部分,其中臨時材料充當將該多個微裝置固持在供體基板中的殼體結構內部的錨固件。According to another embodiment, the method may further include a conductive layer at the donor substrate to couple the temporary conductive material to the current/voltage source; a housing structure to cover at least a portion of each microdevice on the donor substrate , where the temporary material acts as an anchor holding the plurality of microdevices within the housing structure in the donor substrate.

根據又一實施例,該方法可進一步包括殼體結構及各微裝置之間的至少一個犧牲層,其中臨時材料經圖案化以在供體基板的頂部表面上形成開口。供體基板的頂部表面處的開口用於藉由移除犧牲層而自殼體結構的側壁釋放微裝置。在移除犧牲層之後,臨時材料將各微裝置固持在適當位置,且藉由使用化學蝕刻製程或電磁信號移除犧牲層。According to yet another embodiment, the method may further include at least one sacrificial layer between the housing structure and each microdevice, wherein the temporary material is patterned to form openings on the top surface of the donor substrate. The openings at the top surface of the donor substrate are used to release the microdevices from the side walls of the housing structure by removing the sacrificial layer. After the sacrificial layer is removed, temporary materials hold each microdevice in place and the sacrificial layer is removed using a chemical etching process or an electromagnetic signal.

根據其他實施例,在藉由以下製程之一將各微裝置轉移至受體基板之後使臨時材料與殼體結構分離:機械製程、光學製程、熱製程及化學製程。供體基板的頂部表面上的導電跡線作為以下之一連接:網、列或行。According to other embodiments, the temporary material is separated from the housing structure after each microdevice is transferred to the receptor substrate by one of the following processes: mechanical, optical, thermal, and chemical. Conductive traces on the top surface of the donor substrate connect as one of: mesh, column, or row.

根據一些實施例,供體基板的頂部表面上的多個接入點用於經由導電跡線偏置臨時材料。臨時材料在朝向供體基板的表面及背對供體基板的表面之間形成通路。According to some embodiments, multiple access points on the top surface of the donor substrate are used to bias the temporary material via conductive traces. The temporary material forms a pathway between a surface facing the donor substrate and a surface facing away from the donor substrate.

根據一個實施例,提供一種將至少一個微裝置鍵合至受體基板的方法。該方法包括:在供體基板上在該至少一個微裝置下方形成包括電極及電活性聚合物層的堆疊; 將電壓施加至該堆疊以使至少一個微裝置處於受體基板的表面的接觸/近程範圍內。According to one embodiment, a method of bonding at least one microdevice to a receptor substrate is provided. The method includes forming a stack including an electrode and an electroactive polymer layer on a donor substrate below the at least one microdevice; A voltage is applied to the stack such that at least one microdevice is within contact/proximity of the surface of the receptor substrate.

根據一些實施例,該方法可進一步包括:在該至少一個微裝置周圍提供殼體結構;以及提供錨固件以將該至少一個微裝置固持在殼體結構內部。According to some embodiments, the method may further comprise: providing a housing structure around the at least one microdevice; and providing anchors to retain the at least one microdevice inside the housing structure.

根據另一實施例,錨固件藉由推力或拉力之一釋放受體基板的表面上的微裝置,該堆疊進一步包括將光轉換為熱改變的吸收層,且電活性聚合物層變為氣體,且由該改變產生的壓力將該至少一個微裝置推動至受體基板的表面。According to another embodiment, the anchor releases the microdevice on the surface of the receptor substrate by one of pushing or pulling forces, the stack further includes an absorbing layer that converts light into thermal change, and the electroactive polymer layer becomes a gas, And the pressure generated by the change pushes the at least one microdevice to the surface of the receptor substrate.

根據一個實施例,可提供一種將微裝置整合在背板上的方法,包括:在基板上方延伸的該一或多個微裝置上或上方形成緩衝層;在緩衝層上形成平坦化層,該平坦化層包括聚合物,且其中該聚合物包括聚醯胺、SU8或BCB中之一者;以及在平坦化層及中間基板之間沈積鍵合層。According to one embodiment, a method for integrating micro devices on a backplane may be provided, including: forming a buffer layer on or over the one or more micro devices extending above the substrate; forming a planarization layer on the buffer layer, the The planarization layer includes a polymer, and wherein the polymer includes one of polyamide, SU8, or BCB; and a bonding layer is deposited between the planarization layer and the intermediate substrate.

根據另一實施例,該方法可進一步包括在接觸平坦化層之後固化鍵合層,以及藉由雷射或化學剝離移除微裝置基板。藉由壓力、溫度或光固化鍵合層。According to another embodiment, the method may further include curing the bonding layer after contacting the planarization layer, and removing the microdevice substrate by laser or chemical lift-off. The bonding layer is cured by pressure, temperature or light.

根據另一實施例,該方法可進一步包括藉由雷射或化學剝離中之一者移除微裝置基板,且其中將一組選擇性微裝置自基板鍵合至背板包括以下步驟:對齊微裝置及背板且使其接觸;移除緩衝層以釋放微裝置;形成拉出該組選定的微裝置的力;以及將該組選定的微裝置鍵合至背板。According to another embodiment, the method may further include removing the microdevice substrate by one of laser or chemical lift-off, and wherein bonding a set of selective microdevices from the substrate to the backplane includes the steps of: aligning the microdevices bringing the device and the backplane into contact; removing the buffer layer to release the microdevices; creating a force to pull out the selected set of microdevices; and bonding the selected set of microdevices to the backplane.

根據另一實施例,該方法可進一步包括在緩衝層中提供開口以使微裝置連接至平坦化層。緩衝層為導電的,其中緩衝層將至少一個微裝置連接至測試焊盤。According to another embodiment, the method may further include providing openings in the buffer layer to connect the microdevice to the planarization layer. The buffer layer is conductive, wherein the buffer layer connects the at least one microdevice to the test pad.

根據另一實施例,該方法可進一步包括:在平坦化層的頂部或底部任一者上提供電極;經由緩衝層將至少一個微裝置耦合至該電極;提取背板上微裝置的位置;以及延伸電極的位置至背板上微裝置的提取位置,其中藉由相機、探針尖端或表面輪廓儀提取微裝置的位置。According to another embodiment, the method may further include: providing an electrode on either the top or bottom of the planarization layer; coupling at least one microdevice to the electrode via the buffer layer; extracting the location of the microdevice on the backplane; and The position of the electrode is extended to the extraction position of the microdevice on the backplane, where the position of the microdevice is extracted by a camera, a probe tip, or a surface profilometer.

綜上該,本發明提供轉移至系統基板以完成的微裝置整合過程,及電子控制整合。該轉移可藉由各種手段來促進,包含提供臨時材料、供體基板上的可斷裂錨固件,或臨時中間基板。In summary, the present invention provides a microdevice integration process and electronic control integration that are transferred to a system substrate to complete. This transfer can be facilitated by various means, including providing temporary materials, breakable anchors on the donor substrate, or temporary intermediate substrates.

已經出於說明及描述的目的呈現本發明之一或多個實施例的前述描述。上述描述並不旨在是詳盡的或將本發明限制於所揭示的精確形式。鑒於以上教示,許多修改及變化是可能的。意圖是,本發明之範圍不受此詳細說明的限制,而是受其所附申請專利範圍的限制。The foregoing description of one or more embodiments of the invention has been presented for purposes of illustration and description. The above description is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teachings. It is intended that the scope of the invention be limited not by this detailed description but by the scope of the patent claims appended hereto.

110:供體基板 112:底部平面或片狀導電層 114:功能層 116:頂部像素化導電層 118:電流分佈層 120:介電層 128:調平層 130:開口 132:焊盤 150:系統基板 152:其他層 154:焊盤 156:介電層 170:反射層或黑色矩陣 210:供體基板 212:第一頂部平面或片狀導電層 214:功能層 216:第二底部像素化導電層 218:電流分佈層 228:層 232:焊盤層 250:系統基板 252:其他層 254:基板焊盤 256:介電層 270:反射層或黑色矩陣 310:供體基板 312:第一底部導電層 314:功能層 316:第二頂部導電層 332:頂部觸點 372:層 372-2:犧牲層 374:填料層 376:盒式(臨時)基板 378:基板鍵合層 380:接觸鍵合層 382:焊盤 390:系統基板 412:第一底部導電層 414:功能層 416:第二頂部導電層 432:頂部觸點 472:MIS層 474:填充材料 476:臨時基板 476-1:錨固件 476-2:槽 478:基板鍵合層 480:下部接觸焊盤 490:系統(受體)基板 510:供體基板 512:第一底部導電層 514:功能層 516:第二頂部導電層 532:頂部接觸焊盤 572:MIS層 574:填料層 582:焊盤 590:受體基板 592:層 594:延伸部 596:空隙/間隙 598:橋 598-2:可能釋放點 6110:供體基板 6112:裝置層 6114:第一緩衝層 6116:分離層 6118:第二緩衝層 6150:基板 6262:間隙 6263:間隙 6212:島狀物 6210:供體基板 6220:填料層 1102:微裝置 1104:微裝置 1106:微裝置 1108:盒 1202:微裝置 1204:微裝置 1206:微裝置 1206-2:其他區域 1208:多類型微裝置盒 1302:微裝置 1304:供體基板 1306:支撐層 1308:支撐層 1480:供體基板 1482:塊 1483:塊 1484:交叉線 1580:塊 1582:塊 1590:受體基板 1680:塊 1682:塊 1684:塊 1690:盒 1790:盒 1802:供體基板 1804:供體力元件 1806:堆疊 1812:電壓/電流 1814:導電焊盤 1816:導電焊盤 1818:受體力元件 1902:供體基板 1904:導電/接觸焊盤 1906:導電/接觸焊盤 1908:受體基板 1910:電流/電壓 1912:電壓/電流 1914:電壓/電流 1918:受體力元件 2002a:臨時導電材料 2002c:臨時導電材料 2002d:臨時導電材料 2002e:臨時導電材料 2002f:導電層 2002g:臨時導電材料 2002h:導電層 2004a:導電焊盤 2004c:導電焊盤 2004d:導電焊盤 2004e:焊盤 2004h:導電材料 2006a:殼體結構 2006b:殼體 2006e:焊盤 2006c:導電焊盤 2006d:導電焊盤 2006h:導電層 2008a:犧牲層 2008b:犧牲層 2008c:犧牲層 2008e:犧牲層 2008f:導電焊盤 2008g:導電焊盤 2008h:導電焊盤 2010a:鍵合材料 2010e:焊盤 2010f:導電焊盤 2010g:導電焊盤 2010h:導電焊盤 2012g:導電焊盤 2012h:導電焊盤 2014a:錨固件 2014g:導電焊盤 2014h:導電焊盤 2016:微裝置 2102:微裝置 2104:供體基板 2106:導電焊盤 2106-1:導電焊盤 2106-2:導電焊盤 2106-3:導電焊盤 2106-4:導電焊盤 2108:臨時導電材料 2110:臨時導電材料 2204:電極 2206:電極 2208:電活性聚合物(EPE)層 2210:微裝置 2212:微裝置 2214:供體基板 2220:EPE 2222:EPE 2226:殼體結構 2234:錨固件 2302:電極 2304:堆疊層 2306:電極 2308:堆疊層 2310:堆疊層 2312:微裝置 2314:微裝置 2318:微裝置 2320:供體基板 2322:殼體 2326:錨固件 2332:錨固件 2404:堆疊層 2404-1:層 2410:微裝置 2414:微裝置 2418:微裝置 2422:殼體 2426:錨固件 2428:錨固件 2456:氣體 2458:吸收層 2502:微裝置基板 2504:微裝置陣列 2506:緩衝層 2508:平坦化層 2510:中間基板 2512:鍵合層 2520:焊盤 2606:緩衝層 2620:焊盤 2622:焊盤 2630:背板 2640:微裝置 2702:電極 2704:電極 2706:接觸焊盤 2710:微裝置 2712:微裝置 2714:微裝置 2720:延伸部110:Donor substrate 112: Bottom plane or sheet conductive layer 114: Functional layer 116: Top pixelated conductive layer 118:Current distribution layer 120:Dielectric layer 128: Leveling layer 130:Open your mouth 132: Pad 150: System base board 152:Other layers 154: Pad 156:Dielectric layer 170: Reflective layer or black matrix 210:Donor substrate 212: First top plane or sheet conductive layer 214: Functional layer 216: Second bottom pixelated conductive layer 218:Current distribution layer 228:Layer 232: Pad layer 250: System base board 252:Other layers 254:Substrate pad 256:Dielectric layer 270: Reflective layer or black matrix 310: Donor substrate 312: First bottom conductive layer 314: Functional layer 316: Second top conductive layer 332:Top contact 372:Layer 372-2:Sacrificial layer 374: Filling layer 376: Cassette (temporary) base plate 378:Substrate bonding layer 380: Contact bonding layer 382: Pad 390: System base board 412: First bottom conductive layer 414: Functional layer 416: Second top conductive layer 432: Top contact 472:MIS layer 474:Filling material 476:Temporary base plate 476-1:Anchor 476-2:Slot 478:Substrate bonding layer 480: Lower contact pad 490: System (receptor) substrate 510: Donor substrate 512: First bottom conductive layer 514: Functional layer 516: Second top conductive layer 532: Top contact pad 572:MIS layer 574: Filling layer 582: Pad 590: Receptor substrate 592:Layer 594:Extension 596:gap/gap 598:Bridge 598-2: Possible release point 6110:Donor substrate 6112:Device layer 6114: First buffer layer 6116:Separation layer 6118: Second buffer layer 6150:Substrate 6262: Gap 6263: Gap 6212:Island 6210:Donor substrate 6220: Filling layer 1102: Micro device 1104: Micro device 1106: Micro device 1108:box 1202: Micro device 1204: Micro device 1206: Micro device 1206-2:Other areas 1208:Multiple types of micro device boxes 1302: Micro device 1304:Donor substrate 1306:Support layer 1308:Support layer 1480:Donor substrate 1482: block 1483: block 1484: Cross lines 1580: block 1582: block 1590:Acceptor substrate 1680: block 1682: block 1684: block 1690:box 1790:Box 1802:Donor substrate 1804:Force force component 1806:Stacking 1812:Voltage/Current 1814:Conductive pad 1816:Conductive pad 1818: force-receiving element 1902:Donor substrate 1904: Conductive/contact pad 1906: Conductive/contact pad 1908: Receptor substrate 1910:Current/Voltage 1912:Voltage/Current 1914:Voltage/Current 1918: force-receiving element 2002a: Temporary conductive materials 2002c: Temporary conductive materials 2002d: Temporary conductive materials 2002e: Temporary conductive materials 2002f: Conductive layer 2002g: Temporary conductive materials 2002h: Conductive layer 2004a: Conductive Pad 2004c: Conductive Pad 2004d: Conductive Pad 2004e: Pad 2004h: Conductive materials 2006a: Shell structure 2006b: Shell 2006e: Pad 2006c: Conductive Pad 2006d: Conductive Pad 2006h: Conductive layer 2008a: Sacrificial layer 2008b: Sacrificial layer 2008c: Sacrificial layer 2008e:Sacrificial layer 2008f: Conductive Pad 2008g: Conductive Pad 2008h: Conductive Pad 2010a: Bonding Materials 2010e: Pad 2010f: Conductive Pad 2010g: Conductive Pad 2010h: Conductive Pad 2012g: Conductive Pad 2012h: Conductive Pad 2014a: Anchors 2014g: Conductive Pad 2014h: Conductive Pad 2016: Microdevices 2102:Microdevice 2104:Donor substrate 2106:Conductive pad 2106-1: Conductive Pad 2106-2: Conductive Pad 2106-3: Conductive Pad 2106-4: Conductive Pad 2108: Temporary conductive materials 2110: Temporary conductive materials 2204:Electrode 2206:Electrode 2208:Electroactive polymer (EPE) layer 2210: Micro device 2212: Micro device 2214:Donor substrate 2220:EPE 2222:EPE 2226: Shell structure 2234:Anchor 2302:Electrode 2304: stacked layer 2306:Electrode 2308:Stacking layer 2310: stacked layer 2312: Micro device 2314: Micro device 2318: Micro device 2320:Donor substrate 2322: Shell 2326:Anchor 2332:Anchor 2404:Stacking layer 2404-1:Layer 2410: Micro device 2414: Micro device 2418: Micro device 2422: Shell 2426:Anchor 2428:Anchor 2456:Gas 2458:Absorption layer 2502:Microdevice substrate 2504: Microdevice Array 2506:Buffer layer 2508: Planarization layer 2510: Intermediate substrate 2512: Bonding layer 2520: Pad 2606:Buffer layer 2620: Pad 2622: Pad 2630:Back plate 2640: Micro device 2702:Electrode 2704:Electrode 2706: Contact pad 2710:Microdevice 2712: Micro device 2714:Microdevice 2720:Extension

將參照表示本發明之較佳實施例的附圖更詳細地描述本發明,在附圖中:The invention will be described in more detail with reference to the accompanying drawing which shows a preferred embodiment of the invention, in which:

圖1A展示根據本發明之實施例的處於供體基板上的側向功能結構的橫截面視圖;Figure 1A shows a cross-sectional view of a lateral functional structure on a donor substrate in accordance with an embodiment of the invention;

圖1B展示根據本發明之實施例的具有沈積在其上的電流分佈層的圖1A的側向結構的橫截面視圖;1B shows a cross-sectional view of the lateral structure of FIG. 1A with a current distribution layer deposited thereon, in accordance with an embodiment of the present invention;

圖1C展示根據本發明之實施例的在圖案化頂部介電導電層及沈積第二介電層之後的圖1B的側向結構的橫截面視圖;1C shows a cross-sectional view of the lateral structure of FIG. 1B after patterning a top dielectric conductive layer and depositing a second dielectric layer in accordance with an embodiment of the present invention;

圖1D展示根據本發明之實施例的在圖案化第二介電層之後的側向結構的橫截面視圖;1D shows a cross-sectional view of a lateral structure after patterning a second dielectric layer in accordance with an embodiment of the present invention;

圖1E展示根據本發明之實施例的在焊盤沈積及圖案化之後的側向結構的橫截面視圖;1E shows a cross-sectional view of a lateral structure after pad deposition and patterning in accordance with an embodiment of the present invention;

圖1F展示根據本發明之實施例的在藉由鍵合區域鍵合至系統基板以形成整合結構之後的側向結構的橫截面視圖;1F shows a cross-sectional view of a lateral structure after bonding to a system substrate through a bonding region to form an integrated structure according to an embodiment of the present invention;

圖1G展示根據本發明之實施例的在移除供體基板及圖案化底部電極之後的整合結構的橫截面視圖;1G shows a cross-sectional view of the integrated structure after removing the donor substrate and patterned bottom electrode according to an embodiment of the present invention;

圖1H展示根據本發明之實施例的在移除供體基板及圖案化底部電極之後的整合結構的橫截面視圖;1H shows a cross-sectional view of the integrated structure after removing the donor substrate and patterned bottom electrode according to an embodiment of the present invention;

圖2A展示具有焊盤層的供體基板上的側向功能結構的另一個實施例的橫截面視圖;2A shows a cross-sectional view of another embodiment of a lateral functional structure on a donor substrate with a pad layer;

圖2B展示根據本發明之實施例的在圖案化焊盤層及接觸層及電流分佈層之後的圖2A的側向結構的橫截面視圖;2B shows a cross-sectional view of the lateral structure of FIG. 2A after patterning the pad layer and contact layer and current distribution layer in accordance with an embodiment of the present invention;

圖2C展示根據本發明之實施例的在填充圖案化後焊盤之間的距離之後的圖2A的側向結構的橫截面視圖;2C shows a cross-sectional view of the lateral structure of FIG. 2A after filling the distance between patterned pads in accordance with an embodiment of the present invention;

圖2D展示根據本發明之實施例的藉由圖案化焊盤對齊及鍵合至系統基板的圖2A的側向結構的橫截面視圖;2D shows a cross-sectional view of the lateral structure of FIG. 2A aligned and bonded to a system substrate with patterned pads in accordance with an embodiment of the present invention;

圖2E展示根據本發明之實施例的移除裝置基板的圖2A的側向結構的橫截面視圖;2E shows a cross-sectional view of the lateral structure of FIG. 2A with a device substrate removed according to an embodiment of the present invention;

圖3A展示根據本發明之實施例的裝置(供體)基板上的台面結構的橫截面視圖;3A shows a cross-sectional view of a mesa structure on a device (donor) substrate according to an embodiment of the invention;

圖3B展示根據本發明之實施例的步驟的橫截面視圖,其中填充有圖3A的台面結構之間的空白空間;3B shows a cross-sectional view of steps with the empty spaces between the mesa structures of FIG. 3A filled, in accordance with an embodiment of the present invention;

圖3C展示根據本發明之實施例的步驟的橫截面視圖,其中將圖3B的裝置(台面結構)轉移至臨時基板;Figure 3C shows a cross-sectional view of steps in which the device (mesa structure) of Figure 3B is transferred to a temporary substrate according to an embodiment of the invention;

圖3D展示根據本發明之實施例的步驟的橫截面視圖,其中將圖3C的裝置對齊及鍵合至系統基板;Figure 3D shows a cross-sectional view of steps in which the device of Figure 3C is aligned and bonded to a system substrate in accordance with an embodiment of the present invention;

圖3E展示根據本發明之實施例的步驟的橫截面視圖,其中將裝置轉移至系統基板;3E shows a cross-sectional view of steps in which a device is transferred to a system substrate in accordance with an embodiment of the present invention;

圖3F展示根據本發明之實施例的熱轉移步驟的熱曲線;Figure 3F shows a thermal curve of a thermal transfer step according to an embodiment of the invention;

圖4A展示根據本發明之實施例的具有槽及轉移至其上的裝置的臨時基板的橫截面視圖;4A shows a cross-sectional view of a temporary substrate with a slot and a device transferred thereto, in accordance with an embodiment of the present invention;

圖4B展示根據本發明之實施例的在裝置空間與槽之間清理填料之後的圖4A的臨時基板的橫截面視圖;4B shows a cross-sectional view of the temporary substrate of FIG. 4A after cleaning of filler between the device space and the slot in accordance with an embodiment of the present invention;

圖4C展示根據本發明之實施例的步驟的橫截面視圖,其中藉由破壞所釋放表面將裝置轉移至系統基板;4C shows a cross-sectional view of steps in which a device is transferred to a system substrate by destroying a released surface, according to an embodiment of the present invention;

圖5A展示根據本發明之實施例的在填充層中具有不同錨固件的微裝置的橫截面視圖;Figure 5A shows a cross-sectional view of a microdevice with different anchors in a filling layer according to an embodiment of the invention;

圖5B展示根據本發明之實施例的在對填充層進行後處理之後的微裝置的橫截面視圖;5B shows a cross-sectional view of a microdevice after post-processing a filling layer in accordance with an embodiment of the invention;

圖5C展示根據本發明之實施例的圖5B的微裝置的俯視圖;Figure 5C shows a top view of the microdevice of Figure 5B according to an embodiment of the present invention;

圖5D展示根據本發明之實施例的用於將微裝置轉移至另一基板的轉移步驟的橫截面視圖;5D shows a cross-sectional view of a transfer step for transferring a microdevice to another substrate in accordance with an embodiment of the invention;

圖5E展示根據本發明之實施例的將微裝置轉移至基板的橫截面視圖;Figure 5E shows a cross-sectional view of transferring a microdevice to a substrate in accordance with an embodiment of the invention;

圖6A展示根據本發明之另一實施例的裝置(供體)基板上的台面結構的橫截面視圖;6A shows a cross-sectional view of a mesa structure on a device (donor) substrate according to another embodiment of the invention;

圖6B展示步驟的橫截面視圖,其中填充有圖6A的台面結構之間的空白空間;Figure 6B shows a cross-sectional view of steps with the empty spaces between the mesa structures of Figure 6A filled;

圖6C展示根據本發明之實施例的步驟的橫截面視圖,其中將圖6B的裝置(台面結構)轉移至臨時基板;Figure 6C shows a cross-sectional view of steps in which the device (mesa structure) of Figure 6B is transferred to a temporary substrate according to an embodiment of the invention;

圖6D展示根據本發明之實施例的步驟的橫截面視圖,其中移除圖6C的底部導電層的部分;6D shows a cross-sectional view of steps in which a portion of the bottom conductive layer of FIG. 6C is removed according to an embodiment of the present invention;

圖6E展示根據本發明之實施例的在填充層中具有錨固件的微裝置的橫截面視圖;Figure 6E shows a cross-sectional view of a microdevice with anchors in a filling layer according to an embodiment of the invention;

圖6F展示根據本發明之實施例的在填充層中具有錨固件的微裝置的橫截面視圖;Figure 6F shows a cross-sectional view of a microdevice with anchors in a filling layer according to an embodiment of the invention;

圖6G展示根據本發明之實施例的在填充層中具有錨固件的微裝置的橫截面視圖;6G shows a cross-sectional view of a microdevice with anchors in a filling layer according to an embodiment of the invention;

圖6H展示在本發明之另一個實施例中的預備步驟的橫截面視圖;Figure 6H shows a cross-sectional view of preliminary steps in another embodiment of the invention;

圖6I展示根據本發明之實施例的在圖6H的實施例中的蝕刻步驟的橫截面視圖;6I shows a cross-sectional view of the etching step in the embodiment of FIG. 6H according to an embodiment of the present invention;

圖6J展示根據本發明之實施例的在圖6H的實施例中的分離步驟的橫截面視圖;Figure 6J shows a cross-sectional view of the separation step in the embodiment of Figure 6H according to an embodiment of the present invention;

圖6K展示根據本發明之實施例的本發明之另一個實施例的俯視圖;6K shows a top view of another embodiment of the present invention according to an embodiment of the present invention;

圖6L展示根據本發明之實施例的圖6K的實施例的橫截面視圖;Figure 6L shows a cross-sectional view of the embodiment of Figure 6K according to an embodiment of the present invention;

圖6M展示根據本發明之實施例的具有填充材料的圖6K及6L的實施例的橫截面視圖;6M shows a cross-sectional view of the embodiment of FIGS. 6K and 6L with filler material in accordance with an embodiment of the present invention;

圖7是本發明之實施例的過程之流程圖;Figure 7 is a flow chart of the process of the embodiment of the present invention;

圖8是根據本發明之實施例的微裝置安裝過程之流程圖;Figure 8 is a flow chart of a microdevice installation process according to an embodiment of the present invention;

圖9是根據本發明之實施例的微裝置安裝過程之流程圖;Figure 9 is a flow chart of a microdevice installation process according to an embodiment of the present invention;

圖10是根據本發明之實施例的微裝置安裝過程之流程圖;Figure 10 is a flow chart of a microdevice installation process according to an embodiment of the present invention;

圖11展示根據本發明之實施例的具有不同類型的像素化微裝置的供體或臨時(盒)基板的實例;Figure 11 shows examples of donor or temporary (box) substrates with different types of pixelated microdevices according to embodiments of the present invention;

圖12展示根據本發明之實施例的具有不同類型的像素化微裝置的供體或臨時(盒)基板的實例;Figure 12 shows examples of donor or temporary (box) substrates with different types of pixelated microdevices according to embodiments of the present invention;

圖13展示根據本發明之實施例的用於同一類型的微裝置的但在微裝置組之間具有不同間距的供體基板的實例;13 shows an example of a donor substrate for the same type of microdevice but with different spacing between groups of microdevices in accordance with an embodiment of the present invention;

圖14A展示根據本發明之實施例的在微裝置塊上具有不均勻輸出的供體基板或臨時基板的實例;14A shows an example of a donor substrate or temporary substrate with non-uniform output on a microdevice block according to an embodiment of the present invention;

圖14B展示根據本發明之實施例的在多個微裝置塊上具有不均勻輸出的受體基板或系統基板的實例;14B shows an example of a receptor substrate or system substrate with non-uniform output across multiple microdevice tiles in accordance with an embodiment of the present invention;

圖14C展示根據本發明之實施例的具有偏斜微裝置塊的系統基板的實例;14C shows an example of a system substrate with skewed microdevice blocks in accordance with embodiments of the present invention;

圖14D展示根據本發明之實施例的具有翻轉微裝置塊的系統基板的實例;14D shows an example of a system substrate with a flipped microdevice block according to an embodiment of the present invention;

圖14E展示根據本發明之實施例的具有翻轉且交替的微裝置塊的系統基板的實例;14E shows an example of a system substrate with flipped and alternating microdevice tiles in accordance with an embodiment of the present invention;

圖15A展示根據本發明之實施例的具有兩個不同微裝置塊的供體基板的實例;Figure 15A shows an example of a donor substrate with two different microdevice blocks according to an embodiment of the invention;

圖15B展示根據本發明之實施例的具有不同微裝置的偏斜塊的系統基板的實例;15B shows an example of a system substrate with skew blocks of different microdevices according to an embodiment of the present invention;

圖16A展示根據本發明之實施例的具有三種不同類型的像素化微裝置塊的供體基板的實例;Figure 16A shows an example of a donor substrate with three different types of pixelated microdevice blocks in accordance with embodiments of the present invention;

圖16B展示根據本發明之實施例的具有來自每個塊的多種不同類型的單獨微裝置的系統基板的實例;16B shows an example of a system substrate with multiple different types of individual microdevices from each block in accordance with an embodiment of the invention;

圖17A展示根據本發明之實施例的具有多種不同類型的像素化微裝置塊的盒式基板的實例;17A shows an example of a cassette substrate with multiple different types of pixelated microdevice tiles in accordance with embodiments of the present invention;

圖17B展示根據本發明之實施例的具有多種不同類型的偏移像素化微裝置塊的盒式基板的實例;17B shows an example of a cassette substrate with multiple different types of offset pixelated microdevice blocks in accordance with embodiments of the present invention;

圖18示出根據本發明之實施例的經由供體力元件固持微裝置的供體基板。Figure 18 illustrates a donor substrate holding a microdevice via a donor force element in accordance with an embodiment of the present invention.

圖19示出根據本發明之實施例的一側上具有一個以上接觸焊盤的微裝置的實例。Figure 19 shows an example of a microdevice with more than one contact pad on one side in accordance with an embodiment of the present invention.

圖20A1-20A2示出根據本發明之一些實施例的突顯臨時導電材料覆蓋微裝置的實例。Figures 20A1-20A2 illustrate examples of highlighted temporary conductive material covering microdevices in accordance with some embodiments of the invention.

圖20B1-20B2示出根據本發明之一些實施例的突顯臨時導電材料覆蓋微裝置的另一實例。Figures 20B1-20B2 illustrate another example of a highlighted temporary conductive material covering a microdevice in accordance with some embodiments of the invention.

圖20C1-20C2示出根據本發明之一些實施例的突顯臨時導電材料覆蓋微裝置的另一實例。Figures 20C1-20C2 illustrate another example of a highlighted temporary conductive material covering a microdevice in accordance with some embodiments of the invention.

圖20D-20H示出根據本發明之一些實施例的突顯臨時導電材料覆蓋微裝置的另一實例。20D-20H illustrate another example of a highlighted temporary conductive material covering a microdevice in accordance with some embodiments of the invention.

圖20I1-20I2示出根據本發明之一些實施例的突顯臨時導電材料覆蓋微裝置的另一實例。Figures 20I1-20I2 illustrate another example of a highlighted temporary conductive material covering a microdevice in accordance with some embodiments of the invention.

圖21A示出根據本發明之實施例的圖20A的示例性俯視圖表示。Figure 21A shows an exemplary top view representation of Figure 20A in accordance with an embodiment of the present invention.

圖21B1示出根據本發明之實施例的圖20B1的示例性俯視圖表示。Figure 21B1 shows an exemplary top view representation of Figure 20B1 in accordance with an embodiment of the present invention.

圖21B2示出根據本發明之實施例的圖20B2的另一示例性俯視圖表示。Figure 21B2 shows another exemplary top view representation of Figure 20B2 in accordance with an embodiment of the present invention.

圖21C示出根據本發明之實施例的圖20E的示例性俯視圖表示。Figure 21C shows an exemplary top view representation of Figure 20E in accordance with an embodiment of the present invention.

圖21D示出根據本發明之實施例的圖20F的示例性俯視圖表示。Figure 21D shows an exemplary top view representation of Figure 20F, in accordance with an embodiment of the present invention.

圖22A-22C示出根據本發明之實施例的供體基板上的微裝置,其中微裝置可選擇性地朝向或遠離供體基板的表面移動。22A-22C illustrate a microdevice on a donor substrate in which the microdevice is selectively movable toward or away from a surface of the donor substrate in accordance with embodiments of the present invention.

圖23A-23B示出根據本發明之實施例的供體基板上的微裝置,其中微裝置可選擇性地朝向或遠離供體基板的表面移動。23A-23B illustrate a microdevice on a donor substrate in which the microdevice is selectively movable toward or away from a surface of the donor substrate in accordance with embodiments of the present invention.

圖24示出根據本發明之實施例的供體基板上的微裝置的另一實例,其中微裝置可選擇性地朝向或遠離供體基板的表面移動。Figure 24 shows another example of a microdevice on a donor substrate in which the microdevice is selectively movable toward or away from a surface of the donor substrate in accordance with an embodiment of the present invention.

圖25A示出根據本發明之一個實施例的微裝置基板上的微裝置陣列的橫截面視圖。Figure 25A shows a cross-sectional view of a microdevice array on a microdevice substrate according to one embodiment of the present invention.

圖25B示出根據本發明之一個實施例的具有圖案化緩衝層的微裝置陣列的橫截面視圖。Figure 25B shows a cross-sectional view of a microdevice array with a patterned buffer layer according to one embodiment of the present invention.

圖25C示出根據本發明之一個實施例的具有平坦化層的微裝置陣列的橫截面視圖。Figure 25C shows a cross-sectional view of a microdevice array with a planarization layer according to one embodiment of the present invention.

圖25D示出根據本發明之一個實施例的鍵合至中間基板的微裝置陣列的橫截面視圖。Figure 25D shows a cross-sectional view of a microdevice array bonded to an intermediate substrate according to one embodiment of the present invention.

圖25E示出根據本發明之一個實施例的具有焊盤的微裝置陣列的橫截面視圖。Figure 25E shows a cross-sectional view of a microdevice array with pads according to one embodiment of the invention.

圖26示出根據本發明之一個實施例的鍵合至中間基板及背板的微裝置陣列的橫截面視圖。Figure 26 shows a cross-sectional view of a microdevice array bonded to an intermediate substrate and a backplane in accordance with one embodiment of the present invention.

圖27A示出根據本發明之一個實施例的提取微裝置位置的過程步驟。Figure 27A illustrates process steps for extracting a microdevice location according to one embodiment of the present invention.

圖27B示出根據本發明之一個實施例的基於微裝置的位置修改電極的位置/形狀。Figure 27B illustrates position/shape modification of an electrode based on a microdevice according to one embodiment of the present invention.

圖27C示出根據本發明之一個實施例的提供至電極的延伸部。Figure 27C shows an extension provided to an electrode according to one embodiment of the invention.

若不同圖式中使用相同附圖標記,則指示類似或相同元件。The use of the same reference numbers in different drawings indicates similar or identical elements.

本發明容許各種修改及替代形式,且特定實施例或實施方案在圖式中示出為實例,且將在本文詳細地描述。然而,本發明不限於所揭示的特定形式。實際上,本發明涵蓋落入由所附申請專利範圍限定的本發明之精神及範圍內的所有的修改、等效物及替代方案。The invention is susceptible to various modifications and alternative forms, and the specific embodiments or implementations are shown as examples in the drawings and will be described in detail herein. However, this invention is not limited to the specific forms disclosed. Indeed, the invention is intended to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.

110:供體基板 110:Donor substrate

112:底部平面或片狀導電層 112: Bottom plane or sheet conductive layer

114:功能層 114: Functional layer

116:頂部像素化導電層 116: Top pixelated conductive layer

Claims (30)

一種鍵合結構,其包括: 位在供體基板上的複數個微裝置,各微裝置包括形成於該微裝置的表面上的一或多個導電焊盤;以及 臨時材料,其覆蓋各微裝置或該一或多個導電焊盤的至少一部分,其中該臨時材料耦合至電流/電壓源以重導向電流穿過該臨時材料至該一或多個導電焊盤。A bonding structure consisting of: a plurality of microdevices located on the donor substrate, each microdevice including one or more conductive pads formed on a surface of the microdevice; and A temporary material covering at least a portion of each microdevice or the one or more conductive pads, wherein the temporary material is coupled to a current/voltage source to redirect current through the temporary material to the one or more conductive pads. 如請求項1之鍵合結構,其中該臨時材料包括導電材料或非導電材料。The bonding structure of claim 1, wherein the temporary material includes conductive material or non-conductive material. 如請求項1之鍵合結構,其進一步包括: 位在該供體基板處的導電層,其將該臨時導電材料耦合至該電流/電壓源。For example, the bonding structure of request item 1 further includes: A conductive layer at the donor substrate that couples the temporary conductive material to the current/voltage source. 如請求項2之鍵合結構,其中該臨時導電材料進一步完全或部分覆蓋該一或多個導電焊盤。The bonding structure of claim 2, wherein the temporary conductive material further completely or partially covers the one or more conductive pads. 如請求項1之鍵合結構,其進一步包括: 殼體結構,其覆蓋該供體基板上的各微裝置的至少一部分。For example, the bonding structure of request item 1 further includes: A housing structure covering at least a portion of each microdevice on the donor substrate. 如請求項5之鍵合結構,其中該臨時材料充當將該複數個微裝置固持在該供體基板中的該殼體結構內部的錨固件。The bonded structure of claim 5, wherein the temporary material acts as an anchor holding the plurality of microdevices inside the housing structure in the donor substrate. 如請求項1之鍵合結構,其進一步包括: 位在該殼體結構與各微裝置之間的至少一個犧牲層。For example, the bonding structure of request item 1 further includes: At least one sacrificial layer is located between the housing structure and each microdevice. 如請求項1之鍵合結構,其中該臨時材料經圖案化以在該供體基板的頂部表面上形成開口。The bonded structure of claim 1, wherein the temporary material is patterned to form openings on the top surface of the donor substrate. 如請求項8之鍵合結構,其中在該供體基板的該頂部表面處的該開口係用於藉由移除該犧牲層而自該殼體結構的側壁釋放該微裝置。The bonding structure of claim 8, wherein the opening at the top surface of the donor substrate is used to release the microdevice from the sidewall of the housing structure by removing the sacrificial layer. 如請求項9之鍵合結構,其中在移除該犧牲層之後該臨時材料將各微裝置固持在適當位置,且其中藉由使用化學蝕刻製程或電磁信號移除該犧牲層。The bonded structure of claim 9, wherein the temporary material holds each microdevice in place after removal of the sacrificial layer, and wherein the sacrificial layer is removed using a chemical etching process or an electromagnetic signal. 如請求項8之鍵合結構,其中在藉由以下製程之一將各微裝置轉移至受體基板之後使該臨時材料與該殼體結構分離:機械製程、光學製程、熱製程及化學製程。The bonded structure of claim 8, wherein the temporary material is separated from the housing structure after each microdevice is transferred to the receptor substrate by one of the following processes: mechanical process, optical process, thermal process and chemical process. 如請求項11之鍵合結構,其中該供體基板的該頂部表面上的導電跡線係作為以下中之一者連接:網、列或行。The bonding structure of claim 11, wherein the conductive traces on the top surface of the donor substrate are connected as one of: meshes, columns, or rows. 如請求項11之鍵合結構,其中使用該供體基板的該頂部表面上的複數個接入點來經由該導電跡線偏置該臨時材料。The bonding structure of claim 11, wherein access points on the top surface of the donor substrate are used to bias the temporary material via the conductive traces. 如請求項1之鍵合結構,其中該臨時材料在朝向該供體基板的表面與背對該供體基板的表面之間形成通路。The bonding structure of claim 1, wherein the temporary material forms a passage between a surface facing the donor substrate and a surface facing away from the donor substrate. 一種將至少一個微裝置放置至受體基板的方法,該方法包括: 在供體基板上在該至少一個微裝置下方形成包括電極及電活性聚合物層的堆疊; 將電壓施加至該堆疊以使至少一個微裝置接觸/鄰近該受體基板的該表面。A method of placing at least one microdevice onto a receptor substrate, the method comprising: Forming a stack including an electrode and an electroactive polymer layer on the donor substrate below the at least one microdevice; A voltage is applied to the stack to cause at least one microdevice to contact/adjacent the surface of the receptor substrate. 如請求項15之方法,其進一步包括: 在該至少一個微裝置周圍提供殼體結構;以及 提供錨固件以將該至少一個微裝置固持在該殼體結構內部。The method of claim 15 further includes: providing a housing structure around the at least one microdevice; and Anchors are provided to retain the at least one microdevice within the housing structure. 如請求項15之方法,其中該錨固件藉由推力或拉力之一釋放該受體基板的表面上的微裝置。The method of claim 15, wherein the anchor releases the microdevice on the surface of the receptor substrate by one of pushing force or pulling force. 如請求項15之方法,其中該堆疊進一步包括將光轉換為熱改變的吸收層。The method of claim 15, wherein the stack further includes an absorbing layer that converts light into thermal changes. 如請求項15之方法,其中該電活性聚合物層變為氣體,且由該改變產生的壓力將該至少一個微裝置推動至該受體基板的該表面。The method of claim 15, wherein the electroactive polymer layer changes to a gas, and the pressure generated by the change pushes the at least one microdevice to the surface of the receptor substrate. 一種將微裝置整合在背板上的方法,該方法包括: 提供包括一或多個微裝置的微裝置基板; 藉由連接該等微裝置上的接觸焊盤及該背板上的對應焊盤而將一組選擇性該等微裝置自該基板鍵合至該背板; 藉由分離該微裝置基板在該背板上留下鍵合的該組選擇性微裝置。A method of integrating micro devices on a backplane, the method includes: providing a microdevice substrate including one or more microdevices; selectively bonding a set of the microdevices from the substrate to the backplane by connecting contact pads on the microdevices to corresponding pads on the backplane; The set of bonded selective microdevices is left on the backplane by separating the microdevice substrate. 如請求項20之方法,其進一步包括: 在該基板上方延伸的該一或多個微裝置上或上方形成緩衝層; 在該緩衝層上形成平坦化層,該平坦化層包括聚合物,且其中該聚合物包括聚醯胺、SU8或BCB中之一者;以及 在該平坦化層及中間基板之間沈積鍵合層。The method of claim 20 further includes: forming a buffer layer on or over the one or more microdevices extending above the substrate; Forming a planarization layer on the buffer layer, the planarization layer includes a polymer, and wherein the polymer includes one of polyamide, SU8, or BCB; and A bonding layer is deposited between the planarization layer and the intermediate substrate. 如請求項21之方法,其進一步包括 在接觸該平坦化層之後固化該鍵合層,其中藉由壓力、溫度或光中任一者固化該鍵合層。The method of claim 21, which further includes The bonding layer is cured after contacting the planarization layer, wherein the bonding layer is cured by any of pressure, temperature, or light. 如請求項20之方法,其進一步包括 藉由雷射或化學剝離中之一者移除該微裝置基板。The method of claim 20, which further includes The microdevice substrate is removed by one of laser or chemical lift-off. 如請求項20之方法,其中該等微裝置上的焊盤及該背板上的對應焊盤為導電的。The method of claim 20, wherein the pads on the microdevices and the corresponding pads on the backplane are conductive. 如請求項20之方法,其中將該組選擇性的微裝置自該基板鍵合至該背板包括以下步驟: 使該等微裝置與該背板對準並接觸; 移除該緩衝層以釋放該等微裝置; 產生拉出該組選定的微裝置的力;以及 將該組選定的微裝置鍵合至該背板。The method of claim 20, wherein bonding the set of selective microdevices from the substrate to the backplane includes the following steps: Align and contact the microdevices with the backplane; removing the buffer layer to release the microdevices; Generating a force that pulls out the selected set of microdevices; and The selected set of microdevices are bonded to the backplane. 如請求項20之方法,其進一步包括 在該緩衝層中提供開口以允許該等微裝置連接至該平坦化層。The method of claim 20, which further includes Openings are provided in the buffer layer to allow the microdevices to connect to the planarization layer. 如請求項21之方法,其中該緩衝層為導電的。The method of claim 21, wherein the buffer layer is conductive. 如請求項21之方法,其中該緩衝層將至少一個微裝置連接至測試焊盤。The method of claim 21, wherein the buffer layer connects at least one microdevice to the test pad. 如請求項21之方法,其進一步包括 在該平坦化層的頂部或底部任一者上提供電極;以及 經由該緩衝層將至少一個微裝置耦合至該電極。The method of claim 21, which further includes providing electrodes on either the top or bottom of the planarization layer; and At least one microdevice is coupled to the electrode via the buffer layer. 如請求項21之方法,其進一步包括 提取該背板上微裝置的位置;以及 延伸該電極的位置至該背板上微裝置的提取位置,其中藉由相機、探針尖端或表面輪廓儀中之一者提取微裝置的該位置。The method of claim 21, which further includes Extract the location of the microdevice on the backplane; and The location of the electrode is extended to an extraction location of the microdevice on the backplane, where the location of the microdevice is extracted by one of a camera, a probe tip, or a surface profilometer.
TW108133933A 2018-09-21 2019-09-20 Integration of microdevices into system substrate TWI815968B (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201862734679P 2018-09-21 2018-09-21
US62/734,679 2018-09-21
US201862746300P 2018-10-16 2018-10-16
US62/746,300 2018-10-16
US201962809161P 2019-02-22 2019-02-22
US62/809,161 2019-02-22
US16/542,019 US10998352B2 (en) 2016-11-25 2019-08-15 Integration of microdevices into system substrate
US16/542,019 2019-08-15

Publications (2)

Publication Number Publication Date
TW202030829A TW202030829A (en) 2020-08-16
TWI815968B true TWI815968B (en) 2023-09-21

Family

ID=69906009

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108133933A TWI815968B (en) 2018-09-21 2019-09-20 Integration of microdevices into system substrate

Country Status (3)

Country Link
KR (1) KR20200034931A (en)
CN (1) CN110943063A (en)
TW (1) TWI815968B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI742600B (en) * 2020-04-08 2021-10-11 台灣愛司帝科技股份有限公司 Initial led chip structure, image display device and chip classification system
TWI764127B (en) * 2020-04-08 2022-05-11 台灣愛司帝科技股份有限公司 Initial led chip structure, image display device and chip classification system
KR102607680B1 (en) * 2023-02-07 2023-11-29 웨이브로드 주식회사 Method for manufacturing microdisplay panel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012158709A1 (en) * 2011-05-16 2012-11-22 The Board Of Trustees Of The University Of Illinois Thermally managed led arrays assembled by printing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012158709A1 (en) * 2011-05-16 2012-11-22 The Board Of Trustees Of The University Of Illinois Thermally managed led arrays assembled by printing
US20120320581A1 (en) * 2011-05-16 2012-12-20 Rogers John A Thermally Managed LED Arrays Assembled by Printing

Also Published As

Publication number Publication date
KR20200034931A (en) 2020-04-01
CN110943063A (en) 2020-03-31
TW202030829A (en) 2020-08-16

Similar Documents

Publication Publication Date Title
CN110036492B (en) Integrating micro devices into a system substrate
US10916523B2 (en) Microdevice transfer setup and integration of micro-devices into system substrate
US10998352B2 (en) Integration of microdevices into system substrate
TWI686919B (en) Microdevice transfer setup and integration of micro-devices into system substrate
TWI815968B (en) Integration of microdevices into system substrate
US10886153B2 (en) Display including an LED element having a pressure sensitive adhesive (PSA) for micro pick and bond assembly of the display
TWI710103B (en) Luminous panel and method of manufacturing such a luminous panel
US9484332B2 (en) Micro solar cell powered micro LED display
TWI598287B (en) Electric-programmable magnetic transfer module and transfer-bonding process for photoelectric devices
US8257538B2 (en) Device transfer method and display apparatus
US20210242287A1 (en) Integration of microdevices into system substrate
WO2011067991A1 (en) Semiconductor device, process for producing same, and display device
TWI383479B (en) Controlling an electronic device using chiplets
US20230326937A1 (en) Integration of microdevices into system substrate
CA2984214A1 (en) Integration of micro-devices into system substrate
JP2003332523A (en) Transferring method and arraying method for element, and manufacturing method for image display device
JP2008118161A (en) Element transferring method
CN111816663A (en) Method for manufacturing pixelized structure