TWI811738B - laminate - Google Patents
laminate Download PDFInfo
- Publication number
- TWI811738B TWI811738B TW110125745A TW110125745A TWI811738B TW I811738 B TWI811738 B TW I811738B TW 110125745 A TW110125745 A TW 110125745A TW 110125745 A TW110125745 A TW 110125745A TW I811738 B TWI811738 B TW I811738B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- base material
- antifouling
- refractive index
- laminated body
- Prior art date
Links
- 239000000463 material Substances 0.000 claims abstract description 148
- 230000003373 anti-fouling effect Effects 0.000 claims abstract description 127
- 239000010702 perfluoropolyether Substances 0.000 claims abstract description 59
- 150000001875 compounds Chemical class 0.000 claims abstract description 46
- 238000005259 measurement Methods 0.000 claims abstract description 29
- 230000005484 gravity Effects 0.000 claims abstract description 28
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 15
- 230000000737 periodic effect Effects 0.000 claims abstract description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 48
- 230000003667 anti-reflective effect Effects 0.000 claims description 21
- 229910052751 metal Inorganic materials 0.000 claims description 20
- 239000002184 metal Substances 0.000 claims description 20
- 239000000377 silicon dioxide Substances 0.000 claims description 20
- 235000012239 silicon dioxide Nutrition 0.000 claims description 18
- 229910044991 metal oxide Inorganic materials 0.000 claims description 8
- 150000004706 metal oxides Chemical class 0.000 claims description 8
- 150000004767 nitrides Chemical class 0.000 claims description 7
- 238000000034 method Methods 0.000 abstract description 44
- 239000010410 layer Substances 0.000 description 390
- 239000002346 layers by function Substances 0.000 description 60
- 230000003287 optical effect Effects 0.000 description 35
- 238000009832 plasma treatment Methods 0.000 description 27
- 239000007789 gas Substances 0.000 description 25
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 22
- 239000010408 film Substances 0.000 description 22
- 239000012790 adhesive layer Substances 0.000 description 20
- 229920005989 resin Polymers 0.000 description 20
- 239000011347 resin Substances 0.000 description 20
- 238000004381 surface treatment Methods 0.000 description 16
- 238000004544 sputter deposition Methods 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 12
- 239000000758 substrate Substances 0.000 description 12
- 229910052786 argon Inorganic materials 0.000 description 11
- 238000001704 evaporation Methods 0.000 description 9
- 230000008020 evaporation Effects 0.000 description 9
- 229920002284 Cellulose triacetate Polymers 0.000 description 8
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 8
- 239000008199 coating composition Substances 0.000 description 8
- 150000002739 metals Chemical class 0.000 description 8
- -1 polyethylene terephthalate Polymers 0.000 description 8
- 238000001771 vacuum deposition Methods 0.000 description 8
- 238000000576 coating method Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 6
- 229910001882 dioxygen Inorganic materials 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000010419 fine particle Substances 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000012461 cellulose resin Substances 0.000 description 4
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 229920000178 Acrylic resin Polymers 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 3
- 229920000877 Melamine resin Polymers 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 229910001512 metal fluoride Inorganic materials 0.000 description 3
- 239000010955 niobium Substances 0.000 description 3
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 3
- 239000012788 optical film Substances 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920005672 polyolefin resin Polymers 0.000 description 3
- 238000007738 vacuum evaporation Methods 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 229940125810 compound 20 Drugs 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 125000001033 ether group Chemical group 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- JAXFJECJQZDFJS-XHEPKHHKSA-N gtpl8555 Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@@H]1C(=O)N[C@H](B1O[C@@]2(C)[C@H]3C[C@H](C3(C)C)C[C@H]2O1)CCC1=CC=C(F)C=C1 JAXFJECJQZDFJS-XHEPKHHKSA-N 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910000484 niobium oxide Inorganic materials 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920006122 polyamide resin Polymers 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 125000005372 silanol group Chemical group 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- 241000692870 Inachis io Species 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 230000032900 absorption of visible light Effects 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- CXKCTMHTOKXKQT-UHFFFAOYSA-N cadmium oxide Inorganic materials [Cd]=O CXKCTMHTOKXKQT-UHFFFAOYSA-N 0.000 description 1
- CFEAAQFZALKQPA-UHFFFAOYSA-N cadmium(2+);oxygen(2-) Chemical compound [O-2].[Cd+2] CFEAAQFZALKQPA-UHFFFAOYSA-N 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000003709 fluoroalkyl group Chemical group 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000001282 organosilanes Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000005469 synchrotron radiation Effects 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/18—Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/024—Deposition of sublayers, e.g. to promote adhesion of the coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/083—Oxides of refractory metals or yttrium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/10—Glass or silica
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/12—Organic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3464—Sputtering using more than one target
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
- C23C14/562—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/113—Anti-reflection coatings using inorganic layer materials only
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/113—Anti-reflection coatings using inorganic layer materials only
- G02B1/115—Multilayers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/14—Protective coatings, e.g. hard coatings
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Laminated Bodies (AREA)
- Surface Treatment Of Optical Elements (AREA)
Abstract
本發明之積層體朝向厚度方向一側依序具備基材層及防污層。防污層包含具有全氟聚醚基之烷氧基矽烷化合物。藉由微小角入射X射線繞射法中之面內繞射測定所測得之源自上述防污層之全氟聚醚基於面內方向之週期排列性的波峰之重心位置為1.8Å-1 以下。The laminated body of the present invention includes a base material layer and an antifouling layer in order toward one side in the thickness direction. The antifouling layer contains an alkoxysilane compound having a perfluoropolyether group. The center of gravity position of the periodic arrangement of the wave peaks based on the in-plane direction of the perfluoropolyether derived from the above-mentioned antifouling layer measured by in-plane diffraction measurement in the micro-angle incident X-ray diffraction method is 1.8Å -1 the following.
Description
本發明係關於一種積層體,詳細而言係關於一種具備防污層之積層體。 The present invention relates to a laminated body, and specifically to a laminated body provided with an antifouling layer.
先前,已知自防止手印、指紋等污漬附著之觀點出發,於膜基材之表面或光學膜等光學零件之表面形成防污層。 Previously, it has been known to form an antifouling layer on the surface of a film base material or on the surface of optical components such as optical films from the viewpoint of preventing the adhesion of stains such as fingerprints and fingerprints.
作為此種具備防污層之光學膜,例如提出有如下抗反射膜,其依序具備膜基材、抗反射層、及防污層(例如參照專利文獻1)。 As such an optical film provided with an antifouling layer, for example, an antireflection film has been proposed that includes a film base material, an antireflection layer, and an antifouling layer in this order (see, for example, Patent Document 1).
[專利文獻1]日本專利特開2020-52221號公報 [Patent Document 1] Japanese Patent Application Publication No. 2020-52221
另一方面,存在若擦拭附著於防污層之污漬,則防污層之防污性會降低之不良狀況。 On the other hand, if stains adhered to the antifouling layer are wiped off, the antifouling properties of the antifouling layer are adversely affected.
本發明提供一種積層體,即便在擦拭附著於防污層之污漬之後,亦能抑制防污層之防污性之降低。 The present invention provides a laminate that can suppress the deterioration of the antifouling properties of the antifouling layer even after wiping off stains attached to the antifouling layer.
本發明[1]係一種積層體,其朝向厚度方向一側依序具備基材層及防污層,上述防污層包含具有全氟聚醚基之烷氧基矽烷化合物,藉 由微小角入射X射線繞射法中之面內繞射測定所測得之源自上述防污層之全氟聚醚基於面內方向之週期排列性的波峰之重心位置為1.8Å-1以下。 The present invention [1] is a laminated body, which has a base material layer and an antifouling layer in order toward one side in the thickness direction. The antifouling layer contains an alkoxysilane compound having a perfluoropolyether group and is incident through a small angle. The position of the center of gravity of the periodic arrangement of the wave peaks based on the in-plane direction of the perfluoropolyether derived from the above-mentioned antifouling layer measured by in-plane diffraction measurement using the X-ray diffraction method is 1.8 Å -1 or less.
本發明[2]包含上述[1]所記載之積層體,其中於上述防污層之厚度方向另一面具備底塗層。 The present invention [2] includes the laminate according to the above [1], which is provided with a primer layer on the other surface in the thickness direction of the antifouling layer.
本發明[3]包含上述[2]所記載之積層體,其中上述底塗層係包含二氧化矽之層。 The present invention [3] includes the laminated body according to the above [2], wherein the undercoat layer is a layer containing silica.
本發明[4]包含上述[3]所記載之積層體,其中上述防污層係將具有全氟聚醚基之烷氧基矽烷化合物經由矽氧烷鍵而形成於上述底塗層。 The present invention [4] includes the laminate according to the above [3], wherein the antifouling layer is formed on the undercoat layer by using an alkoxysilane compound having a perfluoropolyether group via a siloxane bond.
本發明[5]包含上述[1]所記載之積層體,其中於上述基材層與上述防污層之間進而具備密接層及抗反射層。 The present invention [5] includes the laminated body according to the above [1], further comprising an adhesion layer and an anti-reflection layer between the base material layer and the antifouling layer.
本發明[6]包含上述[5]所記載之積層體,其中上述抗反射層包含具有互不相同之折射率之2個以上之層。 The present invention [6] includes the laminated body according to the above [5], wherein the anti-reflection layer includes two or more layers having mutually different refractive indexes.
本發明[7]包含上述[6]所記載之積層體,其中上述抗反射層包含選自由金屬、金屬氧化物、金屬氮化物組成之群中之1種。 The present invention [7] includes the laminate according to the above [6], wherein the antireflection layer contains one selected from the group consisting of metal, metal oxide, and metal nitride.
本發明[8]包含上述[6]或[7]所記載之積層體,其中上述抗反射層之厚度方向一面係包含二氧化矽之層。 The present invention [8] includes the laminate according to the above [6] or [7], wherein one side of the antireflection layer in the thickness direction is a layer containing silicon dioxide.
本發明之積層體中之防污層包含具有全氟聚醚基之烷氧基矽烷化合物。又,於防污層中,藉由微小角入射X射線繞射法中之面內繞射測定所測得之源自防污層之全氟聚醚基於面內方向之週期排列性的波峰之重心位置為1.8Å-1以下。因此,即便在擦拭附著於防污層之污漬後,亦能抑制防污層之防污性之降低。 The antifouling layer in the laminate of the present invention contains an alkoxysilane compound having a perfluoropolyether group. Furthermore, in the antifouling layer, the periodic arrangement of wave peaks derived from the perfluoropolyether in the antifouling layer based on the in-plane direction measured by in-plane diffraction measurement in the micro-angle incident X-ray diffraction method The center of gravity position is below 1.8Å -1 . Therefore, even after wiping off the stains attached to the antifouling layer, the antifouling properties of the antifouling layer can be suppressed from decreasing.
1:積層體 1: Laminated body
2:基材層 2: Base material layer
3:防污層 3: Antifouling layer
4:基材 4:Substrate
5:功能層 5: Functional layer
6:密接層 6: Adhesive layer
7:光學功能層 7: Optical functional layer
11:第1高折射率層 11: 1st high refractive index layer
12:第1低折射率層 12: 1st low refractive index layer
13:第2高折射率層 13: 2nd high refractive index layer
14:第2低折射率層 14: 2nd low refractive index layer
15:底塗層 15: Base coat
20:具有全氟聚醚基之烷氧基矽烷化合物 20: Alkoxysilane compound with perfluoropolyether group
20A:烷氧基矽烷化合物 20A: Alkoxysilane compound
20B:烷氧基矽烷化合物 20B:Alkoxysilane compound
20C:烷氧基矽烷化合物 20C: Alkoxysilane compound
21:群 21:Group
21A:群 21A:Group
21B:群 21B:Group
21C:群 21C:Group
圖1表示本發明之積層體之第1實施方式之剖視圖。 FIG. 1 shows a cross-sectional view of the first embodiment of the laminated body of the present invention.
圖2A~圖2C表示本發明之積層體之第1實施方式之製造方法之一實施方式。圖2A表示第1步驟中準備基材之步驟。圖2B表示第1步驟中於基材上配置硬塗層(功能層)之步驟。圖2C表示於基材層上配置防污層之第2步驟。 2A to 2C illustrate an embodiment of the manufacturing method of the first embodiment of the laminated body of the present invention. Figure 2A shows the step of preparing the substrate in the first step. FIG. 2B shows the step of arranging a hard coat layer (functional layer) on the base material in the first step. Figure 2C shows the second step of arranging the antifouling layer on the base material layer.
圖3A及圖3B表示堆積於基材層之具有全氟聚醚基之烷氧基矽烷化合物之說明圖。圖3A表示堆積於基材層之具有單數全氟聚醚基之烷氧基矽烷化合物之說明圖。圖3B表示堆積於基材層之具有複數個全氟聚醚基之烷氧基矽烷化合物之說明圖。 3A and 3B are explanatory views of an alkoxysilane compound having a perfluoropolyether group deposited on the base material layer. FIG. 3A is an explanatory diagram of an alkoxysilane compound having a singular perfluoropolyether group deposited on the base material layer. FIG. 3B is an explanatory diagram of an alkoxysilane compound having a plurality of perfluoropolyether groups deposited on the base material layer.
圖4表示本發明之積層體之第2實施方式之剖視圖。 FIG. 4 shows a cross-sectional view of the second embodiment of the laminated body of the present invention.
圖5A~圖5D表示本發明之積層體之第2實施方式之製造方法之一實施方式。圖5A表示第3步驟中準備基材之步驟。圖5B表示第3步驟中於基材配置硬塗層(功能層)之步驟。圖5C表示於基材層上依序配置密接層及光學功能層(抗反射層)之第4步驟。圖5D表示於光學功能層(抗反射層)上配置防污層之第5步驟。 5A to 5D illustrate an embodiment of a manufacturing method of the second embodiment of the laminated body of the present invention. Figure 5A shows the step of preparing the substrate in the third step. FIG. 5B shows the step of arranging a hard coat layer (functional layer) on the base material in the third step. Figure 5C shows the fourth step of sequentially arranging the adhesive layer and the optical functional layer (anti-reflective layer) on the base material layer. Figure 5D shows the fifth step of arranging the antifouling layer on the optical functional layer (anti-reflection layer).
圖6表示本發明之積層體之第1實施方式之變化例(於基材層與防污層之間進而具備底塗層之積層體)之剖視圖。 FIG. 6 shows a cross-sectional view of a variation of the first embodiment of the laminate of the present invention (a laminate further provided with a primer layer between the base material layer and the antifouling layer).
圖7表示實施例2之面內繞射(In-Plane)測定之結果。 FIG. 7 shows the results of in-plane diffraction (In-Plane) measurement in Example 2.
圖8表示實施例2之面內繞射(In-Plane)測定中之擬合結果。 FIG. 8 shows the fitting results in the in-plane diffraction (In-Plane) measurement of Example 2.
1.第1實施方式 1. First Embodiment
參照圖1對本發明之積層體之第1實施方式進行說明。 The first embodiment of the laminated body of the present invention will be described with reference to FIG. 1 .
於圖1中,紙面上下方向係上下方向(厚度方向),紙面上側係上側(厚度方向一側),紙面下側係下側(厚度方向另一側)。又,紙面左右方向及深度方向與上下方向正交之面方向。具體而言,依據於各圖之方向箭頭。 In FIG. 1 , the upper and lower directions on the paper are the up and down directions (thickness direction), the upper side on the paper is the upper side (one side in the thickness direction), and the lower side on the paper is the lower side (the other side in the thickness direction). In addition, the left-right direction and the depth direction of the paper are orthogonal to the up-down direction. Specifically, it is based on the direction arrow of each figure.
<積層體> <Laminated body>
積層體1為具有特定厚度之膜形狀(包含片材形狀)。積層體1於與厚度方向正交之面方向延伸。積層體1具有平坦之上表面及平坦之下表面。 The laminated body 1 has a film shape (including a sheet shape) having a specific thickness. The laminated body 1 extends in the plane direction orthogonal to the thickness direction. The laminated body 1 has a flat upper surface and a flat lower surface.
如圖1所示,積層體1朝向厚度方向一側而依序具備基材層2、防污層3。積層體1更具體而言具備基材層2、及直接配置在基材層2之上表面(厚度方向一面)之防污層3。 As shown in FIG. 1 , the laminated body 1 has a base material layer 2 and an antifouling layer 3 in order toward one side in the thickness direction. More specifically, the laminated body 1 includes a base material layer 2 and an antifouling layer 3 disposed directly on the upper surface (one surface in the thickness direction) of the base material layer 2 .
積層體1之全光線透過率(JIS K 7375-2008)例如為80%以上,較佳為85%以上。 The total light transmittance (JIS K 7375-2008) of the laminated body 1 is, for example, 80% or more, preferably 85% or more.
積層體1之厚度例如為300μm以下,較佳為200μm以下,且例如為10μm以上,較佳為30μm以上。 The thickness of the laminated body 1 is, for example, 300 μm or less, preferably 200 μm or less, and, for example, 10 μm or more, preferably 30 μm or more.
<基材層> <Substrate layer>
基材層2係用於確保積層體1之機械強度之基材。 The base material layer 2 is a base material for ensuring the mechanical strength of the laminated body 1 .
基材層2具有膜形狀。基材層2係以接觸防污層3之下表面之方式配置於防污層3之整個下表面。 The base material layer 2 has a film shape. The base material layer 2 is disposed on the entire lower surface of the antifouling layer 3 in contact with the lower surface of the antifouling layer 3 .
基材層2具備基材4及功能層5。具體而言,基材層2朝向厚度方向一側依序具備基材4及功能層5。 The base material layer 2 includes a base material 4 and a functional layer 5 . Specifically, the base material layer 2 includes a base material 4 and a functional layer 5 in order toward one side in the thickness direction.
基材層2之全光線透過率(JIS K 7375-2008)例如為80%以上,較佳為85%以上。 The total light transmittance (JIS K 7375-2008) of the base material layer 2 is, for example, 80% or more, preferably 85% or more.
<基材> <Substrate>
基材4係藉由防污層3而被賦予防污性之被處理體。 The base material 4 is an object to be treated that is provided with antifouling properties by the antifouling layer 3 .
基材4具有膜形狀。基材4較佳具有可撓性。基材4係以接觸功能層5之下表面之方式配置於功能層5之整個下表面。 The base material 4 has a film shape. The base material 4 is preferably flexible. The base material 4 is disposed on the entire lower surface of the functional layer 5 so as to contact the lower surface of the functional layer 5 .
作為基材4例如可例舉高分子膜。作為高分子膜之材料,例如可例舉聚酯樹脂、(甲基)丙烯酸樹脂、烯烴樹脂、聚碳酸酯樹脂、聚醚碸樹脂、聚芳酯樹脂、三聚氰胺樹脂、聚醯胺樹脂、聚醯亞胺樹脂、纖維素樹脂、及聚苯乙烯樹脂。作為聚酯樹脂,例如可例舉聚對苯二甲酸乙二酯、聚對苯二甲酸丁二酯、及聚萘二甲酸乙二酯。作為(甲基)丙烯酸樹脂,例如可例舉聚甲基丙烯酸酯。作為烯烴樹脂,例如可例舉聚乙烯、聚丙烯、及環烯烴聚合物。作為纖維素樹脂,例如可例舉三乙醯纖維素。作為高分子膜之材料,較佳為纖維素樹脂,更佳為三乙醯纖維素。 An example of the base material 4 is a polymer film. Examples of materials for the polymer film include polyester resin, (meth)acrylic resin, olefin resin, polycarbonate resin, polyether resin, polyarylate resin, melamine resin, polyamide resin, and polyamide resin. Imine resin, cellulose resin, and polystyrene resin. Examples of the polyester resin include polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate. Examples of the (meth)acrylic resin include polymethacrylate. Examples of the olefin resin include polyethylene, polypropylene, and cycloolefin polymers. Examples of the cellulose resin include triacetyl cellulose. As the material of the polymer membrane, cellulose resin is preferred, and triacetyl cellulose is more preferred.
基材4之厚度例如為1μm以上,較佳為5μm以上,更佳為10μm以上,且例如為200μm以下,較佳為150μm以下,更佳為100μm以下。 The thickness of the base material 4 is, for example, 1 μm or more, preferably 5 μm or more, more preferably 10 μm or more, and, for example, 200 μm or less, preferably 150 μm or less, more preferably 100 μm or less.
基材4之厚度可使用針盤量規(PEACOCK公司製、「DG-205」)進行測定。 The thickness of the base material 4 can be measured using a dial gauge (made by PEACOCK, "DG-205").
<功能層> <Functional layer>
功能層5具有膜形狀。功能層5配置於基材4之厚度方向一面。 Functional layer 5 has a film shape. The functional layer 5 is arranged on one side of the base material 4 in the thickness direction.
作為功能層5,例如可例舉硬塗層。 Examples of the functional layer 5 include a hard coat layer.
於此種情形時,基材層2朝向厚度方向一側依序具備基材4及硬塗層。 In this case, the base material layer 2 includes the base material 4 and the hard coat layer in order toward the thickness direction side.
於以下之說明中,針對功能層5為硬塗層之情形進行說明。 In the following description, the case where the functional layer 5 is a hard coat layer will be described.
硬塗層係用於抑制基材4產生損傷之保護層。 The hard coat layer is a protective layer used to prevent damage to the base material 4 .
硬塗層例如由硬塗組合物形成。 The hard coat layer is formed of, for example, a hard coat composition.
硬塗組合物包含樹脂,且視需要包含粒子。即,硬塗層包含樹脂,且視需要包含粒子。 The hard coat composition contains a resin and optionally particles. That is, the hard coat layer contains resin and optionally particles.
作為樹脂,例如可例舉熱塑性樹脂、及硬化性樹脂。作為熱塑性樹脂,例如可例舉聚烯烴樹脂。 Examples of the resin include thermoplastic resin and curable resin. Examples of the thermoplastic resin include polyolefin resin.
作為硬化性樹脂,例如可例舉藉由活性能量射線(例如紫外線、及電子束)之照射而硬化之活性能量射線硬化性樹脂、及藉由加熱而硬化之熱硬化性樹脂。作為硬化性樹脂,較佳可例舉活性能量射線硬化性樹脂。 Examples of the curable resin include active energy ray-curable resins that are cured by irradiation with active energy rays (such as ultraviolet rays and electron beams) and thermosetting resins that are cured by heating. As the curable resin, an active energy ray curable resin is preferably used.
作為活性能量射線硬化性樹脂,例如可例舉(甲基)丙烯酸系紫外線硬化性樹脂、胺基甲酸酯樹脂、三聚氰胺樹脂、醇酸樹脂、矽氧烷系聚合物、及有機矽烷縮合物。作為活性能量射線硬化性樹脂,較佳可例舉(甲基)丙烯酸系紫外線硬化性樹脂。 Examples of active energy ray-curable resins include (meth)acrylic ultraviolet curable resins, urethane resins, melamine resins, alkyd resins, siloxane-based polymers, and organosilane condensates. As the active energy ray curable resin, a (meth)acrylic ultraviolet curable resin is preferably used.
又,樹脂例如可包含日本專利特開2008-88309號公報所記載之反應性稀釋劑。具體而言,樹脂可包含多官能(甲基)丙烯酸酯。 Moreover, the resin may contain the reactive diluent described in Japanese Patent Application Laid-Open No. 2008-88309, for example. Specifically, the resin may include polyfunctional (meth)acrylates.
樹脂可單獨使用或者將兩種以上併用。 The resin can be used alone or in combination of two or more types.
作為粒子,例如可例舉金屬氧化物微粒及有機系微粒。作為金屬氧化物微粒之材料,例如可例舉二氧化矽、氧化鋁、氧化鈦、氧化鋯、氧化鈣、氧化錫、氧化銦、氧化鎘、及氧化銻。作為有機系微粒之材料,可例舉聚甲基丙烯酸甲酯、聚矽氧、聚乙烯、聚胺基甲酸酯、丙烯酸-苯乙烯共聚物、苯并胍胺、三聚氰胺、及聚碳酸酯。作為有機系微粒,較佳可例舉聚甲基丙烯酸甲酯。 Examples of particles include metal oxide fine particles and organic fine particles. Examples of the material of the metal oxide fine particles include silicon dioxide, aluminum oxide, titanium oxide, zirconium oxide, calcium oxide, tin oxide, indium oxide, cadmium oxide, and antimony oxide. Examples of materials for organic fine particles include polymethylmethacrylate, polysiloxane, polyethylene, polyurethane, acrylic-styrene copolymer, benzoguanamine, melamine, and polycarbonate. As the organic fine particles, polymethyl methacrylate is preferably exemplified.
使硬塗層包含粒子之目的例如有賦予防眩性、提高密接性、提高硬度、調整折射率等 The purpose of including particles in the hard coat layer is, for example, to provide anti-glare properties, improve adhesion, increase hardness, and adjust refractive index.
粒子可單獨使用或者將兩種以上併用。 Particles can be used individually or in combination of 2 or more types.
又,可視需要向硬塗組合物中以適當地比率添加觸變賦予劑(例如有機黏土)、光聚合起始劑、填充劑、及調平劑。又,硬塗組合物可利用周知之溶劑進行稀釋。 In addition, a thixotropy imparting agent (for example, organoclay), a photopolymerization initiator, a filler, and a leveling agent may be added to the hard coating composition in an appropriate ratio as necessary. In addition, the hard coating composition can be diluted with a well-known solvent.
又,形成硬塗層之方法於後文詳細敍述,其係將硬塗組合物之稀釋液塗佈於基材4之厚度方向一面,視需要進行加熱使其乾燥。乾燥後,例如藉由活性能量射線照射或加熱而使硬塗組合物硬化。 In addition, the method of forming the hard coat layer will be described in detail later. The method is to apply a diluted solution of the hard coat composition on one side of the substrate 4 in the thickness direction, and dry it by heating if necessary. After drying, the hard coat composition is hardened by, for example, active energy ray irradiation or heating.
藉此,形成硬塗層。 Thereby, a hard coat layer is formed.
硬塗層之厚度為1μm以上、50μm以下,較佳為30μm以下。 The thickness of the hard coat layer is 1 μm or more and 50 μm or less, preferably 30 μm or less.
<防污層> <Antifouling layer>
防污層3係用於防止污垢、指紋等污漬附著於基材層2之厚度方向一側之層。 The antifouling layer 3 is a layer used to prevent stains such as dirt and fingerprints from adhering to one side in the thickness direction of the base material layer 2 .
防污層3具有膜形狀。防污層3係以接觸基材層2之上表面之方式配置於基材層2之整個上表面。 The antifouling layer 3 has a film shape. The antifouling layer 3 is disposed on the entire upper surface of the base material layer 2 so as to contact the upper surface of the base material layer 2 .
防污層3由具有全氟聚醚基之烷氧基矽烷化合物形成。換言之,防污層3包含具有全氟聚醚基之烷氧基矽烷化合物,較佳為由具有全氟聚醚基之烷氧基矽烷化合物形成。 The antifouling layer 3 is formed of an alkoxysilane compound having a perfluoropolyether group. In other words, the antifouling layer 3 includes an alkoxysilane compound having a perfluoropolyether group, and is preferably formed of an alkoxysilane compound having a perfluoropolyether group.
作為具有全氟聚醚基之烷氧基矽烷化合物,例如可例舉由下述通式(1)表示之化合物。 Examples of the alkoxysilane compound having a perfluoropolyether group include compounds represented by the following general formula (1).
R1-R2-X-(CH2)m-Si(OR3)3 (1) R 1 -R 2 -X-(CH 2 ) m -Si(OR 3 ) 3 (1)
於通式(1)中,R1表示烷基中之一個以上之氫原子被氟原子取代之直鏈狀或支鏈狀之氟烷基(碳數例如為1以上20以下),較佳表示烷基之所有氫原子被氟原子取代之全氟烷基。 In the general formula (1), R 1 represents a linear or branched fluoroalkyl group (for example, the number of carbon atoms is from 1 to 20) in which more than one hydrogen atom in the alkyl group is replaced by a fluorine atom, preferably A perfluoroalkyl group in which all hydrogen atoms of the alkyl group are replaced by fluorine atoms.
R2表示包含至少一個全氟聚醚(PFPE)基之重複結構之結構,較佳表示包含兩個PFPE基之重複結構之結構。作為PFPE基之重複結構,例如可例舉直鏈狀PFPE基之重複結構、及支鏈狀PFPE基之重複結構。作為直鏈狀PFPE基之重複結構,例如可例舉-(OCnF2n)p-表示之結構(n表示1以上20以下之整數,p表示1以上50以下之整數,以下相同)。作為支鏈狀PFPE基之重複結構,例如可例舉-(OC(CF3)2)p-表示之結構、及-(OCF2CF(CF3)CF2)p-表示之結構。作為PFPE基之重複結構,較佳可例舉直鏈狀PFPE基之重複結構,更佳可例舉-(OCF2)p-及-(OC2F4)p-。 R 2 represents a structure containing a repeating structure of at least one perfluoropolyether (PFPE) group, preferably a structure containing a repeating structure of two PFPE groups. Examples of the repeating structure of the PFPE group include a repeating structure of a linear PFPE group and a repeating structure of a branched PFPE group. Examples of the repeating structure of the linear PFPE group include a structure represented by -(OC n F 2n ) p - (n represents an integer from 1 to 20, p represents an integer from 1 to 50, and the same applies below). Examples of the repeating structure of the branched PFPE group include a structure represented by -(OC(CF 3 ) 2 ) p - and a structure represented by -(OCF 2 CF(CF 3 )CF 2 ) p -. As the repeating structure of the PFPE group, a repeating structure of a linear PFPE group is preferably exemplified, and -(OCF 2 ) p - and -(OC 2 F 4 ) p - are more preferably exemplified.
R3表示碳數1以上4以下之烷基,較佳表示甲基。 R 3 represents an alkyl group having 1 to 4 carbon atoms, preferably a methyl group.
X表示醚基、羰基、胺基、或醯胺基,較佳表示醚基。 X represents an ether group, a carbonyl group, an amine group, or an amide group, preferably an ether group.
m表示1以上之整數。又,m較佳為20以下,更佳為10以下,進而較佳為5以下之整數。 m represents an integer above 1. Moreover, m is preferably an integer of 20 or less, more preferably 10 or less, and still more preferably 5 or less.
具有此種全氟聚醚基之烷氧基矽烷化合物中,較佳使用下述通式(2)所示之化合物。 Among the alkoxysilane compounds having such perfluoropolyether groups, compounds represented by the following general formula (2) are preferably used.
CF3-(OCF2)q-(OC2F4)r-O-(CH2)3-Si(OCH3)3 (2) CF 3 -(OCF 2 ) q -(OC 2 F 4 ) r -O-(CH 2 ) 3 -Si(OCH 3 ) 3 (2)
於通式(2)中,q表示1以上50以下之整數,r表示1以上50以下之整數。 In the general formula (2), q represents an integer ranging from 1 to 50, and r represents an integer ranging from 1 to 50.
具有全氟聚醚基之烷氧基矽烷化合物亦能使用市售品,具體而言可例舉OPTOOL UD509(上述通式(2)所示之具有全氟聚醚基之烷氧基矽烷化合物、大金工業公司製)、OPTOOL UD120(大金工業股份有限 公司製)、及KY1903-1(信越化學製)。 Commercially available alkoxysilane compounds having a perfluoropolyether group can also be used. Specific examples include OPTOOL UD509 (an alkoxysilane compound having a perfluoropolyether group represented by the above general formula (2), Daikin Industrial Co., Ltd.), OPTOOL UD120 (Daikin Industrial Co., Ltd. Corporation), and KY1903-1 (manufactured by Shin-Etsu Chemical).
具有全氟聚醚基之烷氧基矽烷化合物可單獨使用或者可將2種以上併用。 The alkoxysilane compound having a perfluoropolyether group can be used alone or in combination of two or more types.
防污層3係藉由後述方法形成。 The antifouling layer 3 is formed by the method described below.
防污層3之厚度例如為1nm以上,較佳為5nm以上,且例如為30nm以下,較佳為20nm以下,更佳為15nm以下,進而較佳為10nm以下。 The thickness of the antifouling layer 3 is, for example, 1 nm or more, preferably 5 nm or more, and, for example, 30 nm or less, preferably 20 nm or less, more preferably 15 nm or less, further preferably 10 nm or less.
防污層3之厚度可藉由螢光X射線(Rigaku製,ZXS PrimusII)測定。 The thickness of the antifouling layer 3 can be measured by fluorescent X-ray (ZXS PrimusII manufactured by Rigaku).
並且,防污層3之藉由後述微小角入射X射線繞射法中之面內繞射測定所測得的源自全氟聚醚基於面內方向之週期排列性的波峰之重心位置為1.8Å-1以下,較佳為1.7Å-1以下,且例如為1.4Å-1以上,較佳為1.5Å-1以上,更佳為1.6Å-1以上,進而較佳為1.65Å-1以上,尤佳為1.67Å-1以上,最佳為1.68Å-1以上。 Furthermore, the position of the center of gravity of the wave peak derived from the periodic arrangement of the perfluoropolyether in the in-plane direction measured by in-plane diffraction measurement in the small-angle incident X-ray diffraction method described below in the antifouling layer 3 is 1.8 Å -1 or less, preferably 1.7Å -1 or less, and for example, 1.4Å -1 or more, preferably 1.5Å -1 or more, more preferably 1.6Å -1 or more, further preferably 1.65Å -1 or more , especially preferably 1.67Å -1 or more, and most preferably 1.68Å -1 or more.
重心位置可藉由調整具有全氟聚醚基之烷氧基矽烷化合物之種類、後述第2步驟中之對基材層2之表面處理方法(於表面處理方法為電漿處理之情形時,調整電漿處理中使用之氣體之種類)、及表面處理方法為電漿處理之情形時之電漿處理之輸出電力,而調整為上述特定值以下。 The center of gravity position can be adjusted by adjusting the type of alkoxysilane compound having a perfluoropolyether group and the surface treatment method of the base material layer 2 in the second step described below (when the surface treatment method is plasma treatment, adjust The type of gas used in plasma treatment), and the output power of plasma treatment when the surface treatment method is plasma treatment, are adjusted to be below the above specific value.
又,藉由後述微小角入射X射線繞射法中之面內繞射測定所測得的源自全氟聚醚基於面內方向之週期排列性的波峰之半峰全幅值例如為0.1Å-1以上,且例如為1.0Å-1以下。 In addition, the full width at half maximum of the peak derived from the periodic arrangement of the perfluoropolyether in the in-plane direction measured by in-plane diffraction measurement in the small-angle incident X-ray diffraction method described below is, for example, 0.1 Å. -1 or more, and for example, 1.0Å -1 or less.
又,藉由後述微小角入射X射線繞射法中之面內繞射測定 所測得之表示薄片積層結構之波峰之半峰全幅值例如為0.0Å-1以上,例如為1.0Å-1以下。 In addition, the half-peak full width value of the wave peak indicating the laminated structure of the sheet measured by in-plane diffraction measurement in the small-angle incident X-ray diffraction method described later is, for example, 0.0Å -1 or more, for example, 1.0Å -1 the following.
又,上述表示層狀結構之波峰(波峰A1(於後述實施例中詳細敍述))係於波數0.2~1.0Å-1之間觀測到。 In addition, the above-mentioned peak indicating the layered structure (wave peak A1 (described in detail in the examples below)) is observed at a wave number between 0.2 and 1.0Å -1 .
藉由後述微小角入射X射線繞射法中之面內繞射測定所測得之表示薄片積層結構之波峰之、相對於藉由後述微小角入射X射線繞射法中之面內繞射測定所測得之源自全氟聚醚基於面內方向之週期排列性的波峰的強度比(藉由後述微小角入射X射線繞射法中之面內繞射測定所測得之表示薄片積層結構之波峰/藉由後述微小角入射X射線繞射法中之面內繞射測定所測得之源自全氟聚醚基於面內方向之週期排列性的波峰)例如為0以上,例如為1.0以下。 The peak indicating the laminated structure of the lamellae is measured by in-plane diffraction measurement using the micro-angle incident X-ray diffraction method described later, compared to the in-plane diffraction measurement using the micro-angle incident X-ray diffraction method described later. The measured intensity ratio of the wave peaks derived from the periodic arrangement of the perfluoropolyether based on the in-plane direction (measured by the in-plane diffraction measurement in the micro-angle incident X-ray diffraction method described later) represents the laminated structure of the sheet The peak/the peak derived from the periodic arrangement of the perfluoropolyether based on the in-plane direction measured by in-plane diffraction measurement in the micro-angle incident X-ray diffraction method described later) is, for example, 0 or more, for example, 1.0 the following.
再者,關於面內繞射(In-Plane)測定(半峰全幅值、重心位置、及積分強度)之測定方法將於後述實施例中詳細敍述。 Furthermore, the measurement method of in-plane diffraction (In-Plane) measurement (full amplitude at half maximum, center of gravity position, and integrated intensity) will be described in detail in the Examples to be described later.
又,防污層3之水接觸角例如為100°以上,較佳為105°以上,例如120°以下。 In addition, the water contact angle of the antifouling layer 3 is, for example, 100° or more, preferably 105° or more, for example, 120° or less.
防污層3之水接觸角若為上述下限以上,便能提高防污層3之防污性。 If the water contact angle of the antifouling layer 3 is above the above-mentioned lower limit, the antifouling property of the antifouling layer 3 can be improved.
再者,關於防污層3之水接觸角之測定方法,於後述實施例中詳細敍述。 Furthermore, the method for measuring the water contact angle of the antifouling layer 3 will be described in detail in the Examples to be described later.
<積層體之製造方法> <Manufacturing method of laminated body>
參照圖2A~圖2C,對積層體1之製造方法進行說明。 The manufacturing method of the laminated body 1 is demonstrated with reference to FIG. 2A-FIG. 2C.
積層體1之製造方法具備:準備基材層2之第1步驟;及於基材層2上配置防污層3之第2步驟。又,於該製造方法中,例如以卷對卷 方式依序配置各層。 The manufacturing method of the laminated body 1 includes the first step of preparing the base material layer 2 and the second step of arranging the antifouling layer 3 on the base material layer 2 . Furthermore, in this manufacturing method, for example, roll-to-roll Configure each layer in sequence.
<第1步驟> <Step 1>
於第1步驟中,如圖2A所示,首先準備基材4。 In the first step, as shown in FIG. 2A , the base material 4 is first prepared.
其次,如圖2B所示,於基材4之厚度方向一面塗佈硬塗組合物之稀釋液,乾燥後藉由紫外線照射或加熱而使硬塗組合物硬化。 Next, as shown in FIG. 2B , a diluted solution of the hard coating composition is applied to one side of the substrate 4 in the thickness direction, and after drying, the hard coating composition is hardened by ultraviolet irradiation or heating.
藉此,於基材4之厚度方向一面配置(形成)硬塗層(功能層5)。藉此,準備基材層2。 Thereby, the hard coat layer (functional layer 5) is arranged (formed) on one side of the base material 4 in the thickness direction. Thereby, the base material layer 2 is prepared.
<第2步驟> <Step 2>
於第2步驟中,如圖2C所示,於基材層2上配置防污層3。具體而言,於基材層2之厚度方向一面配置防污層3。 In the second step, as shown in FIG. 2C , the antifouling layer 3 is disposed on the base material layer 2 . Specifically, the antifouling layer 3 is disposed on one side of the base material layer 2 in the thickness direction.
於基材層2配置防污層3時,首先自提高基材層2與防污層3之密接性之觀點而言,例如對基材層2之表面實施表面處理。作為表面處理,例如可例舉電暈處理、電漿處理、火焰處理、臭氧處理、底塗處理、輝光處理、及皂化處理,較佳可例舉電漿處理。 When disposing the antifouling layer 3 on the base material layer 2 , first, from the viewpoint of improving the adhesion between the base material layer 2 and the antifouling layer 3 , surface treatment is performed on the surface of the base material layer 2 . Examples of the surface treatment include corona treatment, plasma treatment, flame treatment, ozone treatment, primer treatment, glow treatment, and saponification treatment, and a preferred example is plasma treatment.
作為電漿處理,例如可例舉利用氬氣之電漿處理、及利用氧氣之電漿處理,較佳可例舉利用氧氣之電漿處理。又,電漿處理之輸出電力例如為80W以上,例如為150W以下。 Examples of the plasma treatment include plasma treatment using argon gas and plasma treatment using oxygen gas. Preferably, plasma treatment using oxygen gas is used. In addition, the output power of the plasma treatment is, for example, 80W or more, for example, 150W or less.
並且,作為於基材層2上配置防污層3之方法,例如可例舉乾式塗佈法、及濕式塗佈法,自將上述第1積分強度比調整為特定值以下之觀點而言,較佳可例舉乾式塗佈法。作為乾式塗佈法,例如可例舉真空蒸鍍法、濺鍍法、及CVD,較佳可例舉真空蒸鍍法。 Moreover, as a method of arranging the antifouling layer 3 on the base material layer 2, for example, a dry coating method and a wet coating method can be mentioned, from the viewpoint of adjusting the above-mentioned first integrated intensity ratio to a specific value or less. , a dry coating method is preferred. Examples of dry coating methods include vacuum evaporation, sputtering, and CVD, and preferably, vacuum evaporation is used.
真空蒸鍍法係於真空腔室內將蒸鍍源(具有全氟聚醚基之烷氧基矽烷化合物)與基材層2(功能層5)對向配置,加熱蒸鍍源使其蒸發或 昇華,從而使蒸發或昇華後之蒸鍍源堆積於基材層2(功能層5)之表面。 The vacuum evaporation method is to arrange the evaporation source (alkoxysilane compound with perfluoropolyether group) and the substrate layer 2 (functional layer 5) in a vacuum chamber to face each other, and heat the evaporation source to evaporate or Sublimation causes the evaporated or sublimated vapor deposition source to be deposited on the surface of the base material layer 2 (functional layer 5).
於真空蒸鍍法中,蒸鍍源(坩堝)之溫度例如為200℃以上,較佳為250℃以上,例如為300℃以下。藉此,製造於基材層2之厚度方向一面配置防污層3,朝向厚度方向一側依序具備基材層2及防污層3之積層體1。 In the vacuum evaporation method, the temperature of the evaporation source (crucible) is, for example, 200°C or higher, preferably 250°C or higher, for example, 300°C or lower. Thereby, the laminated body 1 which has the antifouling layer 3 disposed on one side of the base material layer 2 in the thickness direction, and which has the base material layer 2 and the antifouling layer 3 in order toward one side in the thickness direction is produced.
<作用效果> <Effect>
於該積層體1中,防污層3之、藉由微小角入射X射線繞射法中之面內繞射測定所測得之源自全氟聚醚基於面內方向之週期排列性的波峰之重心位置例如為1.8Å-1以下。 In the laminated body 1, the antifouling layer 3 has periodic wave peaks derived from the in-plane direction of the perfluoropolyether as measured by in-plane diffraction measurement using the micro-angle incident X-ray diffraction method. The center of gravity position is, for example, 1.8Å -1 or less.
重心位置若為上述上限以下,則即便在擦拭附著於防污層3之污漬後,亦能抑制防污層3之防污性之降低(防污耐久性優異)。 If the center of gravity position is below the above upper limit, even after wiping off stains adhering to the antifouling layer 3 , the antifouling property of the antifouling layer 3 can be suppressed from decreasing (excellent antifouling durability).
詳細而言,於上述第2步驟中,如圖3A所示,具有全氟聚醚基之烷氧基矽烷化合物20係於基材層2之厚度方向一面堆積。此種具有全氟聚醚基之烷氧基矽烷化合物20係相對於基材層2配向。具體而言,可例舉相對於基材層2垂直配向之烷氧基矽烷化合物20A、相對於基材層2傾斜配向之烷氧基矽烷化合物20B、及相對於基材層2平行配向之烷氧基矽烷化合物20C。 Specifically, in the above second step, as shown in FIG. 3A , the alkoxysilane compound 20 having a perfluoropolyether group is deposited on one side of the base material layer 2 in the thickness direction. The alkoxysilane compound 20 having a perfluoropolyether group is aligned relative to the base material layer 2 . Specifically, the alkoxysilane compound 20A is vertically aligned with the base material layer 2 , the alkoxysilane compound 20B is obliquely aligned with the base material layer 2 , and the alkoxysilane compound 20B is aligned parallel with the base material layer 2 . Oxysilane compound 20C.
又,如圖3B所示,於同一方向配向之複數個具有全氟聚醚基之烷氧基矽烷化合物20堆積而構成群21。具體而言,可例舉具備相對於基材層2垂直配向之複數個烷氧基矽烷化合物20A之群21A、具備相對於基材層2傾斜配向之複數個烷氧基矽烷化合物20B之群21B、及具備相對於基材層2平行配向之複數個烷氧基矽烷化合物20C。 Furthermore, as shown in FIG. 3B , a plurality of alkoxysilane compounds 20 having perfluoropolyether groups aligned in the same direction are stacked to form a group 21 . Specifically, a group 21A including a plurality of alkoxysilane compounds 20A aligned perpendicularly with respect to the base material layer 2 and a group 21B having a plurality of alkoxysilane compounds 20B oriented obliquely with respect to the base material layer 2 are exemplified. , and having a plurality of alkoxysilane compounds 20C aligned in parallel with respect to the base material layer 2 .
並且,重心位置於群21中係堆積之具有全氟聚醚基之烷氧 基矽烷化合物20彼此之間隔之指標。 Moreover, the center of gravity in group 21 is the stacked alkoxylate having a perfluoropolyether group. The distance between the silane compounds 20 is an indicator.
因此,重心位置越小則意味著上述間隔越大。另一面,重心位置越大則意味著上述間隔越小。 Therefore, the smaller the center of gravity position means the above-mentioned distance is larger. On the other hand, a larger position of the center of gravity means that the above-mentioned distance is smaller.
並且,該防污層3之重心位置較佳為1.8Å-1以下。即,群21中之、堆積之具有全氟聚醚基之烷氧基矽烷化合物20彼此之間隔相對較大。於是,即便在擦拭附著於防污層3之污漬後,亦能抑制防污層3之防污性之降低(防污耐久性優異)。 Moreover, the center of gravity of the antifouling layer 3 is preferably 1.8Å -1 or less. That is, the distance between the stacked alkoxysilane compounds 20 having a perfluoropolyether group in the group 21 is relatively large. Therefore, even after wiping off stains adhering to the antifouling layer 3, the antifouling property of the antifouling layer 3 can be suppressed from decreasing (excellent antifouling durability).
又,防污耐久性可藉由後述實施例中詳細敍述之防污耐久性試驗進行評估。具體而言,藉由防污耐久性試驗所得之接觸角之變化量例如為30°以下,較佳為23°以下,更佳為15°以下,如此則防污層3之防污耐久性優異。 In addition, the antifouling durability can be evaluated by the antifouling durability test described in detail in the examples below. Specifically, the change amount of the contact angle obtained by the antifouling durability test is, for example, 30° or less, preferably 23° or less, more preferably 15° or less. In this case, the antifouling layer 3 has excellent antifouling durability. .
2.第2實施方式 2. Second embodiment
參照圖4,對本發明之積層體之第2實施方式進行說明。 Referring to FIG. 4 , a second embodiment of the laminated body of the present invention will be described.
再者,於第2實施方式中,對與第1實施方式相同之構件及步驟附加相同參照符號,並省略其詳細說明。又,第2實施方式除了特別說明以外可實現與第1實施方式相同之作用效果。進而,可將第1實施方式及第2實施方式適當組合。 In addition, in the second embodiment, the same components and steps as those in the first embodiment are assigned the same reference numerals, and detailed descriptions thereof are omitted. In addition, the second embodiment can achieve the same functions and effects as those of the first embodiment unless otherwise specified. Furthermore, the first embodiment and the second embodiment can be combined appropriately.
<積層體> <Laminated body>
如圖4所示,積層體1朝向厚度方向一側而依序具備基材層2、密接層6、光學功能層7、及防污層3。積層體1更具體而言具備基材層2、直接配置於基材層2之上表面(厚度方向一面)之密接層6、直接配置於密接層6之上表面(厚度方向一面)之光學功能層7、及直接配置於光學功能層7之上表面(厚度方向一面)之防污層3。 As shown in FIG. 4 , the laminated body 1 includes a base material layer 2 , an adhesive layer 6 , an optical functional layer 7 , and an antifouling layer 3 in this order toward one side in the thickness direction. More specifically, the laminated body 1 has a base material layer 2, an adhesive layer 6 directly disposed on the upper surface of the base layer 2 (one surface in the thickness direction), and an optical function of being directly disposed on the upper surface (one surface in the thickness direction) of the adhesion layer 6. layer 7, and the antifouling layer 3 directly disposed on the upper surface (one side in the thickness direction) of the optical functional layer 7.
積層體1之全光線透過率(JIS K 7375-2008)例如為80%以上,較佳為85%以上。 The total light transmittance (JIS K 7375-2008) of the laminated body 1 is, for example, 80% or more, preferably 85% or more.
積層體1之厚度例如為250μm以下,較佳為200μm以下,且例如為10μm以上,較佳為20μm以上。 The thickness of the laminated body 1 is, for example, 250 μm or less, preferably 200 μm or less, and, for example, 10 μm or more, preferably 20 μm or more.
<基材層> <Substrate layer>
基材層2係用於確保積層體1之機械強度之基材。 The base material layer 2 is a base material for ensuring the mechanical strength of the laminated body 1 .
基材層2具有膜形狀。基材層2以接觸光學功能層7之下表面之方式配置於光學功能層7之整個下表面。 The base material layer 2 has a film shape. The base material layer 2 is disposed on the entire lower surface of the optical functional layer 7 so as to contact the lower surface of the optical functional layer 7 .
基材層2係與第1實施方式中之基材層2同樣地具備基材4及功能層5。 The base material layer 2 includes a base material 4 and a functional layer 5 like the base material layer 2 in the first embodiment.
基材層2之全光線透過率(JIS K 7375-2008)例如為80%以上,較佳為85%以上。 The total light transmittance (JIS K 7375-2008) of the base material layer 2 is, for example, 80% or more, preferably 85% or more.
<基材> <Substrate>
基材4具有膜形狀。基材4較佳具有可撓性。基材4以接觸功能層5之下表面之方式配置於功能層5之整個下表面。 The base material 4 has a film shape. The base material 4 is preferably flexible. The base material 4 is disposed on the entire lower surface of the functional layer 5 so as to contact the lower surface of the functional layer 5 .
作為基材4,可例舉與第1實施方式中之基材4相同之基材,較佳可例舉纖維素樹脂,更佳可例舉三乙醯纖維素。 Examples of the base material 4 include the same base material as the base material 4 in the first embodiment, preferably a cellulose resin, and more preferably a triacetyl cellulose.
基材4之厚度係與第1實施方式中之基材4之厚度相同。 The thickness of the base material 4 is the same as the thickness of the base material 4 in the first embodiment.
<功能層> <Functional layer>
功能層5具有膜形狀。功能層5配置於基材4之厚度方向一面。 Functional layer 5 has a film shape. The functional layer 5 is arranged on one side of the base material 4 in the thickness direction.
作為功能層5,例如可例舉與第1實施方式相同之硬塗層。 Examples of the functional layer 5 include the same hard coat layer as in the first embodiment.
於此種情形時,基材層2朝向厚度方向一側依序具備基材4、硬塗層。 In this case, the base material layer 2 is provided with the base material 4 and the hard coat layer in order toward the thickness direction side.
硬塗層之厚度係與第1實施方式中之硬塗層之厚度相同。 The thickness of the hard coat layer is the same as the thickness of the hard coat layer in the first embodiment.
<密接層> <Adhesive layer>
密接層6係用於確保基材層2與光學功能層7之間之密接力之層。 The adhesive layer 6 is a layer for ensuring the adhesive force between the base material layer 2 and the optical functional layer 7 .
密接層6具有膜形狀。密接層6以接觸基材層2(功能層5)之上表面之方式配置於基材層2(功能層5)之整個上表面。 The adhesive layer 6 has a film shape. The adhesive layer 6 is disposed on the entire upper surface of the base material layer 2 (functional layer 5) so as to contact the upper surface of the base material layer 2 (functional layer 5).
作為密接層6之材料,例如可例舉金屬。作為金屬,例如可例舉銦、矽、鎳、鉻、鋁、錫、金、銀、鉑、鋅、鈦、鎢、鋯、及鈀。又,作為密接層6之材料,亦可例舉上述金屬之2種以上之合金、及上述金屬之氧化物。 As a material of the close contact layer 6, metal can be mentioned, for example. Examples of the metal include indium, silicon, nickel, chromium, aluminum, tin, gold, silver, platinum, zinc, titanium, tungsten, zirconium, and palladium. In addition, as the material of the close contact layer 6, alloys of two or more kinds of the above-mentioned metals and oxides of the above-mentioned metals can also be exemplified.
作為密接層6之材料,自密接性及透明性之觀點而言,較佳可例舉氧化矽(SiOx)、及銦錫氧化物(ITO)。於使用氧化矽作為密接層6之材料之情形時,較佳使用氧量較化學計量組成少之SiOx,更佳使用x為1.2以上1.9以下之SiOx。 As a material of the adhesive layer 6, from the viewpoint of adhesiveness and transparency, silicon oxide (SiOx) and indium tin oxide (ITO) are preferably exemplified. When silicon oxide is used as the material of the adhesion layer 6, it is preferable to use SiOx whose oxygen content is less than the stoichiometric composition, and more preferably to use SiOx whose x is 1.2 or more and 1.9 or less.
作為密接層6之材料,更佳可例舉銦錫氧化物(ITO)。 As a material of the adhesion layer 6, indium tin oxide (ITO) is more preferably exemplified.
自確保基材層2與光學功能層7之間之密接力、同時實現密接層6之透明性之觀點而言,密接層6之厚度例如為1nm以上,例如為10nm以下。 From the viewpoint of ensuring the adhesion between the base material layer 2 and the optical functional layer 7 and achieving the transparency of the adhesion layer 6 , the thickness of the adhesion layer 6 is, for example, 1 nm or more, for example, 10 nm or less.
<光學功能層> <Optical functional layer>
於第2實施方式中,光學功能層7係用於抑制外界光之反射強度之抗反射層。 In the second embodiment, the optical functional layer 7 is an anti-reflection layer used to suppress the reflection intensity of external light.
以下之說明中,詳細敍述光學功能層7為抗反射層之情形。 In the following description, the case where the optical functional layer 7 is an anti-reflection layer will be described in detail.
抗反射層具有折射率互不相同之2個以上之層。具體而 言,抗反射層於厚度方向交替具有折射率相對大之高折射率層、及折射率相對小之低折射率層。於抗反射層中,藉由其中所含之複數個薄層(高折射率層、低折射率層)中之複數個界面之反射光間之干渉作用,淨反射光強度衰減。又,於抗反射層中,可藉由調整各薄層之光學膜厚(折射率與厚度之積),而顯現衰減反射光強度之干渉作用。此種抗反射層朝向厚度方向一側依序具備第1高折射率層11、第1低折射率層12、第2高折射率層13、第2低折射率層14。 The anti-reflection layer has two or more layers with mutually different refractive indexes. specific and In other words, the anti-reflective layer alternately has a high refractive index layer with a relatively large refractive index and a low refractive index layer with a relatively small refractive index in the thickness direction. In the anti-reflective layer, the net reflected light intensity is attenuated by the interference between the reflected light at the multiple interfaces in the multiple thin layers (high refractive index layer, low refractive index layer) contained therein. In addition, in the anti-reflection layer, the interference effect of attenuating the intensity of reflected light can be demonstrated by adjusting the optical film thickness (product of refractive index and thickness) of each thin layer. This anti-reflection layer includes a first high refractive index layer 11, a first low refractive index layer 12, a second high refractive index layer 13, and a second low refractive index layer 14 in order toward the thickness direction side.
抗反射層(具體而言,高折射率層及低折射率層)較佳包含選自由金屬、合金、金屬氧化物、金屬氮化物、及金屬氟化物組成之群之1種,更佳包含選自由金屬、金屬氧化物、及金屬氮化物組成之群中的1種。藉此,抗反射層能夠抑制外界光之反射強度。 The anti-reflection layer (specifically, the high refractive index layer and the low refractive index layer) preferably contains one selected from the group consisting of metals, alloys, metal oxides, metal nitrides, and metal fluorides, and more preferably contains selected materials. A member of the group consisting of free metals, metal oxides, and metal nitrides. Thereby, the anti-reflection layer can suppress the reflection intensity of external light.
作為金屬,例如可例舉矽、鎳、鉻、鋁、錫、金、銀、鉑、鋅、鈦、鎢、鋯、鈮、及鈀。作為合金,例如可例舉上述金屬之合金。作為金屬氧化物,例如可例舉上述金屬之金屬氧化物。作為金屬氮化物,例如可例舉上述金屬之金屬氮化物。作為金屬氟化物,例如可例舉上述金屬之金屬氟化物之金屬氮化物。 Examples of the metal include silicon, nickel, chromium, aluminum, tin, gold, silver, platinum, zinc, titanium, tungsten, zirconium, niobium, and palladium. Examples of the alloy include alloys of the above metals. Examples of metal oxides include metal oxides of the above metals. Examples of the metal nitride include metal nitrides of the above metals. Examples of the metal fluoride include metal nitrides of metal fluorides of the above metals.
尤其是,可根據所需之折射率選擇抗反射層使用之材料。 In particular, the material used for the antireflection layer can be selected according to the required refractive index.
具體而言,第1高折射率層11及第2高折射率層13分別包含波長550nm下之折射率較佳為1.9以上之高折射率材料。自同時實現高折射率與可見光之低吸收性之觀點而言,作為高折射率材料例如可例舉氧化鈮(Nb2O5)、氧化鈦、氧化鋯、銦錫氧化物(ITO)、及摻銻之氧化錫(ATO),較佳可例舉氧化鈮。即,較佳為,第1低折射率層12之材料及第2低折射率層14之材料均為氧化鈮。 Specifically, the first high refractive index layer 11 and the second high refractive index layer 13 each include a high refractive index material whose refractive index at a wavelength of 550 nm is preferably 1.9 or more. From the viewpoint of achieving both high refractive index and low absorption of visible light, examples of high refractive index materials include niobium oxide (Nb 2 O 5 ), titanium oxide, zirconium oxide, indium tin oxide (ITO), and Antimony-doped tin oxide (ATO) is preferably niobium oxide. That is, it is preferable that the material of the first low refractive index layer 12 and the material of the second low refractive index layer 14 are both niobium oxide.
第1低折射率層12及第2低折射率層14分別包含波長550nm下之折射率較佳為1.6以下之低折射率材料。自同時實現低折射率與可見光之低吸收性之觀點而言,作為低折射率材料例如可例舉二氧化矽(SiO2)、及氟化鎂,較佳可例舉二氧化矽。即,較佳為,第1低折射率層12之材料及第2低折射率層14之材料均為二氧化矽。 The first low refractive index layer 12 and the second low refractive index layer 14 each include a low refractive index material having a refractive index of preferably 1.6 or less at a wavelength of 550 nm. From the viewpoint of achieving both low refractive index and low visible light absorption, examples of the low refractive index material include silicon dioxide (SiO 2 ) and magnesium fluoride, and preferably, silicon dioxide is used. That is, it is preferable that the material of the first low refractive index layer 12 and the material of the second low refractive index layer 14 are both silicon dioxide.
尤其是,第2低折射率層14之材料若為二氧化矽(換言之,抗反射層之厚度方向一面若為包含二氧化矽之層),則第2低折射率層14與防污層3之間之密接性優異。 In particular, if the material of the second low refractive index layer 14 is silicon dioxide (in other words, if one side of the anti-reflective layer in the thickness direction is a layer containing silicon dioxide), then the second low refractive index layer 14 and the antifouling layer 3 The adhesion between them is excellent.
又,於抗反射層中,第1高折射率層11之厚度例如為1nm以上,較佳為5nm以上,例如為30nm以下,較佳為20nm以下。第1低折射率層12之厚度例如為10nm以上,較佳為20nm以上,例如為50nm以下,較佳為30nm以下。第2高折射率層13之厚度例如為50nm以上,較佳為80nm以上,例如為200nm以下,較佳為150nm以下。第2低折射率層14之厚度例如為60nm以上,較佳為80nm以上,例如為150nm以下,較佳為100nm以下。 Moreover, in the anti-reflection layer, the thickness of the first high refractive index layer 11 is, for example, 1 nm or more, preferably 5 nm or more, and, for example, 30 nm or less, preferably 20 nm or less. The thickness of the first low refractive index layer 12 is, for example, 10 nm or more, preferably 20 nm or more, and is, for example, 50 nm or less, preferably 30 nm or less. The thickness of the second high refractive index layer 13 is, for example, 50 nm or more, preferably 80 nm or more, and is, for example, 200 nm or less, preferably 150 nm or less. The thickness of the second low refractive index layer 14 is, for example, 60 nm or more, preferably 80 nm or more, and, for example, 150 nm or less, preferably 100 nm or less.
第2低折射率層14之厚度之相對於第2高折射率層13之厚度之比(第2低折射率層14之厚度/第2高折射率層13之厚度)例如為0.5以上,較佳為0.7以上,例如為0.9以下。 The ratio of the thickness of the second low refractive index layer 14 to the thickness of the second high refractive index layer 13 (thickness of the second low refractive index layer 14/thickness of the second high refractive index layer 13) is, for example, 0.5 or more, which is greater than Preferably it is 0.7 or more, for example, it is 0.9 or less.
第2高折射率層13之厚度之相對於第1高折射率層11之厚度之比(第2高折射率層13之厚度/第1高折射率層11之厚度)例如為5以上,較佳為7以上,例如為15以下,較佳為10以下。 The ratio of the thickness of the second high refractive index layer 13 to the thickness of the first high refractive index layer 11 (thickness of the second high refractive index layer 13/thickness of the first high refractive index layer 11) is, for example, 5 or more, which is greater than Preferably it is 7 or more, for example, it is 15 or less, More preferably, it is 10 or less.
第2低折射率層14之厚度之相對於第1低折射率層12之厚度之比(第2低折射率層14之厚度/第1低折射率層12之厚度)例如為1以上,較 佳為3以上,例如為10以下,較佳為8以下。 The ratio of the thickness of the second low refractive index layer 14 to the thickness of the first low refractive index layer 12 (thickness of the second low refractive index layer 14/thickness of the first low refractive index layer 12) is, for example, 1 or more, which is greater than 1. Preferably it is 3 or more, for example, it is 10 or less, More preferably, it is 8 or less.
抗反射層係藉由後述方法形成。 The anti-reflection layer is formed by the method described below.
抗反射層之厚度例如為100nm以上,較佳為150nm以上,例如為300nm以下,較佳為250nm以下。 The thickness of the anti-reflection layer is, for example, 100 nm or more, preferably 150 nm or more, for example, 300 nm or less, preferably 250 nm or less.
抗反射層之厚度可藉由剖面TEM觀察進行測定。 The thickness of the anti-reflective layer can be measured by cross-sectional TEM observation.
<防污層> <Antifouling layer>
防污層3具有膜形狀。防污層3以接觸光學功能層7(抗反射層)之上表面之方式配置於光學功能層7(抗反射層)之整個上表面。 The antifouling layer 3 has a film shape. The antifouling layer 3 is disposed on the entire upper surface of the optical functional layer 7 (anti-reflective layer) so as to contact the upper surface of the optical functional layer 7 (anti-reflective layer).
防污層3由上述具有全氟聚醚基之烷氧基矽烷化合物(較佳為上述通式(2)所示之具有全氟聚醚基之烷氧基矽烷化合物)形成。換言之,防污層3包含具有全氟聚醚基之烷氧基矽烷化合物,較佳由具有全氟聚醚基之烷氧基矽烷化合物形成。 The antifouling layer 3 is formed of the above-mentioned alkoxysilane compound having a perfluoropolyether group (preferably the alkoxysilane compound having a perfluoropolyether group represented by the above general formula (2)). In other words, the antifouling layer 3 includes an alkoxysilane compound having a perfluoropolyether group, and is preferably formed of an alkoxysilane compound having a perfluoropolyether group.
防污層3係藉由後述方法形成。 The antifouling layer 3 is formed by the method described below.
防污層3之厚度、重心位置、強度比、半峰全幅值及水接觸角係與第1實施方式中之防污層3之厚度、重心位置、強度比、半峰全幅值及水接觸角相同。 The thickness, center of gravity position, intensity ratio, full amplitude at half maximum and water contact angle of the antifouling layer 3 are the same as the thickness, center of gravity position, intensity ratio, full amplitude at half maximum and water of the antifouling layer 3 in the first embodiment. The contact angles are the same.
重心位置可藉由調整具有全氟聚醚基之烷氧基矽烷化合物之種類、後述第5步驟中之對光學功能層7(抗反射層)之表面處理方法(於表面處理方法為電漿處理之情形時,調整電漿處理使用之氣體之種類)、及表面處理方法為電漿處理之情形時之電漿處理之輸出電力而調整為上述特定值以下。 The center of gravity position can be determined by adjusting the type of alkoxysilane compound having a perfluoropolyether group and the surface treatment method of the optical functional layer 7 (anti-reflection layer) in step 5 described below (the surface treatment method is plasma treatment In this case, the type of gas used for plasma treatment is adjusted), and when the surface treatment method is plasma treatment, the output power of the plasma treatment is adjusted to be below the above specific value.
<積層體之製造方法> <Manufacturing method of laminated body>
參照圖5A~圖5D,對積層體1之製造方法進行說明。 The manufacturing method of the laminated body 1 is demonstrated with reference to FIG. 5A - FIG. 5D.
積層體1之製造方法具備:準備基材層2之第3步驟;於基材層2依序配置密接層6及光學功能層7(抗反射層)之第4步驟;及於光學功能層7(抗反射層)上配置防污層3之第5步驟。又,於該製造方法中,例如以卷對卷方式依序配置各層。 The manufacturing method of the laminated body 1 includes: the third step of preparing the base material layer 2; the fourth step of sequentially arranging the adhesive layer 6 and the optical functional layer 7 (anti-reflection layer) on the base material layer 2; and placing the optical functional layer 7 on the base material layer 2. Step 5 of arranging the antifouling layer 3 on the (anti-reflective layer). Furthermore, in this manufacturing method, each layer is sequentially arranged in a roll-to-roll manner, for example.
<第3步驟> <Step 3>
於第3步驟中,如圖5A所示,首先準備基材4。 In the third step, as shown in FIG. 5A , the base material 4 is first prepared.
繼而,如圖5B所示,於基材4之厚度方向一面塗佈硬塗組合物之稀釋液,乾燥後藉由紫外線照射或加熱而使硬塗組合物硬化。 Next, as shown in FIG. 5B , a diluted solution of the hard coating composition is applied to one surface in the thickness direction of the base material 4 , and after drying, the hard coating composition is hardened by ultraviolet irradiation or heating.
藉此,於基材4之厚度方向一面配置(形成)硬塗層(功能層5)。藉此,準備基材層2。 Thereby, the hard coat layer (functional layer 5) is arranged (formed) on one side of the base material 4 in the thickness direction. Thereby, the base material layer 2 is prepared.
<第4步驟> <Step 4>
於第4步驟中,如圖5C所示,於基材層2上依序配置密接層6及光學功能層7(抗反射層)。具體而言,於基材層2之厚度方向一面依序配置密接層6及光學功能層7(抗反射層)。 In the fourth step, as shown in FIG. 5C , the adhesive layer 6 and the optical functional layer 7 (anti-reflective layer) are sequentially arranged on the base material layer 2 . Specifically, the adhesive layer 6 and the optical functional layer 7 (anti-reflection layer) are sequentially arranged on one side of the base material layer 2 in the thickness direction.
更具體而言,於基材層2上,朝向厚度方向一側依序配置密接層6、第1高折射率層11、第1低折射率層12、第2高折射率層13、第2低折射率層14。 More specifically, on the base material layer 2 , the adhesion layer 6 , the first high refractive index layer 11 , the first low refractive index layer 12 , the second high refractive index layer 13 , and the second high refractive index layer 13 are arranged in this order toward one side in the thickness direction. Low refractive index layer 14.
即,於該方法中,第4步驟具備:於基材層2上配置密接層6之密接層配置步驟;於密接層6上配置第1高折射率層11之第1高折射率層配置步驟;於第1高折射率層11上配置第1低折射率層12之第1低折射率層配置步驟;於第1低折射率層12上配置第2高折射率層13之第2高折射率層配置步驟;及於第2高折射率層13上配置第2低折射率層14之第2低折射率層配置步驟。又,於該製造方法中,藉由例如真空蒸鍍法、濺鍍法、層 壓法、鍍覆法、離子鍍覆法,較佳為濺鍍法依序配置各層。 That is, in this method, the fourth step includes: a step of arranging the adhesive layer of arranging the adhesive layer 6 on the base material layer 2; and a step of arranging the first high refractive index layer of arranging the first high refractive index layer 11 on the adhesive layer 6. ; The first low refractive index layer arranging step of arranging the first low refractive index layer 12 on the first high refractive index layer 11 ; The second high refractive index layer arranging the second high refractive index layer 13 on the first low refractive index layer 12 the second low refractive index layer arranging step; and the second low refractive index layer arranging step of arranging the second low refractive index layer 14 on the second high refractive index layer 13 . Moreover, in this manufacturing method, for example, vacuum evaporation method, sputtering method, layer Pressing method, plating method, ion plating method, preferably sputtering method are used to arrange each layer in sequence.
以下,詳細敍述藉由濺鍍法依序配置各層之方法。 Below, the method of arranging each layer sequentially by sputtering is described in detail.
於該方法中,首先,自提高基材層2與密接層6之密接性之觀點而言,例如對基材層2之表面實施表面處理。作為表面處理,可例舉於上述第2步驟中例舉之表面處理,較佳可例舉電漿處理。 In this method, first, from the viewpoint of improving the adhesion between the base material layer 2 and the adhesion layer 6 , for example, the surface of the base material layer 2 is subjected to surface treatment. As a surface treatment, the surface treatment mentioned in the said 2nd step can be mentioned, Preferably, plasma treatment can be mentioned.
並且,於濺鍍法中,在真空腔室內將靶(各層(密接層6、第1高折射率層11、第1低折射率層12、第2高折射率層13、及第2低折射率層14)之材料)及基材層2對向配置,供給氣體並自電源施加電壓對氣體離子進行加速而將其照射至靶,自靶表面擊出靶材料,此靶材料於基材層2之表面堆積而依序形成各層。 Furthermore, in the sputtering method, the target (each layer (adhesive layer 6, first high refractive index layer 11, first low refractive index layer 12, second high refractive index layer 13, and second low refractive index layer 13) is placed in a vacuum chamber). The material of the rate layer 14)) and the base material layer 2 are arranged facing each other, supplying gas and applying voltage from the power source to accelerate the gas ions and irradiate them to the target, and eject the target material from the target surface, and the target material is in the base material layer 2 are accumulated on the surface to form each layer in sequence.
作為氣體,例如可例舉惰性氣體(例如氬氣)。又,可視需要併用氧氣等反應性氣體。於併用反應性氣體之情形時,反應性氣體之流量比(sccm)並無特別限定,相對於濺鍍氣體及反應性氣體之合計流量比,例如為0.1流量%以上100流量%以下。 An example of the gas is an inert gas (for example, argon gas). In addition, a reactive gas such as oxygen may be used in combination if necessary. When a reactive gas is used together, the flow rate ratio (sccm) of the reactive gas is not particularly limited, but it is, for example, 0.1 flow % or more and 100 flow % or less relative to the total flow rate of the sputtering gas and the reactive gas.
濺鍍時之氣壓例如為0.1Pa以上,且例如為1.0Pa以下,較佳為0.7Pa以下。 The gas pressure during sputtering is, for example, 0.1 Pa or more, and is, for example, 1.0 Pa or less, preferably 0.7 Pa or less.
電源例如可為DC電源、AC電源、MF電源及RF電源之任一者,且亦可為該等之組合。 The power supply may be, for example, any one of DC power supply, AC power supply, MF power supply, and RF power supply, or a combination thereof.
藉此,於基材層2之厚度方向一面依序配置密接層6及光學功能層7(抗反射層)。 Thereby, the adhesive layer 6 and the optical functional layer 7 (anti-reflection layer) are sequentially arranged on one side of the base material layer 2 in the thickness direction.
<第5步驟> <Step 5>
於第5步驟中,如圖5D所示,於光學功能層7(抗反射層)配置防污層3。具體而言,於光學功能層7(抗反射層)之厚度方向一面配置防污層3。 In the fifth step, as shown in FIG. 5D , the antifouling layer 3 is disposed on the optical functional layer 7 (anti-reflection layer). Specifically, the antifouling layer 3 is disposed on one side of the optical functional layer 7 (antireflection layer) in the thickness direction.
於該方法中,首先自提高光學功能層7(抗反射層)與防污層3之密接性之觀點而言,例如對光學功能層7(抗反射層)之表面實施表面處理。作為表面處理,可例舉上述第2步驟中例舉之表面處理,較佳可例舉電漿處理,更佳可例舉利用氧氣之電漿處理。 In this method, first, from the viewpoint of improving the adhesion between the optical functional layer 7 (anti-reflective layer) and the anti-fouling layer 3, for example, the surface of the optical functional layer 7 (anti-reflective layer) is subjected to surface treatment. Examples of the surface treatment include the surface treatments exemplified in the second step, preferably plasma treatment, more preferably plasma treatment using oxygen.
作為於光學功能層7(抗反射層)上配置防污層3之方法,可例舉與於上述第2步驟之基材層2上配置防污層3之方法中例舉的方法相同之方法,自將上述積分強度比調整為特定值以下之觀點而言,較佳可例舉乾式塗佈法,更佳可例舉真空蒸鍍法。 As a method of arranging the antifouling layer 3 on the optical functional layer 7 (antireflection layer), the same method as the method of arranging the antifouling layer 3 on the base material layer 2 in the second step can be used. , from the viewpoint of adjusting the integrated intensity ratio to a specific value or less, a dry coating method is preferred, and a vacuum evaporation method is more preferred.
真空蒸鍍法係於真空腔室內將蒸鍍源(具有全氟聚醚基之烷氧基矽烷化合物)與光學功能層7(抗反射層)對向配置,將蒸鍍源加熱使其蒸發或昇華,從而使蒸發或昇華之蒸鍍源堆積於光學功能層7(抗反射層)之表面。 The vacuum evaporation method is to arrange the evaporation source (alkoxysilane compound with perfluoropolyether group) and the optical functional layer 7 (anti-reflection layer) in a vacuum chamber to face each other, and heat the evaporation source to evaporate or Sublimation, so that the evaporated or sublimated evaporation source is deposited on the surface of the optical functional layer 7 (anti-reflection layer).
於真空蒸鍍法中,蒸鍍源(坩堝)之溫度例如為200℃以上,較佳為250℃以上,例如為300℃以下。 In the vacuum evaporation method, the temperature of the evaporation source (crucible) is, for example, 200°C or higher, preferably 250°C or higher, for example, 300°C or lower.
藉此,製造於光學功能層7(抗反射層)之厚度方向一面配置防污層3,朝向厚度方向一側依序具備基材層2、密接層6、光學功能層7(抗反射層)、及防污層3之積層體1。 Thereby, the antifouling layer 3 is disposed on the thickness direction side of the optical functional layer 7 (anti-reflective layer), and the base material layer 2, the adhesion layer 6, and the optical functional layer 7 (anti-reflective layer) are sequentially provided toward the thickness direction side. , and the laminate 1 of the antifouling layer 3.
<作用效果> <Effect>
積層體1於基材層2與防污層3之間具備光學功能層7(抗反射層)。 The laminated body 1 has an optical functional layer 7 (antireflection layer) between the base material layer 2 and the antifouling layer 3 .
因此,能夠抑制外界光之反射。 Therefore, reflection of external light can be suppressed.
又,於光學功能層7(抗反射層)之厚度方向一面為包含二氧化矽之層之情形時,換言之,於防污層3之下表面直接配置包含二氧化矽之層(例如包含二氧化矽之第2低折射率層14)之情形時,防污層3之具有全 氟聚醚基之烷氧基矽烷化合物中之水解基(上述式(1)中之-(OR3))之水解過程中產生的矽烷醇基與二氧化矽中之矽發生脫水縮合反應。換言之,防污層3係由具有全氟聚醚基之烷氧基矽烷化合物經由矽氧烷鍵而形成於光學功能層7(抗反射層)上。藉此,能夠進而提高防污耐久性。 In addition, when one side of the optical function layer 7 (anti-reflection layer) in the thickness direction is a layer containing silicon dioxide, in other words, a layer containing silicon dioxide (for example, a layer containing silicon dioxide) is directly disposed on the lower surface of the antifouling layer 3 In the case of the second low refractive index layer 14 of silicon, the hydrolyzable group (-(OR 3 ) in the above formula (1)) in the alkoxysilane compound having a perfluoropolyether group in the antifouling layer 3 is The silanol group generated during the hydrolysis process undergoes dehydration and condensation reaction with the silicon in silicon dioxide. In other words, the antifouling layer 3 is formed on the optical functional layer 7 (anti-reflective layer) from an alkoxysilane compound having a perfluoropolyether group via a siloxane bond. This can further improve antifouling durability.
3.變化例 3.Examples of changes
於變化例中,對與第1實施方式及第2實施方式相同之構件及步驟附加相同參照符號,並省略其詳細說明。又,除了特別說明以外,變化例能夠實現與第1實施方式及第2實施方式相同之作用效果。進而,能夠將第1實施方式、第2實施方式及其變化例適當組合。 In the modified example, the same components and steps as those in the first embodiment and the second embodiment are assigned the same reference numerals, and detailed descriptions thereof are omitted. In addition, unless otherwise specified, the modified examples can achieve the same functions and effects as those of the first embodiment and the second embodiment. Furthermore, the first embodiment, the second embodiment and their modifications can be combined appropriately.
於第1實施方式中,積層體1具備基材層2及防污層3,但如圖6所示,基材層2與防污層3之間亦能進而具備底塗層15。詳細而言,積層體1亦能於防污層3之厚度方向另一面具備底塗層15。 In the first embodiment, the laminated body 1 includes the base material layer 2 and the antifouling layer 3. However, as shown in FIG. 6 , a primer layer 15 may be further provided between the base material layer 2 and the antifouling layer 3. Specifically, the laminated body 1 may be provided with the primer layer 15 on the other surface in the thickness direction of the antifouling layer 3 .
即,於此種情形時,積層體1朝向厚度方向一側依序具備基材層2、底塗層15及防污層3。 That is, in this case, the laminated body 1 has the base material layer 2, the primer layer 15, and the antifouling layer 3 in order toward the thickness direction side.
底塗層15係與防污層3密接之層。 The base coat 15 is a layer closely connected with the antifouling layer 3 .
作為底塗層15之材料,較佳可例舉二氧化矽(SiO2)。底塗層15更佳可例舉二氧化矽(SiO2)。 As a material of the undercoat layer 15, silicon dioxide ( SiO2 ) is preferably exemplified. A more preferred example of the undercoat layer 15 is silicon dioxide (SiO 2 ).
底塗層15之材料若為二氧化矽(SiO2),則防污層3之具有全氟聚醚基之烷氧基矽烷化合物中之水解基(上述式(1)中之-(OR3))之水解過程中產生的矽烷醇基與二氧化矽中之矽發生脫水縮合反應。換言之,防污層3係由具有全氟聚醚基之烷氧基矽烷化合物經由矽氧烷鍵而形成於底塗層15。藉此,能夠進而提高防污耐久性。 If the material of the primer layer 15 is silicon dioxide (SiO 2 ), the hydrolyzable group (-(OR 3) in the above formula (1) in the alkoxysilane compound having a perfluoropolyether group in the antifouling layer 3 )) The silanol group generated during the hydrolysis process undergoes a dehydration condensation reaction with the silicon in the silicon dioxide. In other words, the antifouling layer 3 is formed on the undercoat layer 15 from an alkoxysilane compound having a perfluoropolyether group via a siloxane bond. This can further improve antifouling durability.
底塗層15例如可藉由濺鍍法、電漿CVD法、真空蒸鍍法等 形成。 The primer layer 15 can be formed by, for example, sputtering, plasma CVD, vacuum evaporation, etc. form.
於第1實施方式及第2實施方式中,基材層2朝向厚度方向一側依序具備基材4及功能層5。然而,基材層2亦能不具備功能層5而由基材4形成。 In the first embodiment and the second embodiment, the base material layer 2 includes the base material 4 and the functional layer 5 in order toward one side in the thickness direction. However, the base material layer 2 can also be formed of the base material 4 without the functional layer 5 .
於第2實施方式中,抗反射層具備2層折射率相對高之高折射率層,並且具備2層折射率相對低之低折射率層。然而,高折射率層及低折射率層之數並無特別限定。 In the second embodiment, the anti-reflection layer includes two high refractive index layers with a relatively high refractive index, and two low refractive index layers with a relatively low refractive index. However, the number of high refractive index layers and low refractive index layers is not particularly limited.
[實施例] [Example]
以下表示實施例及比較例,更具體地說明本發明。再者,本發明並不受實施例及比較例之任何限定。又,以下記載中使用之調配比率(含有比率)、物性值、參數等具體數值可代替為記載於上述「實施方式」中之與該等對應之調配比率(含有比率)、物性值、參數等相應記載之上限值(定義為「以下」、「未達」之數值)或下限值(定義為「以上」、「超過」之數值)。 Examples and comparative examples are shown below to explain the present invention more specifically. In addition, the present invention is not limited at all by the Examples and Comparative Examples. In addition, specific numerical values such as blending ratios (content ratios), physical property values, and parameters used in the following description may be replaced by corresponding blending ratios (content ratios), physical property values, parameters, etc. described in the above "Embodiments." The corresponding recorded upper limit value (defined as a value "below" or "under") or lower limit value (defined as a value "above" or "exceeded").
1.積層體之製造 1. Manufacturing of laminated body
實施例1 Example 1
<第3步驟> <Step 3>
作為基材而準備三乙醯纖維素(TAC)膜(厚度80μm)。 As a base material, a triacetyl cellulose (TAC) film (thickness: 80 μm) was prepared.
其次,於基材(TAC膜)之厚度方向一面配置硬塗層。具體而言,首先向紫外線硬化性丙烯酸系樹脂組合物(DIC製、商品名「GRANDIC PC-1070」、波長405nm下之折射率:1.55)中,以相對於樹脂成分100質量份之二氧化矽粒子之量為25質量份的方式添加有機二氧化矽溶膠(日產化學公司製「MEK-ST-L」、二氧化矽粒子(無機填料)之平均 一次粒徑:50nm、二氧化矽粒子之粒徑分佈:30nm~130nm、固形物成分30重量%)進行混合,從而調製硬塗組合物。於基材(TAC膜)之厚度方向一面以乾燥後之厚度為6μm之方式塗佈硬塗組合物,於80℃乾燥3分鐘。然後,使用高壓水銀燈照射累計光量200mJ/cm2之紫外線,使塗佈層硬化而形成硬塗層。藉此,準備基材層。 Next, a hard coat layer is placed on one side of the base material (TAC film) in the thickness direction. Specifically, first, to an ultraviolet curable acrylic resin composition (manufactured by DIC, trade name "GRANDIC PC-1070", refractive index at a wavelength of 405 nm: 1.55), 100 parts by mass of silica was added to the resin component. Organic silica sol ("MEK-ST-L" manufactured by Nissan Chemical Co., Ltd., manufactured by Nissan Chemical Co., Ltd.) was added so that the amount of particles would be 25 parts by mass. The average primary particle diameter of the silica particles (inorganic filler) was: 50 nm. The particle size of the silica particles diameter distribution: 30 nm to 130 nm, solid content 30% by weight) to prepare a hard coating composition. The hard coating composition was applied to one side in the thickness direction of the base material (TAC film) so that the thickness after drying was 6 μm, and dried at 80° C. for 3 minutes. Then, a high-pressure mercury lamp is used to irradiate ultraviolet rays with a cumulative light intensity of 200 mJ/cm 2 to harden the coating layer to form a hard coat layer. Thereby, the base material layer is prepared.
<第4步驟> <Step 4>
藉由卷對卷方式之電漿處理裝置,於1.0Pa之真空氣氛下對基材層(硬塗層)之厚度方向一面進行電漿處理。於該電漿處理中,使用氬氣作為惰性氣體,且放電電力設為2400W。 Using a roll-to-roll plasma treatment device, plasma treatment is performed on one side of the substrate layer (hard coating) in the thickness direction under a vacuum atmosphere of 1.0 Pa. In this plasma treatment, argon gas was used as an inert gas, and the discharge power was set to 2400W.
繼而,於基材層之厚度方向一面依序配置(形成)密接層及抗反射層(光學功能層)。 Then, an adhesive layer and an anti-reflection layer (optical functional layer) are sequentially arranged (formed) on one side of the base material layer in the thickness direction.
具體而言,藉由卷對卷方式之濺鍍成膜裝置,於電漿處理後之附HC層之TAC膜之HC層上依序配置(形成)作為密接層之厚度2.0nm之銦錫氧化物(ITO)層、作為第1高折射率層之厚度12nm之Nb2O5層、作為第1低折射率層之厚度28nm之SiO2層、作為第2高折射率層之厚度100nm之Nb2O5層、作為第2低折射率層之厚度85nm之SiO2層。 Specifically, a roll-to-roll sputtering film forming device is used to sequentially arrange (form) an indium tin oxide with a thickness of 2.0 nm as an adhesive layer on the HC layer of the TAC film with the HC layer after plasma treatment. material (ITO) layer, a 12 nm thick Nb 2 O 5 layer as the first high refractive index layer, a 28 nm thick SiO 2 layer as the first low refractive index layer, and a 100 nm thick Nb 2 layer as the second high refractive index layer. 2 O 5 layer and a SiO 2 layer with a thickness of 85 nm as the second low refractive index layer.
於密接層之形成中,使用ITO靶、作為惰性氣體之氬氣、相對於氬氣100體積份為10體積份之作為反應性氣體之氧氣,將放電電壓設為350V,將成膜室內之氣壓(成膜氣壓)設為0.4Pa,藉由MFAC濺鍍而形成ITO層。 In the formation of the adhesion layer, an ITO target, argon as an inert gas, and oxygen as a reactive gas were used in an amount of 10 parts by volume relative to 100 parts by volume of argon. The discharge voltage was set to 350V, and the air pressure in the film-forming chamber was adjusted. (Film formation pressure) was set to 0.4 Pa, and an ITO layer was formed by MFAC sputtering.
於第1高折射率層之形成中使用Nb靶。又,使用100體積份之氬氣及5體積份之氧氣。又,將放電電壓設為415V,將成膜氣壓設為0.42Pa,藉由MFAC濺鍍形成Nb2O5層。 An Nb target is used for forming the first high refractive index layer. Moreover, 100 parts by volume of argon gas and 5 parts by volume of oxygen gas were used. Furthermore, the discharge voltage was set to 415V and the film-forming gas pressure was set to 0.42Pa, and an Nb 2 O 5 layer was formed by MFAC sputtering.
於第1低折射率層之形成中,使用Si靶。又,使用100體積份之氬氣及30體積份之氧氣。又,將放電電壓設為350V,將成膜氣壓設為0.3Pa,藉由MFAC濺鍍形成SiO2層。 In the formation of the first low refractive index layer, a Si target is used. Moreover, 100 parts by volume of argon gas and 30 parts by volume of oxygen gas were used. Furthermore, the discharge voltage was set to 350V and the film-forming gas pressure was set to 0.3 Pa, and a SiO 2 layer was formed by MFAC sputtering.
於第2高折射率層之形成中使用Nb靶。又,使用100體積份之氬氣及13體積份之氧氣。又,將放電電壓設為460V,將成膜氣壓設為0.5Pa,藉由MFAC濺鍍形成Nb2O5層。 An Nb target is used for forming the second high refractive index layer. Moreover, 100 parts by volume of argon gas and 13 parts by volume of oxygen gas were used. Furthermore, the discharge voltage was set to 460V and the film-forming gas pressure was set to 0.5Pa, and an Nb 2 O 5 layer was formed by MFAC sputtering.
於第2低折射率層之形成中使用Si靶。又,使用100體積份之氬氣及30體積份之氧氣。又,將放電電壓設為340V,將成膜氣壓設為0.25Pa,藉由MFAC濺鍍形成Nb2O5層。 A Si target is used for forming the second low refractive index layer. Moreover, 100 parts by volume of argon gas and 30 parts by volume of oxygen gas were used. Furthermore, the discharge voltage was set to 340V and the film-forming gas pressure was set to 0.25Pa, and an Nb 2 O 5 layer was formed by MFAC sputtering.
如上所述,於基材層之厚度方向一面依序配置(形成)密接層及抗反射層。 As mentioned above, the adhesive layer and the anti-reflection layer are sequentially arranged (formed) on one side of the base material layer in the thickness direction.
<第5步驟> <Step 5>
於抗反射層之厚度方向一面配置有防污層。 An antifouling layer is disposed on one side of the anti-reflective layer in the thickness direction.
具體而言,首先對抗反射層之厚度方向一面實施利用氬氣之電漿處理作為表面處理。電漿處理之輸出電力為100W。繼而,藉由使用全氟聚醚基含有之烷氧基矽烷化合物作為蒸鍍源之真空蒸鍍法,於抗反射層之厚度方向一面配置厚度7nm之防污層。 Specifically, first, plasma treatment using argon gas is performed as surface treatment on one side of the antireflective layer in the thickness direction. The output power of plasma treatment is 100W. Then, an antifouling layer with a thickness of 7 nm was placed on one side of the antireflection layer in the thickness direction by a vacuum evaporation method using an alkoxysilane compound containing a perfluoropolyether group as the evaporation source.
蒸鍍源係將OPTOOL UD120(大金工業股份有限公司製)乾燥所得之固形物成分。又,真空蒸鍍法中之蒸鍍源(坩堝)之加熱溫度設為260℃。藉此,獲得積層體。 The evaporation source is a solid component obtained by drying OPTOOL UD120 (manufactured by Daikin Industries, Ltd.). In addition, the heating temperature of the vapor deposition source (crucible) in the vacuum evaporation method was set to 260°C. Thereby, a laminated body is obtained.
實施例2 Example 2
基於與實施例1相同之步驟,製造積層體。 Based on the same procedure as Example 1, a laminated body was produced.
但,於第5步驟中,對抗反射層之厚度方向一面實施之表 面處理變更為利用氧氣之電漿處理來代替利用氬氣之電漿處理。 However, in step 5, the thickness direction of the anti-reflective layer is The surface treatment was changed to plasma treatment using oxygen instead of plasma treatment using argon gas.
實施例3 Example 3
基於與實施例2相同之步驟,製造積層體。 Based on the same procedure as Example 2, a laminated body was produced.
但,於第5步驟中,將蒸鍍源變更為KY1903-1(信越化學製)。 However, in the fifth step, the vapor deposition source was changed to KY1903-1 (manufactured by Shin-Etsu Chemical Co., Ltd.).
比較例1 Comparative example 1
基於與實施例1相同之步驟,製造積層體。 Based on the same procedure as Example 1, a laminated body was produced.
但,以如下方式變更第5步驟。 However, change step 5 as follows.
<第5步驟> <Step 5>
於抗反射層之厚度方向一面,藉由凹版塗佈機將OPTOOL UD509以塗佈厚度8μm進行塗佈。然後,以乾燥溫度60℃進行60秒加熱處理。藉此,於抗反射層之厚度方向一面配置厚度7nm之防污層。 On one side of the anti-reflective layer in the thickness direction, OPTOOL UD509 is coated with a coating thickness of 8 μm using a gravure coater. Then, heat treatment was performed at a drying temperature of 60°C for 60 seconds. Thereby, an antifouling layer with a thickness of 7 nm is disposed on one side of the antireflection layer in the thickness direction.
比較例2 Comparative example 2
基於與實施例1相同之步驟,製造積層體。 Based on the same procedure as Example 1, a laminated body was produced.
但,於第5步驟中,將電漿處理之輸出電力變更為4500W。 However, in step 5, the output power of the plasma treatment is changed to 4500W.
2.評估 2.Evaluation
(微小角入射X射線繞射測定) (Small angle incident X-ray diffraction measurement)
基於以下之條件,藉由微小角入射X射線繞射法對各實施例及各比較例之積層體之防污層實施面內繞射(In-Plane)測定。 Based on the following conditions, in-plane diffraction (In-Plane) measurement was performed on the antifouling layer of the laminated body of each Example and each Comparative Example using a small-angle incident X-ray diffraction method.
將實施例2之面內繞射(In-Plane)測定之結果示於圖7。 The results of the in-plane diffraction (In-Plane) measurement of Example 2 are shown in FIG. 7 .
<測定條件> <Measurement conditions>
實驗設施:愛知同步加速器輻射中心 Experimental facility: Aichi Synchrotron Radiation Center
實驗平台:BL8S1 Experimental platform: BL8S1
入射能量:14.4keV Incident energy: 14.4keV
光束大小:500μm(橫寬)×40μm(縱) Beam size: 500μm (width) × 40μm (vertical)
試料角:相對於入射光為0.1度 Sample angle: 0.1 degrees relative to incident light
檢測器:二維檢測器PILATAS Detector: 2D detector PILATAS
試料設置方法:藉由較薄塗佈之油脂而固定於平面試料台上 Sample setting method: Fix it on the flat sample table by applying a thin layer of grease
以下,根據所得之面內繞射(In-Plane)測定之結果算出重心位置。自統一算出重心位置之觀點而言,算出方法使用擬合法。關於此方法,以實施例2為例進行詳細敍述。 Hereinafter, the center of gravity position is calculated based on the obtained in-plane diffraction (In-Plane) measurement results. From the viewpoint of uniformly calculating the position of the center of gravity, the fitting method is used as the calculation method. This method will be described in detail taking Embodiment 2 as an example.
首先,對面內繞射(In-Plane)測定所得之結果(以下稱為實測資料(面內繞射(In-Plane)測定))基於下述式(3)實施擬合。詳細而言,係假定實測資料(面內繞射(In-Plane)測定)為背景與波峰A1~A4(參照圖8)之總和而實施擬合。再者,所有試料之間標準化為高波長24nm-1之背景一致。 First, the results obtained by the in-plane diffraction (In-Plane) measurement (hereinafter referred to as actual measurement data (in-plane diffraction (In-Plane) measurement)) are fitted based on the following equation (3). Specifically, fitting is performed assuming that the actual measured data (in-plane diffraction (In-Plane) measurement) is the sum of the background and peaks A1 to A4 (see Figure 8). Furthermore, the background normalized to a high wavelength of 24 nm -1 was consistent among all samples.
於(式(3)中,q表示散射向量(波數)(=4πsinΘ/λ)/nm-1(Θ表示布拉格角。λ表示X射線之波長)。An表示波峰強度(n為1~4之整數。A1表示波峰A1之波峰強度。A2表示波峰A2之波峰強度。A3表示波峰A3之波峰強度。A4表示波峰A4之波峰強度)。qAn表示重心位置(qA1表示波峰A1之重心位置。qA2表示波峰A2之重心位置。qA3表示波峰A3之重心位置。qA4表示波峰A4之重心位置)。△qAn表示半峰全幅值(△qA1表示波峰A1之半峰全幅值。△qA2表示波峰A2之半峰全幅值。△qA3表示波峰A3之半峰全幅 值。△qA4表示波峰A4之半峰全幅值)。 In (Equation (3)), q represents the scattering vector (wave number) (=4πsinΘ/λ)/nm -1 (Θ represents the Bragg angle. λ represents the wavelength of X-rays). An represents the peak intensity (n is 1~4 is an integer. A 1 represents the peak intensity of wave peak A1. A 2 represents the peak intensity of wave peak A2. A 3 represents the peak intensity of wave peak A3. A 4 represents the peak intensity of wave peak A4). q An represents the center of gravity position (q A1 represents the wave peak The position of the center of gravity of A1. q A2 represents the position of the center of gravity of the wave peak A2. q A3 represents the position of the center of gravity of the wave peak A3. q A4 represents the position of the center of gravity of the wave peak A4). △q An represents the half-peak full amplitude value (△q A1 represents the position of the center of gravity of the wave peak A1 Full amplitude at half peak. △q A2 represents the full amplitude at half peak of peak A2. △q A3 represents the full amplitude at half peak of peak A3. △q A4 represents the full amplitude at half peak of peak A4).
又,波峰A1係表示薄片積層結構之波峰,重心位置為0.2Å-1以上1.0Å-1以下。又,波峰A4為源自全氟聚醚基於面內方向之週期排列性之波峰,重心位置為1.8Å-1以下。 In addition, the peak A1 represents the peak of the laminated structure, and the center of gravity position is 0.2Å -1 or more and 1.0Å -1 or less. In addition, the peak A4 is a peak derived from the periodic arrangement of perfluoropolyether based on the in-plane direction, and the center of gravity position is 1.8Å -1 or less.
圖8(實施例2)表示擬合之結果。 Figure 8 (Example 2) shows the fitting results.
又,將擬合之結果與實測資料(面內繞射(In-Plane)測定)一併記載於圖7。 In addition, the fitting results are shown in Figure 7 together with the actual measurement data (in-plane diffraction (In-Plane) measurement).
根據圖7,可知實測資料(面內繞射(In-Plane)測定)與擬合結果一致。 According to Figure 7, it can be seen that the measured data (in-plane diffraction (In-Plane) measurement) are consistent with the fitting results.
藉此,可知如假定般實測資料(面內繞射(In-Plane)測定)可表示為背景與波峰A1~A4之總和。 From this, it can be seen that the actual measured data (in-plane diffraction (In-Plane) measurement) can be expressed as the sum of the background and the peaks A1 to A4, as assumed.
並且,將藉由擬合所得之源自全氟聚醚基之面內方向之週期排列性之波峰A4之重心位置、強度、半峰全幅值、積分強度及標準化積分強度、表示薄片積層結構之波峰A1之波峰之強度、波峰位置、半峰全幅值、積分強度及標準化積分強度示於表1。 Furthermore, the center of gravity position, intensity, half-peak full amplitude, integrated intensity and normalized integrated intensity of the peak A4 derived from the periodic arrangement in the in-plane direction of the perfluoropolyether group obtained by fitting represent the laminated structure of the sheet. The peak intensity, peak position, half-peak full amplitude, integrated intensity and standardized integrated intensity of the wave peak A1 are shown in Table 1.
(防污耐久性) (anti-fouling durability)
使用協和界面科學公司製DMo-501,基於以下條件對各實施例及各比較例之積層體之防污層測定防污層之相對於純水之接觸角(有時稱為初始接觸角)。將其結果示於表1。 Using DMo-501 manufactured by Kyowa Interface Science Co., Ltd., the contact angle (sometimes referred to as the initial contact angle) of the antifouling layer with respect to pure water was measured for the antifouling layer of the laminate of each example and each comparative example based on the following conditions. The results are shown in Table 1.
<測定條件> <Measurement conditions>
液滴量:2μl Drop volume: 2μl
溫度:25℃ Temperature: 25℃
濕度:40% Humidity: 40%
其次,基於以下條件,對各實施例及各比較例之積層體之防污層實施橡皮擦滑動試驗後,藉由與上述方法相同之步驟測定水接觸角(有時稱為橡皮擦滑動試驗後之接觸角)。將其結果示於表1。 Next, based on the following conditions, after performing an eraser sliding test on the antifouling layer of the laminate of each example and each comparative example, the water contact angle was measured by the same procedure as the above method (sometimes referred to as an eraser sliding test). the contact angle). The results are shown in Table 1.
並且,基於下述式(4)算出接觸角之變化量。將其結果示於表1。 Furthermore, the change amount of the contact angle was calculated based on the following formula (4). The results are shown in Table 1.
接觸角之變化量越小,將防污耐久性評估為越優異。 The smaller the change amount of the contact angle, the more excellent the antifouling durability is evaluated.
接觸角之變化量=初始接觸角-橡皮擦滑動試驗後之接觸角 (4) Change in contact angle = initial contact angle – contact angle after eraser sliding test (4)
(橡皮擦滑動試驗) (Eraser sliding test)
Minoan公司製之橡皮擦(Φ 6mm) Eraser made by Minoan Company (Φ 6mm)
滑動距離:單道100mm Sliding distance: single channel 100mm
滑動速度:100mm/秒 Sliding speed: 100mm/second
載荷:1kg/6mm Φ Load: 1kg/6mm Φ
滑動次數:3000次 Number of slides: 3000 times
[表1]
再者,上述發明係作為本發明之例示實施方式而提供,僅為例示,不可限定性解釋。對於該技術領域之業者而言明瞭之本發明之變化例包括於後述申請專利範圍中。 In addition, the above-mentioned invention is provided as an exemplary embodiment of the present invention, and is only for illustration and is not to be construed in a limiting manner. Modifications of the present invention that are obvious to those skilled in the art are included in the scope of the claims described below.
本發明之積層體例如適用於附防污層之抗反射膜、附防污層之透明導電膜、及附防污層之電磁波屏蔽膜。 The laminate of the present invention is suitable for, for example, an antireflective film with an antifouling layer, a transparent conductive film with an antifouling layer, and an electromagnetic wave shielding film with an antifouling layer.
1:積層體 1: Laminated body
2:基材層 2: Base material layer
3:防污層 3: Antifouling layer
4:基材 4:Substrate
5:功能層 5: Functional layer
Claims (5)
Applications Claiming Priority (18)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020120131 | 2020-07-13 | ||
JP2020-120131 | 2020-07-13 | ||
JP2020-146144 | 2020-08-31 | ||
JP2020146144 | 2020-08-31 | ||
JP2020-166844 | 2020-10-01 | ||
JP2020166844 | 2020-10-01 | ||
JP2020-166847 | 2020-10-01 | ||
JP2020166847 | 2020-10-01 | ||
JP2020-190468 | 2020-11-16 | ||
JP2020190465 | 2020-11-16 | ||
JP2020190468 | 2020-11-16 | ||
JP2020190466 | 2020-11-16 | ||
JP2020-190466 | 2020-11-16 | ||
JP2020-190465 | 2020-11-16 | ||
JP2020-191680 | 2020-11-18 | ||
JP2020191680 | 2020-11-18 | ||
JP2021015317 | 2021-02-02 | ||
JP2021-015317 | 2021-02-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202206854A TW202206854A (en) | 2022-02-16 |
TWI811738B true TWI811738B (en) | 2023-08-11 |
Family
ID=79555587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110125745A TWI811738B (en) | 2020-07-13 | 2021-07-13 | laminate |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7186334B2 (en) |
KR (1) | KR102520745B1 (en) |
CN (1) | CN115867436B (en) |
TW (1) | TWI811738B (en) |
WO (1) | WO2022014577A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5922787A (en) * | 1996-03-21 | 1999-07-13 | Sony Corporation | Composition for forming antifouling antifouling film, optical component, and display device |
JP2005301208A (en) * | 2004-03-17 | 2005-10-27 | Seiko Epson Corp | Method for manufacturing stain proof optical article |
US20080071042A1 (en) * | 2006-09-08 | 2008-03-20 | Shin-Etsu Chemical Co., Ltd. | Perfluoropolyether-organopolysiloxane copolymer and a surface treatment composition comprising the same |
CN102459378A (en) * | 2009-06-16 | 2012-05-16 | 三菱丽阳株式会社 | Stain-proofing composition, stain-proofing film, stain-proofing laminate film, transfer film, resin laminate, and method for producing resin laminate |
TW201716803A (en) * | 2015-05-27 | 2017-05-16 | Dexerials Corp | Laminated thin film and method for producing laminated thin film |
JP2017170827A (en) * | 2016-03-25 | 2017-09-28 | 大日本印刷株式会社 | Laminate, touch panel, touch panel display device, and production method of laminate |
TW202000849A (en) * | 2018-06-13 | 2020-01-01 | 日商Agc股份有限公司 | Fouling-resistant article and production method therefor |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4672095B2 (en) * | 1999-04-26 | 2011-04-20 | 凸版印刷株式会社 | Method for manufacturing antireflection film |
JP2006124417A (en) * | 2004-10-26 | 2006-05-18 | Asahi Glass Co Ltd | Stainproof layer-forming composition and reflection-preventing laminate |
US8945684B2 (en) * | 2005-11-04 | 2015-02-03 | Essilor International (Compagnie Generale D'optique) | Process for coating an article with an anti-fouling surface coating by vacuum evaporation |
JP2009139530A (en) | 2007-12-05 | 2009-06-25 | Seiko Epson Corp | Method for manufacturing optical article |
JP5504091B2 (en) * | 2010-08-02 | 2014-05-28 | 株式会社アルバック | Film forming method and film forming apparatus |
JP5527482B2 (en) * | 2011-04-28 | 2014-06-18 | 旭硝子株式会社 | Anti-reflection laminate |
CN103765249B (en) * | 2011-05-16 | 2015-11-25 | 大日本印刷株式会社 | The manufacture method of antireflection film, antireflection film, polarization plates and image display device |
JP2013155399A (en) * | 2012-01-27 | 2013-08-15 | Asahi Glass Co Ltd | Antifouling coated substrate, and method for producing the same |
JP2018004921A (en) * | 2016-06-30 | 2018-01-11 | ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd | Spectacle lens, and manufacturing method for the same |
JPWO2018207811A1 (en) * | 2017-05-12 | 2020-05-21 | Agc株式会社 | Antifouling article and method for producing antifouling article |
CN111246997A (en) * | 2017-10-19 | 2020-06-05 | Agc株式会社 | Transparent substrate laminate and method for producing same |
JP7217118B2 (en) | 2018-09-26 | 2023-02-02 | 日東電工株式会社 | Optical film with protective film |
JP7057864B2 (en) * | 2019-11-25 | 2022-04-20 | 日東電工株式会社 | Anti-reflection film and image display device |
-
2021
- 2021-07-13 JP JP2022536381A patent/JP7186334B2/en active Active
- 2021-07-13 WO PCT/JP2021/026255 patent/WO2022014577A1/en active Application Filing
- 2021-07-13 CN CN202180049608.1A patent/CN115867436B/en active Active
- 2021-07-13 KR KR1020227045623A patent/KR102520745B1/en active IP Right Grant
- 2021-07-13 TW TW110125745A patent/TWI811738B/en active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5922787A (en) * | 1996-03-21 | 1999-07-13 | Sony Corporation | Composition for forming antifouling antifouling film, optical component, and display device |
JP2005301208A (en) * | 2004-03-17 | 2005-10-27 | Seiko Epson Corp | Method for manufacturing stain proof optical article |
US20080071042A1 (en) * | 2006-09-08 | 2008-03-20 | Shin-Etsu Chemical Co., Ltd. | Perfluoropolyether-organopolysiloxane copolymer and a surface treatment composition comprising the same |
CN102459378A (en) * | 2009-06-16 | 2012-05-16 | 三菱丽阳株式会社 | Stain-proofing composition, stain-proofing film, stain-proofing laminate film, transfer film, resin laminate, and method for producing resin laminate |
TW201716803A (en) * | 2015-05-27 | 2017-05-16 | Dexerials Corp | Laminated thin film and method for producing laminated thin film |
JP2017170827A (en) * | 2016-03-25 | 2017-09-28 | 大日本印刷株式会社 | Laminate, touch panel, touch panel display device, and production method of laminate |
TW202000849A (en) * | 2018-06-13 | 2020-01-01 | 日商Agc股份有限公司 | Fouling-resistant article and production method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP7186334B2 (en) | 2022-12-08 |
CN115867436A (en) | 2023-03-28 |
TW202206854A (en) | 2022-02-16 |
KR20230008886A (en) | 2023-01-16 |
WO2022014577A1 (en) | 2022-01-20 |
JPWO2022014577A1 (en) | 2022-01-20 |
KR102520745B1 (en) | 2023-04-12 |
CN115867436B (en) | 2024-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI811736B (en) | Optical film with antifouling layer | |
TWI817160B (en) | Optical film with antifouling layer | |
TWI811737B (en) | laminate | |
TWI811738B (en) | laminate | |
JP7185100B2 (en) | laminate | |
JP7186332B2 (en) | laminate | |
WO2022014574A1 (en) | Laminate | |
TW202216426A (en) | Optical film with antifouling layer |