TWI813293B - 高精準度緊固件自動鎖固系統 - Google Patents

高精準度緊固件自動鎖固系統 Download PDF

Info

Publication number
TWI813293B
TWI813293B TW111118478A TW111118478A TWI813293B TW I813293 B TWI813293 B TW I813293B TW 111118478 A TW111118478 A TW 111118478A TW 111118478 A TW111118478 A TW 111118478A TW I813293 B TWI813293 B TW I813293B
Authority
TW
Taiwan
Prior art keywords
module
fastener
driving module
sensing
sensing unit
Prior art date
Application number
TW111118478A
Other languages
English (en)
Other versions
TW202346016A (zh
Inventor
翁慶昌
李靜微
歐燦坤
Original Assignee
淡江大學學校財團法人淡江大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 淡江大學學校財團法人淡江大學 filed Critical 淡江大學學校財團法人淡江大學
Priority to TW111118478A priority Critical patent/TWI813293B/zh
Application granted granted Critical
Publication of TWI813293B publication Critical patent/TWI813293B/zh
Publication of TW202346016A publication Critical patent/TW202346016A/zh

Links

Images

Landscapes

  • Connection Of Plates (AREA)
  • Insertion Pins And Rivets (AREA)

Abstract

一種高精準度緊固件自動鎖固系統,適用於控制緊固件對被鎖物進行自動鎖固作業,包括至少一驅動模組,用以根據控制指令,產生線性位移、正向應力值、軸向應力值,並輸出扭力值至緊固件;感測模組,用以感測至少一驅動模組之相關數據;微控制模組,用以根據所述的相關數據,產生控制指令至至少一驅動模組,以調整線性位移、正向應力值、軸向應力值與扭力值;及影像擷取模組,位於被鎖物旁,用以擷取緊固件於被鎖物上進行該自動鎖固作業之即時影像數據。

Description

高精準度緊固件自動鎖固系統
本發明是有關於一種緊固件鎖固系統,特別是關於一種高精準度緊固件自動鎖固系統。
隨著自動化機器人技術的進步,傳統工業製造轉型智慧製造,其特點是執行高精密度且複雜性的工作,也具有生產數據儲存分析、生產可追溯性與預防性設備維護等等。
目前,全球緊固件(例如,螺絲、螺帽、螺栓或墊片等)製造業朝向彈性製造或客製化多樣性緊固件的發展趨勢邁進。在製造緊固件產品的過程中,需要對緊固件產品的良率進行自動化檢測,並取得相關的數據分析,進而提升緊固件產品的製造品質與效能,也能使緊固件製造產業符合前述的發展趨勢需求,以及因應不可預測的市場變動。
因此,如何能提供一種『高精準度緊固件自動鎖固系統』,成為業界所待解決之課題。
本發明實施例提供一種高精準度緊固件自動鎖固系統,適用於控制緊固件對被鎖物進行自動鎖固作業,包括至少一驅動模組,用以根據控制指令,產生線性位移、正向應力值、軸向應力值,並輸出扭力值至緊固件;感測模組,用以感測至少一驅動模組之相關數據;微控制模組,用以根據所述的相關數據,產生控制指令至至少一驅動模組,以調整線性位移、正向應力值、軸向應力值與扭力值;及影像擷取模組,位於被鎖物旁,用以擷取緊固件於被鎖物上進行該自動鎖固作業之即時影像數據。
在一些實施例中,還包括一深度學習模組,用以根據即時影像數據辨識緊固件與被鎖物之影像特徵,並進行一深度學習訓練,以及產生一修正係數。
在一些實施例中,至少一驅動模組還包括:第一驅動模組,用以根據控制指令之第一控制命令,產生線性位移、正向應力值與軸向應力值;及一第二驅動模組,與第一驅動模組連接,用以根據該制指令之第二控制命令,調整輸出至緊固件之扭力值。
在一些實施例中,其中微控制模組還根據修正係數產生第一控制命令與第二控制命令至第一驅動模組與第二驅動模組,以調整正向應力值、軸向應力值、線性位移與扭力值。
在一些實施例中,感測模組還包括:第一感測單元,與第一驅動模組位於同一軸向上,用以感測第一驅動模組之第一即時正向與軸向應力數據;第二感測單元,與第二驅動模組連接,用以感測第二驅動模組之即時扭力數據;第三感測單元,位於被鎖物的下方,用以感測第二即時正向與軸向應力數據。
在一些實施例中,線性位移之方向與軸向大致平行。
在一些實施例中,第一感測單元為荷重元感測器、第二感測單元為扭力感測器及第三感測單元為重量感測器。
在一些實施例中,還包括一停止模組,分別與第一驅動模組、第二驅動模組、微控制模組及深度學習模組連接,用以停止第一驅動模組、第二驅動模組、微控制模組及深度學習模組之運作。
在一些實施例中,其中深度學習模組還建立對應各種緊固件與各種被鎖物之性能數據庫。
在一些實施例中,微控制模組還根據緊固件鎖固於被鎖物之平整度定義出一最佳鎖固方案,並將最佳鎖固方案儲存於性能數據庫。
為讓本發明能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
以下結合附圖和實施例,對本發明的具體實施方式作進一步描述。以下實施例僅用於更加清楚地說明本發明的技術方案,而不能以此限制本發明的保護範圍。
為了清楚與方便圖式說明之故,圖式中的各部件在尺寸與比例上可能會被擴大或縮小地呈現。在以下描述及/或申請專利範圍中,當提及元件「連接」或「耦合」至另一元件時,其可直接連接或耦合至該另一元件或可存在介入元件;而當提及元件「直接連接」或「直接耦合」至另一元件時,不存在介入元件,用於描述元件或層之間之關係之其他字詞應以相同方式解釋;「第一」、「第二」等序數,彼此之間並沒有順序上的先後關係,其僅用於標示區分兩個具有相同名字之不同元件。為便於理解,下述實施例中之相同元件係以相同之符號標示來說明。
請參照第1A圖,為本發明一實施例之系統方塊圖。如第1A圖所示,高精準度緊固件自動鎖固系統100適用於控制緊固件70對被鎖物72進行自動鎖固作業。高精準度緊固件自動鎖固系統100包括第一驅動模組10、第二驅動模組20、感測模組30、微控制模組40、影像擷取模組50、深度學習模組60與停止模組80。在一些實施例中,緊固件70為自攻螺絲(塑板螺絲(Plastic PT screw)、木螺絲)、裝配螺絲、螺帽、螺栓或墊片等,但不以此為限。在一些實施例中,被鎖物72為木質、金屬、水泥、塑膠或合成材,但不以此為限。
第一驅動模組10,用以根據控制指令之第一控制命令,產生線性位移(例如,上下)動作、正向應力值與軸向應力值。第一驅動模組10實際上可由包含步進馬達、線性滑軌、剎車器、驅動電路、電纜線…等零件的電動滑台所組成。藉此,第一驅動模組10主要輸出正向應力於緊固件70上。
第二驅動模組20,與第一驅動模組10連接。第二驅動模組20受第一驅動模組10的連動影響改變其在Z軸向的位置。第二驅動模組20用以根據控制指令之第二控制命令,調整輸出至緊固件70之扭力值與正向應力值。第二驅動模組20實際上可由包含直流無刷馬達、磁旋轉編碼器、驅動控制晶片、電晶體開關電路、訊號放大電路…等零件的電動緊固模組組成。
感測模組30與微控制模組40連接。感測模組30用以感測第一驅動模組10與第二驅動模組20之相關數據。更具體的說,感測模組30還包括第一感測單元32、第二感測單元34與第三感測單元36。
第一感測單元32,與第一驅動模組10位於同一軸向上。第一感測單元32與微控制模組40連接。第一感測單元32用以感測第一驅動模組10之第一即時正向與軸向應力數據。第一感測單元32可為荷重元感測器。
第二感測單元34,分別與微控制模組40、第二驅動模組20連接。第二感測單元34用以感測第二驅動模組20之即時扭力數據。第二感測單元34可為扭力感測器。舉例來說,當緊固件70達到接合點時會與第二驅動模組20產生反作用力使得第二感測單元34內的應變規形變,而形變所對應產生的訊號再經由惠斯頓電橋(Wheatstone bridge)放大訊號後即可得到即時扭力數據。
第三感測單元36,位於被鎖物72的下方。第三感測單元36與微控制模組40連接。第三感測單元36用以感測第二即時正向與軸向應力數據。第三感測單元36為重量感測器。舉例來說,當緊固件70開始鎖入至被鎖物72內時,第三感測單元36可持續感測到被鎖物72所承受的第二即時正向與軸向應力數據,並將第二即時正向與軸向應力數據傳送至微控制模組40。
微控制模組40,用以根據感測模組30取得的相關數據,產生控制指令之第一控制命令與第二控制命令至第一驅動模組10與第二驅動模組20,以調整扭力值、正向應力值與線性位移。微控制模組40可由Arduino UNO控制器、微控制器(MCU)、數位訊號處理器(DSP)、現場可程式化邏輯閘陣列(FPGA)或系統單晶片(SoC)組成。在一些實施例中,微控制模組40還根據修正係數,產生控制指令之第一控制命令與第二控制命令至第一驅動模組10與第二驅動模組20,以調整扭力值、正向應力值與線性位移。
影像擷取模組50,位於被鎖物72旁。影像擷取模組50用以擷取緊固件70於被鎖物72上進行自動鎖固作業之即時影像數據。影像擷取模組50可由三維立體視覺攝影機組成。
深度學習模組60與影像擷取模組50連接。深度學習模組60用以根據即時影像數據辨識緊固件70與被鎖物72之影像特徵並進行深度學習訓練,以及產生修正係數。
舉例來說,深度學習模組60可對緊固件70與被鎖物72的影像特徵進行辨識,並透過替換各種緊固件70與被鎖物72的組合(例如,不同的材質、不同鎖入角度)持續對深度學習模組60進行深度學習訓練。接著,當緊固件70沒有依照預定的速度鎖入至被鎖物72中時,透過感測模組30與影像擷取模組50可判斷需要對自動鎖固作業進行修正(例如,增加扭力值、增加正向與軸向應力值與/或增加線性位移與速度),並由深度學習模組60產生修正係數至微控制模組40。
同樣的,當緊固件70依照預定的速度鎖入至被鎖物72中,但不夠平整(例如,緊固件70的螺絲頭已陷入被鎖物72內)時,透過感測模組30與影像擷取模組50可判斷需要對自動鎖固作業進行修正(例如,減少扭力值、減少正向與軸向應力值與/或減少線性位移與速度),並由深度學習模組60產生修正係數至微控制模組40。
深度學習模組60可由電腦裝置(例如,桌上型電腦、筆記型電腦、平板電腦或智慧型手機)組成。深度學習模組60可以例如是卷積式神經網路模型、RCNN模型、YOLO模型、CTPN模型或EAST模型。另外,卷積式神經網路模型可為VGG模型、DenseNet模型或ResNet模型。在一些實施例中,深度學習模組60還建立對應各種緊固件70與各種被鎖物72之性能數據庫。舉例來說,以緊固件70鎖鋁門框的測試組合、或者以緊固件70鎖金屬門框的測試組合、或者以緊固件70鎖水泥的測試組合、或以緊固件70鎖木頭的測試組合、或者以特定角度鎖入被鎖物72的測試組合…等,依此類推去取得各種參數後建立性能數據庫。
停止模組80分別與第一驅動模組10、第二驅動模組20、微控制模組40、深度學習模組60連接。停止模組80用以停止第一驅動模組10、第二驅動模組20、微控制模組40及深度學習模組60之運作。若有特殊或緊急狀況時,使用者可透過停止模組80對高精準度緊固件自動鎖固系統100下達停止運作的指令,以控制微控第一驅動模組10、第二驅動模組20、制模組40及深度學習模組60之運作。停止模組80可由電源開關迴路所組成。
請參照第1B圖,為本發明另一實施例之系統方塊圖。如第1B圖所示,第一感測單元32、第二感測單元34與第三感測單元36係分別與微控制模組40連接,不同於前一個實施例將整合第一感測單元32、第二感測單元34與第三感測單元36為一個感測模組40,其感測方式與運作原理皆相同或類似,於此不再贅述。
接下來,請參照第2圖,為本發明一實施例之外觀示意圖。如第2圖所示,在第二驅動模組20上方的同一軸向上安裝有第一感測單元32。將具有第二感測單元34之第二驅動模組20安裝於具線性滑軌之第一驅動模組10上,並透過三角支架將整體固定於平台90上。在平台90與被鎖物72之間安裝有第三感測單元36。在一些實施例中,平台90具有沉槽設計,可與固定模組74(例如,虎鉗或固定台)透過螺栓螺母結合後,將被鎖物72進行X軸向與Y軸向的位置調整,有效利用被鎖物72的測試面積。
接著,將被鎖物72水平固定於固定模組74內,並將緊固件70放置於第二驅動模組20的螺絲起子頭與被鎖物72之間,再透過第一驅動模組10的線性滑軌固定。第二驅動模組20進行線性位移(例如,Z軸向)之方向與第一驅動模組10的軸向大致平行。藉此,透過軸向比例控制第一驅動模組10的位置,並利用第一感測單元32、第二感測單元34與第三感測單元36與所取得量測數據,進而判斷偵測自動鎖固作業的正向應力條件,並透過等速鎖固控制了解各種結合扭力性能特性,制定適合鎖固方法或參數。
在於平台90的左側或右側放置影像擷取模組50(例如,三維立體視覺攝影機),並調整影像擷取模組50的高度或位置至緊固件70與被鎖物72皆進入影像辨識範圍內。另外,可於平台90旁放置可調燈光,以加強影像辨識度。在一些實施例中,可調燈光也可安裝在第二驅動模組20或影像擷取模組50上。
利用具有三維視覺的影像擷取模組50讀取固定於固定模組74上的緊固件70與被鎖物72之影像,並透過深度學習模組60對即時影像數據進行深度學習訓練,依據不同的緊固件70與被鎖物72的影像特徵得出檢測相關數據。
舉例來說,在被鎖物72被緊固件70利用第一驅動模組10與第二驅動模組20進行自動鎖固作業後,並透過第一感測單元32、第二感測單元34與第三感測單元36量測相關數值,來評測緊固件70之鎖固於被鎖物72之鎖固資訊,進而定義此鎖固資訊是否為最佳鎖固方案。
由於被鎖物72之材質難以定義為一通解,面對同一個緊固件70也可能有多種被鎖物72來進行自動鎖固作業的組合任務。若是有多種被鎖物72時,單一的鎖固參數也難以應用於各類的緊固件70與被鎖物72。
因此,在緊固件70的檢測過程中,可採用扭力與時間或緊固件70旋轉角度的關係曲線來進行評估。藉此,可以得到最節能的緊固件70種類、最耗能的緊固件70種類與被鎖物72的匹配關係,並將取得的緊固件70檢測相關數據、被鎖物材質、結構、大小、形狀的相關數據儲存於性能數據庫。在一些實施例中,也可利用微控制模組40據緊固件70鎖固於被鎖物72之平整度定義出一最佳鎖固方案,並將最佳鎖固方案儲存於性能數據庫。另外,搭配深度學習模組60進行深度學習訓練,以持續更新深度學習模組60,提升高精準度緊固件自動鎖固系統100的泛用性。
綜上所述,本發明之高精準度緊固件自動鎖固系統,具有較高的軸向操作空間,可因應多種大小、形狀、材質、長短不同之緊固件自動化檢測作業,進而提升緊固件產品的製造品質與效能。
根據本發明實施例之第二驅動模組與感測模組,可達到精準扭力控制與正向應力感測數據回饋,在控制上具有高精準度。
根據本發明實施例之影像擷取模組與深度學習模組可辨識出不同緊固件與被鎖物的影像特徵,並建立對應各種緊固件與各種被鎖物之性能數據庫,以在下次自動鎖固作業前,達到依據不同緊固件與被鎖物組合改變鎖固控制策略的目的。
根據本發明實施例之微控制模組搭配深度學習模組進行深度學習訓練,可提升緊固件自動鎖固系統的泛用性。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。
10:第一驅動模組 20:第二驅動模組 30:感測模組 32:第一感測單元 34:第二感測單元 36:第三感測單元 40:微控制模組 50:影像擷取模組 60:深度學習模組 70:緊固件 72:被鎖物 74:固定模組 80:停止模組 90:平台 100:高精準度緊固件自動鎖固系統
第1A圖為本發明一實施例之系統方塊圖。 第1B圖為本發明另一實施例之系統方塊圖。 第2圖為本發明一實施例之外觀示意圖。
10:第一驅動模組
20:第二驅動模組
32:第一感測單元
34:第二感測單元
36:第三感測單元
50:影像擷取模組
70:緊固件
72:被鎖物
74:固定模組
90:平台
100:高精準度緊固件自動鎖固系統

Claims (7)

  1. 一種高精準度緊固件自動鎖固系統,適用於控制一緊固件對一被鎖物進行一自動鎖固作業,包括:至少一驅動模組,用以根據一控制指令,產生一線性位移、一正向應力值、一軸向應力值,並輸出一扭力值至該緊固件,其中該至少一驅動模組還包括:一第一驅動模組,用以根據該控制指令之一第一控制命令,產生該線性位移、該正向應力值與該軸向應力值;及一第二驅動模組,與該第一驅動模組連接,用以根據該控制指令之一第二控制命令,調整輸出至該緊固件之該扭力值;一感測模組,用以感測該至少一驅動模組之相關數據,其中該感測模組還包括:一第一感測單元,與該第一驅動模組位於同一軸向上,用以感測該第一驅動模組之一第一即時正向與軸向應力數據;一第二感測單元,與該第二驅動模組連接,用以感測該第二驅動模組之即時扭力數據;及一第三感測單元,位於該被鎖物的下方,用以感測一第二即時正向與軸向應力數據;一微控制模組,用以根據該相關數據,產生該控制指令至該至少一驅動模組,以調整該線性位移、該正向應力值、該軸向應力值與該扭力值;一影像擷取模組,位於該被鎖物旁,用以擷取該緊固件於該被鎖物上進行該自動鎖固作業之即時影像數據;以及一深度學習模組,用以根據該即時影像數據辨識該緊固件與該被鎖物之影像特徵,並進行一深度學習訓練,以及產生一修正係數。
  2. 如請求項1所述之高精準度緊固件自動鎖固系統,其中該微控制模組還根據該修正係數產生該第一控制命令與該第二控制命令至該第一驅動模組與該第二驅動模組,以調整該正向應力值、該軸向應力值、該線性位移與該扭力值。
  3. 如請求項1所述之高精準度緊固件自動鎖固系統,其中該線性位移之方向與該軸向大致平行。
  4. 如請求項1所述之高精準度緊固件自動鎖固系統,其中該第一感測單元為荷重元感測器、該第二感測單元為扭力感測器及該第三感測單元為重量感測器。
  5. 如請求項1所述之高精準度緊固件自動鎖固系統,其中還包括一停止模組,分別與該第一驅動模組、該第二驅動模組、該微控制模組及該深度學習模組連接,用以停止該第一驅動模組、該第二驅動模組、該微控制模組及該深度學習模組之運作。
  6. 如請求項1所述之高精準度緊固件自動鎖固系統,其中該深度學習模組還建立對應各種緊固件與各種被鎖物之一性能數據庫。
  7. 如請求項6所述之高精準度緊固件自動鎖固系統,其中該微控制模組還根據該緊固件鎖固於該被鎖物之平整度定義出一最佳鎖固方案,並將該最佳鎖固方案儲存於該性能數據庫。
TW111118478A 2022-05-18 2022-05-18 高精準度緊固件自動鎖固系統 TWI813293B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111118478A TWI813293B (zh) 2022-05-18 2022-05-18 高精準度緊固件自動鎖固系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111118478A TWI813293B (zh) 2022-05-18 2022-05-18 高精準度緊固件自動鎖固系統

Publications (2)

Publication Number Publication Date
TWI813293B true TWI813293B (zh) 2023-08-21
TW202346016A TW202346016A (zh) 2023-12-01

Family

ID=88585785

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111118478A TWI813293B (zh) 2022-05-18 2022-05-18 高精準度緊固件自動鎖固系統

Country Status (1)

Country Link
TW (1) TWI813293B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201008694A (en) * 2008-08-22 2010-03-01 Evest Corp Apparatus for assembling screw components
CN103465011A (zh) * 2012-06-06 2013-12-25 高侨自动化科技股份有限公司 自动锁螺丝装置
US20210379708A1 (en) * 2019-09-20 2021-12-09 Boe Optical Science And Technology Co., Ltd. End Effector and Light Bar Assembling Device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201008694A (en) * 2008-08-22 2010-03-01 Evest Corp Apparatus for assembling screw components
CN103465011A (zh) * 2012-06-06 2013-12-25 高侨自动化科技股份有限公司 自动锁螺丝装置
US20210379708A1 (en) * 2019-09-20 2021-12-09 Boe Optical Science And Technology Co., Ltd. End Effector and Light Bar Assembling Device

Also Published As

Publication number Publication date
TW202346016A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
Smys et al. Robot assisted sensing control and manufacture in automobile industry
CN109655024B (zh) 采用空间变换技术的位移传感器外部参数标定方法
CN104227715B (zh) 对运动学冗余的机器人的监视
CN107414474B (zh) 一种狭窄空间螺栓定位安装机器人及控制方法
CA2750113A1 (en) Secondary position feedback control of a robot
CN103753519A (zh) 针对三自由度力反馈手控器的标定方法的平台机构
Deters et al. Accurate bolt tightening using model-free fuzzy control for wind turbine hub bearing assembly
CN108907888B (zh) 半闭环控制下数控机床进给系统换向误差峰值预测方法
JP2004195621A (ja) 3次元計測装置
CN113295328A (zh) 一种扭矩扳手检定仪及其检定方法
CN101537887A (zh) 一种机身三点浮动入位方法
TWI813293B (zh) 高精準度緊固件自動鎖固系統
US11597083B2 (en) Robot apparatus, robot system, control method of robot apparatus, product manufacturing method using robot apparatus, and storage medium
CN214793613U (zh) 一种扭矩扳手检定仪
CN203543175U (zh) 一种压力机连杆长度的调节装置
CN112669383B (zh) 流水线跟踪系统的跟踪方法及相机标定方法
Tan et al. Calibration of single-axis nanopositioning cell subjected to thermal disturbance
Liu et al. Design of DOB-based riveting force controller for dual-machine horizontal drilling and riveting system
US11789437B2 (en) Processing apparatus and processing method for processing portion
CN202126273U (zh) 汽车组合仪表产品自动化检测系统
CN110736606B (zh) 背光源检测工装及其自动调整方法
Manyar et al. Physics-Informed Learning to Enable Robotic Screw-Driving Under Hole Pose Uncertainties
CN216898621U (zh) 一种螺纹杆螺纹公差检测装置
CN219737527U (zh) 一种建筑龙骨生产制备用工艺检测装置
TW202315726A (zh) 元器件的異常監測方法、電子設備及儲存介質