TW202030829A - Integration of microdevices into system substrate - Google Patents

Integration of microdevices into system substrate Download PDF

Info

Publication number
TW202030829A
TW202030829A TW108133933A TW108133933A TW202030829A TW 202030829 A TW202030829 A TW 202030829A TW 108133933 A TW108133933 A TW 108133933A TW 108133933 A TW108133933 A TW 108133933A TW 202030829 A TW202030829 A TW 202030829A
Authority
TW
Taiwan
Prior art keywords
substrate
layer
micro
micro device
microdevice
Prior art date
Application number
TW108133933A
Other languages
Chinese (zh)
Other versions
TWI815968B (en
Inventor
格拉姆瑞札 查吉
伊莎諾拉 法西
Original Assignee
加拿大商弗瑞爾公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/542,019 external-priority patent/US10998352B2/en
Application filed by 加拿大商弗瑞爾公司 filed Critical 加拿大商弗瑞爾公司
Publication of TW202030829A publication Critical patent/TW202030829A/en
Application granted granted Critical
Publication of TWI815968B publication Critical patent/TWI815968B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76895Local interconnects; Local pads, as exemplified by patent document EP0896365
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/30Structure, shape, material or disposition of the layer connectors prior to the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0045Devices characterised by their operation the devices being superluminescent diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/034Manufacturing methods by blanket deposition of the material of the bonding area
    • H01L2224/0343Manufacturing methods by blanket deposition of the material of the bonding area in solid form
    • H01L2224/03436Lamination of a preform, e.g. foil, sheet or layer
    • H01L2224/0344Lamination of a preform, e.g. foil, sheet or layer by transfer printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/271Manufacture and pre-treatment of the layer connector preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/30Structure, shape, material or disposition of the layer connectors prior to the connecting process of a plurality of layer connectors
    • H01L2224/301Disposition
    • H01L2224/3012Layout
    • H01L2224/3013Square or rectangular array
    • H01L2224/30132Square or rectangular array being non uniform, i.e. having a non uniform pitch across the array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Micromachines (AREA)
  • Paper (AREA)
  • Die Bonding (AREA)
  • Wire Bonding (AREA)

Abstract

In a micro-device integration process, a donor substrate is provided on which to conduct the initial manufacturing and pixelation steps to define the micro devices, including functional, e.g. light emitting layers, sandwiched between top and bottom conductive layers. The micro-devices are then transferred to a system substrate for finalizing and electronic control integration. The transfer may be facilitated by various means, including providing a continuous light emitting functional layer, breakable anchors on the donor substrates, temporary intermediate substrates enabling a thermal transfer technique, or temporary intermediate substrates with a breakable substrate bonding layer.

Description

整合微裝置於系統基板中Integrate the micro device in the system substrate

本發明係關於光電微裝置,且更具體言之係關於將光電微裝置整合至具有增強的鍵合及導電能力的系統基板中。The present invention relates to optoelectronic microdevices, and more specifically, it relates to integrating optoelectronic microdevices into a system substrate with enhanced bonding and conductivity capabilities.

本發明之目的是藉由提供用於將微裝置自供體基板轉移至系統基板的系統及方法來克服先前技術的缺點。The purpose of the present invention is to overcome the shortcomings of the prior art by providing a system and method for transferring a micro device from a donor substrate to a system substrate.

根據本發明之一個實施例,一種製造像素化結構的方法包括:提供供體基板;在該供體基板上沈積第一導電層;在該第一導電層上沈積完全或部分連續的發光功能層;在該功能層上沈積第二導電層;圖案化該第二導電層以形成像素化結構;提供用於各像素化結構的鍵合觸點;將該鍵合觸點固定至系統基板;以及移除該供體基板。According to an embodiment of the present invention, a method of manufacturing a pixelated structure includes: providing a donor substrate; depositing a first conductive layer on the donor substrate; depositing a fully or partially continuous light-emitting function layer on the first conductive layer Depositing a second conductive layer on the functional layer; patterning the second conductive layer to form a pixelated structure; providing bonding contacts for each pixelated structure; fixing the bonding contacts to the system substrate; and Remove the donor substrate.

在一個實施例中,使用連續像素化使該微裝置變成陣列。In one embodiment, continuous pixelation is used to turn the microdevice into an array.

在另一個實施例中,藉由填充該微裝置之間的空位將該裝置分離且轉移至中間基板。In another embodiment, the device is separated and transferred to the intermediate substrate by filling the vacancies between the micro devices.

在另一個實施例中,在轉移至中間基板之後對該微裝置進行後處理。In another embodiment, the microdevice is post-processed after transferring to the intermediate substrate.

根據一個實施例,可提供一種鍵合結構。該鍵合結構可包括供體基板上的多個微裝置,其中各微裝置包括形成於微裝置的表面上的一或多個導電焊盤;且臨時材料覆蓋各微裝置或該一或多個導電焊盤的至少一部分。在一種情況下,臨時材料充當錨固件,其將該多個微裝置固持在供體基板中的殼體結構內部。According to an embodiment, a bonding structure may be provided. The bonding structure may include a plurality of microdevices on the donor substrate, wherein each microdevice includes one or more conductive pads formed on the surface of the microdevice; and the temporary material covers each microdevice or the one or more At least a part of the conductive pad. In one case, the temporary material acts as an anchor, which holds the plurality of microdevices inside the housing structure in the donor substrate.

根據一個實施例,可提供一種將微裝置整合在背板上的方法,該方法包括:提供由一或多個微裝置構成的微裝置基板;連接微裝置上的焊盤及背板上的對應焊盤以將來自基板的一組選擇性微裝置鍵合至背板;以及使微裝置基板分離以在背板上留下鍵合的選定組的微裝置。According to one embodiment, a method for integrating a micro device on a backplane may be provided, the method includes: providing a micro device substrate composed of one or more micro devices; connecting the pads on the micro device and the corresponding Pads to bond a group of selective microdevices from the substrate to the backplate; and to separate the microdevice substrate to leave the bonded selected group of microdevices on the backplate.

相關申請案的交叉引用Cross references to related applications

本申請案是2017年11月22日提交的美國申請案第15/820,683號的部分接續申請案且主張其優先權,該美國申請案第15/820,683號主張以下申請案的優先權及權益:2016年11月25日提交的美國臨時專利申請案第62/426,353號、2017年3月20日提交的美國臨時專利申請案第62/473,671號、2017年4月7日提交的美國臨時專利申請案第62/482,899號及2017年6月5日提交的美國臨時專利申請案第62/515,185號,以及2017年10月30日提交的加拿大專利申請案第2,984,214號,此等申請案中的每一者以全文引用的方式併入本文中。This application is a partial continuation of the U.S. Application No. 15/820,683 filed on November 22, 2017 and claims its priority. The U.S. Application No. 15/820,683 claims the priority and rights of the following applications: U.S. Provisional Patent Application No. 62/426,353 filed on November 25, 2016, U.S. Provisional Patent Application No. 62/473,671 filed on March 20, 2017, U.S. Provisional Patent Application filed on April 7, 2017 Case No. 62/482,899 and U.S. Provisional Patent Application No. 62/515,185 filed on June 5, 2017, and Canadian Patent Application No. 2,984,214 filed on October 30, 2017. Each of these applications One is incorporated herein by reference in its entirety.

本申請案亦主張2018年9月21日提交的美國臨時專利申請案第62/734,679號及2019年2月22日提交的美國臨時專利申請案第62/809,161號的權益,該等臨時專利申請案以全文引用的方式併入本文中。This application also claims the rights and interests of U.S. Provisional Patent Application No. 62/734,679 filed on September 21, 2018 and U.S. Provisional Patent Application No. 62/809,161 filed on February 22, 2019. These provisional patent applications The case is incorporated into this article by reference in its entirety.

本申請案進一步主張2018年10月16日提交的美國臨時專利申請案第62/746,300號的權益,該臨時專利申請案以全文引用的方式併入本文中。This application further claims the rights and interests of U.S. Provisional Patent Application No. 62/746,300 filed on October 16, 2018, which is incorporated herein by reference in its entirety.

雖然結合各個實施例及實例對本發明教導進行描述,但本發明教導不旨在受限於此些實施例。相反,本發明教導涵蓋各種替代方案及等同物,如熟習此項技術者將理解。Although the teaching of the present invention is described in combination with various embodiments and examples, the teaching of the present invention is not intended to be limited to these embodiments. On the contrary, the teachings of the present invention cover various alternatives and equivalents, as those skilled in the art will understand.

除非另外定義,否則本文中所用的所有技術及科學術語均具有與本發明一般技術者通常所理解的相同含義。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by ordinary skilled persons of the present invention.

如本說明書及申請專利範圍中所用,除非上下文另外明確規定,否則單數形式「一(a/an)」及「該」包含多個指代物。As used in this specification and the scope of the patent application, unless the context clearly dictates otherwise, the singular forms "a/an" and "the" include multiple referents.

在本說明書中,術語「裝置」、「豎直裝置」及「微裝置」可互換地使用。然而,熟習此項技術者應瞭解,此處描述的實施例與裝置尺寸無關。In this manual, the terms "device", "vertical device" and "microdevice" are used interchangeably. However, those skilled in the art should understand that the embodiment described here has nothing to do with the size of the device.

在本說明書中,術語「供體基板」及「臨時基板」可互換地使用。In this specification, the terms "donor substrate" and "temporary substrate" are used interchangeably.

在本說明書中,術語「受體基板」、「系統基板」及「背板」可互換地使用。In this specification, the terms "receptor substrate", "system substrate" and "backplane" are used interchangeably.

光電裝置的實例為感測器及發光裝置,例如發光二極體(LED)。Examples of optoelectronic devices are sensors and light emitting devices, such as light emitting diodes (LEDs).

本發明係關於微裝置陣列顯示裝置,其中微裝置陣列可利用可靠的方法鍵合至背板。可在微裝置基板上方製造微裝置。微裝置基板可包括微LED、無機LED、有機LED、感測器、固態裝置、整合電路、微機電系統(MEMS)及/或其他電子組件。The present invention relates to a micro-device array display device, wherein the micro-device array can be bonded to the back plate by a reliable method. The micro device can be fabricated on top of the micro device substrate. The micro device substrate may include micro LEDs, inorganic LEDs, organic LEDs, sensors, solid state devices, integrated circuits, micro-electromechanical systems (MEMS), and/or other electronic components.

LED及LED陣列可分類為豎直固態裝置。微裝置可為感測器、LED或在基板上生長、沈積或整體式製造的任何其他固體裝置。基板可為將裝置層或固態裝置轉移至的裝置層的固有基板或受體基板。LEDs and LED arrays can be classified as vertical solid-state devices. The micro device can be a sensor, LED, or any other solid device grown, deposited or monolithically fabricated on a substrate. The substrate may be an inherent substrate or acceptor substrate of the device layer to which the device layer or the solid-state device is transferred.

受體基板可為任何基板,且可為剛性的或可撓性的。受體基板可包含(但不限於)印刷電路板、薄膜電晶體(TFT)背板、整合電路基板,或在例如LED等光學微裝置的一種情況下,例如驅動電路背板等顯示器的組件。裝置供體及受體基板上的微裝置圖案化可與例如抓放等具有不同機構(例如,靜電轉移頭、彈性體轉移頭)或直接轉移機構(例如,雙功能焊盤)的不同轉移技術組合使用。The acceptor substrate can be any substrate, and can be rigid or flexible. The acceptor substrate may include, but is not limited to, a printed circuit board, a thin film transistor (TFT) backplane, an integrated circuit substrate, or in the case of optical microdevices such as LEDs, such as driving circuit backplanes and other display components. The patterning of the micro-devices on the device donor and acceptor substrates can be different from transfer technologies with different mechanisms such as pick-and-place (for example, electrostatic transfer heads, elastomer transfer heads) or direct transfer mechanisms (for example, dual-function pads) Used in combination.

在本發明中,受體基板中的接觸焊盤指代微裝置轉移至的受體基板中的指定區域。接觸焊盤可包括永久地固持微裝置的鍵合材料。接觸焊盤可堆疊為多層以提供具有改進的鍵合及導電能力的機械上較穩定的結構。In the present invention, the contact pad in the acceptor substrate refers to a designated area in the acceptor substrate to which the micro device is transferred. The contact pad may include a bonding material that permanently holds the microdevice. The contact pads can be stacked in multiple layers to provide a mechanically stable structure with improved bonding and conductivity.

系統基板可由玻璃、矽、塑膠或任何其他常用材料製成。系統基板亦可具有有源電子組件,例如(但不限於)電晶體、電阻器、電容器或系統基板中常用的任何其他電子組件。在一些情況下,系統基板可為具有電信號列及行的基板。系統基板可為具有用以導出微LED裝置的電路的背板。The system substrate can be made of glass, silicon, plastic or any other common materials. The system substrate may also have active electronic components, such as (but not limited to) transistors, resistors, capacitors, or any other electronic components commonly used in system substrates. In some cases, the system substrate may be a substrate with electrical signal columns and rows. The system substrate may be a backplane with a circuit for deriving the micro LED device.

圖1A展示具有側向功能結構的供體基板110的實施例,該側向功能結構包括底部平面或片狀導電層112;功能層114,例如發光量子井;以及頂部像素化導電層116。導電層112及116可由摻雜半導體材料或其他合適類型的導電層構成。頂部導電層116可包括幾個不同的層。在一個實施例中,如圖1B所示,在導電層116的頂部沈積有電流分佈層118。可圖案化電流分佈層118。在一個實施例中,可藉由剝離(lift off)進行圖案化。在另一種情況下,可藉由光刻進行圖案化。在實施例中,可首先沈積及圖案化介電層且接著將其用作硬掩模來圖案化電流分佈層118。在圖案化電流分佈層118之後,亦可圖案化頂部導電層116,以形成像素結構。在圖案化電流分佈層118及/或導電層116之後,可在圖案化後導電層116及電流分佈層118上方及之間沈積最終介電層120,如圖1C所示。亦可圖案化介電層120以產生如圖1D所示之開口130,以提供至電流分佈層118的通路。亦可提供另外的調平層128以平整上表面,如圖1E所示。1A shows an embodiment of a donor substrate 110 with a lateral functional structure including a bottom planar or sheet-shaped conductive layer 112; a functional layer 114, such as a light emitting quantum well; and a top pixelated conductive layer 116. The conductive layers 112 and 116 may be formed of doped semiconductor materials or other suitable types of conductive layers. The top conductive layer 116 may include several different layers. In one embodiment, as shown in FIG. 1B, a current distribution layer 118 is deposited on top of the conductive layer 116. The current distribution layer 118 can be patterned. In one embodiment, the patterning can be performed by lift off. In another case, patterning can be performed by photolithography. In an embodiment, the dielectric layer may be deposited and patterned first and then used as a hard mask to pattern the current distribution layer 118. After the current distribution layer 118 is patterned, the top conductive layer 116 may also be patterned to form a pixel structure. After patterning the current distribution layer 118 and/or the conductive layer 116, a final dielectric layer 120 may be deposited on and between the patterned conductive layer 116 and the current distribution layer 118, as shown in FIG. 1C. The dielectric layer 120 can also be patterned to create an opening 130 as shown in FIG. 1D to provide a path to the current distribution layer 118. An additional leveling layer 128 may also be provided to level the upper surface, as shown in FIG. 1E.

如圖1E所示,在電流分佈層118的頂部、在每個開口130中沈積有焊盤132。具有焊盤132的所產生結構鍵合至具有焊盤154的系統基板150,如圖1F所示。可藉由介電層156分離系統基板150中的焊盤154。在系統基板焊盤154與系統基板150之間可存在其他層152,如電路系統、平面化層、導電跡線。可藉由熔融鍵合、陽極鍵合、熱壓鍵合、共晶鍵合或黏合劑鍵合將系統基板焊盤154鍵合至焊盤132。在系統裝置與側向裝置之間亦可沈積一或多個其他層。As shown in FIG. 1E, a pad 132 is deposited in each opening 130 on top of the current distribution layer 118. The resulting structure with pads 132 is bonded to the system substrate 150 with pads 154, as shown in FIG. 1F. The pads 154 in the system substrate 150 can be separated by the dielectric layer 156. There may be other layers 152 between the system substrate pad 154 and the system substrate 150, such as circuitry, planarization layers, and conductive traces. The system substrate pad 154 may be bonded to the pad 132 by fusion bonding, anodic bonding, thermal compression bonding, eutectic bonding, or adhesive bonding. One or more other layers may also be deposited between the system device and the lateral device.

如圖1G所示,可自側向功能裝置,例如導電層112移除供體基板110。可薄化及/或部分或完全圖案化導電層112。可沈積及圖案化反射層或黑色矩陣170以覆蓋導電層112上介於像素之間的區域。在此階段之後,可根據裝置的功能沈積及圖案化其他層。例如,可沈積顏色轉換層以調整系統基板150中的側向裝置及像素產生的光的顏色。亦可在顏色轉換層之前及/或之後沈積一或多個濾色器。此等裝置中的介電層,例如介電層120可為如聚醯胺等有機物或如SiN、SiO2 、Al2 O3 等無機物。可用不同的製程進行該沈積,如等離子體增強化學汽相沈積(PECVD)、原子層沈積(ALD)及其他方法。每個層可為一種沈積材料或單獨或一起沈積的不同材料的組合物。可將鍵合材料僅沈積為供體基板110的焊盤132或系統基板焊盤154的一部分。對於該層中的一些而言,亦可存在某個退火過程。例如,可根據材料對電流分佈層118進行退火。在一個實例中,可在500℃下對電流分佈層118進行退火10分鐘。亦可在不同步驟之後進行退火。As shown in FIG. 1G, the donor substrate 110 can be removed from the lateral functional device, such as the conductive layer 112. The conductive layer 112 may be thinned and/or partially or completely patterned. The reflective layer or black matrix 170 can be deposited and patterned to cover the area between the pixels on the conductive layer 112. After this stage, other layers can be deposited and patterned according to the function of the device. For example, a color conversion layer may be deposited to adjust the color of the light generated by the lateral devices and pixels in the system substrate 150. It is also possible to deposit one or more color filters before and/or after the color conversion layer. The dielectric layer in these devices, for example, the dielectric layer 120 may be an organic substance such as polyamide or an inorganic substance such as SiN, SiO 2 , Al 2 O 3 or the like. Different processes can be used for this deposition, such as plasma enhanced chemical vapor deposition (PECVD), atomic layer deposition (ALD) and other methods. Each layer can be one deposition material or a combination of different materials deposited separately or together. The bonding material may be deposited only as a part of the pad 132 of the donor substrate 110 or the pad 154 of the system substrate. For some of the layers, there may also be some annealing process. For example, the current distribution layer 118 may be annealed according to the material. In one example, the current distribution layer 118 may be annealed at 500° C. for 10 minutes. Annealing can also be performed after different steps.

圖2A展示具有側向功能結構的供體基板210的示範性實施例,該側向功能結構包括第一頂部平面或片狀導電層212;功能層214,例如發光層;第二底部像素化導電層216;電流分佈層218;及/或鍵合焊盤層232。圖2B展示圖案化層216、218、232中的全部或一個,以形成像素結構。導電層212及216可由包含高摻雜半導體層的多個層構成。在圖案化後層216、218及232之間可使用一些層228,例如電介質以平整側向功能結構的上表面,如圖2C所示。層228亦可具有其他功能,如黑色矩陣。具有焊盤232的所產生結構鍵合至具有基板焊盤254的系統基板250,如圖2D所示。亦可藉由介電層256分離系統基板中的焊盤254。在系統基板焊盤254與系統基板250之間可存在其他層252,如電路系統、平面化層及導電跡線。可例如藉由熔融鍵合、陽極鍵合、熱壓鍵合、共晶鍵合或黏合劑鍵合進行該鍵合。在系統裝置與側向裝置之間亦可沈積其他層。2A shows an exemplary embodiment of a donor substrate 210 having a lateral functional structure including a first top planar or sheet-shaped conductive layer 212; a functional layer 214, such as a light-emitting layer; and a second bottom pixelated conductive layer Layer 216; current distribution layer 218; and/or bonding pad layer 232. Figure 2B shows all or one of the patterned layers 216, 218, 232 to form a pixel structure. The conductive layers 212 and 216 may be composed of multiple layers including highly doped semiconductor layers. Some layers 228, such as a dielectric, may be used between the patterned layers 216, 218, and 232 to flatten the upper surface of the lateral functional structure, as shown in FIG. 2C. The layer 228 may also have other functions, such as a black matrix. The resulting structure with pads 232 is bonded to the system substrate 250 with substrate pads 254, as shown in FIG. 2D. The pads 254 in the system substrate can also be separated by the dielectric layer 256. There may be other layers 252 between the system substrate pad 254 and the system substrate 250, such as circuitry, planarization layers, and conductive traces. The bonding can be performed, for example, by fusion bonding, anodic bonding, thermocompression bonding, eutectic bonding, or adhesive bonding. Other layers can also be deposited between the system device and the lateral device.

可自側向功能裝置移除供體基板210。可薄化及/或圖案化導電層212。可沈積及圖案化反射層或黑色矩陣270以覆蓋導電層212上介於像素之間的區域。在此階段之後,可根據裝置的功能沈積及圖案化其他層。例如,可沈積顏色轉換層以調整系統基板250中的側向裝置及像素產生的光的顏色。亦可在顏色轉換層之前及/或之後沈積一或多個濾色器。此等裝置中的介電層,例如228及256可為如聚醯胺等有機物或如SiN、SiO2 、Al2 O3 等無機物。可用不同的製程進行該沈積,如PECVD、ALD及其他方法。每個層可為一種沈積材料或單獨或一起沈積的不同材料的組合物。鍵合焊盤232的材料可沈積為供體基板210的焊盤232或系統基板焊盤254的一部分。對於該層中之一些而言,亦可存在某種退火過程。例如,可根據材料對電流分佈層218進行退火。在實例中,可在500℃下對電流分佈層進行退火10分鐘。亦可在不同步驟之後進行退火。The donor substrate 210 can be removed from the lateral function device. The conductive layer 212 may be thinned and/or patterned. The reflective layer or black matrix 270 may be deposited and patterned to cover the area between the pixels on the conductive layer 212. After this stage, other layers can be deposited and patterned according to the function of the device. For example, a color conversion layer may be deposited to adjust the color of the light generated by the lateral devices and pixels in the system substrate 250. It is also possible to deposit one or more color filters before and/or after the color conversion layer. The dielectric layers in these devices, such as 228 and 256, can be organic materials such as polyamide or inorganic materials such as SiN, SiO 2 , and Al 2 O 3 . Different processes can be used for this deposition, such as PECVD, ALD and other methods. Each layer can be one deposition material or a combination of different materials deposited separately or together. The material of the bonding pad 232 may be deposited as a part of the pad 232 of the donor substrate 210 or the pad 254 of the system substrate. For some of the layers, there may also be some annealing process. For example, the current distribution layer 218 may be annealed according to the material. In an example, the current distribution layer may be annealed at 500°C for 10 minutes. Annealing can also be performed after different steps.

在圖3A中示出的另一個實施例中,在供體基板310上產生台面結構。藉由蝕刻穿過不同的層,例如第一底部導電層312、功能層314以及第二頂部導電層316形成有微裝置結構。可在頂部導電層316的頂部進行蝕刻之前或之後沈積頂部觸點332。在另一種情況下,可使用多層觸點332。在此情況下,可在蝕刻之前沈積接觸層332的一部分,且可在蝕刻之後沈積接觸層的一部分。例如,可首先沈積藉由對導電層316進行退火產生歐姆接觸的初始接觸層。在一個實例中,初始接觸層可為金或鎳。在台面結構之間亦可使用如電介質或金屬絕緣體結構(MIS)等其他層372以隔離及/或絕緣每個結構。在形成微裝置之後,可沈積如聚醯胺等填料層374,如圖3B所示。若在接下來的步驟期間僅將所選微裝置轉移至盒式(臨時)基板376,則可圖案化填料層374。亦可在將裝置轉移至臨時基板之後沈積填料層374。填料層374可充當微裝置的殼體。若在轉移之前使用填料層374,則剝離過程可能更可靠。In another embodiment shown in FIG. 3A, a mesa structure is created on the donor substrate 310. The micro device structure is formed by etching through different layers, such as the first bottom conductive layer 312, the functional layer 314, and the second top conductive layer 316. The top contact 332 may be deposited on top of the top conductive layer 316 before or after etching. In another case, multilayer contacts 332 can be used. In this case, a part of the contact layer 332 may be deposited before etching, and a part of the contact layer may be deposited after etching. For example, an initial contact layer that generates an ohmic contact by annealing the conductive layer 316 may be deposited first. In one example, the initial contact layer may be gold or nickel. Other layers 372 such as dielectric or metal insulator structure (MIS) can also be used between mesa structures to isolate and/or insulate each structure. After forming the microdevice, a filler layer 374 such as polyamide can be deposited, as shown in FIG. 3B. If only selected microdevices are transferred to the cassette (temporary) substrate 376 during the next step, the filler layer 374 can be patterned. The filler layer 374 can also be deposited after the device is transferred to the temporary substrate. The filler layer 374 can serve as the housing of the micro device. If the filler layer 374 is used before the transfer, the peeling process may be more reliable.

裝置鍵合至臨時基板(盒)376。例如,鍵合來源可發生變化且可包括以下中的一或多個:靜電鍵合、電磁鍵合、黏合劑鍵合、範德華力(Van-Der-Waals force)鍵合或熱鍵合。對於熱鍵合,可使用熔化溫度為T1的基板鍵合層378。鍵合層378可為導電的或可包括導電層及鍵合層,該鍵合層可為黏合劑鍵合、熱鍵合或光輔助鍵合。導電層可用於偏置基板376上的裝置以識別缺陷及表徵裝置性能。此結構可用於此處呈現的其他實施例。為了解決某種表面輪廓不均勻性,可在鍵合過程期間施加壓力。可移除臨時基板376或供體基板310且將裝置留在其中任一者上。本文中解釋的過程係基於將裝置留在臨時基板376上,然而,當裝置留在供體基板310上時,可使用類似的步驟。在此之後,可在微裝置上進行額外過程,如薄化裝置、在底部導電層312上產生接觸鍵合層380或移除填料層374。可將裝置轉移至系統基板390,如圖3D及3E所示。可使用不同技術來進行該轉移。在一種情況下,使用熱鍵合來進行轉移。在此情況下,系統基板接觸焊盤382上的接觸鍵合層380的熔點為T2,其中T2 > T1。此處,高於T2的溫度將熔化基板鍵合層378及焊盤382上的接觸鍵合層380兩者。The device is bonded to a temporary substrate (cassette) 376. For example, the bonding source may vary and may include one or more of the following: electrostatic bonding, electromagnetic bonding, adhesive bonding, Van-Der-Waals force bonding, or thermal bonding . For thermal bonding, a substrate bonding layer 378 having a melting temperature of T1 can be used. The bonding layer 378 may be conductive or may include a conductive layer and a bonding layer, and the bonding layer may be adhesive bonding, thermal bonding, or light-assisted bonding. The conductive layer can be used to bias the device on the substrate 376 to identify defects and characterize device performance. This structure can be used in other embodiments presented here. In order to solve some surface profile unevenness, pressure can be applied during the bonding process. The temporary substrate 376 or the donor substrate 310 can be removed and the device left on either. The process explained herein is based on leaving the device on the temporary substrate 376, however, when the device is left on the donor substrate 310, similar steps can be used. After that, additional processes can be performed on the micro device, such as thinning the device, creating a contact bonding layer 380 on the bottom conductive layer 312, or removing the filler layer 374. The device can be transferred to the system substrate 390, as shown in Figures 3D and 3E. Different techniques can be used for this transfer. In one case, thermal bonding is used for transfer. In this case, the melting point of the contact bonding layer 380 on the system substrate contact pad 382 is T2, where T2>T1. Here, a temperature higher than T2 will melt both the substrate bonding layer 378 and the contact bonding layer 380 on the pad 382.

在隨後的步驟中,溫度降至介於T1與T2之間。此時,裝置藉由接觸鍵合層380鍵合至系統基板390,使得接觸鍵合層380固化,但基板鍵合層378熔化。因此,移動臨時基板376使微裝置留在系統基板390上,如圖3E所示。可藉由對所選焊盤382施加局部加熱來使該過程具有選擇性。而且,除了局部加熱之外,可使用全局溫度,例如將基板376及390置於烤爐中且藉由提高其中的整體氣氛進行該過程,從而提高轉移速度。此處,臨時基板376或系統基板390上的全局溫度可使溫度接近接觸鍵合層380的熔點,例如比該熔點低5℃及10℃之間,且局部溫度可用於熔化與所選裝置相對應的接觸鍵合層380及基板鍵合層378。在另一種情況下,可使溫度升高為接近基板鍵合層378的熔點(高於接觸鍵合層378的熔點),例如比該熔點低5℃及10℃之間,且對於與加熱後焊盤382接觸的裝置而言,藉由裝置自焊盤382進行的溫度傳遞熔化基板鍵合層378的所選區域。In a subsequent step, the temperature drops to between T1 and T2. At this time, the device is bonded to the system substrate 390 through the contact bonding layer 380, so that the contact bonding layer 380 is solidified, but the substrate bonding layer 378 is melted. Therefore, moving the temporary substrate 376 leaves the microdevices on the system substrate 390, as shown in FIG. 3E. The process can be made selective by applying local heating to selected pads 382. Moreover, in addition to local heating, a global temperature can be used, for example, placing the substrates 376 and 390 in an oven and performing the process by increasing the overall atmosphere therein, thereby increasing the transfer speed. Here, the global temperature on the temporary substrate 376 or the system substrate 390 can make the temperature close to the melting point of the contact bonding layer 380, for example, between 5°C and 10°C lower than the melting point, and the local temperature can be used for melting and the selected device. Corresponding contact bonding layer 380 and substrate bonding layer 378. In another case, the temperature can be increased to be close to the melting point of the substrate bonding layer 378 (higher than the melting point of the contact bonding layer 378), for example, between 5°C and 10°C lower than the melting point, and the temperature after heating For the device in contact with the pad 382, the selected area of the substrate bonding layer 378 is melted by the temperature transfer performed by the device from the pad 382.

圖3F示出熱曲線的實例,熔化溫度Tr熔化接觸鍵合層380及基板鍵合層378,且固化溫度Ts使具有鍵合焊盤382的接觸鍵合層380固化,同時基板鍵合層378仍熔化。熔化可為局部的或可至少使鍵合層軟至足以釋放微裝置或激活形成合金之過程。此處,亦可組合地或單獨地使用其他力以將裝置固持在鍵合焊盤382上。在另一種情況下,溫度曲線可藉由施加電流通過裝置來產生。因為在鍵合之前,接觸電阻將較高,所以在鍵合焊盤382及裝置上耗散的功率將很高,從而熔化接觸鍵合層380及基板鍵合層378。隨著鍵合形成,電阻將下降,且功率耗散亦將下降,由此降低局部溫度。通過焊盤382的電壓或電流可用於指示鍵合質量以及何時停止該過程。供體基板310及臨時基板376可相同或不同。在將裝置轉移至系統基板390之後,可進行不同製程步驟。此等額外的處理步驟可為平面化、電極沈積、顏色轉換沈積及圖案化、濾色器沈積及圖案化等。FIG. 3F shows an example of a thermal curve. The melting temperature Tr melts the contact bonding layer 380 and the substrate bonding layer 378, and the curing temperature Ts solidifies the contact bonding layer 380 with the bonding pad 382, and the substrate bonding layer 378 Still melting. The melting can be localized or can at least make the bonding layer soft enough to release the microdevice or activate the process of alloy formation. Here, other forces can also be used in combination or alone to hold the device on the bonding pad 382. In another case, the temperature profile can be generated by applying current through the device. Because the contact resistance will be high before bonding, the power dissipated on the bonding pad 382 and the device will be high, thereby melting the contact bonding layer 380 and the substrate bonding layer 378. As the bond is formed, the resistance will decrease and the power dissipation will also decrease, thereby lowering the local temperature. The voltage or current through the pad 382 can be used to indicate the quality of the bond and when to stop the process. The donor substrate 310 and the temporary substrate 376 may be the same or different. After the device is transferred to the system substrate 390, different process steps can be performed. These additional processing steps can be planarization, electrode deposition, color conversion deposition and patterning, color filter deposition and patterning, and so on.

在另一個實施例中,用於自盒式基板376釋放微裝置的溫度隨著合金開始形成而增加。在此情況下,在鍵合合金形成於受體基板390的鍵合焊盤382上且鍵合層固化時,可使溫度保持恆定,由此使微裝置保持處於受體基板390上的適當位置處。同時,盒376上連接至所選微裝置的鍵合層378仍熔化(或足夠軟)以釋放該裝置。此處,材料的形成合金所需的一部分可處於微裝置上,且另一部分沈積在鍵合焊盤382上。In another embodiment, the temperature used to release the microdevices from the cassette substrate 376 increases as the alloy begins to form. In this case, when the bonding alloy is formed on the bonding pad 382 of the acceptor substrate 390 and the bonding layer is cured, the temperature can be kept constant, thereby keeping the micro device in place on the acceptor substrate 390 Place. At the same time, the bonding layer 378 on the cartridge 376 connected to the selected microdevice is still melted (or soft enough) to release the device. Here, a part of the material required to form an alloy may be on the micro device, and another part is deposited on the bonding pad 382.

在另一個實施例中,可將填料層374沈積在盒式基板376的頂部以形成聚合物填料/鍵合層374/378。接著,可將來自供體基板310的微裝置推至聚合物填料/鍵合層374/378中。接著,可選擇性地或總體上將微裝置與供體基板310分離。在將微裝置與供體基板310分離之前或之後,可使聚合物填料/鍵合層374/378固化。可圖案化聚合物填料/鍵合層374/378,在多個不同的裝置整合至盒式基板376中的情況下尤其如此。在此情況下,聚合物填料/鍵合層374/378可為針對一種類型而創建的,微裝置埋在該層中且與其供體310分離。接著,針對下一種類型的微裝置沈積及圖案化另一個聚合物填料/鍵合層374/378。接著,可將第二微裝置埋在相關聯層374/378中。在所有情況下,聚合物填料/鍵合層374/378可覆蓋微裝置中的一部分或所有裝置。In another embodiment, a filler layer 374 may be deposited on top of the box substrate 376 to form a polymer filler/bonding layer 374/378. Next, the microdevices from the donor substrate 310 can be pushed into the polymer filler/bonding layer 374/378. Then, the micro device can be separated from the donor substrate 310 selectively or as a whole. The polymer filler/bonding layer 374/378 can be cured before or after separating the microdevice from the donor substrate 310. The patternable polymer filler/bonding layer 374/378, especially if multiple different devices are integrated into the cassette substrate 376. In this case, the polymer filler/bonding layer 374/378 may be created for one type in which the microdevice is buried and separated from its donor 310. Next, another polymer filler/bonding layer 374/378 is deposited and patterned for the next type of microdevice. Then, the second microdevice can be buried in the associated layer 374/378. In all cases, the polymer filler/bonding layer 374/378 can cover some or all of the microdevices.

另一種增加溫度的方法可為使用微波或燈。因此,可在以下各者上沈積層:鍵合焊盤382;焊盤382中的一部分;微裝置;或盒376的吸收微波或光且局部加熱微裝置的一部分。可替代地,盒376及/或受體基板390可包含可選擇性地及/或全局地加熱微裝置的加熱元件。Another way to increase the temperature can be to use microwaves or lamps. Therefore, a layer can be deposited on each of: the bonding pad 382; a part of the pad 382; a micro device; or a part of the box 376 that absorbs microwaves or light and locally heats the micro device. Alternatively, the cassette 376 and/or the receptor substrate 390 may include heating elements that can selectively and/or globally heat the microdevice.

亦可使用其他方法來將微裝置與臨時基板376分離,如化學力、光學力或機械力。在一個實例中,可用犧牲層覆蓋微裝置,該犧牲層可藉由化學力、光學力、熱學力或機械力與臨時基板376解鍵合。解鍵合過程可為選擇性的或全局的。到系統基板390的全局解鍵合轉移是選擇性的。若裝置與臨時基板(盒)376的解鍵合過程是選擇性的,則可選擇性地或全局地向系統基板390施加轉移力。Other methods can also be used to separate the microdevice from the temporary substrate 376, such as chemical force, optical force, or mechanical force. In one example, the microdevice can be covered with a sacrificial layer, which can be debonded from the temporary substrate 376 by chemical, optical, thermal, or mechanical forces. The debonding process can be selective or global. The global debonding transfer to the system substrate 390 is selective. If the debonding process of the device and the temporary substrate (cassette) 376 is selective, the transfer force can be applied to the system substrate 390 selectively or globally.

自盒376至受體基板390的轉移過程可基於不同的機制。在一種情況下,盒376具有鍵合材料,該鍵合材料在存在光的情況下釋放裝置,同時相同的光使裝置至受體基板的鍵合固化。The transfer process from the cassette 376 to the receptor substrate 390 can be based on different mechanisms. In one case, the cartridge 376 has a bonding material that releases the device in the presence of light, while the same light cures the bonding of the device to the receptor substrate.

在另一個實施例中,用於固化裝置至受體基板390的鍵合層380的溫度使裝置自盒376釋放。In another embodiment, the temperature of the bonding layer 380 used to cure the device to the receptor substrate 390 causes the device to be released from the cartridge 376.

在另一種情況下,電流或電壓使裝置至供體基板310的鍵合層380固化。相同的電流或電壓可使裝置自盒376釋放。此處,釋放可為由電流產生的壓電效應或溫度的函數。In another case, the current or voltage causes the bonding layer 380 of the device to the donor substrate 310 to cure. The same current or voltage can release the device from the box 376. Here, the release can be a function of the piezoelectric effect or temperature caused by the current.

在另一種方法中,在固化裝置至受體基板390的鍵合之後,鍵合後裝置自盒376拉出。此處,將裝置固持至盒376的力小於將裝置鍵合至受體基板390的力。In another method, after the bonding of the curing device to the receptor substrate 390, the device is pulled out of the cassette 376 after bonding. Here, the force to hold the device to the box 376 is less than the force to bond the device to the receptor substrate 390.

在另一種方法中,盒376具有過孔,該過孔可用於將裝置推出盒376,進入至受體基板390中。可藉由不同的方式進行該推動,如使用微米棒陣列或藉由氣動方式。對於氣動結構,使所選裝置斷開連接。對於微米棒,藉由使微米棒穿過所選裝置的相關聯過孔來使所選裝置朝著受體基板390移動。微米棒可具有不同溫度以促進轉移。在對所選裝置的轉移完成之後,微米棒縮回,相同的棒與另一組微裝置的過孔對齊,或使用與新的所選微裝置對齊的一組過孔來轉移新裝置。In another method, the box 376 has a via hole that can be used to push the device out of the box 376 into the receptor substrate 390. This pushing can be done in different ways, such as using a micro rod array or by pneumatic means. For pneumatic structures, disconnect the selected device. For micro rods, the selected device is moved toward the receptor substrate 390 by passing the micro rod through the associated via of the selected device. The microrods can have different temperatures to facilitate transfer. After the transfer of the selected device is completed, the micro-rod is retracted and the same rod is aligned with the vias of another set of micro-devices, or a set of vias aligned with the newly selected micro-device is used to transfer the new device.

在一個實施例中,盒376可拉伸以增加盒376中的裝置間距,以提高生產量。例如,若盒376為1 × 1 cm2 ,其中裝置間距為5微米,且受體基板390(例如,顯示器)的像素間距為50微米,則盒376一次可填充200 × 200(40,000)個像素。然而,若盒376拉伸為2 × 2 cm2 ,其中裝置間距為10微米,則盒376一次可填充400 × 400(160,000)個像素。在另一種情況下,盒376可拉伸為使得盒376上的至少兩個微裝置變得與受體基板中的兩個對應位置對齊。可在一或多個方向上進行該拉伸。盒式基板376可包括可拉伸聚合物或由可拉伸聚合物組成。微裝置亦固定於另一個層或與盒式基板376相同的層中。In one embodiment, the box 376 can be stretched to increase the spacing between devices in the box 376 to increase throughput. For example, if the box 376 is 1 × 1 cm 2 , where the device pitch is 5 microns, and the pixel pitch of the receiver substrate 390 (for example, a display) is 50 microns, the box 376 can fill 200 × 200 (40,000) pixels at a time . However, if the box 376 is stretched to 2 × 2 cm 2 , and the device pitch is 10 microns, the box 376 can be filled with 400 × 400 (160,000) pixels at a time. In another case, the box 376 can be stretched such that at least two micro-devices on the box 376 become aligned with two corresponding positions in the receptor substrate. The stretching can be performed in one or more directions. The cassette substrate 376 may include or consist of a stretchable polymer. The micro device is also fixed in another layer or the same layer as the cassette substrate 376.

亦可將上文描述的方法的組合用於將微裝置自盒376轉移至受體基板390。A combination of the methods described above can also be used to transfer the microdevice from the cassette 376 to the receptor substrate 390.

在產生盒(臨時基板)376期間,可對微裝置進行測試以識別不同的缺陷及裝置性能。在一個實施例中,在分離頂部電極之前,可對裝置進行偏置及測試。若裝置是發射型裝置,可使用相機(或感測器)來提取缺陷及裝置性能。若裝置是感測器,可對裝置施加刺激以提取缺陷及性能。在另一個實施例中,在圖案化成單獨的裝置之前,可將頂部電極332圖案化成組以進行測試。在另一個實例中,多於一個裝置之間的臨時共同電極沈積或耦合至裝置以提取裝置性能及/或提取缺陷。During the production of the cassette (temporary substrate) 376, the microdevice can be tested to identify different defects and device performance. In one embodiment, the device can be biased and tested before separating the top electrode. If the device is a transmitting device, a camera (or sensor) can be used to extract defects and device performance. If the device is a sensor, it can be stimulated to extract defects and performance. In another embodiment, the top electrodes 332 may be patterned into groups for testing before being patterned into individual devices. In another example, a temporary common electrode between more than one device is deposited or coupled to the device to extract device performance and/or extract defects.

上文關於圖3A-3D描述的方法--包含但不限於分離、形成填料層、填料層的不同作用、測試及其他結構--可用於包含下文所述的結構的其他結構。The methods described above with respect to Figures 3A-3D-including but not limited to separation, formation of filler layers, different functions of filler layers, testing, and other structures-can be used for other structures including the structures described below.

此處所討論的用於將微裝置自盒(臨時基板)376轉移至受體基板390的方法可應用於此處呈現的所有盒及受體基板配置。The method discussed here for transferring the microdevice from the cartridge (temporary substrate) 376 to the receptor substrate 390 can be applied to all cartridge and receptor substrate configurations presented here.

供體基板310上的裝置可產生為在背對供體基板310的同一側具有兩個觸點332及380。在此實施例中,可將盒376上的導電層圖案化以獨立地偏置裝置的兩個觸點332及380。在一種情況下,可將裝置自盒式基板376直接轉移至受體基板390。此處,觸點332及380可不直接鍵合至受體基板390,即受體基板390不需要具有特殊的焊盤。在此情況下,導電層沈積及圖案化以將觸點332及380連接至受體基板390中的適當連接。在另一個實施例中,可在轉移至受體基板390之前首先將裝置自盒376轉移至臨時基板。此處,觸點332及380可直接鍵合至受體基板焊盤382。可在盒376中或在臨時基板中對裝置進行測試。The device on the donor substrate 310 can be produced with two contacts 332 and 380 on the same side opposite to the donor substrate 310. In this embodiment, the conductive layer on the box 376 can be patterned to independently bias the two contacts 332 and 380 of the device. In one case, the device can be directly transferred from the cassette substrate 376 to the acceptor substrate 390. Here, the contacts 332 and 380 may not be directly bonded to the receptor substrate 390, that is, the receptor substrate 390 does not need to have special pads. In this case, a conductive layer is deposited and patterned to connect the contacts 332 and 380 to appropriate connections in the receptor substrate 390. In another embodiment, the device may first be transferred from the cassette 376 to the temporary substrate before transferring to the acceptor substrate 390. Here, the contacts 332 and 380 may be directly bonded to the receptor substrate pad 382. The device can be tested in the cassette 376 or in a temporary substrate.

在圖4A中示出的另一個實施例中,在供體基板上產生如上文所述的台面結構,其中藉由蝕刻穿過不同的層,例如第一底部導電層412;功能層414,例如發光層;及第二頂部導電層416形成有微裝置結構。可在頂部導電層416的頂部進行蝕刻之前或之後沈積頂部觸點432。In another embodiment shown in FIG. 4A, the mesa structure as described above is produced on the donor substrate, in which different layers are etched through, such as the first bottom conductive layer 412; the functional layer 414, such as The light-emitting layer; and the second top conductive layer 416 are formed with a micro device structure. The top contact 432 may be deposited on top of the top conductive layer 416 before or after etching.

臨時基板476包含初始地填充有填充材料,例如如聚合物等軟材料或如SiO2 、SiN等固體材料的多個槽476-2。槽476-2處於表面及/或基板鍵合層478下方。將裝置轉移至槽476-2頂部的臨時基板476,且裝置包含接觸焊盤432。而且,每個微裝置可包含圍繞每個微裝置的其他鈍化層及/或MIS層472以進行隔離及/或保護。可用填充材料474來填充裝置之間的空間。在對裝置進行後處理之後,可在裝置的對置表面上沈積另一個下部接觸焊盤480。在沈積下部接觸焊盤480之前,可薄化接觸層412。接著,可移除填充材料474,且可藉由如例如化學蝕刻或蒸發等各種適當的方式將槽排空以引起或促進鍵合層478的表面及/或所選區段的釋放。可使用與之前在上文中描述的過程類似的過程來將裝置轉移至系統(受體)基板490。另外,在另一個實施例中,自焊盤432施加的力,例如推力或拉力可能破壞排空的槽476-2上方的表面及/或鍵合層478,同時保持未選擇的台面結構附接至臨時基板。此力亦可將裝置自臨時基板476釋放,如圖4B及圖4C所示。可選擇槽476-2的深度以管理一些微裝置高度差。例如,若高度差為H,則槽的深度可大於H。The temporary substrate 476 includes a plurality of grooves 476-2 initially filled with a filling material, for example, a soft material such as a polymer or a solid material such as SiO 2 and SiN. The groove 476-2 is located under the surface and/or substrate bonding layer 478. The device is transferred to the temporary substrate 476 on top of the trench 476-2, and the device includes contact pads 432. Moreover, each microdevice may include other passivation layers and/or MIS layers 472 surrounding each microdevice for isolation and/or protection. The filling material 474 can be used to fill the space between the devices. After the device is post-processed, another lower contact pad 480 can be deposited on the opposite surface of the device. Before depositing the lower contact pad 480, the contact layer 412 may be thinned. Then, the filling material 474 can be removed, and the groove can be emptied by various suitable methods such as chemical etching or evaporation to cause or promote the release of the surface of the bonding layer 478 and/or selected sections. A process similar to that previously described above can be used to transfer the device to the system (receptor) substrate 490. In addition, in another embodiment, the force applied from the pad 432, such as pushing or pulling, may damage the surface above the evacuated groove 476-2 and/or the bonding layer 478 while maintaining the unselected mesa structure attachment To the temporary substrate. This force can also release the device from the temporary substrate 476, as shown in Figures 4B and 4C. The depth of groove 476-2 can be selected to manage some micro device height differences. For example, if the height difference is H, the depth of the groove may be greater than H.

基板310上的裝置可經產生為在背對基板310的同一側上具有兩個觸點432及480。在此情況下,可將盒476上的導電層圖案化以獨立地偏置裝置的該兩個觸點。在一種情況下,可將裝置自盒式基板476直接轉移至受體基板。此處,觸點432及480將不會直接鍵合至受體基板(受體基板不需要具有特殊的焊盤)。在此情況下,導電層經沈積及圖案化以將觸點432及380連接至受體基板中的適當連接。在另一種情況下,可在轉移至受體基板之前先將裝置自盒476轉移至臨時基板。此處,觸點432及480可直接鍵合至受體基板焊盤。可在盒中或在臨時基板中對裝置進行測試。The device on the substrate 310 can be produced to have two contacts 432 and 480 on the same side opposite to the substrate 310. In this case, the conductive layer on the box 476 can be patterned to independently bias the two contacts of the device. In one case, the device can be directly transferred from the cassette substrate 476 to the acceptor substrate. Here, the contacts 432 and 480 will not be directly bonded to the receptor substrate (the receptor substrate does not need to have special pads). In this case, the conductive layer is deposited and patterned to connect the contacts 432 and 380 to the appropriate connections in the receptor substrate. In another case, the device can be transferred from the cassette 476 to the temporary substrate before transferring to the recipient substrate. Here, the contacts 432 and 480 may be directly bonded to the receptor substrate pads. The device can be tested in a box or in a temporary substrate.

在圖5A中示出的另一個實施例中,在供體基板510上產生如上文所述的台面結構,其中藉由蝕刻穿過不同的層,例如第一底部導電層512;功能層514,例如發光層;及第二頂部導電層516形成有微裝置結構。可在頂部導電層516的頂部進行蝕刻之前或之後沈積頂部接觸焊盤532。而且,每個微裝置可包含圍繞每個微裝置的其他鈍化層及/或MIS層572以進行隔離及/或保護。在此實施例中,裝置可設置有不同的錨固件,藉此,在裝置剝離之後,錨固件將裝置固持至供體基板510。可藉由雷射進行該剝離。在實例中,雷射器僅掃描裝置。在實施例中,可使用掩模,該掩模僅在供體基板510的背面具有用於裝置的開口以阻擋來自其他區域的雷射。掩模可與供體基板510分離或可為供體基板的一部分。在另一種情況下,可在剝離過程之前將另一個基板連接至裝置以固持裝置。在另一種情況下,在裝置之間可使用填料層574,例如電介質。In another embodiment shown in FIG. 5A, the mesa structure as described above is produced on the donor substrate 510, in which different layers are etched through, such as the first bottom conductive layer 512; the functional layer 514, For example, the light-emitting layer; and the second top conductive layer 516 is formed with a micro device structure. The top contact pad 532 may be deposited before or after etching on the top of the top conductive layer 516. Moreover, each micro-device may include other passivation layers and/or MIS layers 572 surrounding each micro-device for isolation and/or protection. In this embodiment, the device may be provided with different anchors, whereby after the device is peeled off, the anchors hold the device to the donor substrate 510. This peeling can be performed by laser. In the example, the laser only scans the device. In an embodiment, a mask may be used, which only has an opening for the device on the back of the donor substrate 510 to block lasers from other regions. The mask may be separate from the donor substrate 510 or may be a part of the donor substrate. In another case, another substrate can be connected to the device to hold the device before the peeling process. In another case, a filler layer 574, such as a dielectric, may be used between the devices.

在第一種所展示的情況下,層592提供用於將裝置固持至供體基板510。層592可為單獨的層或是微裝置的層中、在台面結構產生期間未經蝕刻的一部分。在另一種情況下,層592可為層572之一的延續。在此情況下,層592可為金屬層或介電層(SiN或SiO2 或其他材料)。在另一種情況下,錨固件產生為包括延伸部594、空隙/間隙596及/或橋598的單獨結構。此處,沈積及圖案化形狀與空隙/間隙596相同之犧牲層。接著,錨固層沈積及圖案化以形成橋598及/或延伸部594。稍後可移除犧牲材料以產生空隙/間隙596。亦可避免延伸部594。類似於之前的錨固件592,另一個錨固件可由不同的結構層構成。在另一種情況下,填充層574充當錨固件。在此情況下,可對填充層574進行蝕刻或圖案化,或使其保持原樣。In the first shown case, the layer 592 provides for holding the device to the donor substrate 510. The layer 592 may be a separate layer or a part of the layer of the micro device that has not been etched during the formation of the mesa structure. In another case, the layer 592 may be a continuation of one of the layers 572. In this case, the layer 592 may be a metal layer or a dielectric layer (SiN or SiO 2 or other materials). In another case, the anchor is created as a separate structure including extension 594, void/gap 596, and/or bridge 598. Here, a sacrificial layer with the same shape as the void/gap 596 is deposited and patterned. Next, the anchor layer is deposited and patterned to form the bridge 598 and/or the extension 594. The sacrificial material can be removed later to create voids/gap 596. The extension 594 can also be avoided. Similar to the previous anchor 592, the other anchor can be composed of a different structural layer. In another case, the filling layer 574 acts as an anchor. In this case, the filling layer 574 may be etched or patterned, or left as it is.

圖5B展示在移除填料層574及/或蝕刻填料層以形成錨固件之後的樣品。在另一種情況下,在剝離之後,橋接層598的黏附力足以將裝置固持在適當位置且充當錨固件。僅出於說明目的,在一個基板510中示出處於圖5B的右側的最終裝置。可在基板中使用該裝置之一或其組合。Figure 5B shows the sample after removing the filler layer 574 and/or etching the filler layer to form an anchor. In another case, after peeling, the adhesive force of the bridge layer 598 is sufficient to hold the device in place and act as an anchor. For illustration purposes only, the final device on the right side of Figure 5B is shown in one substrate 510. One or a combination of the devices can be used in the substrate.

如圖5C所示,錨固件可覆蓋裝置的周邊的至少一部分或裝置的整個周邊,或其可圖案化以形成臂594及592。該結構中任一者可用於任何錨固結構。As shown in FIG. 5C, the anchor may cover at least a portion of the periphery of the device or the entire periphery of the device, or it may be patterned to form arms 594 and 592. Any of the structures can be used for any anchoring structure.

圖5D展示將裝置轉移至受體基板590的一個實例。此處,微裝置鍵合至焊盤582或置於無任何焊盤的預定區域中。壓力或分離力可藉由破壞錨固件來將錨固件釋放。在另一種情況下,亦可使用溫度來釋放錨固件。可藉由控制溫度來增加微裝置的剝離與供體基板510之間的層的黏度以充當錨固件。圖5E展示在裝置轉移至受體基板590之後的該裝置,且示出錨固件中的可能釋放點598-2。錨固件亦可直接地或藉由其他層間接地連接至供體基板510。FIG. 5D shows an example of transferring the device to the receptor substrate 590. Here, the micro device is bonded to the pad 582 or placed in a predetermined area without any pad. Pressure or separation force can release the anchor by breaking the anchor. In another case, temperature can also be used to release the anchor. The temperature can be controlled to increase the viscosity of the layer between the peeling of the micro device and the donor substrate 510 to act as an anchor. Figure 5E shows the device after it has been transferred to the receiver substrate 590 and shows possible release points 598-2 in the anchor. The anchor can also be connected to the donor substrate 510 directly or indirectly through other layers.

供體基板510上的裝置可產生為在背對供體基板510的同一側具有兩個觸點532及480。在一種情況下,可將裝置自供體基板510直接轉移至受體基板590。此處,觸點532及480可直接鍵合至受體基板焊盤582。可在供體基板510中或在盒中對裝置進行測試。在另一個實施例中,可在轉移至受體基板590之前首先將裝置自供體基板510轉移至盒式基板。此處,觸點532將不會直接鍵合至受體基板590,即受體基板590不需要具有特殊的焊盤582。在此情況下,導電層沈積及圖案化以將觸點532連接至受體基板590中的適當連接。The device on the donor substrate 510 can be produced with two contacts 532 and 480 on the same side opposite to the donor substrate 510. In one case, the device can be directly transferred from the donor substrate 510 to the acceptor substrate 590. Here, the contacts 532 and 480 may be directly bonded to the acceptor substrate pad 582. The device can be tested in the donor substrate 510 or in a box. In another embodiment, the device may be first transferred from the donor substrate 510 to the cassette substrate before transferring to the acceptor substrate 590. Here, the contact 532 will not be directly bonded to the acceptor substrate 590, that is, the acceptor substrate 590 does not need to have a special pad 582. In this case, a conductive layer is deposited and patterned to connect the contact 532 to the appropriate connection in the acceptor substrate 590.

系統基板或受體基板390、490及590可包括微LED、有機LED、感測器、固態裝置、整合電路、MEMS(微機電系統)及/或其他電子部件。其他實施例涉及關於像素陣列圖案化及放置微裝置以優化選擇性轉移過程中的微裝置利用。系統基板或受體基板390、490及590可為但不限於印刷電路板(PCB)、薄膜電晶體背板、整合電路基板或在如LED等光學微裝置的一種情況下是顯示器的部件,例如驅動電路系統背板。圖案化微裝置供體基板及受體基板可與不同的轉移技術組合使用,包含但不限於用不同的機構(例如,靜電轉移頭、彈性體轉移頭)或如雙重功能焊盤等直接轉移機構進行的拾放(pick and place)。The system substrates or receptor substrates 390, 490, and 590 may include micro LEDs, organic LEDs, sensors, solid state devices, integrated circuits, MEMS (Micro Electro Mechanical System), and/or other electronic components. Other embodiments relate to pixel array patterning and placement of micro devices to optimize the use of micro devices in the selective transfer process. System substrates or receptor substrates 390, 490, and 590 can be, but are not limited to, printed circuit boards (PCBs), thin film transistor backplanes, integrated circuit substrates, or, in the case of optical microdevices such as LEDs, components of displays, for example Drive circuit system backplane. The patterned micro device donor substrate and acceptor substrate can be used in combination with different transfer technologies, including but not limited to using different mechanisms (for example, electrostatic transfer heads, elastomer transfer heads) or direct transfer mechanisms such as dual-function pads Pick and place (pick and place).

圖6A展示圖3A至3F的台面結構的替代性實施例,其中台面結構初始地未經蝕刻穿過所有層。此處,緩衝層312及/或接觸層312的某個部分在初始步驟期間可保留。台面結構產生於供體基板310上。藉由蝕刻穿過不同的層,例如第一底部導電層312、功能層314及第二頂部導電層316形成有微裝置結構。可在頂部導電層316的頂部進行蝕刻之前或之後沈積頂部觸點332。台面結構可包含將在形成台面結構之前或之後沈積及圖案化的其他層372。此等層可為電介質、MIS、觸點、犧牲等。在台面結構產生之後,在微裝置之間及周圍使用一或多個填料層374,例如介電材料以將微裝置固定在一起。微裝置藉由一或多個基板鍵合層378鍵合至臨時基板376。一或多個鍵合層378可提供一或多種不同的力,如靜電力、化學力、物理力、熱學力等。在自供體基板310移除裝置之後,如上文所述,可蝕刻掉底部導電層312的額外部分或對其進行圖案化以分離裝置(圖6C)。可沈積及圖案化如接觸鍵合層380等其他層。此處,可蝕刻填料層374以分離微裝置,或可移除犧牲層以分離裝置。在另一個實施例中,可施加溫度以將裝置與填料層374分離且使其準備好轉移至受體基板390。可選擇性地進行該分離,如上文所述。在另一個實施例中,可蝕刻填料層374以形成例如呈截錐體或截頭角錐形狀的至少部分地圍繞每個微裝置的殼體、基部或錨固件375,如圖6E所示。可在基部375上方沈積另一個層且可將該層用於形成錨固件598-2。在形成額外的層598-2之後,可將填料基部層375留下或將其自錨固裝置移除。圖6G示出具有犧牲層372-2的裝置。可藉由蝕刻移除犧牲層372-2或可使其熱變形或熱移除。Fig. 6A shows an alternative embodiment of the mesa structure of Figs. 3A to 3F, where the mesa structure is initially unetched through all layers. Here, a certain part of the buffer layer 312 and/or the contact layer 312 may remain during the initial step. The mesa structure is generated on the donor substrate 310. The micro device structure is formed by etching through different layers, such as the first bottom conductive layer 312, the functional layer 314, and the second top conductive layer 316. The top contact 332 may be deposited on top of the top conductive layer 316 before or after etching. The mesa structure may include other layers 372 that will be deposited and patterned before or after the formation of the mesa structure. These layers can be dielectrics, MIS, contacts, sacrifices, etc. After the mesa structure is created, one or more filler layers 374, such as dielectric materials, are used between and around the micro devices to hold the micro devices together. The micro device is bonded to the temporary substrate 376 by one or more substrate bonding layers 378. One or more bonding layers 378 can provide one or more different forces, such as electrostatic force, chemical force, physical force, thermal force, and so on. After removing the device from the donor substrate 310, as described above, additional portions of the bottom conductive layer 312 can be etched away or patterned to separate the devices (FIG. 6C). Other layers such as contact bonding layer 380 can be deposited and patterned. Here, the filler layer 374 can be etched to separate the micro devices, or the sacrificial layer can be removed to separate the devices. In another embodiment, temperature may be applied to separate the device from the filler layer 374 and prepare it for transfer to the receptor substrate 390. This separation can be performed selectively, as described above. In another embodiment, the filler layer 374 may be etched to form a housing, base, or anchor 375 that at least partially surrounds each microdevice, for example, in the shape of a truncated cone or truncated pyramid, as shown in Figure 6E. Another layer can be deposited over the base 375 and this layer can be used to form the anchor 598-2. After the additional layer 598-2 is formed, the filler base layer 375 can be left or removed from the anchoring device. Figure 6G shows a device with a sacrificial layer 372-2. The sacrificial layer 372-2 can be removed by etching or can be thermally deformed or thermally removed.

在另一個實施例中,錨固件與殼體375相同,且在微裝置轉移至盒376之後由聚合物層、有機層或其他層構建。殼體375可具有不同的形狀。在一種情況下,殼體可與裝置形狀相匹配。殼體側壁可比微裝置高度更短。可在轉移循環之前將殼體側壁連接至微裝置以便為盒376中的不同微裝置後處理以及對微裝置盒的包裝以供運輸及儲存提供支持。可分離殼體側壁,或可在轉移循環之前或期間藉由如加熱、蝕刻或曝光等不同的方式自裝置弱化至微裝置的連接。In another embodiment, the anchor is the same as the housing 375 and is constructed of a polymer layer, an organic layer, or other layer after the microdevice is transferred to the cartridge 376. The housing 375 may have different shapes. In one case, the housing can match the shape of the device. The side wall of the housing can be shorter than the height of the micro device. The side walls of the housing can be connected to the microdevices before the transfer cycle to support the post-processing of the different microdevices in the box 376 and the packaging of the microdevice box for transportation and storage. The side wall of the housing can be separated, or the connection from the device to the micro device can be weakened by different means such as heating, etching or exposure before or during the transfer cycle.

供體基板310上的裝置可產生為在背對供體基板310的同一側具有兩個觸點332及380。在此情況下,可將盒376上的導電層圖案化以獨立地偏置裝置的兩個觸點332及380。在一種情況下,可將裝置自盒式基板376直接轉移至受體基板390。此處,觸點332及380將不直接鍵合至受體基板390,即受體基板390不需要具有特殊的焊盤。在此情況下,導電層沈積及圖案化以將觸點332及380連接至受體基板390中的適當連接。在另一個實施例中,可在轉移至受體基板390之前首先將裝置自盒376轉移至臨時基板。因此,觸點332及380可直接鍵合至受體基板焊盤。可在盒376中或在臨時基板中對裝置進行測試。The device on the donor substrate 310 can be produced with two contacts 332 and 380 on the same side opposite to the donor substrate 310. In this case, the conductive layer on the box 376 can be patterned to independently bias the two contacts 332 and 380 of the device. In one case, the device can be directly transferred from the cassette substrate 376 to the acceptor substrate 390. Here, the contacts 332 and 380 will not be directly bonded to the receptor substrate 390, that is, the receptor substrate 390 does not need to have special pads. In this case, a conductive layer is deposited and patterned to connect the contacts 332 and 380 to appropriate connections in the receptor substrate 390. In another embodiment, the device may first be transferred from the cassette 376 to the temporary substrate before transferring to the acceptor substrate 390. Therefore, the contacts 332 and 380 can be directly bonded to the receptor substrate pads. The device can be tested in the cassette 376 or in a temporary substrate.

由於基板晶格與微裝置層之間的不匹配,層的生長含有如位錯、空隙等若干缺陷。為了減少缺陷,首先可在供體基板6110上沈積在其之間或其附近具有分離層6116的至少一個第一緩衝層6114及/或第二緩衝層6118,且隨後在緩衝層6114及/或6118上方沈積有源層6112。緩衝層6114及6118的厚度可相當大,例如,與供體基板6110一樣厚。在將微裝置與供體基板6110分離(剝離)期間,亦可分離緩衝層6114/6118。因此,每次均應重複緩衝層沈積。圖6H展示基板6110上之結構,其中分離層6116介於第一緩衝層6114與實際裝置層6112之間。在分離層6116與裝置層6112之間可存在第二緩衝層6118。第二緩衝層6118亦可阻止來自分離層6116的污染物滲透至裝置層6112。緩衝層6114及6118均可包括多於一個層。分離層6116亦可包括不同材料的堆疊。在一個實例中,分離層6116對其他層不響應的光波長做出反應。此光源可用於將實際裝置6112與一或多個緩衝層6114/6118以及供體基板6110分離。在另一個實例中,分離層6116對化學物質做出反應,而相同的化學物質不影響其他層。此化學物質可用於移除分離層6116或改變其性質以將裝置與一或多個緩衝層6114/6118以及基板6110分離。此方法使第一緩衝層6114在供體基板6110上保持完整,且因此,該第一緩衝層可重複用於下一次裝置產生。在下一次裝置沈積之前,可進行一些如清潔或緩衝等表面處理。在另一個實例中,一或多個緩衝層6114/6118可包括氧化鋅。Due to the mismatch between the substrate crystal lattice and the micro device layer, the growth of the layer contains several defects such as dislocations and voids. In order to reduce defects, at least one first buffer layer 6114 and/or second buffer layer 6118 with a separation layer 6116 in between or near it can be deposited on the donor substrate 6110 first, and then on the buffer layer 6114 and/or An active layer 6112 is deposited on top of 6118. The thickness of the buffer layers 6114 and 6118 can be quite large, for example, as thick as the donor substrate 6110. During the separation (peeling) of the micro device from the donor substrate 6110, the buffer layer 6114/6118 can also be separated. Therefore, the buffer layer deposition should be repeated every time. 6H shows the structure on the substrate 6110, in which the separation layer 6116 is between the first buffer layer 6114 and the actual device layer 6112. There may be a second buffer layer 6118 between the separation layer 6116 and the device layer 6112. The second buffer layer 6118 can also prevent contaminants from the separation layer 6116 from penetrating into the device layer 6112. Both buffer layers 6114 and 6118 may include more than one layer. The separation layer 6116 may also include a stack of different materials. In one example, the separation layer 6116 responds to light wavelengths to which the other layers do not respond. This light source can be used to separate the actual device 6112 from one or more buffer layers 6114/6118 and the donor substrate 6110. In another example, the separation layer 6116 reacts to chemical substances, and the same chemical substance does not affect other layers. This chemical substance can be used to remove the separation layer 6116 or change its properties to separate the device from one or more buffer layers 6114/6118 and the substrate 6110. This method keeps the first buffer layer 6114 intact on the donor substrate 6110, and therefore, the first buffer layer can be reused for the next device generation. Before the next device deposition, some surface treatments such as cleaning or buffering can be performed. In another example, one or more buffer layers 6114/6118 may include zinc oxide.

在分離過程(剝離)之前,可藉由不同的蝕刻製程分離微裝置,如圖6I所示。蝕刻可蝕刻第二緩衝層6118(若存在),而且可蝕刻分離層6116的一部分或全部以及裝置層6112。在另一個實例中,不對第二緩衝層6118或分離層6116進行蝕刻。在蝕刻步驟之後,微裝置臨時(或永久)鍵合至另一基板6150,且分離層6116經移除或改性以使微裝置與第一緩衝層6114及第二緩衝層6118分離。如圖6J所示,第一緩衝層6114可在供體基板6110上保持基本完整。Before the separation process (stripping), the microdevices can be separated by different etching processes, as shown in FIG. 6I. The etching can etch the second buffer layer 6118 (if present), and can also etch part or all of the separation layer 6116 and the device layer 6112. In another example, the second buffer layer 6118 or the separation layer 6116 is not etched. After the etching step, the micro device is temporarily (or permanently) bonded to another substrate 6150, and the separation layer 6116 is removed or modified to separate the micro device from the first buffer layer 6114 and the second buffer layer 6118. As shown in FIG. 6J, the first buffer layer 6114 can remain substantially intact on the donor substrate 6110.

在圖6K至6M所示之另一個實施例中,可在供體基板6210上以島狀物6212的形式形成層,例如第一底部導電層312、功能層314及第二頂部導電層316。圖6K展示形成於微裝置陣列中的島狀物6212的俯視圖。島狀物6212的大小可與盒大小相同或是盒大小的倍數。島狀物6212可自緩衝層6114/6118開始形成或在緩衝層之後形成。此處,可在表面上進行表面處理或形成間隙6262、6263以啟動薄膜生長為島狀物(圖6L)。為了處理微裝置,可藉由填料層6220填充間隙,如圖6M中所示。填料6220可由聚合物層、金屬層或介電層構成。在對微裝置進行處理之後,可移除填料層6220。In another embodiment shown in FIGS. 6K to 6M, layers, such as the first bottom conductive layer 312, the functional layer 314, and the second top conductive layer 316, may be formed in the form of islands 6212 on the donor substrate 6210. Figure 6K shows a top view of islands 6212 formed in a micro device array. The size of the island 6212 can be the same as the box size or a multiple of the box size. The islands 6212 can be formed from the buffer layer 6114/6118 or after the buffer layer. Here, surface treatment or gaps 6262, 6263 can be formed on the surface to initiate film growth into islands (FIG. 6L). In order to process the micro device, the gap can be filled with a filler layer 6220, as shown in FIG. 6M. The filler 6220 may be composed of a polymer layer, a metal layer, or a dielectric layer. After processing the microdevice, the filler layer 6220 may be removed.

圖7強調產生微裝置盒的過程。在第一步驟702期間,在供體基板,例如310或510上製備微裝置。在此步驟期間,形成該裝置,且對該裝置執行後處理。在第二步驟704期間,將該裝置製備成待與供體基板310或510分離。此步驟可涉及藉由使用錨固件,例如,375、476-1、592、594、598或598-2及填充物,例如374、472及574來固定微裝置。在第三步驟706期間,由來自第一步驟702及第二步驟704的預處理後微裝置形成盒或臨時基板,例如376或476。在一種情況下,在此步驟期間,藉由鍵合層,例如378或478將微裝置直接或間接鍵合至盒式基板376或476。接著,將微裝置與微裝置盒式基板376或476分離。在另一個實施例中,盒形成於微裝置供體基板,例如510上。在將裝置固定在盒式基板376、476或510上之後,可進行其他處理步驟,如移除一些層,例如312、374、472、574;或添加電氣層(例如,觸點380或480)或光學層(透鏡、反射器等)。在第四步驟708期間,盒376或476移動至受體基板,例如390、490或590以將裝置轉移至受體基板390、490或590。可重新安排或合併一些此等步驟。當微裝置仍處於盒式基板,例如376或476上時或在微裝置已轉移至受體基板上,例如390、490或590之後,可對微裝置執行測試步驟707A以確定微裝置是否有缺陷。可在步驟707B中移除或原地修理有缺陷的微裝置。例如,可對預定數目的一組微裝置進行測試,且若缺陷數目超過預定閾值,則可移除整組微裝置,可移除有缺陷的微裝置中的至少一些及/或可修理有缺陷的微裝置中的至少一些。Figure 7 emphasizes the process of producing a micro device cartridge. During the first step 702, a microdevice is prepared on a donor substrate, such as 310 or 510. During this step, the device is formed, and post-processing is performed on the device. During the second step 704, the device is prepared to be separated from the donor substrate 310 or 510. This step can involve fixing the microdevice by using anchors, such as 375, 476-1, 592, 594, 598, or 598-2, and fillers, such as 374, 472, and 574. During the third step 706, a cassette or temporary substrate, such as 376 or 476, is formed from the pre-processed microdevices from the first step 702 and the second step 704. In one case, during this step, the microdevice is directly or indirectly bonded to the cassette substrate 376 or 476 via a bonding layer, such as 378 or 478. Next, the micro device is separated from the micro device cassette substrate 376 or 476. In another embodiment, the cassette is formed on a microdevice donor substrate, such as 510. After fixing the device on the cassette substrate 376, 476 or 510, other processing steps can be performed, such as removing some layers, such as 312, 374, 472, 574; or adding electrical layers (for example, contacts 380 or 480) Or optical layer (lens, reflector, etc.). During the fourth step 708, the cassette 376 or 476 is moved to the receptor substrate, such as 390, 490, or 590 to transfer the device to the receptor substrate 390, 490, or 590. Some of these steps can be rearranged or combined. When the micro device is still on a cassette substrate, such as 376 or 476, or after the micro device has been transferred to a receiver substrate, such as 390, 490, or 590, test step 707A can be performed on the micro device to determine whether the micro device is defective . The defective microdevice can be removed or repaired in situ in step 707B. For example, a predetermined number of microdevices can be tested, and if the number of defects exceeds a predetermined threshold, the entire group of microdevices can be removed, at least some of the defective microdevices can be removed and/or defective microdevices can be repaired At least some of the microdevices.

圖8展示將裝置自盒376、476或510轉移至受體基板390、490或590的步驟。此處,在第一步驟802期間,裝載(或拾取)盒376、476或510,或在另一個實施例中,使備用設備臂預裝載有盒376、476或510。在第二步驟804期間,將盒376、476或510與受體基板的一部分(或全部)對齊。可使用盒376、476或510及受體基板390、490或590上的專用對齊標記或使用微裝置以及受體基板390、490或590上的著陸區域進行該對齊。在第三步驟期間,將微裝置轉移至所選著陸區域。在第四步驟808期間,若受體基板390、490或590經完全填充,則在步驟810中將盒式基板376、476或510移動至接下來的步驟,例如另一受體基板390、490或590。若當前受體基板390、490或590需要進一步填充,則使用一或多個另外的盒376、476或510進行另外的轉移步驟。在新轉移循環之前,若盒376、476或510不具有足夠的裝置,則循環自第一步驟802開始。若在步驟812中盒376、476或510具有足夠的裝置,則在步驟814中將盒376、476或510偏移(或移動及對齊)至受體基板390、490或590的新區域,且新循環繼續至步驟806。可合併及/或重新安排此等步驟中的一些。FIG. 8 shows the steps of transferring the device from the cassette 376, 476, or 510 to the receptor substrate 390, 490, or 590. Here, during the first step 802, the cassette 376, 476, or 510 is loaded (or picked up), or in another embodiment, the spare equipment arm is preloaded with the cassette 376, 476, or 510. During the second step 804, the cassette 376, 476, or 510 is aligned with part (or all) of the receptor substrate. This alignment can be performed using dedicated alignment marks on the cassette 376, 476, or 510 and the receptor substrate 390, 490, or 590 or using a micro device and the landing area on the receptor substrate 390, 490, or 590. During the third step, the microdevice is transferred to the selected landing area. During the fourth step 808, if the acceptor substrate 390, 490, or 590 is completely filled, the cassette substrate 376, 476, or 510 is moved to the next step in step 810, such as another acceptor substrate 390, 490 Or 590. If the current acceptor substrate 390, 490, or 590 needs further filling, one or more additional cassettes 376, 476, or 510 are used for additional transfer steps. Before the new transfer cycle, if the cassette 376, 476, or 510 does not have enough devices, the cycle starts from the first step 802. If the cassette 376, 476, or 510 has sufficient devices in step 812, the cassette 376, 476, or 510 is shifted (or moved and aligned) to a new area of the receptor substrate 390, 490, or 590 in step 814, and The new cycle continues to step 806. Some of these steps can be combined and/or rearranged.

圖9展示將裝置自盒,例如,臨時基板376、476或510轉移至受體基板,例如390、490或590的步驟。此處,在第一步驟902期間,裝載(或拾取)盒376或476,或在另一個實施例中,使備用設備臂預裝載有盒。在第二步驟902-2期間,在盒376、476或510中選擇一組微裝置,使得其中的缺陷數目小於閾值。在第三步驟904期間,將盒376、476或510與受體基板的一部分(或全部)對齊。可使用盒376、476或510及/或受體基板390、490或590上的專用對齊標記或使用微裝置以及受體基板390、490或590上的著陸區域進行該對齊。接著,在第三步驟906期間,可將微裝置轉移至所選著陸區域。在視情況存在之步驟906-1中,盒中的選定微裝置可連接至受體基板。在視情況存在之步驟906-2中,可例如藉助於藉由受體基板390、490或590進行偏置來接通微裝置以對微裝置與受體基板的連接進行測試。若發現個別微裝置有缺陷或無功能,則可執行另外的調整步驟906-3以糾正或修理無功能的微裝置中的一些或全部。9 shows the steps of transferring the device from the cassette, for example, a temporary substrate 376, 476, or 510, to a receiver substrate, such as 390, 490, or 590. Here, during the first step 902, the cassette 376 or 476 is loaded (or picked up), or in another embodiment, the spare equipment arm is preloaded with the cassette. During the second step 902-2, a group of microdevices is selected in the box 376, 476, or 510 so that the number of defects therein is less than the threshold. During the third step 904, the cassette 376, 476, or 510 is aligned with part (or all) of the receptor substrate. This alignment can be performed using dedicated alignment marks on cassettes 376, 476, or 510 and/or receptor substrates 390, 490, or 590 or using microdevices and landing areas on receptor substrates 390, 490, or 590. Then, during a third step 906, the microdevice can be transferred to the selected landing area. In the optional step 906-1, the selected microdevices in the cassette can be connected to the receptor substrate. In the optional step 906-2, the microdevice can be turned on by biasing by the receptor substrate 390, 490 or 590 to test the connection between the microdevice and the receptor substrate, for example. If an individual micro-device is found to be defective or non-functional, an additional adjustment step 906-3 can be performed to correct or repair some or all of the non-functional micro-devices.

若受體基板經完全填充,則受體基板390、490或590移動至接下來的步驟。若受體基板390、490或590需要進一步填充,則執行自一或多個另外的盒376、476或510進行的另外的轉移步驟。在新轉移循環之前,若376、476或510不具有足夠的裝置,則循環自第一步驟902開始。若盒376、476或510具有足夠的裝置,則在步驟902-2中,將盒376、476或510偏移(或移動及對齊)至受體基板390、490或590的新區域。If the acceptor substrate is completely filled, the acceptor substrate 390, 490, or 590 moves to the next step. If the acceptor substrate 390, 490, or 590 needs to be further filled, then an additional transfer step from one or more additional cassettes 376, 476, or 510 is performed. Before the new transfer cycle, if 376, 476, or 510 do not have enough devices, the cycle starts from the first step 902. If the cassette 376, 476, or 510 has sufficient devices, in step 902-2, the cassette 376, 476, or 510 is shifted (or moved and aligned) to a new area of the receptor substrate 390, 490, or 590.

圖10展示產生多類型微裝置盒376、476、510或1108的示範性處理步驟。在第一步驟1002期間,在不同的供體基板,例如310或510上製備至少兩個不同的微裝置。在此步驟期間,形成該裝置,且對該裝置執行後處理。在第二步驟1004期間,將該裝置製備成待與供體基板,例如310或510分離。此步驟可涉及藉由使用錨固件,例如,375、476-1、592、594、598及598-2及填充物,例如374、472及574來固定微裝置。在第三步驟1006期間,將第一裝置移動至盒376、476、510或1108。在第四步驟1008期間,將至少第二微裝置移動至盒376、476、510或1108。在一種情況下,在此步驟期間,將微裝置藉由鍵合層,例如378或478直接或間接鍵合至盒式基板376、476、510或1108。接著,將微裝置與微裝置盒式基板310或510分離。對於直接轉移,不同類型的微裝置可具有不同的高度。例如,轉移至盒376、476、510或1108的第二類型的微裝置可略高於第一類型的微裝置(或對於第二微裝置類型而言,在盒376、476、510或1108上的位置可略高一些)。此處,在盒376、476、510或1108經完全填充之後,可調節微裝置高度以使盒376、476、510或1108的表面平坦。可藉由向較短的微裝置添加材料或自較高的裝置移除材料來進行此操作。在另一種情況下,受體基板390、490或590上的著陸區域可具有與盒376、476、510或1108的差異相關聯的不同高度。另一種填充盒376、476、510或1108的方法基於拾取。可利用拾取過程將微裝置移動至盒376、476、510或1108。此處,對於盒376、476、510或1108中之一者集群中的微裝置而言,拾取頭上的力元件可為統一的,或可將單個力元件用於每個微裝置。而且,可以其他方式將微裝置移動至盒376、476、510或1108。在另一個實施例中,將額外裝置移動遠離第一或第二(或第三或其他)微裝置的盒式基板376、476、510或1108,且將其他類型的微裝置轉移至盒376、476、510或1108上的空白區域中。在將裝置固定在盒式基板376、476、510或1108上之後,可進行其他處理步驟,如添加填料層374、474或574;移除一些層;或添加電氣層(例如,觸點380、480或580)或光學層(透鏡、反射器)。可在裝置用於填充受體基板390、490或590之後或之前對裝置進行測試。該測試可為電氣測試或光學測試或兩者的組合。該測試可識別盒上的裝置的缺陷及/或性能。在最後一個步驟1010期間,將盒376、476、510或1108移動至受體基板390、490或590以將裝置轉移至受體基板390、490或590。可重新安排或合併一些此等步驟。FIG. 10 shows exemplary processing steps for generating a multi-type micro device box 376, 476, 510, or 1108. During the first step 1002, at least two different microdevices are prepared on different donor substrates, such as 310 or 510. During this step, the device is formed, and post-processing is performed on the device. During the second step 1004, the device is prepared to be separated from the donor substrate, such as 310 or 510. This step can involve fixing the microdevice by using anchors, such as 375, 476-1, 592, 594, 598, and 598-2, and fillers, such as 374, 472, and 574. During the third step 1006, the first device is moved to the box 376, 476, 510, or 1108. During the fourth step 1008, at least the second microdevice is moved to the box 376, 476, 510, or 1108. In one case, during this step, the micro device is directly or indirectly bonded to the cassette substrate 376, 476, 510, or 1108 via a bonding layer, such as 378 or 478. Next, the micro device is separated from the micro device cassette substrate 310 or 510. For direct transfer, different types of microdevices can have different heights. For example, the second type of microdevice transferred to the cassette 376, 476, 510, or 1108 may be slightly higher than the first type of microdevice (or for the second microdevice type, on the cassette 376, 476, 510, or 1108) The position can be slightly higher). Here, after the box 376, 476, 510, or 1108 is completely filled, the height of the micro device can be adjusted to make the surface of the box 376, 476, 510, or 1108 flat. This can be done by adding material to shorter microdevices or removing material from taller devices. In another case, the landing area on the receptor substrate 390, 490, or 590 may have different heights associated with the difference of the boxes 376, 476, 510, or 1108. Another method of filling boxes 376, 476, 510 or 1108 is based on picking. The microdevice can be moved to the cassette 376, 476, 510, or 1108 using a picking process. Here, for the microdevices in the cluster of one of the cassettes 376, 476, 510, or 1108, the force elements on the pickup head may be unified, or a single force element may be used for each microdevice. Also, the microdevice can be moved to the box 376, 476, 510, or 1108 in other ways. In another embodiment, the additional device is moved away from the cassette substrate 376, 476, 510, or 1108 of the first or second (or third or other) microdevice, and other types of microdevices are transferred to the cassette 376, 476, 510, or 1108 in the blank area. After the device is fixed on the cassette substrate 376, 476, 510, or 1108, other processing steps can be performed, such as adding filler layers 374, 474, or 574; removing some layers; or adding electrical layers (for example, contacts 380, 480 or 580) or optical layer (lens, reflector). The device can be tested after or before the device is used to fill the receptor substrate 390, 490, or 590. The test can be an electrical test or an optical test or a combination of both. This test can identify defects and/or performance of the device on the box. During the last step 1010, the cassette 376, 476, 510, or 1108 is moved to the receptor substrate 390, 490, or 590 to transfer the device to the receptor substrate 390, 490, or 590. Some of these steps can be rearranged or combined.

此處描述的轉移過程(例如圖7、8、9及10)可包含用於增加盒376、476、510或1108上的微裝置的間距的拉伸步驟。此步驟可在對齊之前進行或可作為對齊步驟的一部分。此步驟可增加與受體基板390、490或590上的著陸區域(或焊盤)對齊的微裝置的數目。此外,該步驟可匹配盒376、476、510或1108上的包括至少兩個微裝置的微裝置陣列之間的間距以匹配受體基板390、490或590上的著陸區域(或焊盤382)的間距。The transfer process described here (e.g., Figures 7, 8, 9 and 10) may include a stretching step for increasing the spacing of the microdevices on the cassette 376, 476, 510, or 1108. This step can be performed before the alignment or can be part of the alignment step. This step can increase the number of micro devices aligned with the landing area (or pad) on the receptor substrate 390, 490, or 590. In addition, this step can match the spacing between the micro device arrays including at least two micro devices on the cassette 376, 476, 510 or 1108 to match the landing area (or pad 382) on the receptor substrate 390, 490 or 590 Pitch.

圖11展示類似於臨時基板376、476或510的多類型微裝置盒1108的一個實例。盒1108包含三種不同的類型,例如顏色(紅色、綠色及藍色)的微裝置1102、1104、1106。但可存在更多的裝置類型。微裝置之間的距離x1、x2、x3與受體基板390、490或590中的著陸區域的間距相關。在可能與受體基板390、490或590中的像素間距相關的幾個裝置之後,可存在不同的間距x4、y2。此間距補償像素間距與微裝置間距(著陸區域間距)之間的不匹配。在此情況下,若將拾放用於產生盒1108,則力元件可採用與每種微裝置類型的列相對應的列的形式,或力元件可為用於每個微裝置的單獨元件。FIG. 11 shows an example of a multi-type micro device cartridge 1108 similar to the temporary substrate 376, 476, or 510. The cartridge 1108 contains three different types of micro-devices 1102, 1104, and 1106 in colors (red, green, and blue). But there can be more device types. The distances x1, x2, and x3 between the micro devices are related to the pitch of the landing area in the receptor substrate 390, 490, or 590. After several devices that may be related to the pixel pitch in the receptor substrate 390, 490 or 590, there may be different pitches x4, y2. This pitch compensates for the mismatch between the pixel pitch and the micro device pitch (landing area pitch). In this case, if pick-and-place is used to produce the cassette 1108, the force element may take the form of a column corresponding to each micro device type, or the force element may be a separate element for each micro device.

圖12示出類似於臨時基板376、476或510的多類型微裝置盒1208的一個實例。盒1208包含三種不同的類型,例如顏色(紅色、綠色及藍色)的微裝置1202、1204、1206。其他區域1206-2可為空的、填充有備用微裝置或包含第四不同類型的微裝置。微裝置之間的距離x1、x2、x3與受體基板390、490或590中的著陸區域的間距相關。在可能與受體基板390、490或590中的像素間距相關的幾個裝置陣列之後,可存在不同的間距x4、y2。此間距補償像素間距與微裝置間距(著陸區域間距)之間的不匹配。FIG. 12 shows an example of a multi-type micro device cartridge 1208 similar to the temporary substrate 376, 476, or 510. The cartridge 1208 contains three different types of micro-devices 1202, 1204, and 1206 in colors (red, green, and blue). The other area 1206-2 may be empty, filled with spare micro devices, or contain a fourth different type of micro devices. The distances x1, x2, and x3 between the micro devices are related to the pitch of the landing area in the receptor substrate 390, 490, or 590. After several device arrays that may be related to the pixel pitch in the receptor substrate 390, 490, or 590, there may be different pitches x4, y2. This pitch compensates for the mismatch between the pixel pitch and the micro device pitch (landing area pitch).

圖13展示在轉移至多類型微裝置盒376、476、510、1108、1208之前在類似於供體基板310或510的供體基板1304上製備的微裝置1302的一個實例。此處,可將支撐層1306及1308用於單獨的裝置或一組裝置。此處,間距可與盒376、476、510、1108、1208中的間距相匹配,或該間距可為盒間距的倍數。FIG. 13 shows an example of a microdevice 1302 prepared on a donor substrate 1304 similar to the donor substrate 310 or 510 before being transferred to the multi-type microdevice cassette 376, 476, 510, 1108, 1208. Here, the support layers 1306 and 1308 can be used for a single device or a group of devices. Here, the spacing may match the spacing in the boxes 376, 476, 510, 1108, 1208, or the spacing may be a multiple of the box spacing.

在上述所有結構中,在使用微裝置填充基板之前,可將微裝置自第一盒移動至第二盒。在轉移之後可進行額外的處理步驟,或可在第一盒式結構與第二盒式結構之間對處理步驟中的一些進行劃分。In all the above structures, before filling the substrate with the microdevice, the microdevice can be moved from the first box to the second box. Additional processing steps can be performed after the transfer, or some of the processing steps can be divided between the first cassette structure and the second cassette structure.

圖14A展示類似於供體基板310或510的供體基板1480中的微裝置的實施例。由於製造缺陷及材料缺陷,在供體基板1480上,微裝置的輸出功率可能逐漸降低或增加,即存在不均勻性,如藉由自深至淺的著色所示。由於可將裝置一起轉移至塊,例如塊1482中或可按順序一次一或多個地將裝置轉移至受體基板390、490或590中,因此受體基板390、490或590中的相鄰裝置逐漸退化。然而,在一個塊,例如1482或一系列相鄰塊結束且另一個塊,例如1483或另一系列塊開始的地方,例如沿著交線1484的地方可能出現更糟的問題,此可能導致輸出性能的突然變化,如圖14B所示。此突然變化可能導致如顯示器等光電子裝置的視覺假像。FIG. 14A shows an embodiment of a microdevice in a donor substrate 1480 similar to the donor substrate 310 or 510. Due to manufacturing defects and material defects, the output power of the micro device on the donor substrate 1480 may gradually decrease or increase, that is, there is unevenness, as shown by the coloring from dark to light. Since devices can be transferred together into a block, such as block 1482 or devices can be transferred into the receptor substrate 390, 490, or 590 one or more at a time in sequence, adjacent ones of the receptor substrates 390, 490, or 590 The device is gradually degrading. However, where one block, such as 1482 or a series of adjacent blocks ends and another block, such as 1483 or another series of blocks begins, for example along the intersection line 1484, a worse problem may occur, which may cause output The sudden change in performance is shown in Figure 14B. This sudden change may cause visual artifacts in optoelectronic devices such as displays.

為了解決不均勻性的問題,圖14C所示之一個實施例包含在顯示器中使用單獨的塊1482及1483上方及下方的塊來使該單獨的塊偏斜或交錯,使得該塊的邊緣或交叉線不是清晰線條,從而消除交叉線1484,且藉此,裝置塊在顯示器上形成偏斜圖案。因此,急劇轉變的平均影響顯著降低。偏斜可為隨機的且可具有不同的輪廓。In order to solve the problem of unevenness, one embodiment shown in FIG. 14C includes using separate blocks 1482 and 1483 above and below the display to skew or stagger the separate blocks so that the edges of the blocks or cross The lines are not clear lines, thereby eliminating the crossing lines 1484, and thereby, the device blocks form a skewed pattern on the display. Therefore, the average impact of the sharp transition is significantly reduced. The deflection can be random and can have different profiles.

圖14D展示另一個實施例,其中相鄰塊中的微器裝置翻轉,使得具有類似性能的裝置彼此相鄰,例如,第一塊1482中的性能自第一外側A至第一內側B減小,而第二相鄰塊1483的性能自鄰近第一內側B的第二內側B至第二外側A增加,此可使塊之間的變化及轉變保持非常平滑且消除長的急劇交叉1484。FIG. 14D shows another embodiment in which the microdevices in adjacent blocks are turned over so that devices with similar performance are adjacent to each other, for example, the performance in the first block 1482 decreases from the first outside A to the first inside B , And the performance of the second adjacent block 1483 increases from the second inner side B adjacent to the first inner side B to the second outer side A, which can keep the changes and transitions between the blocks very smooth and eliminate the long sharp crossing 1484.

圖14E展示翻轉裝置的示範性組合,例如,在內側交替高性能裝置及低性能裝置以及使邊緣偏斜以進一步提高平均均勻性。在所示實施例中,裝置性能在兩個方向上,即在相鄰的水平塊及相鄰的豎直塊中在高與低之間交替。Figure 14E shows an exemplary combination of flipping devices, for example, alternating high-performance devices and low-performance devices on the inside and skewing the edges to further improve average uniformity. In the illustrated embodiment, the device performance alternates between high and low in two directions, namely in adjacent horizontal blocks and adjacent vertical blocks.

在一種情況下,在轉移至受體基板390、490或590之前,針對相鄰的經轉移塊(陣列)對塊邊緣處的微裝置的性能進行匹配。In one case, before transferring to the receiver substrate 390, 490 or 590, the performance of the microdevice at the edge of the block is matched for the adjacent transferred block (array).

圖15A展示使用兩個或更多個塊1580、1582來填充受體基板1590中的塊。在所示實施例中,可使用偏斜或翻轉方法進一步提高平均均勻性,如圖15B所示。分別來自塊1580及1582的較高(或較低)輸出功率側B及C可定位成彼此相鄰,除此之外,亦使用塊上方及下方的塊的連接來使塊之間的連接偏斜或交錯。而且,可使用隨機或限定的圖案來填充具有多於一個塊的盒或受體基板1590。FIG. 15A shows the use of two or more blocks 1580, 1582 to fill blocks in the receptor substrate 1590. In the illustrated embodiment, the skew or flip method can be used to further improve the average uniformity, as shown in Figure 15B. The higher (or lower) output power sides B and C from blocks 1580 and 1582, respectively, can be positioned adjacent to each other. In addition, the connections of the blocks above and below the blocks are also used to bias the connections between the blocks. Oblique or staggered. Also, random or defined patterns can be used to fill a box or receptor substrate 1590 with more than one block.

圖16A展示具有多於一個塊1680、1682及1684的樣品。塊1680、1682及1684可來自同一供體基板310或510或來自不同的供體基板310或510。圖16B展示由不同的塊1680、1682及1684填充盒1690以消除任何塊中發現的不均勻性的實例。Figure 16A shows a sample with more than one block 1680, 1682, and 1684. The blocks 1680, 1682, and 1684 may be from the same donor substrate 310 or 510 or from different donor substrates 310 or 510. Figure 16B shows an example of filling the box 1690 with different blocks 1680, 1682, and 1684 to eliminate any unevenness found in the blocks.

圖17A及17B展示具有多個盒1790的結構。如上所述,盒1790的位置是以在不同的轉移循環期間消除受體基板390、490、590或1590中的同一區域與具有相同微裝置的盒1790重疊的方式選擇的。在一個實例中,盒1790可為獨立的,此意謂著單獨的臂或控制器獨立地處理每個盒。在另一個實施例中,可獨立地進行該對齊,但可同步進行其他操作。在此實施例中,受體基板390、490、590或1590可移動以便在對齊後易於轉移。在另一個實例中,盒1790一起移動以便在對齊之後易於轉移。在另一個實例中,盒1790及受體基板390、490、590或1590均可移動以易於轉移。在另一種情況下,可提前對盒1790進行組裝。在此情況下,框架或基板可固持組裝後盒1790。17A and 17B show a structure with a plurality of boxes 1790. As described above, the position of the cassette 1790 is selected in such a way that the same area in the receptor substrate 390, 490, 590, or 1590 overlaps the cassette 1790 with the same micro device during different transfer cycles. In one example, the cassettes 1790 may be independent, which means that a separate arm or controller handles each cassette independently. In another embodiment, the alignment can be performed independently, but other operations can be performed simultaneously. In this embodiment, the receptor substrate 390, 490, 590, or 1590 can be moved so as to be easily transferred after alignment. In another example, the boxes 1790 are moved together for easy transfer after alignment. In another example, the cassette 1790 and the receptor substrate 390, 490, 590, or 1590 can be moved for easy transfer. In another case, the cartridge 1790 can be assembled in advance. In this case, the frame or the base plate can hold the assembled box 1790.

盒1790之間的距離X3、Y3可為盒1790的寬度X1、X2或長度Y1、Y2的倍數。該距離可為不同方向上的移動步長的函數。例如,X3 = KX1 + HX2,其中K是為了填充受體基板390、490、590或1590而向左(直接或間接)進行的移動步長,且H是為了填充該受體基板而向右(直接或間接)進行的移動步長。同樣道理可用於盒1790之間的距離Y3以及長度Y1及Y2。如圖17A所示,盒1790可在一個或兩個方向上對齊。如圖17B所示,在另一個實例中,盒1790在至少一個方向上未經對齊。每個盒1790可具有用於向受體基板390、490、590或1590施加壓力及溫度的獨立控制。根據受體基板390、490、590或1590與盒1790之間的移動方向,其他佈置亦為可能的。The distance X3 and Y3 between the boxes 1790 may be a multiple of the width X1, X2 or the length Y1, Y2 of the box 1790. The distance can be a function of the movement steps in different directions. For example, X3 = KX1 + HX2, where K is the moving step to the left (directly or indirectly) in order to fill the acceptor substrate 390, 490, 590 or 1590, and H is to fill the acceptor substrate to the right ( Directly or indirectly) the move step. The same principle can be used for the distance Y3 between the boxes 1790 and the lengths Y1 and Y2. As shown in Figure 17A, the cassette 1790 can be aligned in one or two directions. As shown in Figure 17B, in another example, the cassette 1790 is not aligned in at least one direction. Each cassette 1790 may have independent controls for applying pressure and temperature to the receptor substrate 390, 490, 590, or 1590. Depending on the direction of movement between the receptor substrate 390, 490, 590 or 1590 and the cartridge 1790, other arrangements are also possible.

在另一個實例中,盒1790可具有不同的裝置且因此用不同裝置填充受體基板390、490、590或1590中的不同區域。在此情況下,盒1790及受體基板390、490、590或1590的相對位置在每個轉移循環之後發生變化以用來自不同盒1790的所有所需微裝置填充不同區域。In another example, the cassette 1790 may have different devices and therefore fill different areas in the receptor substrate 390, 490, 590, or 1590 with different devices. In this case, the relative positions of the cassette 1790 and the receptor substrate 390, 490, 590, or 1590 are changed after each transfer cycle to fill different areas with all required microdevices from different cassettes 1790.

在另一個實施例中,製備若干盒陣列1790。此處,在將裝置自第一盒陣列轉移至受體基板390、490、590或1590之後,受體基板390、490、590或1590移動至下一微裝置陣列以填充受體基板390、490、590或1590中的剩餘區域或接收不同裝置。In another embodiment, several cassette arrays 1790 are prepared. Here, after the device is transferred from the first cassette array to the receptor substrate 390, 490, 590, or 1590, the receptor substrate 390, 490, 590, or 1590 moves to the next micro device array to fill the receptor substrate 390, 490 , 590 or 1590 in the remaining area or receive different devices.

在另一個實例中,盒1790可處於曲面上,且因此圓周移動將提供接觸點以將微裝置轉移至受體基板390、490、590或1590中。In another example, the cassette 1790 may be on a curved surface, and thus circular movement will provide contact points to transfer the microdevice into the receptor substrate 390, 490, 590, or 1590.

豎直光電子堆疊層包含基板、有源層、介於有源層與基板之間的至少一個緩衝層以及介於緩衝層與有源層之間的至少一個分離層,其中可在緩衝層保持處於該基板上的同時藉由改變分離層的性質將有源層自基板物理地移除。The vertical optoelectronic stack layer includes a substrate, an active layer, at least one buffer layer between the active layer and the substrate, and at least one separation layer between the buffer layer and the active layer, wherein the buffer layer can be kept at While on the substrate, the active layer is physically removed from the substrate by changing the properties of the separation layer.

在一個實施例中,改變該一或多個分離層的性質的過程包含化學反應蝕刻或使分離層變形。In one embodiment, the process of changing the properties of the one or more separation layers includes chemically reactive etching or deforming the separation layer.

在另一個實施例中,改變該一或多個分離層的性質的過程包含曝光於光電子波,從而使分離層變形。In another embodiment, the process of changing the properties of the one or more separation layers includes exposure to photoelectron waves, thereby deforming the separation layer.

在另一個實施例中,改變該一或多個分離層的性質的過程包含改變溫度,從而使分離層變形。In another embodiment, the process of changing the properties of the one or more separation layers includes changing the temperature, thereby deforming the separation layer.

在一個實施例中,重複使用緩衝層以產生新的光電子堆疊層包含表面處理。In one embodiment, reusing the buffer layer to create a new optoelectronic stack layer includes surface treatment.

在一個實施例中,表面處理使用化學或物理蝕刻或磨光。In one embodiment, the surface treatment uses chemical or physical etching or polishing.

在另一個實施例中,表面處理使用沈積額外的薄層或緩衝層以重新形成表面。In another embodiment, the surface treatment uses the deposition of an additional thin layer or buffer layer to reform the surface.

在一個實施例中,光電子裝置是LED。In one embodiment, the optoelectronic device is an LED.

在一個實施例中,分離層是氧化鋅。In one embodiment, the separation layer is zinc oxide.

本發明之實施例包括連續的像素化結構,該像素化結構包含完全或部分連續的有源層、像素化接觸層及/或電流散佈層。Embodiments of the present invention include a continuous pixelated structure including a fully or partially continuous active layer, a pixelated contact layer and/or a current spreading layer.

在此實施例中,在像素化接觸層及/或電流散佈層的頂部可存在焊盤層及/或鍵合層。In this embodiment, there may be a pad layer and/or a bonding layer on top of the pixelated contact layer and/or the current spreading layer.

在以上實施例中,在每個像素化接觸層及/或電流散佈層頂部可存在介電開口。In the above embodiments, there may be a dielectric opening on top of each pixelated contact layer and/or current spreading layer.

另一個實施例包括供體基板,該供體基板包含具有鍵合焊盤的微裝置及填充微裝置之間的空間的填料層。Another embodiment includes a donor substrate including microdevices with bonding pads and a filler layer filling the spaces between the microdevices.

另一個實施例包括臨時基板,該臨時基板包含鍵合層,來自供體基板的微裝置鍵合至該鍵合層。Another embodiment includes a temporary substrate that includes a bonding layer to which microdevices from the donor substrate are bonded.

另一個實施例包括熱傳遞技術,該熱傳遞技術包含以下步驟:Another embodiment includes heat transfer technology, which includes the following steps:

1) 將臨時基板上的微裝置與系統基板的鍵合焊盤對齊;1) Align the micro device on the temporary substrate with the bonding pad of the system substrate;

2) 驗證系統基板上的鍵合焊盤的熔點高於臨時基板中的鍵合層的熔點;2) Verify that the melting point of the bonding pad on the system substrate is higher than the melting point of the bonding layer in the temporary substrate;

3) 產生熔化該鍵合焊盤及鍵合層兩者且在此之後使鍵合層保持熔化且使鍵合焊盤保持固化的熱曲線;以及3) Generate a thermal profile that melts both the bonding pad and the bonding layer, and thereafter keeps the bonding layer melted and the bonding pad remains solidified; and

4) 將臨時基板與系統基板分離。4) Separate the temporary board from the system board.

在轉移技術的另一個實施例中,熱曲線是藉由局部或全局熱源或兩者產生的。In another embodiment of the transfer technique, the thermal profile is generated by local or global heat sources or both.

另一個實施例包括微裝置結構,其中在藉由剝離過程的形式將微裝置自供體基板釋放之後,至少一個錨固件將該裝置固持至供體基板。Another embodiment includes a micro device structure, in which after the micro device is released from the donor substrate by a peeling process, at least one anchor holds the device to the donor substrate.

另一個實施例包括用於微裝置結構的轉移技術,其中在藉由推力或拉力將微裝置鍵合至受體基板中的焊盤之後或期間,錨固件釋放微裝置。Another embodiment includes a transfer technique for the structure of a micro device, in which the anchor releases the micro device after or during the bonding of the micro device to the pad in the receptor substrate by pushing or pulling force.

在另一個實施例中,根據微裝置結構的錨固件由自微裝置的側面延伸至基板的至少一個層構成。In another embodiment, the anchor according to the micro device structure is composed of at least one layer extending from the side of the micro device to the substrate.

在另一個實施例中,根據微裝置結構的錨固件由空隙或空隙頂部的至少一個層構成。In another embodiment, the anchor according to the microdevice structure is composed of a void or at least one layer on top of the void.

在另一個實施例中,根據微裝置結構的錨固件由圍繞裝置的填充層構成。In another embodiment, the anchor according to the microdevice structure is composed of a filling layer surrounding the device.

另一個實施例包括根據微裝置結構的結構,其中藉由控制溫度來增加剝離微裝置與供體基板之間的層的黏度以充當錨固件。Another embodiment includes a structure according to the micro device structure, in which the viscosity of the layer between the peeled micro device and the donor substrate is increased by controlling the temperature to act as an anchor.

另一個實施例包括用於微裝置結構中的錨固件的釋放過程,其中溫度調整以減小錨固件與微裝置之間的力。Another embodiment includes a release process for anchors in a microdevice structure, where the temperature is adjusted to reduce the force between the anchor and the microdevice.

另一個實施例包括將微裝置轉移至受體基板中的過程,其中微裝置形成於盒中;將盒與受體基板中的所選著陸區域對齊;以及將盒中與所選著陸區域相關聯的微裝置轉移至受體基板。Another embodiment includes a process of transferring the microdevice to the receptor substrate, wherein the microdevice is formed in a box; aligning the box with a selected landing area in the receptor substrate; and associating the box with the selected landing area The microdevices are transferred to the receptor substrate.

另一個實施例包括將微裝置轉移至受體基板中的過程,其中微裝置形成於盒中;選擇有缺陷的微裝置小於閾值的一組微裝置;將盒中的所選一組微裝置與受體基板中的所選著陸區域對齊;以及將盒中與所選著陸區域相關聯的微裝置轉移至受體基板。Another embodiment includes the process of transferring the microdevices to the receptor substrate, wherein the microdevices are formed in a box; selecting a group of microdevices with defective microdevices smaller than a threshold; combining the selected group of microdevices in the cassette with The selected landing area in the receptor substrate is aligned; and the microdevices associated with the selected landing area in the cassette are transferred to the receptor substrate.

實施例包含具有轉移至其中的多種類型的微裝置的盒。An embodiment includes a cartridge with multiple types of microdevices transferred into it.

實施例包括微裝置盒,其中犧牲層將微裝置的至少一側與填料層或鍵合層分離。An embodiment includes a micro device box, wherein a sacrificial layer separates at least one side of the micro device from a filler layer or a bonding layer.

實施例中,移除犧牲層以將微裝置自填料層或鍵合層釋放。In an embodiment, the sacrificial layer is removed to release the microdevice from the filler layer or bonding layer.

實施例中,犧牲層在如高溫等一些條件下將微裝置自填料釋放。In an embodiment, the sacrificial layer releases the microdevice from the filler under some conditions such as high temperature.

可對微裝置進行測試以提取與微裝置相關的信息,包含但不限於缺陷、均勻性、運行狀況等。在一個實施例中,一或多個微裝置臨時鍵合至盒,該盒具有用於測試微裝置的一或多個電極。在一個實施例中,在微裝置定位在盒中之後沈積另一個電極。可在圖案化之前或之後將此電極用於測試微裝置。在一個實施例中,盒置於預定位置中(該預定位置可為固持器)。盒及/或受體基板移動以進行對齊。至少一個所選裝置轉移至受體基板。若在盒上/中可獲得更多微裝置,則盒或受體基板移動以便與同一受體基板中的新區域或新受體基板對齊,且至少另一個所選裝置轉移至新位置。此過程可繼續,直至盒不具有足夠的微裝置,此時,可將新盒置於預定位置中。在一個實例中,對所選裝置的轉移是基於自盒中提取的信息進行控制的。在一個實例中,自盒中提取的缺陷信息可用於藉由消除對缺陷數目超過閾值的一組裝置的轉移將轉移至受體基板的有缺陷的裝置的數目限制為低於閾值數目,或所轉移缺陷的累計數目將超過閾值。在另一個實例中,將基於一或多個所提取參數對盒進行分倉(binned),且每個倉將用於不同應用。在另一種情況下,基於一或多個參數具有相近性能的盒將用於一個受體基板中。可組合此處呈現的實例以提高盒轉移性能。The micro device can be tested to extract information related to the micro device, including but not limited to defects, uniformity, operating conditions, etc. In one embodiment, one or more microdevices are temporarily bonded to the cartridge, which has one or more electrodes for testing the microdevice. In one embodiment, another electrode is deposited after the microdevice is positioned in the cassette. This electrode can be used to test microdevices before or after patterning. In one embodiment, the box is placed in a predetermined position (the predetermined position may be a holder). The cassette and/or the receptor substrate are moved for alignment. At least one selected device is transferred to the receptor substrate. If more micro-devices are available on/in the cassette, the cassette or receptor substrate is moved to align with a new area or new receptor substrate in the same receptor substrate, and at least another selected device is transferred to a new location. This process can continue until the cartridge does not have enough microdevices, at which point the new cartridge can be placed in a predetermined position. In one example, the transfer of the selected device is controlled based on information extracted from the box. In one example, the defect information extracted from the cassette can be used to limit the number of defective devices transferred to the acceptor substrate to less than the threshold number by eliminating the transfer of a set of devices whose number of defects exceeds the threshold. The cumulative number of transfer defects will exceed the threshold. In another example, the boxes will be binned based on one or more extracted parameters, and each bin will be used for a different application. In another case, a cassette with similar performance based on one or more parameters will be used in a receptor substrate. The examples presented here can be combined to improve box transfer performance.

在實施例中,可使用物理接觸及壓力及/或溫度將裝置自盒轉移至受體基板中。此處,壓力及/或溫度可產生用於將微裝置固持至受體基板的鍵合力(夾持力),及/或而且溫度可減小微裝置與盒之間的接觸力。因此,實現將微裝置轉移至受體基板。在此情況下,分配給受體基板上的微裝置的位置相比於受體的其餘部分可具有較高的輪廓以增強轉移過程。在實施例中,在如在轉移過程期間分配給其他類型的微裝置的位置等可能與受體基板的無用區域接觸的區域中,盒不具有微裝置。可組合此兩個實例。在實施例中,可能已經用黏合劑潤濕基板上的微裝置的所分配位置或可能已經用鍵合合金覆蓋該位置,或在所分配位置上放置有額外的結構。在衝壓過程中,可使用單獨的盒、印刷或其他製程。在實施例中,可將盒上的所選微裝置移動為更靠近受體基板以增強選擇性轉移。在另一種情況下,受體基板施加拉力以輔助或啟動自盒進行的微裝置轉移。拉力可與其他力組合。In embodiments, physical contact and pressure and/or temperature may be used to transfer the device from the cassette to the receptor substrate. Here, the pressure and/or temperature can generate a bonding force (clamping force) for holding the micro device to the receptor substrate, and/or temperature can reduce the contact force between the micro device and the cartridge. Therefore, the transfer of the micro device to the acceptor substrate is achieved. In this case, the position assigned to the microdevice on the receptor substrate may have a higher profile than the rest of the receptor to enhance the transfer process. In an embodiment, the cassette does not have a microdevice in an area that may be in contact with a useless area of the receptor substrate, such as a location allocated to other types of microdevices during the transfer process. These two instances can be combined. In an embodiment, the allocated position of the microdevice on the substrate may have been wetted with the adhesive or the position may have been covered with a bonding alloy, or an additional structure may be placed on the allocated position. In the stamping process, a separate box, printing or other processes can be used. In an embodiment, the selected microdevices on the cassette can be moved closer to the receptor substrate to enhance selective transfer. In another case, the recipient substrate exerts a pulling force to assist or initiate the transfer of the microdevice from the cassette. The pulling force can be combined with other forces.

在一個實施例中,殼體可支撐盒中的微裝置。殼體可製作在供體基板或盒式基板上的微裝置周圍或單獨製作,且接著微裝置移動至內部且鍵合至盒。在一個實施例中,可在盒式基板的頂部沈積至少一種聚合物(或另一種類型的材料)。來自供體基板的微裝置推至聚合物層中。微裝置選擇性地或總體上與供體基板分離。可在裝置與供體基板分離之前或之後固化該層。可圖案化此層,在將多個不同裝置整合至盒中的情況下尤其如此。在此情況下,該層可為針對一種類型而創建的,微裝置埋在該層中且與其供體分離。接著,針對下一種類型的微裝置沈積及圖案化另一個層。接著,第二微裝置埋在相關聯層中。在所有情況下,此層可覆蓋微裝置中的一部分或所有裝置。在另一種情況下,殼體在微裝置轉移至盒之後由聚合物層、有機層或其他層構建。殼體可具有不同的形狀。在一種情況下,殼體可與裝置形狀相匹配。殼體側壁可比微裝置高度更短。可在轉移循環之前將殼體側壁連接至微裝置以便為盒中的不同微裝置後處理以及用於運輸及儲存的微裝置盒包裝提供支持。可分離殼體側壁,或可在轉移循環之前或期間藉由如加熱、蝕刻或曝光等不同的方式自裝置弱化至微裝置的連接。可存在將微裝置固持至盒式基板的接觸點。至盒的接觸點可為裝置的底側或頂側。可在轉移之前或期間藉由如加熱、化學過程或曝光等不同方式弱化或消除接觸點。可對一些所選裝置執行此過程或可對盒上的所有微裝置全局地執行此過程。觸點亦可為導電的以實現藉由偏置觸點處的裝置及連接至微裝置的其他電極來測試微裝置。在轉移循環期間,盒可處於受體基板下方以防止微裝置在觸點經全局移除或弱化的情況下自殼體上落下。In one embodiment, the housing can support the microdevice in the cartridge. The housing can be made around the micro device on the donor substrate or the box substrate or made separately, and then the micro device is moved inside and bonded to the box. In one embodiment, at least one polymer (or another type of material) may be deposited on top of the cassette substrate. The microdevices from the donor substrate are pushed into the polymer layer. The microdevice is selectively or generally separated from the donor substrate. The layer can be cured before or after the device is separated from the donor substrate. This layer can be patterned, especially if multiple different devices are integrated into the box. In this case, the layer can be created for one type, and the micro device is buried in the layer and separated from its donor. Then, another layer is deposited and patterned for the next type of microdevice. Then, the second microdevice is buried in the associated layer. In all cases, this layer can cover part or all of the microdevices. In another case, the housing is constructed from a polymer layer, an organic layer, or other layers after the microdevice is transferred to the cartridge. The housing can have different shapes. In one case, the housing can match the shape of the device. The side wall of the housing can be shorter than the height of the micro device. The side wall of the housing can be connected to the micro device before the transfer cycle to provide support for the post-processing of the different micro devices in the box and the packaging of the micro device box for transportation and storage. The side wall of the housing can be separated, or the connection from the device to the micro device can be weakened by different means such as heating, etching or exposure before or during the transfer cycle. There may be contact points that hold the microdevice to the cassette substrate. The point of contact to the box can be the bottom or top side of the device. The contact points can be weakened or eliminated by different methods such as heating, chemical processes, or exposure before or during the transfer. This process can be performed for some selected devices or it can be performed globally for all micro devices on the cartridge. The contacts can also be conductive to enable testing of the microdevice by biasing the device at the contact and other electrodes connected to the microdevice. During the transfer cycle, the cassette can be under the receiver substrate to prevent the microdevice from falling off the housing if the contacts are globally removed or weakened.

在一個實施例中,微裝置盒可包含將微裝置固持至盒表面的至少一個錨固件。盒及/或受體基板經移動以使得盒中的一些微裝置與受體基板中的一些位置對齊。在將盒及受體基板推向彼此或藉由受體基板拉動裝置期間,此錨固件可在壓力下斷裂。微裝置可永久停留在受體基板上。錨固件可處於微裝置的側面或處於微裝置的頂部(或底部)。In one embodiment, the microdevice cartridge may include at least one anchor that holds the microdevice to the surface of the cartridge. The cassette and/or the receptor substrate are moved so that some of the microdevices in the cassette are aligned with some positions in the receptor substrate. This anchor can be broken under pressure during pushing the box and the receptor substrate towards each other or pulling the device by the receptor substrate. The micro device can stay permanently on the receptor substrate. The anchor can be on the side of the microdevice or on the top (or bottom) of the microdevice.

頂側是裝置的面向盒的一側,且底部是微裝置的對置側。其他側稱為側面或側壁。The top side is the side of the device facing the box, and the bottom is the opposite side of the micro device. The other sides are called sides or side walls.

在一個實施例中,可對微裝置進行測試以提取與微裝置相關的信息,包含但不限於缺陷、均勻性、運行狀況等。可將盒置於預定位置中(該預定位置可為固持器)。可移動盒及/或受體基板以進行對齊。可將至少一個所選微裝置轉移至受體基板。若在盒上/中可獲得更多微裝置,則可移動盒或受體基板以便與同一受體基板中的新區域或新受體基板對齊,且可將至少另一個所選裝置轉移至新位置。此過程可繼續,直至盒不具有足夠的微裝置,此時,新盒將置於預定位置中。在一種情況下,對所選裝置的轉移可基於自盒中提取的信息進行控制。在一種情況下,自盒中提取的缺陷信息可用於藉由消除缺陷數目超過閾值或所轉移缺陷的累計數目超過閾值的一組微裝置的轉移將轉移至受體基板的有缺陷的裝置的數目限制為低於閾值數目。在另一種情況下,將基於一或多個所提取參數對盒進行分倉,且每個倉可用於不同應用。在另一種情況下,基於一或多個參數具有相近性能的盒可用於一個受體基板中。可組合此處呈現的實例以提高盒轉移性能。In one embodiment, the micro device can be tested to extract information related to the micro device, including but not limited to defects, uniformity, operating conditions, and the like. The box can be placed in a predetermined position (the predetermined position can be a holder). The cassette and/or the receptor substrate can be moved for alignment. At least one selected microdevice can be transferred to the acceptor substrate. If more microdevices are available on/in the cassette, the cassette or receptor substrate can be moved to align with a new area or new receptor substrate in the same receptor substrate, and at least another selected device can be transferred to the new position. This process can continue until the cassette does not have enough microdevices, at which point the new cassette will be placed in the predetermined position. In one case, the transfer of the selected device can be controlled based on information extracted from the box. In one case, the defect information extracted from the cassette can be used to eliminate the number of defective devices that will be transferred to the acceptor substrate by removing the number of defective devices whose number of defects exceeds the threshold or the cumulative number of transferred defects exceeds the threshold. Limited to the number below the threshold. In another case, the boxes will be binned based on one or more extracted parameters, and each bin can be used for different applications. In another case, a cassette with similar performance based on one or more parameters can be used in a receptor substrate. The examples presented here can be combined to improve box transfer performance.

一個實施例包括將裝置轉移至受體基板的方法。該方法包含:One embodiment includes a method of transferring a device to a receiver substrate. The method includes:

a) 製備盒,該盒具有基板,其中微裝置定位在盒式基板的至少一個表面上,且該基板在對應於受體基板中的區域的相同大小的微裝置位置之外的區域中具有更多微裝置。a) A cassette is prepared, the cassette has a substrate, wherein the micro device is positioned on at least one surface of the cassette substrate, and the substrate has a greater amount in an area other than the location of the micro device of the same size corresponding to the area in the receptor substrate Multi-micro devices.

b) 藉由提取至少一個參數測試盒上的裝置。b) Test the device on the box by extracting at least one parameter.

c) 拾取盒或將該盒轉移至具有面向受體基板的微裝置的位置。c) Pick up the cassette or transfer the cassette to a location with a micro device facing the receptor substrate.

d) 使用測試資料來選擇盒上的一組微裝置。d) Use the test data to select a group of micro devices on the box.

e) 將盒上的所選一組微裝置與受體基板上的所選位置對齊。將該一組微裝置自盒轉移至受體基板。e) Align the selected group of microdevices on the cassette with the selected location on the receptor substrate. The set of microdevices is transferred from the cassette to the receptor substrate.

f) 過程d及e可繼續,直至盒不具有任何有用的裝置或受體基板經完全填充。f) Processes d and e can continue until the cassette does not have any useful devices or the receptor substrate is completely filled.

一個實施例包括盒,該盒具有以與受體基板中相同的間距定位在盒中的多於一種類型的微裝置。One embodiment includes a cassette with more than one type of microdevices positioned in the cassette at the same pitch as in the receptor substrate.

一個實施例包括盒,該盒具有基板,其中微裝置(直接或間接)定位在其表面上,且微裝置在任一列或行中偏斜,使得至少任一列或行的邊緣不與至少另一列或行的邊緣對齊。One embodiment includes a box having a substrate, wherein the micro-devices are positioned (directly or indirectly) on its surface, and the micro-devices are skewed in any column or row so that the edge of at least any column or row does not overlap with at least another column or row. Align the edges of the rows.

一個實施例是將裝置轉移至受體基板的方法。該方法包含將微裝置陣列轉移至基板中,其中至少任一列或行的所轉移微裝置的邊緣不與至少另一列或行的所轉移裝置的邊緣對齊。One embodiment is a method of transferring a device to a receptor substrate. The method includes transferring an array of micro devices into a substrate, wherein the edges of the transferred micro devices in at least any column or row are not aligned with the edges of the transferred devices in at least another column or row.

一個實施例包括將裝置轉移至受體基板的方法。該方法包含將裝置陣列自供體基板轉移至受體基板,其中在受體基板上與所轉移陣列的大小類似的任何區域中,至少存在具有來自供體基板的與所轉移陣列相對應的兩個不同區域的微裝置的任一列或行。One embodiment includes a method of transferring a device to a receiver substrate. The method includes transferring an array of devices from a donor substrate to an acceptor substrate, wherein in any area on the acceptor substrate that is similar in size to the transferred array, there are at least two regions corresponding to the transferred array from the donor substrate. Any column or row of micro devices in different regions.

一個實施例包括將微裝置陣列轉移至受體基板中的過程,其中微裝置在陣列的邊緣處經偏斜以消除突然變化。One embodiment includes the process of transferring the array of microdevices to the receptor substrate, where the microdevices are deflected at the edges of the array to eliminate sudden changes.

另一個實施例包括將微裝置陣列轉移至受體基板中的過程,其中在轉移之前對兩個微裝置陣列的相鄰邊緣處的微裝置的性能進行匹配。Another embodiment includes a process of transferring a micro device array to a receiver substrate, wherein the performance of the micro devices at the adjacent edges of the two micro device arrays is matched before the transfer.

另一個實施例包括將微裝置陣列轉移至受體基板中的過程,其中至少自微裝置供體基板的兩個不同區域對微裝置陣列進行填充。Another embodiment includes a process of transferring the micro device array to the acceptor substrate, wherein the micro device array is filled from at least two different areas of the micro device donor substrate.

另一個實施例包括將微裝置陣列自盒轉移至受體基板中的過程,其中將若干微裝置盒置於與受體基板的不同區域相對應的不同位置中,接著將盒與受體基板對齊,且將微裝置自盒轉移至受體基板。用於將微裝置固定在供體基板上的不同 錨固件 方案 Another embodiment includes a process of transferring the micro device array from the cassette to the receptor substrate, wherein several micro device cassettes are placed in different positions corresponding to different areas of the receptor substrate, and then the cassettes are aligned with the receptor substrate , And transfer the micro device from the box to the acceptor substrate. Different anchor solutions for fixing the microdevice on the donor substrate

將微裝置整合至系統基板中的過程涉及產生及製備供體基板,將預先選定的微裝置陣列轉移至受體基板,隨後(或同時)使微裝置與系統基板電學上或機械上鍵合。在兩個基板之間的鍵合期間,在微裝置及系統基板的對齊之前或之後施加固化劑輔助形成強鍵合。固化劑包括以下中之一者:聚醯胺、SU8、PMMA、BCB薄膜層、環氧樹脂及UV可固化黏合劑,且在以下中之一者中執行固化:電流、光、熱或機械力或化學反應。然而,用於固化的電流/電壓要求可能高於微裝置可承受的電流/電壓要求。The process of integrating microdevices into the system substrate involves generating and preparing a donor substrate, transferring a preselected array of microdevices to the acceptor substrate, and then (or simultaneously) electrically or mechanically bonding the microdevice and the system substrate. During the bonding between the two substrates, a curing agent is applied before or after the alignment of the micro device and the system substrate to assist in forming a strong bond. The curing agent includes one of the following: polyamide, SU8, PMMA, BCB film layer, epoxy resin, and UV curable adhesive, and curing is performed in one of the following: electric current, light, heat or mechanical force Or chemical reaction. However, the current/voltage requirements for curing may be higher than the current/voltage requirements that the microdevice can withstand.

為了避免損壞微裝置,需要將微裝置整合至具有增強的鍵合及導電能力的系統基板中的結構及方法。且可形成另一/替代的電流/電壓路徑以避免損壞微裝置。In order to avoid damage to the micro device, a structure and method for integrating the micro device into a system substrate with enhanced bonding and conductivity capabilities are required. And can form another/alternative current/voltage path to avoid damage to the micro device.

根據一個實施例,可提供一種鍵合結構。該鍵合結構可包括供體基板上的多個微裝置,各微裝置包括形成於微裝置的表面上的一或多個導電焊盤;且臨時材料覆蓋各微裝置或該一或多個導電焊盤的至少一部分。According to an embodiment, a bonding structure may be provided. The bonding structure may include a plurality of microdevices on the donor substrate, each microdevice including one or more conductive pads formed on the surface of the microdevice; and the temporary material covers each microdevice or the one or more conductive pads. At least part of the pad.

在一種情況下,臨時材料充當錨固件,其將該多個微裝置固持在供體基板中的殼體結構內部。In one case, the temporary material acts as an anchor, which holds the plurality of microdevices inside the housing structure in the donor substrate.

在另一情況下,微裝置的全部或部分可經臨時導電材料覆蓋,此可重導向電流穿過臨時導電材料而非微裝置,且因此避免損壞微裝置。In another case, all or part of the micro device can be covered with a temporary conductive material, which can redirect current through the temporary conductive material instead of the micro device, and thus avoid damage to the micro device.

在一種情況下,微裝置可在微裝置的各側上具有一個導電焊盤。在另一情況下,微裝置可在一側上具有一個以上導電焊盤。In one case, the micro device may have one conductive pad on each side of the micro device. In another case, the microdevice may have more than one conductive pad on one side.

圖18示出根據本發明之實施例的經由供體力元件固持多個微裝置的供體基板1802。供體基板1802可為其已轉移至上面的生長基板(其中製造或生長微裝置)或另一臨時基板。參考基於氮化鎵(GaN)的LED描述下文,然而當前描述的結構可用於具有不同材料系統的任何類型的LED。FIG. 18 shows a donor substrate 1802 holding a plurality of micro devices via a donor force element according to an embodiment of the present invention. The donor substrate 1802 may be a growth substrate (in which a micro device is manufactured or grown) or another temporary substrate that has been transferred to it. The following is described with reference to gallium nitride (GaN)-based LEDs, however the structure currently described can be used for any type of LED with different material systems.

大體而言,藉由在藍寶石基板上沈積材料的堆疊來製造基於GaN微LED。慣用GaN LED裝置包含例如藍寶石等基板、形成於基板上的n型GaN層,或緩衝層(例如GaN)、有源層/半導體層,例如多量子井(MQW)層及p型GaN層。Generally speaking, GaN-based micro LEDs are manufactured by depositing a stack of materials on a sapphire substrate. A conventional GaN LED device includes a substrate such as sapphire, an n-type GaN layer formed on the substrate, or a buffer layer (such as GaN), an active layer/semiconductor layer, such as a multiple quantum well (MQW) layer and a p-type GaN layer.

如圖18中所示出,供體基板1802上的該多個微裝置可具有半導體層的堆疊1806的頂部及底部兩者上的導電焊盤1814、1816。受體基板1808具有用於經挑選以轉移至受體基板1808的各選定微裝置的至少一個受體力元件1818。在一種情況下,受體力元件為電流/電壓可固化組件。此處,電流/電壓1810施加至選定受體力元件(例如,1818),從而致使其硬化且將微裝置固持在適當位置。在一個實例中,受體力元件可包括在可適用的電荷下形成聚合物的單體。在另一實例中,受體力元件是具有在可適用的電流/電壓下產生熱的高電阻跡線的介質,且所產生的熱使介質局部固化。As shown in FIG. 18, the plurality of microdevices on the donor substrate 1802 may have conductive pads 1814, 1816 on both the top and bottom of the stack 1806 of semiconductor layers. The receptor substrate 1808 has at least one force-receiving element 1818 for each selected microdevice selected for transfer to the receptor substrate 1808. In one case, the force receiving element is a current/voltage curable component. Here, a current/voltage 1810 is applied to the selected force-receiving element (e.g., 1818), thereby causing it to harden and holding the microdevice in place. In one example, the force-receiving element may include monomers that form a polymer under an applicable charge. In another example, the force-receiving element is a medium with high resistance traces that generate heat at an applicable current/voltage, and the generated heat locally solidifies the medium.

供體基板1802具有至少一個供體力元件1804。供體力元件1804是在電流或電壓下失去其黏合屬性的元件。此處,電壓/電流1812施加至固持用於轉移的選定裝置的供體力元件1804。在一個實例中,供體力元件是在電荷施加下分解(氧化)的聚合物。在另一實例中,供體力元件是在可適用的電流/電壓下燃燒的高電阻性跡線。The donor substrate 1802 has at least one donor force element 1804. The donor force component 1804 is a component that loses its adhesive properties under current or voltage. Here, voltage/current 1812 is applied to the donor force element 1804 holding the selected device for transfer. In one example, the donor force element is a polymer that decomposes (oxidizes) under the application of electric charge. In another example, the donor force element is a highly resistive trace that burns at an applicable current/voltage.

圖19示出根據本發明之實施例的一側上具有一個以上導電焊盤的微裝置。此處,在一個實例中,微裝置可在供體基板1902上的半導體層堆疊的底部處具有兩個導電/接觸焊盤1904、1906。受體基板1908具有一個受體力元件1918,其對應於用於經挑選以轉移至受體基板1908的各微裝置的接觸焊盤。受體力元件是電流/電壓可固化組件。此處,電流/電壓1910施加至選定受體力元件(例如,1918),從而致使其硬化且將微裝置固持在適當位置。Figure 19 shows a microdevice with more than one conductive pad on one side according to an embodiment of the present invention. Here, in one example, the microdevice may have two conductive/contact pads 1904, 1906 at the bottom of the semiconductor layer stack on the donor substrate 1902. The receptor substrate 1908 has a force-receiving element 1918, which corresponds to the contact pad for each micro device selected for transfer to the receptor substrate 1908. The force-receiving element is a current/voltage curable component. Here, a current/voltage 1910 is applied to the selected force-receiving element (e.g., 1918), thereby causing it to harden and holding the microdevice in place.

電壓/電流1910、1912可施加至選定受體力元件(例如,1918)以使其固化,從而致使其硬化且將微裝置固持在適當位置。Voltage/current 1910, 1912 can be applied to selected force-receiving elements (e.g., 1918) to cure them, thereby causing them to harden and holding the microdevices in place.

在一種情況下,微裝置可用作偏置迴路的一部分。此處,可經由供體基板1902施加電壓/電流1914,或電壓/電流1910、1912可施加至受體基板1908,其通過微裝置且經過供體基板1902或受體基板1908的任一者。In one case, the microdevice can be used as part of the bias loop. Here, voltage/current 1914 may be applied via the donor substrate 1902, or voltage/current 1910, 1912 may be applied to the acceptor substrate 1908, which passes through the microdevice and passes through either the donor substrate 1902 or the acceptor substrate 1908.

然而,固化受體力元件的電流/電壓要求可能高於微裝置可承受的電流/電壓要求。為了避免損壞微裝置,可形成另一/替代的電流/電壓路徑。在另一情況下,微裝置的部分或整個微裝置可經臨時導電材料覆蓋,此可重導向電流穿過臨時導電材料而非微裝置,且避免損壞微裝置。However, the current/voltage requirements of curing the force-receiving element may be higher than the current/voltage requirements of the microdevice. In order to avoid damage to the micro device, another/alternative current/voltage path can be formed. In another case, part or the entire micro device of the micro device can be covered with a temporary conductive material, which can redirect the current through the temporary conductive material instead of the micro device, and avoid damaging the micro device.

圖20A-20I示出根據本發明之一些實施例的經臨時導電材料部分/完全覆蓋的微裝置的實例。Figures 20A-20I illustrate examples of microdevices partially/completely covered with temporary conductive materials according to some embodiments of the present invention.

微裝置的部分或全部可經臨時導電材料覆蓋,此可重導向電流穿過臨時導電材料而非微裝置,且因此避免損壞微裝置。在一種情況下,臨時材料可為臨時導電材料。該導電材料可作為片材或跡線與供體基板上的相同導電材料或不同導電材料連接。Part or all of the micro device can be covered by a temporary conductive material, which can redirect current through the temporary conductive material instead of the micro device, and thus avoid damage to the micro device. In one case, the temporary material may be a temporary conductive material. The conductive material can be used as a sheet or trace to connect with the same conductive material or different conductive materials on the donor substrate.

在一個實施例中,微裝置可在殼體結構內部。殼體壁及微裝置之間可存在某一犧牲層。在另一實施例中,亦可存在供體基板及微裝置及導電焊盤(一種與殼體壁類似的材料)或其組合之間的鍵合材料。In one embodiment, the micro device may be inside the housing structure. There may be a sacrificial layer between the shell wall and the micro device. In another embodiment, there may also be a bonding material between the donor substrate, the micro device, and the conductive pad (a material similar to the housing wall) or a combination thereof.

在一個實施例中,臨時層亦可充當錨固件以將裝置固持在適當位置。在另一實施例中,可存在將微裝置固持至供體基板中的錨固件。錨固件可為與殼體材料相同或不同的材料。在一種情況下,殼體可幾乎延伸至微裝置的邊緣。在另一情況下,殼體壁短於微裝置。亦可能具有比微裝置高的殼體。In one embodiment, the temporary layer can also act as an anchor to hold the device in place. In another embodiment, there may be anchors that hold the microdevice into the donor substrate. The anchor can be the same or different material from the shell material. In one case, the housing can extend almost to the edge of the micro device. In another case, the housing wall is shorter than the micro device. It is also possible to have a higher housing than the micro device.

在另一情況下,臨時導電材料可經非導電材料代替。In another case, the temporary conductive material may be replaced by a non-conductive material.

對於具有導電及不導電臨時材料兩者的情況,臨時材料可在移除或釋放犧牲層之後將微裝置固持在適當位置。微裝置可轉移至另一基板。在轉移過程期間,臨時材料經移除或與殼體結構分離。分離過程可為機械(例如,推或拉)、光學、熱或化學的。For cases with both conductive and non-conductive temporary materials, the temporary material can hold the microdevice in place after removing or releasing the sacrificial layer. The micro device can be transferred to another substrate. During the transfer process, the temporary material is removed or separated from the housing structure. The separation process can be mechanical (e.g., push or pull), optical, thermal, or chemical.

微裝置可在轉移至受體基板之前經臨時材料/層覆蓋,或其可在轉移至受體基板之後經覆蓋。在一種情況下,殼體材料塗覆在基板上在微裝置之間。其可鍵合至供體基板,且接著殼體材料可固化。在另一情況下,可存在可電耦合至微裝置或臨時層的供體基板的表面上使用的不同材料。在另一情況下,殼體材料塗覆在供體基板的頂部上。接著,微裝置鍵合併推動至材料中,且接著材料固化。殼體材料可為環氧樹脂、聚合物或其他類型的材料。在一種情況下,BCB或聚醯胺可用作殼體材料。The microdevice can be covered with a temporary material/layer before being transferred to the receptor substrate, or it can be covered after being transferred to the receptor substrate. In one case, the housing material is coated on the substrate between the microdevices. It can be bonded to the donor substrate, and then the shell material can be cured. In another case, there may be different materials used on the surface of the donor substrate that can be electrically coupled to the microdevice or temporary layer. In another case, the shell material is coated on top of the donor substrate. Then, the microdevices are bonded and pushed into the material, and then the material is cured. The housing material can be epoxy, polymer or other types of materials. In one case, BCB or polyamide can be used as the shell material.

臨時材料可圖案化以在供體基板的頂部上形成開口。此開口可促進例如移除犧牲層等某一處理以使微裝置與殼體側壁分離。The temporary material can be patterned to form an opening on the top of the donor substrate. This opening can facilitate a certain process such as removing the sacrificial layer to separate the micro device from the side wall of the housing.

圖20A1-20A2示出根據本發明之一些實施例的突顯臨時導電材料覆蓋微裝置的表面的實例。20A1-20A2 show examples of highlighting the temporary conductive material covering the surface of the micro device according to some embodiments of the present invention.

參看圖20A1,此處,微裝置在殼體結構2006a內部。殼體結構/壁2006a及微裝置2016之間可存在某一犧牲層。在一種情況下,犧牲層2008a可為圖案化犧牲層以覆蓋至殼體的長度。在另一情況下,犧牲層2008b可設置至微裝置的長度。供體基板及微裝置之間可為鍵合材料2010a、導電焊盤2004a,或與殼體壁類似的材料或其組合。且錨固件2014a可將微裝置固持在供體基板中。錨固件可為與殼體材料相同或不同的材料。臨時導電材料2002a可覆蓋包含導電焊盤2004a及殼體2006a的微裝置2016的表面。此結構促進轉移微裝置,從而檢查系統基板上有缺陷的微裝置。Referring to FIG. 20A1, here, the micro device is inside the housing structure 2006a. There may be a sacrificial layer between the housing structure/wall 2006a and the micro device 2016. In one case, the sacrificial layer 2008a may be a patterned sacrificial layer to cover the length of the casing. In another case, the sacrificial layer 2008b can be set to the length of the micro device. Between the donor substrate and the micro device may be a bonding material 2010a, a conductive pad 2004a, or a material similar to the shell wall or a combination thereof. And the anchor 2014a can hold the micro device in the donor substrate. The anchor can be the same or different material from the shell material. The temporary conductive material 2002a can cover the surface of the micro device 2016 including the conductive pad 2004a and the housing 2006a. This structure facilitates the transfer of micro devices, thereby inspecting defective micro devices on the system substrate.

在另一實施例中,殼體壁可幾乎延伸至微裝置的邊緣。In another embodiment, the housing wall can extend almost to the edge of the micro device.

圖20A2展示根據本發明之實施例的裝置(供體)基板上的微裝置的橫截面視圖,其中臨時導電材料不覆蓋微裝置的整個表面。此處,殼體200b及犧牲層2008b可幾乎延伸至微裝置2016的邊緣。臨時導電材料2002a可包含導電焊盤2004a。供體基板或供體基板之間的導電層上的跡線可將導電材料耦合至電流/電壓源。20A2 shows a cross-sectional view of a micro device on a device (donor) substrate according to an embodiment of the present invention, where the temporary conductive material does not cover the entire surface of the micro device. Here, the housing 200b and the sacrificial layer 2008b can almost extend to the edge of the micro device 2016. The temporary conductive material 2002a may include a conductive pad 2004a. Traces on the donor substrate or the conductive layer between the donor substrates can couple the conductive material to a current/voltage source.

圖20B1展示根據本發明之實施例的裝置(供體)基板上的微裝置的橫截面視圖,其中臨時導電材料覆蓋微裝置的導電焊盤的一部分。此處,例如2004c等導電焊盤是圖案化導電焊盤,且犧牲層2008c亦為沈積在微裝置及導電焊盤周圍的圖案化犧牲層。臨時導電材料2002a可覆蓋包含導電焊盤2004a及殼體2006a的一部分的微裝置2016的表面。在另一情況下,犧牲層可僅延伸至微裝置的一部分。臨時導電材料2002a可耦合至電流源/電壓以促進固化或解鍵合。供體基板或供體基板之間的導電層上的跡線可將導電材料耦合至電流/電壓源。20B1 shows a cross-sectional view of a micro device on a device (donor) substrate according to an embodiment of the present invention, in which a temporary conductive material covers a part of the conductive pad of the micro device. Here, the conductive pad such as 2004c is a patterned conductive pad, and the sacrificial layer 2008c is also a patterned sacrificial layer deposited around the micro device and the conductive pad. The temporary conductive material 2002a may cover the surface of the micro device 2016 including the conductive pad 2004a and a part of the housing 2006a. In another case, the sacrificial layer may only extend to a part of the micro device. The temporary conductive material 2002a can be coupled to a current source/voltage to promote curing or debonding. Traces on the donor substrate or the conductive layer between the donor substrates can couple the conductive material to a current/voltage source.

圖20B2展示根據本發明之實施例的裝置(供體)基板上的微裝置的橫截面視圖,其中臨時導電材料不覆蓋微裝置的整個表面。此處,殼體2006b可幾乎在微裝置的邊緣處延伸。臨時導電材料2002a可包含導電焊盤2004b的一部分。Figure 20B2 shows a cross-sectional view of a microdevice on a device (donor) substrate according to an embodiment of the present invention, where the temporary conductive material does not cover the entire surface of the microdevice. Here, the housing 2006b may extend almost at the edge of the micro device. The temporary conductive material 2002a may include a part of the conductive pad 2004b.

圖20C1示出形成導電焊盤2004c、2006c之間的電流/電壓路徑的臨時導電材料的實例,其中導電焊盤可在微裝置的頂部及底部或相同側上。此處,臨時導電材料2002c亦覆蓋微裝置,此促進將微裝置選擇性地轉移至系統基板。此結構幫助重導向電流穿過臨時導電材料,而非微裝置,且因此避免損壞微裝置。Figure 20C1 shows an example of temporary conductive material that forms a current/voltage path between conductive pads 2004c, 2006c, where the conductive pads can be on the top and bottom or the same side of the microdevice. Here, the temporary conductive material 2002c also covers the micro device, which facilitates the selective transfer of the micro device to the system substrate. This structure helps to redirect the current through the temporary conductive material instead of the micro device, and thus avoid damage to the micro device.

圖20C2示出其中供體基板及微裝置之間不存在鍵合材料的實例。臨時導電材料在導電焊盤2004c、2006c之間形成電流/電壓路徑,其中導電焊盤可在微裝置的頂部及底部或相同側上。臨時導電材料2002c亦覆蓋微裝置的表面中之一者。此處,臨時導電材料充當至微裝置的鍵合材料。FIG. 20C2 shows an example in which there is no bonding material between the donor substrate and the micro device. The temporary conductive material forms a current/voltage path between the conductive pads 2004c, 2006c, where the conductive pads can be on the top and bottom or the same side of the microdevice. The temporary conductive material 2002c also covers one of the surfaces of the micro device. Here, the temporary conductive material serves as a bonding material to the microdevice.

圖20D示出當臨時導電材料2002d及導電焊盤不覆蓋微裝置的整個表面時在微裝置的導電焊盤2004d、2006d之間形成電流/電壓路徑的臨時導電材料2002d的另一實例。此處,例如2004d等導電焊盤是圖案化導電焊盤,且臨時材料沈積於圖案化導電焊盤上。20D shows another example of the temporary conductive material 2002d that forms a current/voltage path between the conductive pads 2004d, 2006d of the micro device when the temporary conductive material 2002d and the conductive pad do not cover the entire surface of the micro device. Here, conductive pads such as 2004d are patterned conductive pads, and temporary materials are deposited on the patterned conductive pads.

圖20E示出另一實例,其中臨時導電材料2002e在微裝置的表面上形成用於一個以上焊盤的電流/電壓路徑。此處,導電材料將導電焊盤短接在微裝置的表面上。導電材料覆蓋焊盤2004e、2006e或連接至焊盤2008e、2010e。且(直接或間接)在供體基板上的跡線可將一些導電材料連接在一起。此處,導電材料可根據電壓及電流要求而部分或完全覆蓋導電焊盤。Figure 20E shows another example in which the temporary conductive material 2002e forms a current/voltage path for more than one pad on the surface of the microdevice. Here, the conductive material shorts the conductive pad on the surface of the micro device. The conductive material covers the pads 2004e, 2006e or is connected to the pads 2008e, 2010e. And (directly or indirectly) traces on the donor substrate can connect some conductive materials together. Here, the conductive material may partially or completely cover the conductive pad according to the voltage and current requirements.

圖20F示出未藉由導電層2002f短接在一起的表面上的導電焊盤2008f、2010f的實例。此處,焊盤可完全或部分經導電層2002f覆蓋,如所示。且供體基板及微裝置之間不存在鍵合材料。臨時導電材料充當用於微裝置的鍵合材料。FIG. 20F shows an example of conductive pads 2008f, 2010f on the surfaces that are not shorted together by the conductive layer 2002f. Here, the pad may be completely or partially covered by the conductive layer 2002f, as shown. And there is no bonding material between the donor substrate and the micro device. Temporary conductive materials serve as bonding materials for microdevices.

圖20G示出另一實例,其中臨時導電材料2002g在微裝置的表面上形成用於一個以上焊盤的電流/電壓路徑。此處,導電材料在面朝供體基板的表面及遠離供體基板的面之間形成通路。且在一種情況下,其將焊盤短接在表面上。此處,導電材料覆蓋導電焊盤2012g、2014g或連接至導電焊盤2008g、2010g。Figure 20G shows another example in which a temporary conductive material 2002g forms a current/voltage path for more than one pad on the surface of the microdevice. Here, the conductive material forms a path between the surface facing the donor substrate and the surface away from the donor substrate. And in one case, it shorted the pad to the surface. Here, the conductive material covers the conductive pads 2012g, 2014g or is connected to the conductive pads 2008g, 2010g.

圖20H示出未藉由導電層2002h短接在一起的表面上的導電焊盤2008h、2010h的實例。此處,導電焊盤2012h、2014h可經完全覆蓋,或導電焊盤2008h、2010h可經部分覆蓋,如所示。在所有情況下,導電材料2004h可將遠離供體基板的表面直接耦合至供體基板處的導電層。在另一情況下,其將遠離供體基板的表面間接耦合至供體基板處的導電層2006h。FIG. 20H shows an example of conductive pads 2008h, 2010h on the surfaces that are not shorted together by the conductive layer 2002h. Here, the conductive pads 2012h, 2014h may be completely covered, or the conductive pads 2008h, 2010h may be partially covered, as shown. In all cases, the conductive material 2004h can directly couple the surface away from the donor substrate to the conductive layer at the donor substrate. In another case, it indirectly couples the surface away from the donor substrate to the conductive layer 2006h at the donor substrate.

圖20I1及圖20I2示出其中遠離供體基板的表面上不存在導電焊盤的實例。此處,微裝置的遠離供體基板的表面上不存在導電焊盤。在此情況下,臨時材料2002h在移除犧牲層2006a、2008a之後將裝置固持在適當位置。在微裝置轉移至另一基板中之後移除臨時材料或使其與殼體分離,使得自供體基板釋放微裝置。20I1 and FIG. 20I2 show examples in which there are no conductive pads on the surface away from the donor substrate. Here, there are no conductive pads on the surface of the micro device away from the donor substrate. In this case, the temporary material 2002h holds the device in place after removing the sacrificial layers 2006a, 2008a. The temporary material is removed or separated from the housing after the microdevice is transferred to another substrate, so that the microdevice is released from the donor substrate.

圖21A-21D示出根據本發明之實施例的以臨時材料(導電或不導電)構造的不同微裝置的俯視圖。臨時材料可圖案化以在供體基板的頂部上形成開口。此開口可促進例如移除犧牲層等某一處理以使微裝置與殼體側壁分離。此處理可在微裝置轉移至受體基板中之前或之後進行。在一種情況下,可使用化學蝕刻來移除(或修改)犧牲層。在另一情況下,電磁信號(例如微波或光)可用於藉由移除/修改犧牲層而釋放裝置。此處,臨時層亦可充當錨固件以將裝置固持在適當位置。若臨時層不輔助鍵合過程,則其不需要連接(或覆蓋)微裝置上的焊盤。21A-21D show top views of different micro-devices constructed with temporary materials (conductive or non-conductive) according to an embodiment of the present invention. The temporary material can be patterned to form an opening on the top of the donor substrate. This opening can facilitate a certain process such as removing the sacrificial layer to separate the micro device from the side wall of the housing. This treatment can be performed before or after the microdevice is transferred to the acceptor substrate. In one case, chemical etching can be used to remove (or modify) the sacrificial layer. In another case, electromagnetic signals (such as microwaves or light) can be used to release the device by removing/modifying the sacrificial layer. Here, the temporary layer can also act as an anchor to hold the device in place. If the temporary layer does not assist the bonding process, it does not need to connect (or cover) the pads on the micro device.

圖21A示出根據本發明之實施例的圖20A的示例性俯視圖表示。此處,供體基板2104上的微裝置2102具有由臨時導電材料2108及犧牲層2110環繞的導電焊盤2106。此處,供體基板的頂部上的導電材料的跡線可作為網、列或行連接。供體基板的頂部上可存在接入點以經由跡線使臨時層偏置。Figure 21A shows an exemplary top view representation of Figure 20A according to an embodiment of the invention. Here, the micro device 2102 on the donor substrate 2104 has a conductive pad 2106 surrounded by a temporary conductive material 2108 and a sacrificial layer 2110. Here, the traces of conductive material on the top of the donor substrate can be connected as nets, columns or rows. There may be access points on top of the donor substrate to bias the temporary layer via traces.

圖21B1示出圖20B的示例性俯視圖表示。此處,供體基板的頂部上的跡線可作為網、列或行連接。供體基板的頂部上可存在接入點以經由跡線使臨時層偏置。供體基板2104上的微裝置2102具有由犧牲層2110環繞的圖案化導電焊盤2106-1。供體基板的頂部上的臨時導電材料的跡線可作為網、列或行連接。供體基板的頂部上可存在接入點以經由跡線使臨時層偏置。Figure 21B1 shows an exemplary top view representation of Figure 20B. Here, the traces on the top of the donor substrate can be connected as a net, column or row. There may be access points on top of the donor substrate to bias the temporary layer via traces. The micro device 2102 on the donor substrate 2104 has a patterned conductive pad 2106-1 surrounded by a sacrificial layer 2110. The traces of temporary conductive material on the top of the donor substrate can be connected as a net, column or row. There may be access points on top of the donor substrate to bias the temporary layer via traces.

圖21B2示出其中臨時材料不連接至焊盤的實例。供體基板2104上的微裝置2102具有由犧牲層2110環繞的導電焊盤2106-2,且供體基板的頂部上的臨時導電材料的跡線可作為網、列或行連接。此可用於本發明中的其他實施例或相關結構。FIG. 21B2 shows an example in which the temporary material is not connected to the pad. The micro device 2102 on the donor substrate 2104 has a conductive pad 2106-2 surrounded by a sacrificial layer 2110, and the traces of temporary conductive material on the top of the donor substrate can be connected as a mesh, column, or row. This can be used in other embodiments or related structures in the present invention.

圖21C示出圖20E的示例性俯視圖表示,其中微裝置2102具有一個以上焊盤(2106-3、2106-4)在由臨時導電材料2108及犧牲層2110環繞的供體基板2104上。此處,供體基板2104的頂部上的跡線可作為網、列或行連接。且各焊盤的跡線可在單獨連接群組中處理。供體基板的頂部上可存在接入點以經由跡線使臨時層偏置。FIG. 21C shows the exemplary top view representation of FIG. 20E in which the microdevice 2102 has more than one pad (2106-3, 2106-4) on the donor substrate 2104 surrounded by the temporary conductive material 2108 and the sacrificial layer 2110. Here, the traces on the top of the donor substrate 2104 can be connected as a net, column or row. And the traces of each pad can be processed in a separate connection group. There may be access points on top of the donor substrate to bias the temporary layer via traces.

圖21D示出圖20F的示例性俯視圖表示,其中微裝置2102具有一個以上的圖案化導電焊盤(2106-3、2106-4)在由臨時導電材料2108及犧牲層2110環繞的供體基板2104上。此處,供體基板2104的頂部上的跡線可作為網、列或行連接。且各焊盤的跡線可在單獨連接群組中處理。供體基板的頂部上可存在接入點以經由跡線使臨時層偏置。經由可斷裂錨固件自供體基板釋放微裝置 21D shows an exemplary top view representation of FIG. 20F, in which the microdevice 2102 has more than one patterned conductive pads (2106-3, 2106-4) on a donor substrate 2104 surrounded by a temporary conductive material 2108 and a sacrificial layer 2110 on. Here, the traces on the top of the donor substrate 2104 can be connected as a net, column or row. And the traces of each pad can be processed in a separate connection group. There may be access points on top of the donor substrate to bias the temporary layer via traces. Release of microdevices from donor substrate via breakable anchor

本發明之一些實施例示出微裝置可具備不同臨時錨固件,藉此在剝離裝置之後,臨時錨固件將裝置固持至供體基板且可選擇性地朝向或遠離供體基板的表面移動。因此,當供體基板變得接近受體基板時,一些選定的裝置接近受體基板或與受體基板連接,而其他微裝置仍距受體基板顯著距離。在微裝置藉由推力或拉力的任一者鍵合至受體基板中的焊盤之後或期間,臨時錨固件釋放微裝置。錨固件可在朝向彼此推動供體基板及受體基板或藉由受體基板拉動微裝置期間在壓力下斷裂。微裝置可永久地保持在受體基板上。錨固件可在微裝置的一側上或微裝置的頂部(或底部)處。Some embodiments of the present invention show that the micro device can be provided with different temporary anchors, whereby after peeling off the device, the temporary anchors hold the device to the donor substrate and can selectively move toward or away from the surface of the donor substrate. Therefore, when the donor substrate becomes close to the acceptor substrate, some selected devices are close to or connected to the acceptor substrate, while other micro devices are still at a significant distance from the acceptor substrate. After or during the micro device is bonded to the pad in the acceptor substrate by either pushing or pulling force, the temporary anchor releases the micro device. The anchor can break under pressure during pushing the donor substrate and the acceptor substrate toward each other or pulling the micro device by the acceptor substrate. The microdevice can be permanently held on the receptor substrate. The anchor can be on one side of the microdevice or at the top (or bottom) of the microdevice.

圖22A-22C示出根據本發明之實施例的供體基板上的微裝置,其中微裝置可選擇性地朝向或遠離供體基板的表面移動。22A-22C show a microdevice on a donor substrate according to an embodiment of the present invention, wherein the microdevice can be selectively moved toward or away from the surface of the donor substrate.

參看圖22A,根據一個實施例,堆疊包括形成在微裝置(例如供體基板2214的頂部上的2210、2212)下方的電極2204、2206及電活性聚合物(EPE)層2208。供體基板及/或受體基板移動使得供體基板中的一些微裝置變得與受體基板中的一些位置對齊。在一種情況下,將電壓施加至堆疊致使該堆疊變薄,且因此使裝置更接近受體基板的表面。Referring to FIG. 22A, according to one embodiment, the stack includes electrodes 2204, 2206 and an electroactive polymer (EPE) layer 2208 formed under the microdevice (eg, 2210, 2212 on top of the donor substrate 2214). The movement of the donor substrate and/or the acceptor substrate causes some microdevices in the donor substrate to become aligned with some positions in the acceptor substrate. In one case, applying a voltage to the stack causes the stack to become thinner and thus brings the device closer to the surface of the receptor substrate.

參看圖22B,根據另一實施例,堆疊包括在微裝置(例如供體基板2214的頂部上的2210、2212)下方形成的電極2208、2206及電活性聚合物(EPE)層2222。在一種情況下,電極可設置在EPE層周圍。EPE層可按照要求而為薄或厚的。當電壓施加至包括電極及EPE層的堆疊時,堆疊變厚。在一種情況下,殼體及錨固件亦可將微裝置2210、2212固持在適當位置。Referring to FIG. 22B, according to another embodiment, the stack includes electrodes 2208, 2206 and an electroactive polymer (EPE) layer 2222 formed under the microdevice (eg, 2210, 2212 on top of the donor substrate 2214). In one case, the electrodes can be arranged around the EPE layer. The EPE layer can be thin or thick as required. When voltage is applied to the stack including the electrodes and the EPE layer, the stack becomes thicker. In one case, the housing and anchors can also hold the micro-devices 2210 and 2212 in place.

圖22C示出另一實例,其中堆疊的電極及EPE 2222、2220的頂部上的微裝置2210、2212結構經殼體結構2226環繞。此外,錨固件2234將微裝置2210、2212固持在殼體結構2226內部。在另一情況下,鍵合層可將微裝置固持在堆疊的EPE的頂部上。殼體可具有不同形狀。在一種情況下,殼體可與裝置形狀匹配。殼體側壁可短於微裝置高度。殼體側壁可在轉移循環之前連接至微裝置以為微裝置的不同後處理提供支持。FIG. 22C shows another example where the stacked electrodes and the micro-device 2210, 2212 structure on top of the EPE 2222, 2220 are surrounded by a housing structure 2226. In addition, the anchor 2234 holds the micro devices 2210 and 2212 inside the housing structure 2226. In another case, the bonding layer can hold the microdevice on top of the stacked EPE. The housing can have different shapes. In one case, the housing can match the shape of the device. The side wall of the housing can be shorter than the height of the micro device. The side wall of the housing can be connected to the micro device before the transfer cycle to provide support for different post-processing of the micro device.

在微裝置2210、2212自供體基板2214轉移至受體基板期間,EPE堆疊2222向前推動微裝置2210。該推力釋放錨固件2234,且微裝置可放置在受體基板的表面上。During the transfer of the microdevices 2210 and 2212 from the donor substrate 2214 to the acceptor substrate, the EPE stack 2222 pushes the microdevice 2210 forward. This pushing force releases the anchor 2234, and the microdevice can be placed on the surface of the receptor substrate.

圖23A-23B示出供體基板上的微裝置的另一實施例,其中微裝置可選擇性地朝向或遠離供體基板的表面移動。Figures 23A-23B show another embodiment of a microdevice on a donor substrate, wherein the microdevice can be selectively moved toward or away from the surface of the donor substrate.

在圖23A中,根據另一實施例,在供體基板2320的頂部上分別在微裝置2312、2314、2318下方形成具有不同熱膨脹係數的不同材料2304、2308、2310的堆疊。當堆疊2308的溫度改變時,堆疊2308變得扭曲且推動裝置2314更遠離供體基板的表面。在一種情況下,施加電流穿過堆疊會改變溫度。此處,電極2302、2306可輸送電流。在另一情況下,作為堆疊的一部分的光吸收層將光轉換為熱能。在另一情況下,堆疊可諧振至例如微波或超聲波等特定信號頻率。此諧振可增加溫度或直接使堆疊變形。In FIG. 23A, according to another embodiment, a stack of different materials 2304, 2308, 2310 with different thermal expansion coefficients is formed on the top of the donor substrate 2320 under the microdevices 2312, 2314, 2318, respectively. When the temperature of the stack 2308 changes, the stack 2308 becomes twisted and pushes the device 2314 further away from the surface of the donor substrate. In one case, applying current through the stack changes the temperature. Here, the electrodes 2302, 2306 can carry current. In another case, the light absorbing layer that is part of the stack converts light into thermal energy. In another case, the stack can resonate to a specific signal frequency such as microwave or ultrasonic. This resonance can increase the temperature or directly deform the stack.

圖23B示出另一實例,其中堆疊層2304、2308、2310的頂部上的微裝置2312、2314、2318結構由殼體2322環繞。此外,錨固件2332、2326將裝置2312、2314及2318固持在殼體結構內部。錨固件可連接至微裝置或殼體。在裝置2314自供體基板2320轉移至受體基板期間,堆疊2308向前推動微裝置2314。該推力釋放錨固件2326,且微裝置2314可放置在受體基板的表面上。FIG. 23B shows another example in which the structure of the micro devices 2312, 2314, 2318 on the top of the stacked layers 2304, 2308, 2310 is surrounded by a housing 2322. In addition, the anchors 2332, 2326 hold the devices 2312, 2314, and 2318 inside the housing structure. The anchor can be connected to the micro device or the housing. During the transfer of the device 2314 from the donor substrate 2320 to the acceptor substrate, the stack 2308 pushes the micro device 2314 forward. This pushing force releases the anchor 2326, and the microdevice 2314 can be placed on the surface of the receptor substrate.

圖24示出根據本發明之實施例的供體基板上的微裝置的另一實例,其中微裝置可選擇性地朝向或遠離供體基板的表面移動。Fig. 24 shows another example of a micro device on a donor substrate according to an embodiment of the present invention, wherein the micro device can be selectively moved toward or away from the surface of the donor substrate.

此處,堆疊層2404的頂部上的微裝置2410、2414、2418結構由殼體2422環繞。此外,錨固件2426、2428將裝置2410、2414及2418固持在殼體結構內部。在裝置2414自供體基板轉移至受體基板期間,電活性聚合物層變為氣體2456,且由該改變產生的壓力向前推動微裝置2414。該推/拉力釋放錨固件2426,且微裝置2414可放置在受體基板的表面上。熱、光學、電或化學力可使層2404改變為氣體。在一種情況下,吸收層2458可吸收光且加熱層2404-1且產生向前推動微裝置的氣體壓力。微裝置盒結構 Here, the structure of the micro devices 2410, 2414, 2418 on the top of the stacked layer 2404 is surrounded by the housing 2422. In addition, anchors 2426, 2428 hold devices 2410, 2414, and 2418 inside the housing structure. During the transfer of the device 2414 from the donor substrate to the acceptor substrate, the electroactive polymer layer becomes a gas 2456, and the pressure generated by this change pushes the microdevice 2414 forward. The push/pull force releases the anchor 2426, and the microdevice 2414 can be placed on the surface of the receptor substrate. Thermal, optical, electrical, or chemical forces can change layer 2404 into a gas. In one case, the absorption layer 2458 can absorb light and heat the layer 2404-1 and generate gas pressure that pushes the microdevice forward. Micro device box structure

本發明之一些實施例亦揭示將整體式微裝置陣列整合至系統基板中或將微裝置陣列選擇性地轉移至系統基板的方法。Some embodiments of the present invention also disclose methods for integrating the integrated micro device array into the system substrate or selectively transferring the micro device array to the system substrate.

根據一個實施例,可提供一種將微裝置整合在背板上的方法,包括:提供包括一或多個微裝置的微裝置基板;藉由連接微裝置上的焊盤及背板上的對應焊盤將一組選擇性微裝置自基板鍵合至背板;以及藉由分離微裝置基板在背板上留下鍵合的選擇性微裝置組。According to one embodiment, a method for integrating a micro device on a backplane can be provided, which includes: providing a micro device substrate including one or more micro devices; by connecting the pads on the micro device and the corresponding solder on the backplane The disk bonds a group of selective micro-devices from the substrate to the back plate; and leaves the bonded selective micro-device group on the back plate by separating the micro-device substrate.

在一個實施例中,可在微裝置基板上產生微裝置陣列,其中該微裝置可藉由蝕刻一或多個平面層來產生。In one embodiment, a micro device array can be produced on a micro device substrate, where the micro device can be produced by etching one or more planar layers.

在另一實施例中,一或多個平坦化層可形成於微裝置基板上且藉由溫度、光或其他源固化。In another embodiment, one or more planarization layers may be formed on the microdevice substrate and cured by temperature, light or other sources.

在一個實施例中,可提供中間基板,其中,在一種情況下,一或多個鍵合層可形成於中間基板上或平坦化層上。In one embodiment, an intermediate substrate may be provided, wherein, in one case, one or more bonding layers may be formed on the intermediate substrate or on the planarization layer.

在另一實施例中,可藉由雷射或化學剝離移除微裝置基板。In another embodiment, the micro device substrate can be removed by laser or chemical peeling.

在一個實施例中,緩衝層中可存在使微裝置連接至平坦化層的開口。在一種情況下,電極可設置在平坦化層的頂部或底部上。In one embodiment, there may be an opening in the buffer layer that connects the micro device to the planarization layer. In one case, the electrode may be provided on the top or bottom of the planarization layer.

在另一實施例中,在移除微裝置基板之後,可發生額外製程,例如移除額外共同層,或薄化平坦化層及/或微裝置。In another embodiment, after removing the micro device substrate, additional processes may occur, such as removing an additional common layer, or thinning the planarization layer and/or the micro device.

在一種情況下,較多焊盤可添加至微裝置。焊盤可為導電的,或純粹用於鍵合至系統基板。在一種情況下,緩衝層可將至少一個微裝置連接至測試焊盤。測試焊盤可用於使微裝置偏置且測試其功能性。可在晶片層級或中間(盒)層級進行測試。在移除過多層之後在中間層級處可接近焊盤。In one case, more pads can be added to the micro device. The pads can be conductive or used purely for bonding to the system substrate. In one case, the buffer layer may connect at least one micro device to the test pad. The test pad can be used to bias the microdevice and test its functionality. Testing can be performed at the wafer level or at the intermediate (box) level. After the multiple layers are removed, the pads are accessible at the intermediate level.

在一種情況下,微裝置可在頂側處具有一個以上觸點,緩衝層可經圖案化以將微裝置中的至少一個的觸點連接至測試焊盤。In one case, the micro device may have more than one contact at the top side, and the buffer layer may be patterned to connect the contact of at least one of the micro devices to the test pad.

在一個實施例中,可提供背板。在一種情況下,背板可具有電晶體及供像素電路驅動微裝置的其他元件。在另一情況下,背板可為不具有組件的基板。In one embodiment, a back plate may be provided. In one case, the backplane may have transistors and other elements for the pixel circuit to drive the micro device. In another case, the backplane may be a substrate without components.

在一個實施例中,一或多個焊盤可設置在背板上以用於鍵合過程。在一種情況下,背板上或微裝置上的焊盤可形成拉出微裝置的力。In one embodiment, one or more pads may be provided on the backplane for the bonding process. In one case, the pads on the backplane or on the microdevice can create a force to pull out the microdevice.

在微裝置轉移至背板之後,有可能偵測微裝置的位置/定位,且調整其他層的圖案化以與轉移過程中的對齊匹配。在一種情況下,不同構件可用於偵測微裝置的位置,例如相機或探針尖端。在另一情況下,轉移設置中的偏移可用於識別系統基板上微裝置的位置的未對齊。在又一情況中,亦可基於微裝置的位置調整彩色濾波器或轉換層。在一種情況下,可在微裝置位置中引發一些隨機偏移來減小光學偽影。After the micro device is transferred to the backplane, it is possible to detect the position/position of the micro device and adjust the patterning of other layers to match the alignment during the transfer process. In one case, different components can be used to detect the position of the micro device, such as a camera or a probe tip. In another case, the offset in the transfer setting can be used to identify the misalignment of the position of the micro device on the system substrate. In another case, the color filter or conversion layer can also be adjusted based on the position of the micro device. In one case, some random shifts in the microdevice position can be induced to reduce optical artifacts.

在一個實施例中,關於微裝置的圖案可經修改(例如,將微裝置耦合至信號的電極、例如彩色濾波器或顏色轉換等功能可調諧層、鈍化/平坦化層中打開的通孔,或背板層)。In one embodiment, the pattern of the microdevice can be modified (e.g., electrodes that couple the microdevice to a signal, a functionally tunable layer such as a color filter or color conversion, a through hole opened in the passivation/planarization layer, Or backplane layer).

在一種情況下,可基於微裝置的位置修改電極的位置/形狀。在另一情況下,可存在位置或長度可基於微裝置的位置修改的各電極的一些延伸。In one case, the position/shape of the electrode can be modified based on the position of the microdevice. In another case, there may be some extensions of each electrode whose position or length may be modified based on the position of the microdevice.

圖25A示出根據本發明之一個實施例的微裝置基板上的微裝置陣列的橫截面視圖。此處,提供微裝置基板2502。微裝置陣列2504可在微裝置基板2502上產生。在一種情況下,微裝置可為微LED。在另一情況下,微裝置可為通常以平面批次製造的任何微裝置,包含LED、OLED、感測器、固態裝置、整合電路、MEMS及/或其他電子組件。Fig. 25A shows a cross-sectional view of a micro device array on a micro device substrate according to an embodiment of the present invention. Here, a micro device substrate 2502 is provided. The micro device array 2504 can be produced on the micro device substrate 2502. In one case, the micro device may be a micro LED. In another case, the micro device can be any micro device that is usually manufactured in a flat batch, including LEDs, OLEDs, sensors, solid state devices, integrated circuits, MEMS and/or other electronic components.

在一種情況下,一或多個平面有源層可形成於基板上。平面有源層可包括第一底部導電層、功能層(例如,發光層)及第二頂部導電層。微裝置可藉由蝕刻平面有源層來產生。在一種情況下,蝕刻可一直到達微裝置基板。在另一情況下,平面層上可存在部分蝕刻以在微裝置基板的表面上留下一些。可在形成微裝置之前或之後沈積及圖案化其他層。In one case, one or more planar active layers may be formed on the substrate. The planar active layer may include a first bottom conductive layer, a functional layer (for example, a light emitting layer), and a second top conductive layer. Microdevices can be produced by etching a planar active layer. In one case, the etching can reach the microdevice substrate all the way. In another case, there may be partial etching on the planar layer to leave some on the surface of the microdevice substrate. Other layers can be deposited and patterned before or after forming the microdevice.

圖25B示出根據本發明之一個實施例的具有緩衝層的微裝置陣列的橫截面視圖。此處,緩衝層2506可形成於微裝置陣列2504上。緩衝層2506可在微裝置基板2502的表面上方延伸。緩衝層可為導電的。在一種情況下,緩衝層可為圖案化緩衝層。在另一情況下,緩衝層可為共同緩衝層。在一個實施例中,緩衝層2506可包含可經圖案化或用作共同電極的電極。FIG. 25B shows a cross-sectional view of a micro device array with a buffer layer according to an embodiment of the present invention. Here, the buffer layer 2506 may be formed on the micro device array 2504. The buffer layer 2506 may extend over the surface of the micro device substrate 2502. The buffer layer may be conductive. In one case, the buffer layer may be a patterned buffer layer. In another case, the buffer layer may be a common buffer layer. In one embodiment, the buffer layer 2506 may include electrodes that may be patterned or used as common electrodes.

圖25C示出根據本發明之一個實施例的具有平坦化層的微裝置陣列的橫截面視圖。平坦化層2508可沈積於微裝置基板2502的頂部上在各微裝置2504周圍。平坦化層2508可用於微裝置的隔離及/或保護。平坦化層可包括例如聚醯胺、SU8或BCB等聚合物。平坦化層可固化。在一種情況下,平坦化層可經由溫度、光或某一其他源固化。FIG. 25C shows a cross-sectional view of a micro device array with a planarization layer according to an embodiment of the present invention. A planarization layer 2508 can be deposited on top of the micro device substrate 2502 around each micro device 2504. The planarization layer 2508 can be used for isolation and/or protection of micro devices. The planarization layer may include polymers such as polyamide, SU8, or BCB. The planarization layer can be cured. In one case, the planarization layer can be cured via temperature, light, or some other source.

圖25D示出根據本發明之一個實施例的鍵合至中間基板的微裝置陣列的橫截面視圖。在一個實施例中,一或多個鍵合層2512可形成於平坦化層2508上。鍵合層2512可為與平坦化層相同或不同的層。在另一情況下,鍵合層可形成於中間基板(盒)2510的頂部上。鍵合層可提供例如靜電、化學、物理或熱等一或多種不同的力。鍵合層2512可接觸平坦化層2508。為了在平坦化層及鍵合層之間形成觸點,藉由壓力、溫度、光或其他源固化鍵合層。FIG. 25D shows a cross-sectional view of a micro device array bonded to an intermediate substrate according to an embodiment of the present invention. In one embodiment, one or more bonding layers 2512 may be formed on the planarization layer 2508. The bonding layer 2512 may be the same or different from the planarization layer. In another case, a bonding layer may be formed on the top of the intermediate substrate (box) 2510. The bonding layer can provide one or more different forces such as electrostatic, chemical, physical, or thermal. The bonding layer 2512 may contact the planarization layer 2508. In order to form a contact between the planarization layer and the bonding layer, the bonding layer is cured by pressure, temperature, light or other sources.

在一個實施例中,在鍵合層上方形成中間基板2510之後,可移除微裝置基板2502,此可藉由雷射或化學剝離來進行。In one embodiment, after the intermediate substrate 2510 is formed over the bonding layer, the micro device substrate 2502 can be removed, which can be performed by laser or chemical peeling.

在一種情況下,緩衝層2506中可存在開口,其允許微裝置2504連接至平坦化層2508。此連接可充當錨固件。在一種情況下,緩衝層可經蝕刻以形成至少部分環繞各微裝置的殼體、基底或錨固件。在剝離之後,錨固件可將微裝置固持至基板。在另一情況下,緩衝層可將微裝置焊盤中的至少一個耦合至電極。電極可放置在平坦化層的頂部或底部上。In one case, there may be openings in the buffer layer 2506 that allow the microdevice 2504 to connect to the planarization layer 2508. This connection can act as an anchor. In one case, the buffer layer may be etched to form a housing, substrate, or anchor that at least partially surrounds each microdevice. After peeling off, the anchor can hold the microdevice to the substrate. In another case, the buffer layer may couple at least one of the micro device pads to the electrode. Electrodes can be placed on the top or bottom of the planarization layer.

圖25E示出根據本發明之一個實施例的具有焊盤的微裝置陣列的橫截面視圖。可移除微裝置基板以實現靈活的系統或用於在系統的朝向基板的一側上執行的後處理步驟。在移除基板之後,可進行額外製程。此等製程包括以下中之一者:移除額外共同層或薄化平坦化層及/或微裝置。在一種情況下,一或多個焊盤2520可添加至微裝置2504。在一種情況下,此等焊盤可為導電的。在另一情況下,此等焊盤純粹用於鍵合至系統基板。在一種情況下,緩衝層2506可為導電的。Figure 25E shows a cross-sectional view of a micro device array with pads according to an embodiment of the present invention. The microdevice substrate can be removed to implement a flexible system or for post-processing steps performed on the side of the system facing the substrate. After removing the substrate, additional processes can be performed. These processes include one of the following: removing additional common layers or thinning the planarization layer and/or microdevices. In one case, one or more pads 2520 may be added to the microdevice 2504. In one case, these pads may be conductive. In another case, these pads are purely used for bonding to the system substrate. In one case, the buffer layer 2506 may be conductive.

在一個實施例中,緩衝層2506可將一或多個微裝置連接至測試焊盤。測試焊盤可用於偏置微裝置且測試其功能性。在一種情況下,可在晶片/基板層級處進行測試。在另一情況下,可在中間(盒)層級處進行測試。在移除過多層之後在中間層級處可接近焊盤。In one embodiment, the buffer layer 2506 can connect one or more micro devices to the test pad. The test pad can be used to bias the microdevice and test its functionality. In one case, testing can be done at the wafer/substrate level. In another case, testing can be done at the middle (box) level. After the multiple layers are removed, the pads are accessible at the intermediate level.

在一種情況下,若微裝置在頂側處具有一個以上觸點,則緩衝層可經圖案化以將微裝置中的至少一個的觸點連接至測試焊盤。In one case, if the micro device has more than one contact at the top side, the buffer layer can be patterned to connect the contact of at least one of the micro devices to the test pad.

圖26示出根據本發明之一個實施例的鍵合至中間基板及背板的微裝置陣列的橫截面視圖。此處,可提供背板2630。在一種情況下,可利用TFT製程製造背板。在另一情況下,可利用以互補金屬氧化物半導體(CMOS)或其他製程製造的小晶片(chiplet)製造背板。Fig. 26 shows a cross-sectional view of a micro device array bonded to an intermediate substrate and a back plate according to an embodiment of the present invention. Here, a back plate 2630 can be provided. In one case, the TFT process can be used to manufacture the backplane. In another case, the backplane can be manufactured by using chiplets manufactured by complementary metal oxide semiconductor (CMOS) or other processes.

在一個實施例中,背板可具有電晶體及供像素電路驅動微裝置的其他元件。在另一實施例中,背板可為不具有元件的基板。一或多個焊盤2622可形成於背板2630上以將背板鍵合至微裝置陣列。在一種情況下,背板上的該一或多個焊盤可為導電的。In one embodiment, the backplane may have transistors and other components for the pixel circuit to drive the micro device. In another embodiment, the backplane may be a substrate without components. One or more pads 2622 may be formed on the back plate 2630 to bond the back plate to the micro device array. In one case, the one or more pads on the backplane may be conductive.

在一個實施例中,可移除緩衝層2606或使其變形以釋放微裝置。背板上的焊盤2622或微裝置上的焊盤2620可形成拉出選定微裝置2640的力。在另一實施例中,緩衝層2606或殼體可經蝕刻回去,減小或移除。殼體可自空LED點移除。In one embodiment, the buffer layer 2606 can be removed or deformed to release the microdevice. The pad 2622 on the backplane or the pad 2620 on the micro device can create a force to pull out the selected micro device 2640. In another embodiment, the buffer layer 2606 or the shell can be etched back, reduced or removed. The housing can be removed from the empty LED spot.

圖27A示出根據本發明之一個實施例的提取微裝置位置的過程步驟。在微裝置轉移至背板之後,可偵測背板上的微裝置位置,且若轉移期間存在未對齊,則可調整其他層的圖案化以與此轉移未對齊匹配。過程步驟包括:步驟2702,將微裝置放置在系統基板上;步驟2704,使用相機、表面輪廓儀(光學、超聲波、電)或其他構件提取系統基板上微裝置的位置;步驟2706,可能修改關於微裝置的圖案,其中該圖案可包含以下中之一者:將微裝置耦合至信號的電極、功能可調諧層(例如顏色轉換或彩色濾波器)、鈍化/平坦化層中打開的通孔,或背板層。系統基板上可存在某一參考結構以首先校準用於提取微裝置位置的工具,或該參考可用於找到微裝置的相對位置。FIG. 27A shows the process steps of extracting the position of the micro device according to an embodiment of the present invention. After the micro device is transferred to the backplane, the position of the micro device on the backplane can be detected, and if there is misalignment during the transfer, the patterning of other layers can be adjusted to match the misalignment of the transfer. The process steps include: step 2702, placing the micro device on the system substrate; step 2704, using a camera, surface profiler (optical, ultrasonic, electrical) or other components to extract the position of the micro device on the system substrate; step 2706, possibly modifying A pattern of a micro device, where the pattern may include one of the following: electrodes that couple the micro device to a signal, a functionally tunable layer (such as color conversion or color filter), a through hole opened in the passivation/planarization layer, Or backplane layer. There may be a certain reference structure on the system substrate to first calibrate the tool used to extract the position of the micro device, or the reference may be used to find the relative position of the micro device.

在一個實施例中,不同構件可偵測微裝置的位置。舉例而言,相機、探針尖端、表面輪廓儀(光學、超聲波、電)或其他構件可偵測/提取微裝置的位置/定位。在另一實施例中,轉移設置中的偏移可識別系統基板/背板上微裝置的位置的未對齊。In one embodiment, different components can detect the position of the micro device. For example, a camera, probe tip, surface profiler (optical, ultrasonic, electrical) or other components can detect/extract the position/positioning of the micro device. In another embodiment, the offset in the transfer setting can identify the misalignment of the position of the micro device on the system substrate/backplane.

舉例而言,在一種情況下,金屬化圖案化可避免短路。在另一情況下,亦可基於微裝置的位置調整彩色濾波器或顏色轉換。此可減小放置微裝置所需的容差。亦可在微裝置位置中引發某一隨機偏移來減少光學偽影。For example, in one case, metallization patterning can avoid short circuits. In another case, the color filter or color conversion can also be adjusted based on the position of the micro device. This can reduce the tolerance required to place the microdevice. It is also possible to induce a certain random shift in the position of the micro device to reduce optical artifacts.

圖27B示出根據本發明之一個實施例的基於微裝置的位置修改電極的位置/形狀。一或多個微裝置2710、2712或2714可具有接觸焊盤2706。在一種情況下,電極2702、2704的位置/形狀可基於微裝置2710、2712、2714的位置來修改。在另一情況下,電極的位置/形狀可基於通孔的位置來修改。在另一情況下,可根據微裝置位置修改平面化/鈍化層中的通孔的位置。FIG. 27B illustrates modifying the position/shape of the electrode based on the position of the micro device according to an embodiment of the present invention. One or more microdevices 2710, 2712, or 2714 may have contact pads 2706. In one case, the position/shape of the electrodes 2702, 2704 may be modified based on the position of the microdevices 2710, 2712, 2714. In another case, the position/shape of the electrode may be modified based on the position of the through hole. In another case, the position of the through hole in the planarization/passivation layer can be modified according to the position of the micro device.

圖27C示出根據本發明之一個實施例的提供至電極的延伸部。在一種情況下,可修改電極2702的位置。且對於各電極可存在某一延伸部2720,使得可基於微裝置2710、2712或2714的位置修改其位置或長度。此可用於共同電極或個別電極。Figure 27C shows an extension provided to an electrode according to an embodiment of the present invention. In one case, the position of the electrode 2702 can be modified. And there may be a certain extension 2720 for each electrode, so that the position or length of the microdevice 2710, 2712, or 2714 can be modified based on the position of the microdevice 2710, 2712, or 2714. This can be used for common electrodes or individual electrodes.

根據一個實施例,可提供一種鍵合結構。鍵合結構可包括供體基板上的多個微裝置,各微裝置包括形成於微裝置的表面上的一或多個導電焊盤;以及用以覆蓋各微裝置或該一或多個導電焊盤的至少一部分的臨時材料,其中該臨時材料耦合至電流/電壓源以重導向電流穿過該臨時材料至該一或多個導電焊盤。臨時材料包括導電材料或非導電材料,且其中臨時導電材料進一步完全或部分覆蓋該一或多個導電焊盤。According to an embodiment, a bonding structure may be provided. The bonding structure may include a plurality of micro-devices on the donor substrate, each micro-device including one or more conductive pads formed on the surface of the micro-device; and covering each micro-device or the one or more conductive solders Temporary material of at least a portion of the disc, wherein the temporary material is coupled to a current/voltage source to redirect current through the temporary material to the one or more conductive pads. The temporary material includes a conductive material or a non-conductive material, and the temporary conductive material further completely or partially covers the one or more conductive pads.

根據另一實施例,該方法可進一步包括供體基板處的導電層,用以將臨時導電材料耦合至電流/電壓源;殼體結構,用以覆蓋供體基板上的各微裝置的至少一部分,其中臨時材料充當將該多個微裝置固持在供體基板中的殼體結構內部的錨固件。According to another embodiment, the method may further include a conductive layer at the donor substrate to couple the temporary conductive material to the current/voltage source; a housing structure to cover at least a part of each micro device on the donor substrate , Wherein the temporary material serves as an anchor for holding the plurality of micro-devices inside the housing structure in the donor substrate.

根據又一實施例,該方法可進一步包括殼體結構及各微裝置之間的至少一個犧牲層,其中臨時材料經圖案化以在供體基板的頂部表面上形成開口。供體基板的頂部表面處的開口用於藉由移除犧牲層而自殼體結構的側壁釋放微裝置。在移除犧牲層之後,臨時材料將各微裝置固持在適當位置,且藉由使用化學蝕刻製程或電磁信號移除犧牲層。According to yet another embodiment, the method may further include at least one sacrificial layer between the housing structure and each micro device, wherein the temporary material is patterned to form an opening on the top surface of the donor substrate. The opening at the top surface of the donor substrate is used to release the micro device from the sidewall of the housing structure by removing the sacrificial layer. After the sacrificial layer is removed, the temporary material holds each micro device in place, and the sacrificial layer is removed by using a chemical etching process or electromagnetic signals.

根據其他實施例,在藉由以下製程之一將各微裝置轉移至受體基板之後使臨時材料與殼體結構分離:機械製程、光學製程、熱製程及化學製程。供體基板的頂部表面上的導電跡線作為以下之一連接:網、列或行。According to other embodiments, the temporary material is separated from the housing structure after each micro-device is transferred to the receptor substrate by one of the following processes: mechanical process, optical process, thermal process, and chemical process. The conductive traces on the top surface of the donor substrate are connected as one of the following: net, column or row.

根據一些實施例,供體基板的頂部表面上的多個接入點用於經由導電跡線偏置臨時材料。臨時材料在朝向供體基板的表面及背對供體基板的表面之間形成通路。According to some embodiments, multiple access points on the top surface of the donor substrate are used to bias the temporary material via conductive traces. The temporary material forms a passage between the surface facing the donor substrate and the surface facing away from the donor substrate.

根據一個實施例,提供一種將至少一個微裝置鍵合至受體基板的方法。該方法包括:在供體基板上在該至少一個微裝置下方形成包括電極及電活性聚合物層的堆疊; 將電壓施加至該堆疊以使至少一個微裝置處於受體基板的表面的接觸/近程範圍內。According to one embodiment, there is provided a method of bonding at least one microdevice to a receptor substrate. The method includes: forming a stack including an electrode and an electroactive polymer layer under the at least one microdevice on a donor substrate; A voltage is applied to the stack so that at least one microdevice is within the contact/proximity range of the surface of the receptor substrate.

根據一些實施例,該方法可進一步包括:在該至少一個微裝置周圍提供殼體結構;以及提供錨固件以將該至少一個微裝置固持在殼體結構內部。According to some embodiments, the method may further include: providing a housing structure around the at least one micro-device; and providing an anchor to hold the at least one micro-device inside the housing structure.

根據另一實施例,錨固件藉由推力或拉力之一釋放受體基板的表面上的微裝置,該堆疊進一步包括將光轉換為熱改變的吸收層,且電活性聚合物層變為氣體,且由該改變產生的壓力將該至少一個微裝置推動至受體基板的表面。According to another embodiment, the anchor releases the microdevice on the surface of the receptor substrate by one of pushing or pulling, the stack further includes an absorption layer that converts light into heat, and the electroactive polymer layer becomes a gas, And the pressure generated by the change pushes the at least one micro device to the surface of the receptor substrate.

根據一個實施例,可提供一種將微裝置整合在背板上的方法,包括:在基板上方延伸的該一或多個微裝置上或上方形成緩衝層;在緩衝層上形成平坦化層,該平坦化層包括聚合物,且其中該聚合物包括聚醯胺、SU8或BCB中之一者;以及在平坦化層及中間基板之間沈積鍵合層。According to one embodiment, a method for integrating a micro device on a backplane may be provided, including: forming a buffer layer on or above the one or more micro devices extending above a substrate; forming a planarization layer on the buffer layer, the The planarization layer includes a polymer, and wherein the polymer includes one of polyamide, SU8, or BCB; and a bonding layer is deposited between the planarization layer and the intermediate substrate.

根據另一實施例,該方法可進一步包括在接觸平坦化層之後固化鍵合層,以及藉由雷射或化學剝離移除微裝置基板。藉由壓力、溫度或光固化鍵合層。According to another embodiment, the method may further include curing the bonding layer after contacting the planarization layer, and removing the micro device substrate by laser or chemical peeling. The bonding layer is cured by pressure, temperature or light.

根據另一實施例,該方法可進一步包括藉由雷射或化學剝離中之一者移除微裝置基板,且其中將一組選擇性微裝置自基板鍵合至背板包括以下步驟:對齊微裝置及背板且使其接觸;移除緩衝層以釋放微裝置;形成拉出該組選定的微裝置的力;以及將該組選定的微裝置鍵合至背板。According to another embodiment, the method may further include removing the micro device substrate by one of laser or chemical peeling, and wherein bonding a group of selective micro devices from the substrate to the back plate includes the following steps: aligning the micro devices The device and the backplate are brought into contact; the buffer layer is removed to release the microdevices; the force is formed to pull out the group of selected microdevices; and the group of selected microdevices is bonded to the backplate.

根據另一實施例,該方法可進一步包括在緩衝層中提供開口以使微裝置連接至平坦化層。緩衝層為導電的,其中緩衝層將至少一個微裝置連接至測試焊盤。According to another embodiment, the method may further include providing an opening in the buffer layer to connect the micro device to the planarization layer. The buffer layer is conductive, wherein the buffer layer connects at least one micro device to the test pad.

根據另一實施例,該方法可進一步包括:在平坦化層的頂部或底部任一者上提供電極;經由緩衝層將至少一個微裝置耦合至該電極;提取背板上微裝置的位置;以及延伸電極的位置至背板上微裝置的提取位置,其中藉由相機、探針尖端或表面輪廓儀提取微裝置的位置。According to another embodiment, the method may further include: providing an electrode on either the top or bottom of the planarization layer; coupling at least one microdevice to the electrode via a buffer layer; extracting the position of the microdevice on the backplane; and Extend the electrode position to the extraction position of the micro device on the backplane, where the position of the micro device is extracted by a camera, probe tip or surface profiler.

綜上該,本發明提供轉移至系統基板以完成的微裝置整合過程,及電子控制整合。該轉移可藉由各種手段來促進,包含提供臨時材料、供體基板上的可斷裂錨固件,或臨時中間基板。In summary, the present invention provides a micro device integration process that is transferred to a system substrate to complete, and electronic control integration. This transfer can be facilitated by various means, including providing temporary materials, breakable anchors on the donor substrate, or temporary intermediate substrates.

已經出於說明及描述的目的呈現本發明之一或多個實施例的前述描述。上述描述並不旨在是詳盡的或將本發明限制於所揭示的精確形式。鑒於以上教示,許多修改及變化是可能的。意圖是,本發明之範圍不受此詳細說明的限制,而是受其所附申請專利範圍的限制。The foregoing description of one or more embodiments of the present invention has been presented for the purposes of illustration and description. The foregoing description is not intended to be exhaustive or to limit the invention to the precise form disclosed. In view of the above teachings, many modifications and changes are possible. It is intended that the scope of the present invention is not limited by this detailed description, but by the scope of the attached patent application.

110:供體基板 112:底部平面或片狀導電層 114:功能層 116:頂部像素化導電層 118:電流分佈層 120:介電層 128:調平層 130:開口 132:焊盤 150:系統基板 152:其他層 154:焊盤 156:介電層 170:反射層或黑色矩陣 210:供體基板 212:第一頂部平面或片狀導電層 214:功能層 216:第二底部像素化導電層 218:電流分佈層 228:層 232:焊盤層 250:系統基板 252:其他層 254:基板焊盤 256:介電層 270:反射層或黑色矩陣 310:供體基板 312:第一底部導電層 314:功能層 316:第二頂部導電層 332:頂部觸點 372:層 372-2:犧牲層 374:填料層 376:盒式(臨時)基板 378:基板鍵合層 380:接觸鍵合層 382:焊盤 390:系統基板 412:第一底部導電層 414:功能層 416:第二頂部導電層 432:頂部觸點 472:MIS層 474:填充材料 476:臨時基板 476-1:錨固件 476-2:槽 478:基板鍵合層 480:下部接觸焊盤 490:系統(受體)基板 510:供體基板 512:第一底部導電層 514:功能層 516:第二頂部導電層 532:頂部接觸焊盤 572:MIS層 574:填料層 582:焊盤 590:受體基板 592:層 594:延伸部 596:空隙/間隙 598:橋 598-2:可能釋放點 6110:供體基板 6112:裝置層 6114:第一緩衝層 6116:分離層 6118:第二緩衝層 6150:基板 6262:間隙 6263:間隙 6212:島狀物 6210:供體基板 6220:填料層 1102:微裝置 1104:微裝置 1106:微裝置 1108:盒 1202:微裝置 1204:微裝置 1206:微裝置 1206-2:其他區域 1208:多類型微裝置盒 1302:微裝置 1304:供體基板 1306:支撐層 1308:支撐層 1480:供體基板 1482:塊 1483:塊 1484:交叉線 1580:塊 1582:塊 1590:受體基板 1680:塊 1682:塊 1684:塊 1690:盒 1790:盒 1802:供體基板 1804:供體力元件 1806:堆疊 1812:電壓/電流 1814:導電焊盤 1816:導電焊盤 1818:受體力元件 1902:供體基板 1904:導電/接觸焊盤 1906:導電/接觸焊盤 1908:受體基板 1910:電流/電壓 1912:電壓/電流 1914:電壓/電流 1918:受體力元件 2002a:臨時導電材料 2002c:臨時導電材料 2002d:臨時導電材料 2002e:臨時導電材料 2002f:導電層 2002g:臨時導電材料 2002h:導電層 2004a:導電焊盤 2004c:導電焊盤 2004d:導電焊盤 2004e:焊盤 2004h:導電材料 2006a:殼體結構 2006b:殼體 2006e:焊盤 2006c:導電焊盤 2006d:導電焊盤 2006h:導電層 2008a:犧牲層 2008b:犧牲層 2008c:犧牲層 2008e:犧牲層 2008f:導電焊盤 2008g:導電焊盤 2008h:導電焊盤 2010a:鍵合材料 2010e:焊盤 2010f:導電焊盤 2010g:導電焊盤 2010h:導電焊盤 2012g:導電焊盤 2012h:導電焊盤 2014a:錨固件 2014g:導電焊盤 2014h:導電焊盤 2016:微裝置 2102:微裝置 2104:供體基板 2106:導電焊盤 2106-1:導電焊盤 2106-2:導電焊盤 2106-3:導電焊盤 2106-4:導電焊盤 2108:臨時導電材料 2110:臨時導電材料 2204:電極 2206:電極 2208:電活性聚合物(EPE)層 2210:微裝置 2212:微裝置 2214:供體基板 2220:EPE 2222:EPE 2226:殼體結構 2234:錨固件 2302:電極 2304:堆疊層 2306:電極 2308:堆疊層 2310:堆疊層 2312:微裝置 2314:微裝置 2318:微裝置 2320:供體基板 2322:殼體 2326:錨固件 2332:錨固件 2404:堆疊層 2404-1:層 2410:微裝置 2414:微裝置 2418:微裝置 2422:殼體 2426:錨固件 2428:錨固件 2456:氣體 2458:吸收層 2502:微裝置基板 2504:微裝置陣列 2506:緩衝層 2508:平坦化層 2510:中間基板 2512:鍵合層 2520:焊盤 2606:緩衝層 2620:焊盤 2622:焊盤 2630:背板 2640:微裝置 2702:電極 2704:電極 2706:接觸焊盤 2710:微裝置 2712:微裝置 2714:微裝置 2720:延伸部110: Donor substrate 112: bottom plane or sheet conductive layer 114: functional layer 116: Top pixelated conductive layer 118: Current Distribution Layer 120: Dielectric layer 128: leveling layer 130: opening 132: Pad 150: system board 152: other layers 154: Pad 156: Dielectric layer 170: reflective layer or black matrix 210: Donor substrate 212: The first top plane or sheet conductive layer 214: functional layer 216: second bottom pixelated conductive layer 218: Current Distribution Layer 228: layer 232: Pad layer 250: system substrate 252: other layers 254: substrate pad 256: Dielectric layer 270: reflective layer or black matrix 310: Donor substrate 312: first bottom conductive layer 314: functional layer 316: second top conductive layer 332: Top contact 372: layer 372-2: Sacrifice Layer 374: Packing layer 376: Cassette (temporary) substrate 378: substrate bonding layer 380: Contact bonding layer 382: Pad 390: system board 412: first bottom conductive layer 414: functional layer 416: second top conductive layer 432: Top contact 472: MIS layer 474: Filling Material 476: Temporary Substrate 476-1: Anchor 476-2: Slot 478: substrate bonding layer 480: Lower contact pad 490: System (Receptor) Substrate 510: Donor substrate 512: first bottom conductive layer 514: functional layer 516: second top conductive layer 532: top contact pad 572: MIS layer 574: Packing layer 582: Pad 590: receptor substrate 592: layer 594: Extension 596: void/gap 598: Bridge 598-2: Possible release point 6110: Donor substrate 6112: device layer 6114: first buffer layer 6116: Separation layer 6118: second buffer layer 6150: substrate 6262: gap 6263: gap 6212: island 6210: Donor substrate 6220: Packing layer 1102: Microdevice 1104: micro device 1106: Microdevice 1108: box 1202: micro device 1204: micro device 1206: micro device 1206-2: other areas 1208: Multi-type micro device box 1302: micro device 1304: Donor substrate 1306: support layer 1308: support layer 1480: Donor substrate 1482: block 1483: block 1484: Crossover 1580: block 1582: block 1590: acceptor substrate 1680: block 1682: block 1684: block 1690: box 1790: box 1802: Donor substrate 1804: donor force component 1806: Stack 1812: voltage/current 1814: conductive pad 1816: conductive pad 1818: Receptor Force Element 1902: Donor substrate 1904: conductive/contact pad 1906: conductive/contact pad 1908: receptor substrate 1910: current/voltage 1912: Voltage/Current 1914: Voltage/Current 1918: Receptive Force Element 2002a: Temporary conductive materials 2002c: Temporary conductive materials 2002d: Temporary conductive material 2002e: Temporary conductive materials 2002f: conductive layer 2002g: Temporary conductive material 2002h: Conductive layer 2004a: conductive pad 2004c: conductive pad 2004d: conductive pad 2004e: pad 2004h: conductive material 2006a: Shell structure 2006b: shell 2006e: pad 2006c: conductive pad 2006d: conductive pad 2006h: conductive layer 2008a: sacrifice layer 2008b: sacrifice layer 2008c: sacrifice layer 2008e: sacrifice layer 2008f: conductive pad 2008g: conductive pad 2008h: conductive pad 2010a: Bonding materials 2010e: pad 2010f: conductive pad 2010g: conductive pad 2010h: conductive pad 2012g: conductive pad 2012h: conductive pad 2014a: anchor 2014g: conductive pad 2014h: conductive pad 2016: Microdevice 2102: Microdevice 2104: Donor substrate 2106: conductive pad 2106-1: conductive pad 2106-2: conductive pad 2106-3: conductive pad 2106-4: conductive pad 2108: Temporary conductive materials 2110: Temporary conductive materials 2204: Electrode 2206: Electrode 2208: Electroactive polymer (EPE) layer 2210: micro device 2212: micro device 2214: Donor substrate 2220: EPE 2222: EPE 2226: shell structure 2234: Anchor 2302: Electrode 2304: stacked layers 2306: Electrode 2308: stacked layers 2310: stacked layers 2312: micro device 2314: micro device 2318: micro device 2320: Donor substrate 2322: shell 2326: Anchor 2332: anchor 2404: stacked layers 2404-1: layer 2410: Microdevice 2414: Microdevice 2418: Microdevice 2422: shell 2426: anchor 2428: anchor 2456: Gas 2458: absorption layer 2502: Microdevice substrate 2504: micro device array 2506: buffer layer 2508: planarization layer 2510: Intermediate substrate 2512: Bonding layer 2520: pad 2606: buffer layer 2620: pad 2622: pad 2630: backplane 2640: micro device 2702: Electrode 2704: Electrode 2706: contact pad 2710: Microdevice 2712: Microdevice 2714: Microdevice 2720: Extension

將參照表示本發明之較佳實施例的附圖更詳細地描述本發明,在附圖中:The present invention will be described in more detail with reference to the accompanying drawings showing preferred embodiments of the present invention, in which:

圖1A展示根據本發明之實施例的處於供體基板上的側向功能結構的橫截面視圖;Figure 1A shows a cross-sectional view of a lateral functional structure on a donor substrate according to an embodiment of the present invention;

圖1B展示根據本發明之實施例的具有沈積在其上的電流分佈層的圖1A的側向結構的橫截面視圖;1B shows a cross-sectional view of the lateral structure of FIG. 1A with a current distribution layer deposited thereon according to an embodiment of the present invention;

圖1C展示根據本發明之實施例的在圖案化頂部介電導電層及沈積第二介電層之後的圖1B的側向結構的橫截面視圖;1C shows a cross-sectional view of the lateral structure of FIG. 1B after patterning the top dielectric conductive layer and depositing the second dielectric layer according to an embodiment of the present invention;

圖1D展示根據本發明之實施例的在圖案化第二介電層之後的側向結構的橫截面視圖;1D shows a cross-sectional view of the lateral structure after patterning the second dielectric layer according to an embodiment of the present invention;

圖1E展示根據本發明之實施例的在焊盤沈積及圖案化之後的側向結構的橫截面視圖;1E shows a cross-sectional view of a lateral structure after pad deposition and patterning according to an embodiment of the present invention;

圖1F展示根據本發明之實施例的在藉由鍵合區域鍵合至系統基板以形成整合結構之後的側向結構的橫截面視圖;1F shows a cross-sectional view of a lateral structure after forming an integrated structure by bonding a bonding area to a system substrate according to an embodiment of the present invention;

圖1G展示根據本發明之實施例的在移除供體基板及圖案化底部電極之後的整合結構的橫截面視圖;1G shows a cross-sectional view of the integrated structure after removing the donor substrate and patterning the bottom electrode according to an embodiment of the present invention;

圖1H展示根據本發明之實施例的在移除供體基板及圖案化底部電極之後的整合結構的橫截面視圖;1H shows a cross-sectional view of the integrated structure after removing the donor substrate and patterning the bottom electrode according to an embodiment of the present invention;

圖2A展示具有焊盤層的供體基板上的側向功能結構的另一個實施例的橫截面視圖;2A shows a cross-sectional view of another embodiment of a lateral functional structure on a donor substrate with a pad layer;

圖2B展示根據本發明之實施例的在圖案化焊盤層及接觸層及電流分佈層之後的圖2A的側向結構的橫截面視圖;2B shows a cross-sectional view of the lateral structure of FIG. 2A after patterning the pad layer, contact layer, and current distribution layer according to an embodiment of the present invention;

圖2C展示根據本發明之實施例的在填充圖案化後焊盤之間的距離之後的圖2A的側向結構的橫截面視圖;2C shows a cross-sectional view of the lateral structure of FIG. 2A after filling the distance between the patterned pads according to an embodiment of the present invention;

圖2D展示根據本發明之實施例的藉由圖案化焊盤對齊及鍵合至系統基板的圖2A的側向結構的橫截面視圖;2D shows a cross-sectional view of the lateral structure of FIG. 2A aligned and bonded to the system substrate by patterned pads according to an embodiment of the present invention;

圖2E展示根據本發明之實施例的移除裝置基板的圖2A的側向結構的橫截面視圖;2E shows a cross-sectional view of the lateral structure of FIG. 2A with a device substrate removed according to an embodiment of the present invention;

圖3A展示根據本發明之實施例的裝置(供體)基板上的台面結構的橫截面視圖;3A shows a cross-sectional view of a mesa structure on a substrate of a device (donor) according to an embodiment of the present invention;

圖3B展示根據本發明之實施例的步驟的橫截面視圖,其中填充有圖3A的台面結構之間的空白空間;FIG. 3B shows a cross-sectional view of steps according to an embodiment of the present invention, in which empty spaces between the mesa structures of FIG. 3A are filled;

圖3C展示根據本發明之實施例的步驟的橫截面視圖,其中將圖3B的裝置(台面結構)轉移至臨時基板;Figure 3C shows a cross-sectional view of the steps according to an embodiment of the present invention, in which the device (mesa structure) of Figure 3B is transferred to a temporary substrate;

圖3D展示根據本發明之實施例的步驟的橫截面視圖,其中將圖3C的裝置對齊及鍵合至系統基板;3D shows a cross-sectional view of the steps according to an embodiment of the present invention, in which the device of FIG. 3C is aligned and bonded to the system substrate;

圖3E展示根據本發明之實施例的步驟的橫截面視圖,其中將裝置轉移至系統基板;3E shows a cross-sectional view of the steps according to an embodiment of the present invention, in which the device is transferred to the system substrate;

圖3F展示根據本發明之實施例的熱轉移步驟的熱曲線;Figure 3F shows the thermal profile of the thermal transfer step according to an embodiment of the present invention;

圖4A展示根據本發明之實施例的具有槽及轉移至其上的裝置的臨時基板的橫截面視圖;4A shows a cross-sectional view of a temporary substrate with a groove and a device transferred to it according to an embodiment of the present invention;

圖4B展示根據本發明之實施例的在裝置空間與槽之間清理填料之後的圖4A的臨時基板的橫截面視圖;4B shows a cross-sectional view of the temporary substrate of FIG. 4A after cleaning the filler between the device space and the tank according to an embodiment of the present invention;

圖4C展示根據本發明之實施例的步驟的橫截面視圖,其中藉由破壞所釋放表面將裝置轉移至系統基板;4C shows a cross-sectional view of a step according to an embodiment of the present invention, in which the device is transferred to the system substrate by breaking the released surface;

圖5A展示根據本發明之實施例的在填充層中具有不同錨固件的微裝置的橫截面視圖;Figure 5A shows a cross-sectional view of a microdevice with different anchors in the filling layer according to an embodiment of the present invention;

圖5B展示根據本發明之實施例的在對填充層進行後處理之後的微裝置的橫截面視圖;5B shows a cross-sectional view of the microdevice after post-processing the filling layer according to an embodiment of the present invention;

圖5C展示根據本發明之實施例的圖5B的微裝置的俯視圖;5C shows a top view of the micro device of FIG. 5B according to an embodiment of the present invention;

圖5D展示根據本發明之實施例的用於將微裝置轉移至另一基板的轉移步驟的橫截面視圖;5D shows a cross-sectional view of a transfer step for transferring a micro device to another substrate according to an embodiment of the present invention;

圖5E展示根據本發明之實施例的將微裝置轉移至基板的橫截面視圖;Figure 5E shows a cross-sectional view of transferring a micro device to a substrate according to an embodiment of the present invention;

圖6A展示根據本發明之另一實施例的裝置(供體)基板上的台面結構的橫截面視圖;6A shows a cross-sectional view of a mesa structure on a substrate of a device (donor) according to another embodiment of the present invention;

圖6B展示步驟的橫截面視圖,其中填充有圖6A的台面結構之間的空白空間;Figure 6B shows a cross-sectional view of the steps, in which empty spaces between the mesa structures of Figure 6A are filled;

圖6C展示根據本發明之實施例的步驟的橫截面視圖,其中將圖6B的裝置(台面結構)轉移至臨時基板;Figure 6C shows a cross-sectional view of the steps according to an embodiment of the present invention, in which the device (mesa structure) of Figure 6B is transferred to a temporary substrate;

圖6D展示根據本發明之實施例的步驟的橫截面視圖,其中移除圖6C的底部導電層的部分;6D shows a cross-sectional view of the steps according to an embodiment of the present invention, in which a portion of the bottom conductive layer of FIG. 6C is removed;

圖6E展示根據本發明之實施例的在填充層中具有錨固件的微裝置的橫截面視圖;Figure 6E shows a cross-sectional view of a microdevice with anchors in a filling layer according to an embodiment of the present invention;

圖6F展示根據本發明之實施例的在填充層中具有錨固件的微裝置的橫截面視圖;Figure 6F shows a cross-sectional view of a microdevice with anchors in a filling layer according to an embodiment of the present invention;

圖6G展示根據本發明之實施例的在填充層中具有錨固件的微裝置的橫截面視圖;Figure 6G shows a cross-sectional view of a microdevice with anchors in a filling layer according to an embodiment of the present invention;

圖6H展示在本發明之另一個實施例中的預備步驟的橫截面視圖;Figure 6H shows a cross-sectional view of a preliminary step in another embodiment of the present invention;

圖6I展示根據本發明之實施例的在圖6H的實施例中的蝕刻步驟的橫截面視圖;FIG. 6I shows a cross-sectional view of the etching step in the embodiment of FIG. 6H according to an embodiment of the present invention;

圖6J展示根據本發明之實施例的在圖6H的實施例中的分離步驟的橫截面視圖;6J shows a cross-sectional view of the separation step in the embodiment of FIG. 6H according to an embodiment of the present invention;

圖6K展示根據本發明之實施例的本發明之另一個實施例的俯視圖;Figure 6K shows a top view of another embodiment of the present invention according to an embodiment of the present invention;

圖6L展示根據本發明之實施例的圖6K的實施例的橫截面視圖;Figure 6L shows a cross-sectional view of the embodiment of Figure 6K according to an embodiment of the present invention;

圖6M展示根據本發明之實施例的具有填充材料的圖6K及6L的實施例的橫截面視圖;Fig. 6M shows a cross-sectional view of the embodiment of Figs. 6K and 6L with filler material according to an embodiment of the present invention;

圖7是本發明之實施例的過程之流程圖;Figure 7 is a flowchart of the process of an embodiment of the present invention;

圖8是根據本發明之實施例的微裝置安裝過程之流程圖;Figure 8 is a flowchart of a micro device installation process according to an embodiment of the present invention;

圖9是根據本發明之實施例的微裝置安裝過程之流程圖;Figure 9 is a flowchart of a micro device installation process according to an embodiment of the present invention;

圖10是根據本發明之實施例的微裝置安裝過程之流程圖;Figure 10 is a flowchart of a micro device installation process according to an embodiment of the present invention;

圖11展示根據本發明之實施例的具有不同類型的像素化微裝置的供體或臨時(盒)基板的實例;Figure 11 shows examples of donor or temporary (box) substrates with different types of pixelated microdevices according to embodiments of the present invention;

圖12展示根據本發明之實施例的具有不同類型的像素化微裝置的供體或臨時(盒)基板的實例;Figure 12 shows examples of donor or temporary (box) substrates with different types of pixelated microdevices according to embodiments of the present invention;

圖13展示根據本發明之實施例的用於同一類型的微裝置的但在微裝置組之間具有不同間距的供體基板的實例;FIG. 13 shows an example of donor substrates used in the same type of microdevices but with different pitches between the microdevice groups according to an embodiment of the present invention;

圖14A展示根據本發明之實施例的在微裝置塊上具有不均勻輸出的供體基板或臨時基板的實例;FIG. 14A shows an example of a donor substrate or a temporary substrate with uneven output on a micro device block according to an embodiment of the present invention;

圖14B展示根據本發明之實施例的在多個微裝置塊上具有不均勻輸出的受體基板或系統基板的實例;14B shows an example of a receptor substrate or system substrate with uneven output on a plurality of micro device blocks according to an embodiment of the present invention;

圖14C展示根據本發明之實施例的具有偏斜微裝置塊的系統基板的實例;FIG. 14C shows an example of a system substrate with skewed microdevice blocks according to an embodiment of the present invention;

圖14D展示根據本發明之實施例的具有翻轉微裝置塊的系統基板的實例;Figure 14D shows an example of a system substrate with flipped micro device blocks according to an embodiment of the present invention;

圖14E展示根據本發明之實施例的具有翻轉且交替的微裝置塊的系統基板的實例;Figure 14E shows an example of a system substrate with flipped and alternating micro device blocks according to an embodiment of the present invention;

圖15A展示根據本發明之實施例的具有兩個不同微裝置塊的供體基板的實例;Figure 15A shows an example of a donor substrate with two different microdevice blocks according to an embodiment of the present invention;

圖15B展示根據本發明之實施例的具有不同微裝置的偏斜塊的系統基板的實例;FIG. 15B shows an example of a system substrate with deflection blocks of different microdevices according to an embodiment of the present invention;

圖16A展示根據本發明之實施例的具有三種不同類型的像素化微裝置塊的供體基板的實例;Figure 16A shows an example of a donor substrate with three different types of pixelated microdevice blocks according to an embodiment of the present invention;

圖16B展示根據本發明之實施例的具有來自每個塊的多種不同類型的單獨微裝置的系統基板的實例;FIG. 16B shows an example of a system substrate having multiple different types of individual microdevices from each block according to an embodiment of the present invention;

圖17A展示根據本發明之實施例的具有多種不同類型的像素化微裝置塊的盒式基板的實例;FIG. 17A shows an example of a cassette substrate having multiple different types of pixelated microdevice blocks according to an embodiment of the present invention;

圖17B展示根據本發明之實施例的具有多種不同類型的偏移像素化微裝置塊的盒式基板的實例;FIG. 17B shows an example of a cassette substrate with multiple different types of offset pixelated microdevice blocks according to an embodiment of the present invention;

圖18示出根據本發明之實施例的經由供體力元件固持微裝置的供體基板。FIG. 18 shows a donor substrate for holding a micro device via a donor force element according to an embodiment of the present invention.

圖19示出根據本發明之實施例的一側上具有一個以上接觸焊盤的微裝置的實例。Fig. 19 shows an example of a micro device having more than one contact pad on one side according to an embodiment of the present invention.

圖20A1-20A2示出根據本發明之一些實施例的突顯臨時導電材料覆蓋微裝置的實例。20A1-20A2 show examples of highlighting the temporary conductive material covering the microdevice according to some embodiments of the present invention.

圖20B1-20B2示出根據本發明之一些實施例的突顯臨時導電材料覆蓋微裝置的另一實例。20B1-20B2 show another example of highlighting the temporary conductive material covering the microdevice according to some embodiments of the present invention.

圖20C1-20C2示出根據本發明之一些實施例的突顯臨時導電材料覆蓋微裝置的另一實例。Figures 20C1-20C2 show another example of highlighting the temporary conductive material covering the microdevice according to some embodiments of the present invention.

圖20D-20H示出根據本發明之一些實施例的突顯臨時導電材料覆蓋微裝置的另一實例。Figures 20D-20H illustrate another example of highlighting a temporary conductive material covering a micro device according to some embodiments of the present invention.

圖20I1-20I2示出根據本發明之一些實施例的突顯臨時導電材料覆蓋微裝置的另一實例。20I1-20I2 show another example of highlighting the temporary conductive material covering the micro device according to some embodiments of the present invention.

圖21A示出根據本發明之實施例的圖20A的示例性俯視圖表示。Figure 21A shows an exemplary top view representation of Figure 20A according to an embodiment of the invention.

圖21B1示出根據本發明之實施例的圖20B1的示例性俯視圖表示。Figure 21B1 shows an exemplary top view representation of Figure 20B1 in accordance with an embodiment of the present invention.

圖21B2示出根據本發明之實施例的圖20B2的另一示例性俯視圖表示。Figure 21B2 shows another exemplary top view representation of Figure 20B2 in accordance with an embodiment of the present invention.

圖21C示出根據本發明之實施例的圖20E的示例性俯視圖表示。Figure 21C shows an exemplary top view representation of Figure 20E in accordance with an embodiment of the invention.

圖21D示出根據本發明之實施例的圖20F的示例性俯視圖表示。Figure 21D shows an exemplary top view representation of Figure 20F according to an embodiment of the invention.

圖22A-22C示出根據本發明之實施例的供體基板上的微裝置,其中微裝置可選擇性地朝向或遠離供體基板的表面移動。22A-22C show a microdevice on a donor substrate according to an embodiment of the present invention, wherein the microdevice can be selectively moved toward or away from the surface of the donor substrate.

圖23A-23B示出根據本發明之實施例的供體基板上的微裝置,其中微裝置可選擇性地朝向或遠離供體基板的表面移動。Figures 23A-23B illustrate a microdevice on a donor substrate according to an embodiment of the present invention, wherein the microdevice can be selectively moved toward or away from the surface of the donor substrate.

圖24示出根據本發明之實施例的供體基板上的微裝置的另一實例,其中微裝置可選擇性地朝向或遠離供體基板的表面移動。Fig. 24 shows another example of a micro device on a donor substrate according to an embodiment of the present invention, wherein the micro device can be selectively moved toward or away from the surface of the donor substrate.

圖25A示出根據本發明之一個實施例的微裝置基板上的微裝置陣列的橫截面視圖。Fig. 25A shows a cross-sectional view of a micro device array on a micro device substrate according to an embodiment of the present invention.

圖25B示出根據本發明之一個實施例的具有圖案化緩衝層的微裝置陣列的橫截面視圖。FIG. 25B shows a cross-sectional view of a micro device array with a patterned buffer layer according to an embodiment of the present invention.

圖25C示出根據本發明之一個實施例的具有平坦化層的微裝置陣列的橫截面視圖。FIG. 25C shows a cross-sectional view of a micro device array with a planarization layer according to an embodiment of the present invention.

圖25D示出根據本發明之一個實施例的鍵合至中間基板的微裝置陣列的橫截面視圖。FIG. 25D shows a cross-sectional view of a micro device array bonded to an intermediate substrate according to an embodiment of the present invention.

圖25E示出根據本發明之一個實施例的具有焊盤的微裝置陣列的橫截面視圖。Figure 25E shows a cross-sectional view of a micro device array with pads according to an embodiment of the present invention.

圖26示出根據本發明之一個實施例的鍵合至中間基板及背板的微裝置陣列的橫截面視圖。Fig. 26 shows a cross-sectional view of a micro device array bonded to an intermediate substrate and a back plate according to an embodiment of the present invention.

圖27A示出根據本發明之一個實施例的提取微裝置位置的過程步驟。FIG. 27A shows the process steps of extracting the position of the micro device according to an embodiment of the present invention.

圖27B示出根據本發明之一個實施例的基於微裝置的位置修改電極的位置/形狀。FIG. 27B illustrates modifying the position/shape of the electrode based on the position of the micro device according to an embodiment of the present invention.

圖27C示出根據本發明之一個實施例的提供至電極的延伸部。Figure 27C shows an extension provided to an electrode according to an embodiment of the present invention.

若不同圖式中使用相同附圖標記,則指示類似或相同元件。If the same reference signs are used in different drawings, similar or identical elements are indicated.

本發明容許各種修改及替代形式,且特定實施例或實施方案在圖式中示出為實例,且將在本文詳細地描述。然而,本發明不限於所揭示的特定形式。實際上,本發明涵蓋落入由所附申請專利範圍限定的本發明之精神及範圍內的所有的修改、等效物及替代方案。The present invention allows various modifications and alternative forms, and specific embodiments or implementations are shown as examples in the drawings and will be described in detail herein. However, the present invention is not limited to the specific form disclosed. In fact, the present invention covers all modifications, equivalents, and alternatives that fall within the spirit and scope of the present invention defined by the scope of the appended patent application.

110:供體基板 110: Donor substrate

112:底部平面或片狀導電層 112: bottom plane or sheet conductive layer

114:功能層 114: functional layer

116:頂部像素化導電層 116: Top pixelated conductive layer

Claims (30)

一種鍵合結構,其包括: 位在供體基板上的複數個微裝置,各微裝置包括形成於該微裝置的表面上的一或多個導電焊盤;以及 臨時材料,其覆蓋各微裝置或該一或多個導電焊盤的至少一部分,其中該臨時材料耦合至電流/電壓源以重導向電流穿過該臨時材料至該一或多個導電焊盤。A bonding structure, which includes: A plurality of micro-devices located on the donor substrate, each micro-device including one or more conductive pads formed on the surface of the micro-device; and A temporary material covering at least a portion of each microdevice or the one or more conductive pads, wherein the temporary material is coupled to a current/voltage source to redirect current through the temporary material to the one or more conductive pads. 如請求項1之鍵合結構,其中該臨時材料包括導電材料或非導電材料。Such as the bonding structure of claim 1, wherein the temporary material includes a conductive material or a non-conductive material. 如請求項1之鍵合結構,其進一步包括: 位在該供體基板處的導電層,其將該臨時導電材料耦合至該電流/電壓源。Such as the bonding structure of claim 1, which further includes: A conductive layer located at the donor substrate, which couples the temporary conductive material to the current/voltage source. 如請求項2之鍵合結構,其中該臨時導電材料進一步完全或部分覆蓋該一或多個導電焊盤。Such as the bonding structure of claim 2, wherein the temporary conductive material further completely or partially covers the one or more conductive pads. 如請求項1之鍵合結構,其進一步包括: 殼體結構,其覆蓋該供體基板上的各微裝置的至少一部分。Such as the bonding structure of claim 1, which further includes: The housing structure covers at least a part of each micro device on the donor substrate. 如請求項5之鍵合結構,其中該臨時材料充當將該複數個微裝置固持在該供體基板中的該殼體結構內部的錨固件。Such as the bonding structure of claim 5, wherein the temporary material serves as an anchor for holding the plurality of micro-devices inside the housing structure in the donor substrate. 如請求項1之鍵合結構,其進一步包括: 位在該殼體結構與各微裝置之間的至少一個犧牲層。Such as the bonding structure of claim 1, which further includes: At least one sacrificial layer located between the housing structure and each micro device. 如請求項1之鍵合結構,其中該臨時材料經圖案化以在該供體基板的頂部表面上形成開口。The bonding structure of claim 1, wherein the temporary material is patterned to form an opening on the top surface of the donor substrate. 如請求項8之鍵合結構,其中在該供體基板的該頂部表面處的該開口係用於藉由移除該犧牲層而自該殼體結構的側壁釋放該微裝置。The bonding structure of claim 8, wherein the opening at the top surface of the donor substrate is used to release the micro device from the sidewall of the housing structure by removing the sacrificial layer. 如請求項9之鍵合結構,其中在移除該犧牲層之後該臨時材料將各微裝置固持在適當位置,且其中藉由使用化學蝕刻製程或電磁信號移除該犧牲層。Such as the bonding structure of claim 9, wherein the temporary material holds each micro device in place after removing the sacrificial layer, and wherein the sacrificial layer is removed by using a chemical etching process or electromagnetic signals. 如請求項8之鍵合結構,其中在藉由以下製程之一將各微裝置轉移至受體基板之後使該臨時材料與該殼體結構分離:機械製程、光學製程、熱製程及化學製程。Such as the bonding structure of claim 8, wherein the temporary material is separated from the housing structure after each micro-device is transferred to the acceptor substrate by one of the following processes: mechanical process, optical process, thermal process, and chemical process. 如請求項11之鍵合結構,其中該供體基板的該頂部表面上的導電跡線係作為以下中之一者連接:網、列或行。Such as the bonding structure of claim 11, wherein the conductive traces on the top surface of the donor substrate are connected as one of the following: a net, a column, or a row. 如請求項11之鍵合結構,其中使用該供體基板的該頂部表面上的複數個接入點來經由該導電跡線偏置該臨時材料。The bonding structure of claim 11, wherein a plurality of access points on the top surface of the donor substrate are used to bias the temporary material via the conductive trace. 如請求項1之鍵合結構,其中該臨時材料在朝向該供體基板的表面與背對該供體基板的表面之間形成通路。Such as the bonding structure of claim 1, wherein the temporary material forms a passage between a surface facing the donor substrate and a surface facing away from the donor substrate. 一種將至少一個微裝置放置至受體基板的方法,該方法包括: 在供體基板上在該至少一個微裝置下方形成包括電極及電活性聚合物層的堆疊; 將電壓施加至該堆疊以使至少一個微裝置接觸/鄰近該受體基板的該表面。A method of placing at least one micro-device on a receptor substrate, the method comprising: Forming a stack including an electrode and an electroactive polymer layer under the at least one microdevice on the donor substrate; A voltage is applied to the stack to cause at least one microdevice to contact/adjacent the surface of the receptor substrate. 如請求項15之方法,其進一步包括: 在該至少一個微裝置周圍提供殼體結構;以及 提供錨固件以將該至少一個微裝置固持在該殼體結構內部。Such as the method of claim 15, which further includes: Providing a housing structure around the at least one micro device; and An anchor is provided to hold the at least one micro device inside the housing structure. 如請求項15之方法,其中該錨固件藉由推力或拉力之一釋放該受體基板的表面上的微裝置。The method of claim 15, wherein the anchor releases the microdevice on the surface of the receptor substrate by one of pushing force or pulling force. 如請求項15之方法,其中該堆疊進一步包括將光轉換為熱改變的吸收層。The method of claim 15, wherein the stack further includes an absorbing layer that converts light into heat. 如請求項15之方法,其中該電活性聚合物層變為氣體,且由該改變產生的壓力將該至少一個微裝置推動至該受體基板的該表面。The method of claim 15, wherein the electroactive polymer layer becomes a gas, and the pressure generated by the change pushes the at least one microdevice to the surface of the receptor substrate. 一種將微裝置整合在背板上的方法,該方法包括: 提供包括一或多個微裝置的微裝置基板; 藉由連接該等微裝置上的接觸焊盤及該背板上的對應焊盤而將一組選擇性該等微裝置自該基板鍵合至該背板; 藉由分離該微裝置基板在該背板上留下鍵合的該組選擇性微裝置。A method for integrating a micro device on a backplane, the method comprising: Provide a micro device substrate including one or more micro devices; Bonding a group of selective micro devices from the substrate to the back board by connecting the contact pads on the micro devices and the corresponding pads on the back board; By separating the micro device substrate, the group of bonded selective micro devices is left on the backplane. 如請求項20之方法,其進一步包括: 在該基板上方延伸的該一或多個微裝置上或上方形成緩衝層; 在該緩衝層上形成平坦化層,該平坦化層包括聚合物,且其中該聚合物包括聚醯胺、SU8或BCB中之一者;以及 在該平坦化層及中間基板之間沈積鍵合層。Such as the method of claim 20, which further includes: Forming a buffer layer on or above the one or more micro devices extending above the substrate; Forming a planarization layer on the buffer layer, the planarization layer including a polymer, and wherein the polymer includes one of polyamide, SU8, or BCB; and A bonding layer is deposited between the planarization layer and the intermediate substrate. 如請求項21之方法,其進一步包括 在接觸該平坦化層之後固化該鍵合層,其中藉由壓力、溫度或光中任一者固化該鍵合層。Such as the method of claim 21, which further includes The bonding layer is cured after contacting the planarization layer, wherein the bonding layer is cured by any of pressure, temperature, or light. 如請求項20之方法,其進一步包括 藉由雷射或化學剝離中之一者移除該微裝置基板。Such as the method of claim 20, which further includes The micro device substrate is removed by one of laser or chemical peeling. 如請求項20之方法,其中該等微裝置上的焊盤及該背板上的對應焊盤為導電的。Such as the method of claim 20, wherein the pads on the micro devices and the corresponding pads on the backplane are conductive. 如請求項20之方法,其中將該組選擇性的微裝置自該基板鍵合至該背板包括以下步驟: 使該等微裝置與該背板對準並接觸; 移除該緩衝層以釋放該等微裝置; 產生拉出該組選定的微裝置的力;以及 將該組選定的微裝置鍵合至該背板。The method of claim 20, wherein bonding the group of selective microdevices from the substrate to the backplane includes the following steps: Aligning and contacting the micro devices with the back plate; Removing the buffer layer to release the micro devices; Generate a force to pull out the selected microdevices of the group; and Bond the selected microdevices of the group to the backplane. 如請求項20之方法,其進一步包括 在該緩衝層中提供開口以允許該等微裝置連接至該平坦化層。Such as the method of claim 20, which further includes Openings are provided in the buffer layer to allow the micro devices to be connected to the planarization layer. 如請求項21之方法,其中該緩衝層為導電的。The method of claim 21, wherein the buffer layer is conductive. 如請求項21之方法,其中該緩衝層將至少一個微裝置連接至測試焊盤。The method of claim 21, wherein the buffer layer connects at least one micro device to the test pad. 如請求項21之方法,其進一步包括 在該平坦化層的頂部或底部任一者上提供電極;以及 經由該緩衝層將至少一個微裝置耦合至該電極。Such as the method of claim 21, which further includes Providing electrodes on either the top or bottom of the planarization layer; and At least one micro device is coupled to the electrode via the buffer layer. 如請求項21之方法,其進一步包括 提取該背板上微裝置的位置;以及 延伸該電極的位置至該背板上微裝置的提取位置,其中藉由相機、探針尖端或表面輪廓儀中之一者提取微裝置的該位置。Such as the method of claim 21, which further includes Extract the position of the micro device on the backplane; and The position of the electrode is extended to the extraction position of the micro device on the backplane, wherein the position of the micro device is extracted by one of a camera, a probe tip or a surface profiler.
TW108133933A 2018-09-21 2019-09-20 Integration of microdevices into system substrate TWI815968B (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201862734679P 2018-09-21 2018-09-21
US62/734,679 2018-09-21
US201862746300P 2018-10-16 2018-10-16
US62/746,300 2018-10-16
US201962809161P 2019-02-22 2019-02-22
US62/809,161 2019-02-22
US16/542,019 2019-08-15
US16/542,019 US10998352B2 (en) 2016-11-25 2019-08-15 Integration of microdevices into system substrate

Publications (2)

Publication Number Publication Date
TW202030829A true TW202030829A (en) 2020-08-16
TWI815968B TWI815968B (en) 2023-09-21

Family

ID=69906009

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108133933A TWI815968B (en) 2018-09-21 2019-09-20 Integration of microdevices into system substrate

Country Status (3)

Country Link
KR (1) KR20200034931A (en)
CN (1) CN110943063A (en)
TW (1) TWI815968B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI764127B (en) * 2020-04-08 2022-05-11 台灣愛司帝科技股份有限公司 Initial led chip structure, image display device and chip classification system
TWI742600B (en) * 2020-04-08 2021-10-11 台灣愛司帝科技股份有限公司 Initial led chip structure, image display device and chip classification system
KR102607680B1 (en) * 2023-02-07 2023-11-29 웨이브로드 주식회사 Method for manufacturing microdisplay panel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012158709A1 (en) * 2011-05-16 2012-11-22 The Board Of Trustees Of The University Of Illinois Thermally managed led arrays assembled by printing

Also Published As

Publication number Publication date
TWI815968B (en) 2023-09-21
CN110943063A (en) 2020-03-31
KR20200034931A (en) 2020-04-01

Similar Documents

Publication Publication Date Title
CN110036492B (en) Integrating micro devices into a system substrate
US10916523B2 (en) Microdevice transfer setup and integration of micro-devices into system substrate
US10998352B2 (en) Integration of microdevices into system substrate
TWI710103B (en) Luminous panel and method of manufacturing such a luminous panel
CN109830455B (en) Method for transferring micro device into system substrate
TWI815968B (en) Integration of microdevices into system substrate
US8257538B2 (en) Device transfer method and display apparatus
US9607907B2 (en) Electric-programmable magnetic module and picking-up and placement process for electronic devices
TWI598287B (en) Electric-programmable magnetic transfer module and transfer-bonding process for photoelectric devices
US9119332B2 (en) Method of mounting devices in substrate and device-mounting substrate structure thereof
US20210242287A1 (en) Integration of microdevices into system substrate
TWI383479B (en) Controlling an electronic device using chiplets
WO2011067991A1 (en) Semiconductor device, process for producing same, and display device
US20160276326A1 (en) Micro Solar Cell Powered Micro LED Display
US20230326937A1 (en) Integration of microdevices into system substrate
CA2984214A1 (en) Integration of micro-devices into system substrate
JP2008118161A (en) Element transferring method
CN111816663A (en) Method for manufacturing pixelized structure
KR20230025713A (en) Apparatus and manufacturing method thereof