TWI809140B - Method of manufacturing semiconductor devices - Google Patents

Method of manufacturing semiconductor devices Download PDF

Info

Publication number
TWI809140B
TWI809140B TW108124058A TW108124058A TWI809140B TW I809140 B TWI809140 B TW I809140B TW 108124058 A TW108124058 A TW 108124058A TW 108124058 A TW108124058 A TW 108124058A TW I809140 B TWI809140 B TW I809140B
Authority
TW
Taiwan
Prior art keywords
region
width
sacrificial core
spacer
forming
Prior art date
Application number
TW108124058A
Other languages
Chinese (zh)
Other versions
TW202018791A (en
Inventor
金炫助
朴世玩
Original Assignee
南韓商三星電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商三星電子股份有限公司 filed Critical 南韓商三星電子股份有限公司
Publication of TW202018791A publication Critical patent/TW202018791A/en
Application granted granted Critical
Publication of TWI809140B publication Critical patent/TWI809140B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823468MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate sidewall spacers, e.g. double spacers, particular spacer material or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/0886Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3086Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28123Lithography-related aspects, e.g. sub-lithography lengths; Isolation-related aspects, e.g. to solve problems arising at the crossing with the side of the device isolation; Planarisation aspects
    • H01L21/28132Lithography-related aspects, e.g. sub-lithography lengths; Isolation-related aspects, e.g. to solve problems arising at the crossing with the side of the device isolation; Planarisation aspects conducting part of electrode is difined by a sidewall spacer or a similar technique, e.g. oxidation under mask, plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3088Process specially adapted to improve the resolution of the mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32139Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76816Aspects relating to the layout of the pattern or to the size of vias or trenches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823412MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823431MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823437MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823456MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different shapes, lengths or dimensions

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Semiconductor Memories (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A method of manufacturing a semiconductor device includes forming first sacrificial cores on a first region of a lower structure and second sacrificial cores on a second region of the lower structure, forming spacers on side walls of the first sacrificial cores and side walls of the second sacrificial cores, forming a protective pattern covering the second sacrificial cores on the second region of the lower structure, removing the first sacrificial cores from the first region, and etching the lower structure using the spacers on the first region, and the second sacrificial cores and the spacers on the second region.

Description

製造半導體元件的方法Method for manufacturing semiconductor element

本揭露是有關於一種製造半導體元件的方法。 The present disclosure relates to a method of manufacturing a semiconductor device.

[相關申請案的交叉參考] [CROSS-REFERENCE TO RELATED APPLICATIONS]

於2018年11月9日在韓國智慧財產局提出且標題為「製造半導體元件的方法(Method of Manufacturing Semiconductor Devices)」的韓國專利申請案第10-2018-0137287號全文併入本案供參考。 Korean Patent Application No. 10-2018-0137287 filed on November 9, 2018 at the Korea Intellectual Property Office and entitled "Method of Manufacturing Semiconductor Devices" is hereby incorporated by reference in its entirety.

隨著半導體元件變得高度整合,形成半導體元件的圖案的尺寸變得越來越小。由於用於形成此種圖案的微影設備(photolithography equipment)的光學解析度限制,在形成精細圖案方面存在限制。因此,已提出用於形成精細圖案的方法。 As semiconductor elements become highly integrated, the size of patterns forming the semiconductor elements becomes smaller and smaller. There are limitations in forming fine patterns due to optical resolution limitations of the photolithography equipment used to form such patterns. Therefore, methods for forming fine patterns have been proposed.

根據例示性實施例,一種製造半導體元件的方法,其包括:在下部結構的第一區域上形成第一犧牲芯體,且在所述下部 結構的第二區域上形成第二犧牲芯體;在所述第一犧牲芯體的側壁上及所述第二犧牲芯體的側壁上形成間隙壁;形成覆蓋所述下部結構的所述第二區域上的所述第二犧牲芯體的保護圖案;自所述第一區域移除所述第一犧牲芯體;以及使用所述第一區域上的所述間隙壁以及所述第二區域上的所述第二犧牲芯體及所述間隙壁蝕刻所述下部結構。 According to an exemplary embodiment, a method of manufacturing a semiconductor element includes: forming a first sacrificial core on a first region of a lower structure, and A second sacrificial core is formed on the second region of the structure; a spacer wall is formed on the side walls of the first sacrificial core and the side walls of the second sacrificial core; the second sacrificial core covering the lower structure is formed. protecting pattern of the second sacrificial core on the area; removing the first sacrificial core from the first area; and using the spacer on the first area and the second area on the The second sacrificial core and the spacer etch the lower structure.

根據例示性實施例,一種製造半導體元件的方法包括:製備具有第一區域、第二區域及第三區域的下部結構;在所述第一區域上形成具有第一寬度的第一犧牲芯體,在所述第二區域上形成具有第二寬度的第二犧牲芯體,且在所述第三區域上形成具有較所述第一寬度及所述第二寬度大的第三寬度的第三犧牲芯體;在所述下部結構的所述第一區域上形成間隙壁,在所述下部結構的所述第二區域上形成包括所述第二犧牲芯體及所述間隙壁的第一遮罩結構,且在所述下部結構的所述第三區域上形成包括所述第三犧牲芯體及所述間隙壁的第二遮罩結構;以及使用所述間隙壁、所述第一遮罩結構及所述第二遮罩結構蝕刻所述下部結構。 According to an exemplary embodiment, a method of manufacturing a semiconductor element includes: preparing a lower structure having a first region, a second region, and a third region; forming a first sacrificial core having a first width on the first region, A second sacrificial core with a second width is formed on the second region, and a third sacrificial core with a third width larger than the first width and the second width is formed on the third region. A core body; a spacer is formed on the first region of the lower structure, and a first mask including the second sacrificial core and the spacer is formed on the second region of the lower structure structure, and forming a second mask structure including the third sacrificial core and the spacer on the third region of the lower structure; and using the spacer, the first mask structure and etching the lower structure by the second mask structure.

根據例示性實施例,一種製造半導體元件的方法包括:在具有第一區域、第二區域及第三區域的下部結構上堆疊下部犧牲層及上部犧牲層;藉由蝕刻所述上部犧牲層來在所述第一區域上形成第一上部犧牲芯體以及在所述第二區域上形成第二上部犧牲芯體;在所述第一上部犧牲芯體的側壁上及所述第二上部犧牲 芯體的側壁上形成第一間隙壁;移除所述第一上部犧牲芯體及所述第二上部犧牲芯體;在所述第三區域上形成所具有的寬度較所述第一上部犧牲芯體的寬度寬的光阻圖案;藉由使用所述第一間隙壁及所述光阻圖案作為蝕刻遮罩來蝕刻所述下部犧牲層來在所述第一區域上形成第一下部犧牲芯體、在所述第二區域上形成第二下部犧牲芯體以及在所述第三區域上形成第三下部犧牲芯體;在第一下部犧牲芯體的側壁上、第二下部犧牲芯體的側壁上及第三下部犧牲芯體的側壁上形成第二間隙壁;形成覆蓋所述第二區域及所述第三區域的保護圖案;移除形成於所述第一區域上的所述第一下部犧牲芯體;以及使用所述第一區域上的所述第二間隙壁、所述第二區域上的所述第二下部犧牲芯體及所述第二間隙壁以及所述第三區域上的所述第三下部犧牲芯體及所述第二間隙壁來蝕刻所述下部結構。 According to an exemplary embodiment, a method of manufacturing a semiconductor device includes: stacking a lower sacrificial layer and an upper sacrificial layer on a lower structure having a first region, a second region, and a third region; A first upper sacrificial core is formed on the first region and a second upper sacrificial core is formed on the second region; on the sidewall of the first upper sacrificial core and on the second upper sacrificial core A first spacer wall is formed on the side wall of the core; the first upper sacrificial core and the second upper sacrificial core are removed; a photoresist pattern having a wide width of the core; forming a first lower sacrificial layer on the first region by using the first spacer and the photoresist pattern as an etch mask to etch the lower sacrificial layer core, forming a second lower sacrificial core on the second region and forming a third lower sacrificial core on the third region; on the sidewall of the first lower sacrificial core, the second lower sacrificial core forming a second spacer on the side wall of the body and the side wall of the third lower sacrificial core; forming a protection pattern covering the second area and the third area; removing the formed on the first area a first lower sacrificial core; and using the second spacer on the first region, the second lower sacrificial core and the second spacer on the second region and the first The third lower sacrificial core and the second spacer on the third region are used to etch the lower structure.

101:基板 101: Substrate

103:元件隔離層 103: Component isolation layer

111:閘極絕緣層 111: gate insulating layer

113:閘極導電層 113: gate conductive layer

115、116:硬遮罩層 115, 116: hard mask layer

121:犧牲層/下部犧牲層 121: sacrificial layer/lower sacrificial layer

125:抗反射層/下部抗反射層 125: Anti-reflection layer/lower anti-reflection layer

141:犧牲層/上部犧牲層 141: sacrificial layer/upper sacrificial layer

145:抗反射層/上部抗反射層 145: anti-reflection layer/upper anti-reflection layer

150:間隙壁/第二間隙壁 150: spacer/second spacer

155:第一間隙壁 155: the first gap wall

180、184:光阻圖案 180, 184: photoresist pattern

182、186、194:保護圖案 182, 186, 194: protection patterns

190:第一光阻圖案 190: the first photoresist pattern

192:第二光阻圖案 192: Second photoresist pattern

AT1、AT1’:第一主動區域 AT1, AT1': the first active area

AT2、AT2’:第二主動區域 AT2, AT2': the second active area

AT3、AT3’:第三主動區域 AT3, AT3': the third active area

GE1:第一閘電極層 GE1: the first gate electrode layer

GE2:第二閘電極層 GE2: The second gate electrode layer

GE3:第三閘電極層 GE3: third gate electrode layer

GS1:第一閘極結構 GS1: first gate structure

GS2:第二閘極結構 GS2: Second gate structure

GS3:第三閘極結構 GS3: third gate structure

GT1:第一閘極圖案 GT1: first gate pattern

GT2:第二閘極圖案 GT2: Second gate pattern

GT3:第三閘極圖案 GT3: Third gate pattern

I-I’:線 I-I': line

IN1:第一閘極絕緣層 IN1: The first gate insulating layer

IN2:第二閘極絕緣層 IN2: The second gate insulating layer

IN3:第三閘極絕緣層 IN3: The third gate insulating layer

P1、P11、Pa:第一節距 P1, P11, Pa: the first pitch

P1’、P4、Pd:第四節距 P1', P4, Pd: fourth pitch

P2、P12、Pb:第二節距 P2, P12, Pb: second pitch

P2’、P5、Pe:第五節距 P2', P5, Pe: the fifth pitch

Pa’、Pb’:節距 Pa', Pb': pitch

R1、R1’:第一區域 R1, R1': the first region

R2、R2’:第二區域 R2, R2': the second area

R3、R3’:第三區域 R3, R3': the third area

S1、S11:第一間隔 S1, S11: first interval

S1’、S4:第四間隔 S1', S4: the fourth interval

S2、S12、Sb:第二間隔 S2, S12, Sb: second interval

S2’、S5、Se:第五間隔 S2', S5, Se: the fifth interval

Sa:間隔/第一間隔 Sa: interval/first interval

Sa’、Sb’:間隔 Sa', Sb': Interval

SC1:第一犧牲芯體 SC1: The first sacrificial core

SC1’:第一上部犧牲芯體 SC1': the first upper sacrificial core

SC1”:第一下部犧牲芯體 SC1”: the first lower sacrificial core

SC2:第二犧牲芯體 SC2: Second Sacrificial Core

SC2’:第二上部犧牲芯體 SC2': Second upper sacrificial core

SC2”:第二下部犧牲芯體 SC2”: the second lower sacrificial core

SC3:第三犧牲芯體 SC3: The third sacrificial core

SC3”:第三下部犧牲芯體 SC3”: the third lower sacrificial core

SC4:第四犧牲芯體 SC4: The fourth sacrificial core

SC5:第五犧牲芯體 SC5: fifth sacrificial core

SC6:第六犧牲芯體 SC6: The sixth sacrificial core

Sd:間隔/第四間隔 Sd: interval/fourth interval

SM1、SM1’:第一遮罩結構 SM1, SM1': the first mask structure

SM2、SM2’:第二遮罩結構 SM2, SM2': the second mask structure

SM3、SM3’:第三遮罩結構 SM3, SM3': the third mask structure

SM4:第四遮罩結構 SM4: Fourth mask structure

SM5:第五遮罩結構 SM5: fifth mask structure

SM6:第六遮罩結構 SM6: Sixth mask structure

W1、W11:第一寬度 W1, W11: first width

W1’、W4:第四寬度 W1', W4: fourth width

W2、W12、Wb:第二寬度 W2, W12, Wb: second width

W2’、W5、We:第五寬度 W2', W5, We: fifth width

W3、Wc:第三寬度 W3, Wc: third width

W3’、W6:第六寬度 W3', W6: sixth width

W13:寬度/第三寬度 W13: Width / third width

Wa:寬度/第一寬度 Wa: width/first width

Wa’、Wb’、Wc’、Ws、Ws’:寬度 Wa', Wb', Wc', Ws, Ws': Width

Wd:寬度/第四寬度 Wd: width/fourth width

Wf:第六寬度 Wf: sixth width

X、Y:方向 X, Y: direction

藉由參照所附圖式詳細闡述例示性實施例,對於熟習此項技術者而言,特徵將變得顯而易見,在所附圖式中:圖1及圖2分別示出藉由根據例示性實施例的方法製造的半導體元件的平面圖及剖視圖。 Features will become apparent to those skilled in the art by describing in detail exemplary embodiments with reference to the accompanying drawings, in which: FIGS. A plan view and a cross-sectional view of a semiconductor element manufactured by the method of the example.

圖3至圖8示出根據例示性實施例的製造半導體元件的方法中的階段的剖視圖。 3 to 8 illustrate cross-sectional views of stages in a method of manufacturing a semiconductor element according to example embodiments.

圖9至圖14示出根據例示性實施例的製造半導體元件的方法 中的階段的剖視圖。 9 to 14 illustrate a method of manufacturing a semiconductor element according to an exemplary embodiment Cutaway view of the stage in .

圖15至圖23示出根據例示性實施例的製造半導體元件的方法中的階段的剖視圖。 15 to 23 illustrate cross-sectional views of stages in a method of manufacturing a semiconductor element according to example embodiments.

在下文中,將參照所附圖式詳細闡述例示性實施例。 Hereinafter, exemplary embodiments will be explained in detail with reference to the accompanying drawings.

圖1及圖2是示出藉由根據例示性實施例的製造半導體元件的方法製造的半導體元件的平面圖及剖視圖。圖2是沿圖1所示線I-I’截取的剖視圖。 1 and 2 are plan views and cross-sectional views illustrating a semiconductor element manufactured by a method of manufacturing a semiconductor element according to an exemplary embodiment. Fig. 2 is a sectional view taken along line I-I' shown in Fig. 1 .

參照圖1及圖2,基板101可具有第一區域R1、第二區域R2及第三區域R3。第一區域R1可為其中形成具有鰭型場效電晶體(fin-type field effect transistor,finFET)結構的芯體電晶體(core transistor)的區域。第二區域R2可為其中形成具有FinFET結構的輸入/輸出(I/O)電晶體及/或具有FinFET結構的橫向擴散金屬氧化物半導體場效電晶體(laterally diffused MOSFET,LDMOS)電晶體(使用較芯體電晶體的電壓高的電壓)的區域。第三區域R3可為其中形成平面電晶體(planar transistor)的區域。 Referring to FIG. 1 and FIG. 2 , the substrate 101 may have a first region R1 , a second region R2 and a third region R3 . The first region R1 may be a region in which a core transistor having a fin-type field effect transistor (finFET) structure is formed. The second region R2 may be an input/output (I/O) transistor having a FinFET structure and/or a laterally diffused metal oxide semiconductor field effect transistor (laterally diffused MOSFET, LDMOS) transistor having a FinFET structure (using A region of higher voltage than that of the core transistor). The third region R3 may be a region in which a planar transistor is formed.

在基板101的第一區域R1上可形成在一個方向上延伸的第一主動區域AT1,在第二區域R2上可形成在一個方向上延伸的第二主動區域AT2,且在第三區域R3上可形成在一個方向上延伸的至少單一第三主動區域AT3。舉例而言,如圖1中所示,第一主動區域AT1、第二主動區域AT2及第三主動區域AT3可在同 一方向上延伸,例如沿Y方向延伸。在另一實例中,第一主動區域AT1、第二主動區域AT2及第三主動區域AT3可以與圖1中所示方式不同的方式在彼此不同的方向上延伸。 A first active region AT1 extending in one direction may be formed on the first region R1 of the substrate 101, a second active region AT2 extending in one direction may be formed on the second region R2, and a second active region AT2 extending in one direction may be formed on the third region R3. At least a single third active area AT3 extending in one direction may be formed. For example, as shown in FIG. 1, the first active area AT1, the second active area AT2, and the third active area AT3 can be in the same One direction extends upwards, for example, extends along the Y direction. In another example, the first active area AT1 , the second active area AT2 and the third active area AT3 may extend in different directions from each other in a manner different from that shown in FIG. 1 .

第一主動區域AT1可為第一主動鰭,而第二主動區域AT2可為第二主動鰭。第一主動區域AT1可以第一節距Pa進行配置,而第二主動區域AT2可以較第一節距Pa大的第二節距Pb進行配置。第二主動區域AT2的第二寬度Wb可大於第一主動區域AT1的第一寬度Wa,而第三主動區域AT3的第三寬度Wc可大於第二主動區域AT2的第二寬度Wb。第二主動區域AT2的第二寬度Wb可大於第一主動區域AT1的第一寬度Wa的兩倍。第二主動區域AT2的第二間隔Sb可等於第一主動區域AT1的第一間隔Sa,或者可大於第一主動區域AT1的第一間隔Sa。如圖1中所示,第一節距Pa等於單一第一主動區域AT1的第一寬度Wa與第一間隔Sa(即,兩個相鄰第一主動區域AT1之間的間隔)的和,且第二節距Pb等於單一第二主動區域AT2的第二寬度Wb與第二間隔Sb(即,兩個相鄰第二主動區域AT2之間的間隔)的和。 The first active area AT1 may be a first active fin, and the second active area AT2 may be a second active fin. The first active areas AT1 may be arranged at a first pitch Pa, and the second active areas AT2 may be arranged at a second pitch Pb greater than the first pitch Pa. The second width Wb of the second active area AT2 may be greater than the first width Wa of the first active area AT1, and the third width Wc of the third active area AT3 may be greater than the second width Wb of the second active area AT2. The second width Wb of the second active area AT2 may be greater than twice the first width Wa of the first active area AT1. The second interval Sb of the second active area AT2 may be equal to the first interval Sa of the first active area AT1, or may be greater than the first interval Sa of the first active area AT1. As shown in FIG. 1, the first pitch Pa is equal to the sum of the first width Wa of a single first active area AT1 and the first interval Sa (ie, the interval between two adjacent first active areas AT1), and The second pitch Pb is equal to the sum of the second width Wb of the single second active area AT2 and the second interval Sb (ie, the interval between two adjacent second active areas AT2 ).

如圖2中所示,在第一主動區域至第三主動區域AT1、AT2及AT3中的相鄰主動區域之間可形成元件隔離層103。第一主動區域至第三主動區域AT1、AT2及AT3的上部部分可在元件隔離層103的上表面之上突出。元件隔離層103可覆蓋第一主動區域至第三主動區域AT1、AT2及AT3的下部部分的側表面。 As shown in FIG. 2 , an element isolation layer 103 may be formed between adjacent active regions among the first to third active regions AT1 , AT2 and AT3 . Upper portions of the first to third active regions AT1 , AT2 and AT3 may protrude over the upper surface of the element isolation layer 103 . The element isolation layer 103 may cover side surfaces of lower portions of the first to third active regions AT1 , AT2 and AT3 .

基板101的第一區域R1上可形成第一閘極結構GS1, 第二區域R2上可形成第二閘極結構GS2,且第三區域R3上可形成第三閘極結構GS3。第一閘極結構GS1可在與第一主動區域AT1相交的方向上延伸,第二閘極結構GS2可在與第二主動區域AT2相交的方向上延伸,且第三閘極結構GS3可在與第三主動區域AT3相交的方向上延伸。舉例而言,第一閘極結構GS1、第二閘極結構GS2及第三閘極結構GS3可沿X方向延伸。 A first gate structure GS1 may be formed on the first region R1 of the substrate 101, A second gate structure GS2 may be formed on the second region R2, and a third gate structure GS3 may be formed on the third region R3. The first gate structure GS1 may extend in a direction intersecting the first active area AT1, the second gate structure GS2 may extend in a direction intersecting the second active area AT2, and the third gate structure GS3 may extend in an intersecting direction with the second active area AT2. The third active area AT3 extends in the intersecting direction. For example, the first gate structure GS1 , the second gate structure GS2 and the third gate structure GS3 may extend along the X direction.

第一閘極結構GS1可以第四節距Pd進行配置,而第二閘極結構GS2可以較第四節距Pd大的第五節距Pe進行配置。第二閘極結構GS2的第五寬度We可大於第一閘極結構GS1的第四寬度Wd,而第三閘極結構GS3的第六寬度Wf可大於第二閘極結構GS2的第五寬度We。第二閘極結構GS2的第五寬度We可大於第一閘極結構GS1的第四寬度Wd的兩倍。第二閘極結構GS2的第五間隔Se可等於第一閘極結構GS1的第四間隔Sd,或者可大於第一閘極結構GS1的第四間隔Sd。在例示性實施例中,第一閘極結構GS1與第二閘極結構GS2可具有彼此相等的寬度及間隔。 The first gate structures GS1 may be arranged at a fourth pitch Pd, and the second gate structures GS2 may be arranged at a fifth pitch Pe greater than the fourth pitch Pd. The fifth width We of the second gate structure GS2 may be greater than the fourth width Wd of the first gate structure GS1, and the sixth width Wf of the third gate structure GS3 may be greater than the fifth width We of the second gate structure GS2. . The fifth width We of the second gate structure GS2 may be greater than twice the fourth width Wd of the first gate structure GS1 . The fifth interval Se of the second gate structure GS2 may be equal to the fourth interval Sd of the first gate structure GS1 , or may be greater than the fourth interval Sd of the first gate structure GS1 . In an exemplary embodiment, the first gate structure GS1 and the second gate structure GS2 may have equal widths and intervals to each other.

源極/汲極區域可形成在例如第一閘極結構GS1、第二閘極結構GS2及第三閘極結構GS3中的每一者的兩側(例如,相對兩側)上。源極/漏極區域可利用選擇性磊晶生長(selective epitaxial growth,SEG)製程自第一主動區域AT1、第二主動區域AT2及第三主動區域AT3生長,或者可利用離子植入製程(ion implantation process)在第一主動區域AT1、第二主動區域AT2及第三主動區域AT3的上部區域中形成。 Source/drain regions may be formed, for example, on both sides (eg, opposite sides) of each of the first gate structure GS1 , the second gate structure GS2 and the third gate structure GS3 . The source/drain regions can be grown from the first active region AT1, the second active region AT2 and the third active region AT3 by using a selective epitaxial growth (SEG) process, or by using an ion implantation process (ion implantation process) is formed in the upper regions of the first active area AT1, the second active area AT2, and the third active area AT3.

第一閘極結構GS1包括第一閘極絕緣層IN1及第一閘電極層GE1,第二閘極結構GS2包括第二閘極絕緣層IN2及第二閘電極層GE2,第三閘極結構GS3包括第三閘極絕緣層IN3及第三閘電極層GE3。 The first gate structure GS1 includes a first gate insulating layer IN1 and a first gate electrode layer GE1, the second gate structure GS2 includes a second gate insulating layer IN2 and a second gate electrode layer GE2, and the third gate structure GS3 It includes a third gate insulating layer IN3 and a third gate electrode layer GE3.

第二閘極絕緣層IN2的厚度可大於第一閘極絕緣層IN1的厚度。第三閘極絕緣層IN3的厚度可大於第一閘極絕緣層IN1的厚度。第一閘極絕緣層IN1、第二閘極絕緣層IN2及第三閘極絕緣層IN3中的每一者可包含例如氧化矽、氮氧化矽、高介電常數氧化物(high-k oxide)或其組合。高k氧化物可為例如氧化鋁(Al2O3)、氧化鉭(Ta2O3)、氧化鈦(TiO2)、氧化釔(Y2O3)、氧化鋯(ZrO2)、氧化鋯矽(ZrSixOy)、氧化鉿(HfO2)、氧化鉿矽(HfSixOy)、氧化鑭(La2O3)、氧化鑭鋁(LaAlxOy)、氧化鑭鉿(LaHfxOy)、氧化鉿鋁(HfAlxOy)及氧化鐠(Pr2O3)中的一者。 The thickness of the second gate insulating layer IN2 may be greater than the thickness of the first gate insulating layer IN1. The thickness of the third gate insulating layer IN3 may be greater than the thickness of the first gate insulating layer IN1. Each of the first gate insulating layer IN1, the second gate insulating layer IN2, and the third gate insulating layer IN3 may include, for example, silicon oxide, silicon oxynitride, high-k oxide or a combination thereof. The high-k oxide can be, for example, alumina (Al 2 O 3 ), tantalum oxide (Ta 2 O 3 ), titanium oxide (TiO 2 ), yttrium oxide (Y 2 O 3 ), zirconia (ZrO 2 ), zirconia Silicon ( ZrSix O y ), hafnium oxide (HfO 2 ), hafnium silicon oxide ( HfSix O y ), lanthanum oxide (La 2 O 3 ), lanthanum aluminum oxide (LaAl x O y ), lanthanum hafnium oxide (LaHf x One of O y ), hafnium aluminum oxide (HfAl x O y ) and manganese oxide (Pr 2 O 3 ).

第一閘極電極層GE1、第二閘極電極層GE2及第三閘極電極層GE3中的每一者可包含例如金屬、金屬氮化物、經摻雜多晶矽或其組合。在例示性實施例中,第一閘電極層GE1、第二閘電極層GE2及第三閘電極層GE3可包含例如氮化鈦(TiN)、鈦鋁(TiAl)、氮化鈦鋁(TiAlN)、氮化鉭(TaN)、氮化鉭鋁(TaAlN)、碳化鋁鈦(TiAlC)、氮化鎢(WCN)及鎢(W)中的至少一者。 Each of the first gate electrode layer GE1 , the second gate electrode layer GE2 and the third gate electrode layer GE3 may include, for example, metal, metal nitride, doped polysilicon, or a combination thereof. In an exemplary embodiment, the first gate electrode layer GE1, the second gate electrode layer GE2 and the third gate electrode layer GE3 may include, for example, titanium nitride (TiN), titanium aluminum (TiAl), titanium aluminum nitride (TiAlN) At least one of tantalum nitride (TaN), tantalum aluminum nitride (TaAlN), titanium aluminum carbide (TiAlC), tungsten nitride (WCN) and tungsten (W).

根據例示性實施例,由於第二區域R2的第二主動區域AT2的寬度可相較於第一區域R1的第一主動區域AT1的寬度而言進一步增加,因此具有FinFET結構的I/O電晶體或具有FinFET 結構的橫向擴散MOSFET(LDMOS)電晶體(使用較芯體電晶體的電壓高的電壓)的熱載子抗擾度(hot carrier immunity,HCI)的可靠性可提高。 According to an exemplary embodiment, since the width of the second active region AT2 of the second region R2 can be further increased compared to the width of the first active region AT1 of the first region R1, the I/O transistor having a FinFET structure or with FinFET The reliability of the hot carrier immunity (HCI) of the laterally diffused MOSFET (LDMOS) transistor of the structure (using a higher voltage than that of the core transistor) can be improved.

圖3至圖8是示出根據例示性實施例的製造半導體元件的方法中的階段的剖視圖。圖3至圖8中的剖視圖對應於圖2所示剖視圖。 3 to 8 are cross-sectional views illustrating stages in a method of manufacturing a semiconductor element according to an exemplary embodiment. The sectional views in FIGS. 3 to 8 correspond to the sectional views shown in FIG. 2 .

參照圖3,可在基板101上依序地形成硬遮罩層115、犧牲層121及抗反射層125。 Referring to FIG. 3 , a hard mask layer 115 , a sacrificial layer 121 and an anti-reflection layer 125 may be sequentially formed on the substrate 101 .

基板101可具有第一區域R1、第二區域R2及第三區域R3。第一區域R1可為其中形成具有finFET結構的芯體電晶體的區域。第二區域R2可為其中形成具有FinFET結構的I/O電晶體或具有FinFET結構的橫向擴散MOSFET(LDMOS)電晶體(使用較芯體電晶體的電壓高的電壓)的區域。第三區域R3可為其中形成平面電晶體的區域。 The substrate 101 may have a first region R1 , a second region R2 and a third region R3 . The first region R1 may be a region in which a core transistor having a finFET structure is formed. The second region R2 may be a region where I/O transistors having a FinFET structure or laterally diffused MOSFET (LDMOS) transistors having a FinFET structure (using a higher voltage than that of the core transistor) are formed. The third region R3 may be a region in which planar transistors are formed.

基板101可為例如矽晶圓等半導體基板。舉例而言,基板101可為絕緣體上矽(Silicon-On-Insulator,SOI)基板。 The substrate 101 can be a semiconductor substrate such as a silicon wafer. For example, the substrate 101 may be a Silicon-On-Insulator (SOI) substrate.

硬遮罩層115可由含矽材料(例如,氧化矽(SiOx)、氮氧化矽(SiON)、氮化矽(SixNy)或多晶矽)、含碳材料(例如,非晶碳層(amorphous carbon layer,ACL)或旋塗硬遮罩(spin-on hardmask,SOH))和金屬中的至少一者形成。舉例而言,硬遮罩層115可包括多個層。 The hard mask layer 115 can be made of silicon-containing material (eg, silicon oxide (SiO x ), silicon oxynitride (SiON), silicon nitride ( Six N y ) or polysilicon), carbon-containing material (eg, amorphous carbon layer ( At least one of amorphous carbon layer (ACL) or spin-on hardmask (SOH)) and metal is formed. For example, hard mask layer 115 may include multiple layers.

犧牲層121可包含例如多晶矽、非晶碳層(ACL)或旋 塗硬遮罩(SOH)中的至少一者。犧牲層121可位於硬遮罩層115與抗反射層(antireflection layer)125之間。 The sacrificial layer 121 may comprise, for example, polysilicon, amorphous carbon layer (ACL) or spin At least one of the hard masks (SOH) is applied. The sacrificial layer 121 may be located between the hard mask layer 115 and the antireflection layer 125 .

抗反射層125可為用於在微影製程期間防止光反射的至少一個層。抗反射層125可由例如氧氮化矽膜(SiON)形成。 The anti-reflection layer 125 may be at least one layer for preventing light reflection during a lithography process. The anti-reflection layer 125 can be formed of, for example, silicon oxynitride (SiON).

可利用例如原子層沉積(atomic layer deposition,ALD)、化學氣相沉積(chemical vapor deposition,CVD)、旋塗(spin coating)等來形成硬遮罩層115、犧牲層121及抗反射層125。視材料而定,可另外執行烘烤製程(bake process)或固化製程(curing process)。 The hard mask layer 115 , the sacrificial layer 121 and the anti-reflection layer 125 can be formed by atomic layer deposition (ALD), chemical vapor deposition (CVD), spin coating, etc., for example. Depending on the material, a bake process or a curing process may additionally be performed.

接著,可在抗反射層125上形成光阻。可利用微影製程在抗反射層125上形成例如呈彼此間隔開的線形式的光阻圖案180。 Next, a photoresist may be formed on the anti-reflection layer 125 . Photoresist patterns 180 , for example in the form of lines spaced apart from each other, may be formed on the anti-reflection layer 125 by a lithography process.

光阻圖案180的第一圖案可在具有第一寬度W1的同時形成於第一區域R1上以在其間具有第一間隔S1。光阻圖案180的第一圖案可以第一節距P1形成於第一區域R1上。第一節距P1可被定義為第一寬度W1與第一間隔S1的和。 A first pattern of the photoresist pattern 180 may be formed on the first region R1 while having a first width W1 to have a first space S1 therebetween. The first pattern of the photoresist pattern 180 may be formed on the first region R1 with a first pitch P1. The first pitch P1 may be defined as the sum of the first width W1 and the first interval S1.

光阻圖案180的第二圖案可在具有第二寬度W2的同時以其間具有第二間隔S2的方式形成於第二區域R2上。光阻圖案180的第二圖案可以第二節距P2形成於第二區域R2上。第二節距P2可被定義為第二寬度W2與第二間隔S2的和。第二寬度W2可不同於第一寬度W1。第二間隔S2可不同於第一間隔S1。 A second pattern of the photoresist pattern 180 may be formed on the second region R2 with a second space S2 therebetween while having the second width W2. The second pattern of the photoresist pattern 180 may be formed on the second region R2 with a second pitch P2. The second pitch P2 may be defined as the sum of the second width W2 and the second interval S2. The second width W2 may be different from the first width W1. The second interval S2 may be different from the first interval S1.

光阻圖案180的第三圖案可在具有第三寬度W3的同時 形成於第三區域R3上。可考量欲最終形成的第一主動區域(AT1,參見圖8)之間的間隔Sa來確定第一寬度W1。欲最終形成的第一主動區域AT1之間的間隔Sa可窄於可商業購得的微影設備的解析度限值。 The third pattern of the photoresist pattern 180 may have a third width W3 while formed on the third region R3. The first width W1 can be determined by considering the interval Sa between the first active regions ( AT1 , see FIG. 8 ) to be finally formed. The interval Sa between the first active regions AT1 to be finally formed may be narrower than the resolution limit of commercially available lithography equipment.

參照圖4,可使用光阻圖案180作為蝕刻遮罩來各向異性地蝕刻抗反射層125及犧牲層121。因此,可在第一區域R1上形成第一犧牲芯體SC1,可在第二區域R2上形成第二犧牲芯體SC2,且可在第三區域R3上形成第三犧牲芯體SC3。第一犧牲芯體SC1可以其間具有第一寬度W1及第一間隔S1(即,第一節距P1)的方式形成於第一區域R1上。第二犧牲芯體SC2可以其間具有第二寬度W2及第二間隔S2(即,第二節距P2)的方式形成於第二區域R2上。第三犧牲芯體SC3可在第三區域R3上具有第三寬度W3。第三犧牲芯體SC3的第三寬度W3可大於第二犧牲芯體SC2的第二寬度W2及第一犧牲芯體SC1的第一寬度W1中的每一者。 Referring to FIG. 4, the antireflection layer 125 and the sacrificial layer 121 may be anisotropically etched using the photoresist pattern 180 as an etching mask. Accordingly, a first sacrificial core SC1 may be formed on the first region R1, a second sacrificial core SC2 may be formed on the second region R2, and a third sacrificial core SC3 may be formed on the third region R3. The first sacrificial cores SC1 may be formed on the first region R1 with a first width W1 and a first interval S1 (ie, a first pitch P1 ) therebetween. The second sacrificial cores SC2 may be formed on the second region R2 with a second width W2 and a second space S2 (ie, a second pitch P2 ) therebetween. The third sacrificial core SC3 may have a third width W3 on the third region R3. The third width W3 of the third sacrificial core SC3 may be greater than each of the second width W2 of the second sacrificial core SC2 and the first width W1 of the first sacrificial core SC1 .

參照圖5,可在第一犧牲芯體SC1的側壁上、第二犧牲芯體SC2的側壁上及第三犧牲芯體SC3的側壁上形成間隙壁150。因此,可在第一區域R1上形成第一遮罩結構SM1,可在第二區域R2上形成第二遮罩結構SM2且可在第三區域R3上形成第三遮罩結構SM3。第一遮罩結構SM1、第二遮罩結構SM2及第三遮罩結構SM3中的每一者可包括犧牲層121、抗反射層125及一對間隙壁150。 Referring to FIG. 5 , a spacer wall 150 may be formed on a sidewall of the first sacrificial core SC1 , a sidewall of the second sacrificial core SC2 , and a sidewall of the third sacrificial core SC3 . Therefore, the first mask structure SM1 may be formed on the first region R1, the second mask structure SM2 may be formed on the second region R2 and the third mask structure SM3 may be formed on the third region R3. Each of the first mask structure SM1 , the second mask structure SM2 and the third mask structure SM3 may include a sacrificial layer 121 , an anti-reflection layer 125 and a pair of spacers 150 .

詳言之,可形成共形地覆蓋第一犧牲芯體SC1、第二犧牲芯體SC2及第三犧牲芯體SC3的間隙壁材料層。接著,可執行回蝕製程(etchback process)以在第一犧牲芯體SC1中的每一者的相對側壁上、第二犧牲芯體SC2中的每一者的相對側壁上及第三犧牲芯體SC3的相對側壁上形成間隙壁150。 In detail, a spacer material layer conformally covering the first sacrificial core body SC1 , the second sacrificial core body SC2 , and the third sacrificial core body SC3 may be formed. Then, an etchback process may be performed to form the opposite sidewalls of each of the first sacrificial cores SC1, each of the second sacrificial cores SC2, and the third sacrificial cores. Spacers 150 are formed on opposite sidewalls of SC3.

可考量欲最終形成的第一主動區域(AT1,參見圖8)的寬度Wa來確定間隙壁材料層的厚度,即間隙壁150的厚度。欲最終形成的第一主動區域AT1的寬度Wa可窄於可商業購得的微影設備的解析度限值。 The thickness of the spacer material layer, that is, the thickness of the spacer 150 , can be determined by considering the width Wa of the first active region ( AT1 , see FIG. 8 ) to be finally formed. The width Wa of the first active area AT1 to be finally formed may be narrower than the resolution limit of commercially available lithography equipment.

間隙壁材料層可由相對於犧牲層121的材料而言具有蝕刻選擇性的材料形成。舉例而言,當犧牲層121由多晶矽、非晶碳層(ACL)和旋塗硬遮罩(SOH)中的一者形成時,間隙壁材料層可由氧化矽或氮化矽形成。可利用原子層沉積(ALD)來形成間隙壁材料層。 The spacer material layer may be formed of a material having etch selectivity with respect to the material of the sacrificial layer 121 . For example, when the sacrificial layer 121 is formed of one of polysilicon, amorphous carbon layer (ACL) and spin-on-hard-mask (SOH), the spacer material layer may be formed of silicon oxide or silicon nitride. The layer of spacer material may be formed using atomic layer deposition (ALD).

參照圖6,可提供覆蓋第二區域R2及第三區域R3的保護圖案182。保護圖案182可由例如光阻材料形成。保護圖案182覆蓋第二區域R2的第二遮罩結構SM2及第三區域R3的第三遮罩結構SM3,使得第一遮罩結構SM1可在第一區域R1上暴露出。 Referring to FIG. 6 , a protection pattern 182 covering the second region R2 and the third region R3 may be provided. The protection pattern 182 may be formed of, for example, a photoresist material. The protection pattern 182 covers the second mask structure SM2 in the second region R2 and the third mask structure SM3 in the third region R3, so that the first mask structure SM1 can be exposed on the first region R1.

接下來,可自暴露出的第一區域R1移除第一犧牲芯體SC1,進而使得間隙壁150可保留於第一區域R1的硬遮罩層115上。間隙壁150可配置於第一區域R1上,以彼此間隔開與第一犧牲芯體SC1的第一寬度W1相等的距離。 Next, the first sacrificial core SC1 can be removed from the exposed first region R1 , so that the spacer 150 can remain on the hard mask layer 115 in the first region R1 . The spacers 150 may be disposed on the first region R1 to be spaced apart from each other by a distance equal to the first width W1 of the first sacrificial core SC1 .

參照圖7,可移除保護圖案182。接著,可使用第一區域R1上的間隙壁150、第二區域R2上的第二遮罩結構SM2及第三區域R3上的第三遮罩結構SM3作為蝕刻遮罩來各向異性地蝕刻硬遮罩層115。在硬遮罩層115可被各向異性蝕刻的同時,間隙壁150、第二遮罩結構SM2及第三遮罩結構SM3的部分或全部可被消耗。 Referring to FIG. 7, the protection pattern 182 may be removed. Then, the spacers 150 on the first region R1, the second mask structure SM2 on the second region R2, and the third mask structure SM3 on the third region R3 can be used as etching masks to anisotropically etch the hard disk. mask layer 115 . While the hard mask layer 115 may be anisotropically etched, part or all of the spacer 150 , the second mask structure SM2 and the third mask structure SM3 may be consumed.

參照圖8,可使用圖案化硬遮罩層115作為蝕刻遮罩來各向異性地蝕刻基板101,以在基板101的第一區域R1上形成第一主動區域AT1,在第二區域R2上形成第二主動區域AT2且在第三區域R3上形成第三主動區域AT3。第一主動區域AT1可為第一主動鰭,而第二主動區域AT2可為第二主動鰭。第二主動區域AT2的第二寬度Wb可大於第一主動區域AT1的第一寬度Wa,而第三主動區域AT3的第三寬度Wc可大於第二主動區域AT2的第二寬度Wb。第二主動區域AT2的第二寬度Wb可大於第一主動區域AT1的第一寬度Wa的兩倍。第二主動區域AT2的第二間隔Sb可等於第一主動區域AT1的第一間隔Sa,或者可大於第一主動區域AT1的第一間隔Sa。 Referring to FIG. 8, the substrate 101 may be anisotropically etched using the patterned hard mask layer 115 as an etching mask to form a first active region AT1 on the first region R1 of the substrate 101 and a second active region AT1 on the second region R2. The second active area AT2 and the third active area AT3 are formed on the third area R3. The first active area AT1 may be a first active fin, and the second active area AT2 may be a second active fin. The second width Wb of the second active area AT2 may be greater than the first width Wa of the first active area AT1, and the third width Wc of the third active area AT3 may be greater than the second width Wb of the second active area AT2. The second width Wb of the second active area AT2 may be greater than twice the first width Wa of the first active area AT1. The second interval Sb of the second active area AT2 may be equal to the first interval Sa of the first active area AT1, or may be greater than the first interval Sa of the first active area AT1.

在例示性實施例中,當第一犧牲芯體SC1的第一寬度W1可等於第二犧牲芯體SC2的第二寬度W2且間隙壁150的寬度Ws可等於第一犧牲芯體SC1的第一寬度W1時,第二主動區域AT2的第二寬度Wb可等於第一主動區域AT1的第一寬度Wa的三倍。換言之,參照圖7至圖8,第二主動區域AT2中的每一者的 第二寬度Wb(圖8)可等於第二犧牲芯體SC2的第二寬度W2與第二犧牲芯體SC2的側壁上的兩個間隙壁150的兩個寬度Ws的和(圖7)。 In an exemplary embodiment, when the first width W1 of the first sacrificial core SC1 can be equal to the second width W2 of the second sacrificial core SC2 and the width Ws of the spacer 150 can be equal to the first width Ws of the first sacrificial core SC1. When the width is W1, the second width Wb of the second active area AT2 may be equal to three times the first width Wa of the first active area AT1. In other words, referring to FIGS. 7 to 8 , each of the second active areas AT2 The second width Wb ( FIG. 8 ) may be equal to the sum of the second width W2 of the second sacrificial core SC2 and the two widths Ws of the two spacers 150 on the sidewalls of the second sacrificial core SC2 ( FIG. 7 ).

在對基板101的各向異性蝕刻完成之後,硬遮罩層115的部分可保留於第一主動區域至第三主動區域AT1、AT2及AT3上。可將元件隔離層103形成為使得第一主動區域至第三主動區域AT1、AT2及AT3的上部部分能夠突出。詳言之,可以元件隔離層103填充第一主動區域至第三主動區域AT1、AT2及AT3中相鄰的主動區域之間的間隔。可移除保留於第一主動區域至第三主動區域AT1、AT2及AT3上的硬遮罩層115,且接著可將元件隔離層103的部分蝕刻至預定深度,以使得第一主動區域至第三主動區域AT1、AT2及AT3的上部部分能夠突出。 After the anisotropic etching of the substrate 101 is completed, part of the hard mask layer 115 may remain on the first to third active regions AT1 , AT2 and AT3 . The element isolation layer 103 may be formed such that upper portions of the first to third active regions AT1, AT2, and AT3 can protrude. In detail, the device isolation layer 103 can be used to fill the space between the adjacent active regions among the first active region to the third active region AT1 , AT2 and AT3 . The hard mask layer 115 remaining on the first to third active regions AT1, AT2, and AT3 may be removed, and then part of the device isolation layer 103 may be etched to a predetermined depth, so that the first to third active regions The upper parts of the three active areas AT1, AT2 and AT3 can protrude.

根據例示性實施例,具有不同寬度的第一主動區域至第三主動區域AT1、AT2及AT3可同時形成於第一區域至第三區域R1、R2及R3中,且第二主動區域AT2的寬度可在其中形成具有FinFET結構的I/O電晶體或具有FinFET結構的橫向擴散MOSFET(LDMOS)電晶體(使用較芯體電晶體的電壓高的電壓)的第二區域R2中增加。因此,I/O電晶體或橫向擴散MOSFET(LDMOS)電晶體的熱載子抗擾度(HCI)的可靠性可提高。 According to an exemplary embodiment, the first to third active regions AT1, AT2 and AT3 having different widths may be simultaneously formed in the first to third regions R1, R2 and R3, and the width of the second active region AT2 It may be increased in the second region R2 where an I/O transistor having a FinFET structure or a laterally diffused MOSFET (LDMOS) transistor having a FinFET structure (using a higher voltage than that of the core body transistor) is formed. Therefore, the reliability of hot carrier immunity (HCI) of I/O transistors or laterally diffused MOSFET (LDMOS) transistors can be improved.

圖9至圖14是示出根據例示性實施例的製造半導體元件的方法中的階段的剖視圖。圖9至圖14中的剖視圖對應於圖2所示剖視圖。 9 to 14 are cross-sectional views illustrating stages in a method of manufacturing a semiconductor element according to an exemplary embodiment. The sectional views in FIGS. 9 to 14 correspond to the sectional views shown in FIG. 2 .

參照圖9,可在基板101上依序地形成閘極絕緣層111、閘極導電層113、硬遮罩層116、犧牲層121及抗反射層125。接著,可在犧牲層121上形成光阻,隨後利用微影製程形成呈線形式的光阻圖案184。 Referring to FIG. 9 , a gate insulating layer 111 , a gate conductive layer 113 , a hard mask layer 116 , a sacrificial layer 121 and an anti-reflection layer 125 may be sequentially formed on a substrate 101 . Next, a photoresist may be formed on the sacrificial layer 121 , and then a photoresist pattern 184 in the form of a line is formed by a lithography process.

光阻圖案184的第一圖案可在具有第四寬度W4的同時以其間具有第四間隔S4的方式形成於第一區域R1上。光阻圖案184的第一圖案可以第四節距P4形成於第一區域R1上。光阻圖案184的第二圖案可在具有第五寬度W5的同時以其間具有第五間隔S5的方式形成於第二區域R2上。光阻圖案184的第二圖案可以第五節距P5形成於第二區域R2上。第五寬度W5可不同於第四寬度W4。第五間隔S5可不同於第四間隔S4。光阻圖案184的第三圖案可在具有第六寬度W6的同時形成於第三區域R3上。可考量欲最終形成的第一閘極圖案(GT1,參見圖14)之間的間隔Sd來確定第四寬度W4。欲最終形成的第一閘極圖案GT1之間的間隔Sd可窄於可商業購得的微影設備的解析度限值。 The first pattern of the photoresist pattern 184 may be formed on the first region R1 with a fourth space S4 therebetween while having a fourth width W4. The first pattern of the photoresist pattern 184 may be formed on the first region R1 at a fourth pitch P4. A second pattern of the photoresist pattern 184 may be formed on the second region R2 with a fifth interval S5 therebetween while having a fifth width W5. The second pattern of the photoresist pattern 184 may be formed on the second region R2 at a fifth pitch P5. The fifth width W5 may be different from the fourth width W4. The fifth interval S5 may be different from the fourth interval S4. A third pattern of the photoresist pattern 184 may be formed on the third region R3 while having the sixth width W6. The fourth width W4 may be determined by considering the interval Sd between the first gate patterns ( GT1 , see FIG. 14 ) to be finally formed. The interval Sd between the first gate patterns GT1 to be finally formed may be narrower than the resolution limit of commercially available lithography equipment.

參照圖10,可使用光阻圖案184作為蝕刻遮罩來各向異性地蝕刻抗反射層125及犧牲層121,以在第一區域R1上形成第四犧牲芯體SC4,在第二區域R2上形成第五犧牲芯體SC5且在第三區域R3上形成第六犧牲芯體SC6。第四犧牲芯體SC4可以第四寬度W4及第四間隔S4(即,第四節距P4)形成於第一區域R1上。第五犧牲芯體SC5可以第五寬度W5及第五間隔S5(即,第五節距P5)形成於第二區域R2上。第六犧牲芯體SC6可在第三 區域R3上具有第六寬度W6。第六犧牲芯體SC6的第六寬度W6可大於第四犧牲芯體SC4的第四寬度W4及第五犧牲芯體SC5的第五寬度W5。 Referring to FIG. 10, the anti-reflection layer 125 and the sacrificial layer 121 can be anisotropically etched using the photoresist pattern 184 as an etching mask to form a fourth sacrificial core SC4 on the first region R1 and a fourth sacrificial core SC4 on the second region R2. A fifth sacrificial core SC5 is formed and a sixth sacrificial core SC6 is formed on the third region R3. The fourth sacrificial core SC4 may be formed on the first region R1 with a fourth width W4 and a fourth interval S4 (ie, a fourth pitch P4). The fifth sacrificial core SC5 may be formed on the second region R2 with a fifth width W5 and a fifth interval S5 (ie, a fifth pitch P5). The sixth sacrificial core body SC6 can be used in the third The region R3 has a sixth width W6. The sixth width W6 of the sixth sacrificial core SC6 may be greater than the fourth width W4 of the fourth sacrificial core SC4 and the fifth width W5 of the fifth sacrificial core SC5 .

參照圖11,可在第四犧牲芯體SC4的側壁上、第五犧牲芯體SC5的側壁上及第六犧牲芯體SC6的側壁上形成間隙壁150。因此,可在第一區域R1上形成第四遮罩結構SM4,可在第二區域R2上形成第五遮罩結構SM5且可在第三區域R3上形成第六遮罩結構SM6。第四遮罩結構SM4、第五遮罩結構SM5及第六遮罩結構SM6中的每一者可包括犧牲層121、抗反射層125及一對間隙壁150。 Referring to FIG. 11 , a spacer wall 150 may be formed on the sidewalls of the fourth sacrificial core SC4 , the fifth sacrificial core SC5 , and the sixth sacrificial core SC6 . Therefore, the fourth mask structure SM4 may be formed on the first region R1, the fifth mask structure SM5 may be formed on the second region R2 and the sixth mask structure SM6 may be formed on the third region R3. Each of the fourth mask structure SM4 , the fifth mask structure SM5 and the sixth mask structure SM6 may include a sacrificial layer 121 , an anti-reflection layer 125 and a pair of spacers 150 .

詳言之,可形成共形地覆蓋第四犧牲芯體SC4、第五犧牲芯體SC5及第六犧牲芯體SC6的間隙壁材料層。接著,可執行回蝕製程以在第四犧牲芯體SC4的側壁上、第五犧牲芯體SC5的側壁上及第六犧牲芯體SC6的側壁上形成間隙壁150。 In detail, a spacer material layer conformally covering the fourth sacrificial core body SC4 , the fifth sacrificial core body SC5 , and the sixth sacrificial core body SC6 may be formed. Next, an etch-back process may be performed to form spacers 150 on the sidewalls of the fourth sacrificial core SC4 , the fifth sacrificial core SC5 , and the sixth sacrificial core SC6 .

可考量欲最終形成的第一閘極圖案(GT1,參見圖14)的寬度Wd來確定間隙壁材料層的厚度,即間隙壁150的厚度。欲最終形成的第一閘極圖案GT1之間的寬度Wd可窄於可商業購得的微影設備的解析度限值。 The thickness of the spacer material layer, that is, the thickness of the spacer 150 can be determined by considering the width Wd of the first gate pattern ( GT1 , see FIG. 14 ) to be finally formed. The width Wd between the first gate patterns GT1 to be finally formed may be narrower than the resolution limit of commercially available lithography equipment.

參照圖12,可提供覆蓋第二區域R2及第三區域R3的保護圖案186。保護圖案186可由例如光阻材料形成。保護圖案186覆蓋第二區域R2的第五遮罩結構SM5及第三區域R3的第六遮罩結構SM6,且暴露出第四遮罩結構SM4。 Referring to FIG. 12 , a protection pattern 186 covering the second region R2 and the third region R3 may be provided. The protection pattern 186 may be formed of, for example, a photoresist material. The protection pattern 186 covers the fifth mask structure SM5 in the second region R2 and the sixth mask structure SM6 in the third region R3, and exposes the fourth mask structure SM4.

藉由移除第四犧牲芯體SC4,可提供保留於第一區域R1的硬遮罩層116上的間隙壁150。間隙壁150可以與第四犧牲芯體SC4的第四寬度W4相等的間隔進行配置。 By removing the fourth sacrificial core SC4, the spacers 150 remaining on the hard mask layer 116 of the first region R1 may be provided. The spacers 150 may be arranged at intervals equal to the fourth width W4 of the fourth sacrificial core SC4.

參照圖13,可使用第一區域R1上的間隙壁150、第二區域R2上的第五遮罩結構SM5及第三區域R3上的第六遮罩結構SM6作為蝕刻遮罩來各向異性地蝕刻硬遮罩層116。在硬遮罩層116可被各向異性蝕刻的同時,間隙壁150、第五遮罩結構SM5及第六遮罩結構SM6的部分或全部可被消耗。 Referring to FIG. 13, the spacer 150 on the first region R1, the fifth mask structure SM5 on the second region R2, and the sixth mask structure SM6 on the third region R3 can be used as etching masks to anisotropically The hard mask layer 116 is etched. While the hard mask layer 116 may be anisotropically etched, part or all of the spacer 150 , the fifth mask structure SM5 and the sixth mask structure SM6 may be consumed.

參照圖14,可使用圖案化硬遮罩層116作為蝕刻遮罩來各向異性地蝕刻閘極導電層113及閘極絕緣層111,以在基板101的第一區域R1上形成第一閘極圖案GT1,在第二區域R2上形成第二閘極圖案GT2且在第三區域R3上形成第三閘極圖案GT3。第二閘極圖案GT2的第五寬度We可大於第一閘極圖案GT1的第四寬度Wd,而第三閘極圖案GT3的第六寬度Wf可大於第二閘極圖案GT2的第五寬度We。第二閘極圖案GT2的第五寬度We可大於第一閘極圖案GT1的第四寬度Wd的兩倍。第二閘極圖案GT2的第五間隔Se可等於第一閘極圖案GT1的第四間隔Sd,或者可大於第一閘極圖案GT1的第四間隔Sd。 Referring to FIG. 14, the gate conductive layer 113 and the gate insulating layer 111 can be anisotropically etched using the patterned hard mask layer 116 as an etching mask to form a first gate on the first region R1 of the substrate 101. pattern GT1, a second gate pattern GT2 is formed on the second region R2 and a third gate pattern GT3 is formed on the third region R3. The fifth width We of the second gate pattern GT2 may be greater than the fourth width Wd of the first gate pattern GT1, and the sixth width Wf of the third gate pattern GT3 may be greater than the fifth width We of the second gate pattern GT2. . The fifth width We of the second gate pattern GT2 may be greater than twice the fourth width Wd of the first gate pattern GT1. The fifth interval Se of the second gate pattern GT2 may be equal to the fourth interval Sd of the first gate pattern GT1, or may be greater than the fourth interval Sd of the first gate pattern GT1.

根據例示性實施例,具有不同寬度的第一閘極圖案至第三閘極圖案GT1、GT2及GT3可同時形成於第一區域至第三區域R1、R2及R3中。藉由執行閘極置換製程(gate replacement process),第一閘極圖案至第三閘極圖案GT1、GT2及GT3可被 以圖1及圖2所示第一閘極結構至第三閘極結構GS1、GS2及GS3取代。 According to exemplary embodiments, first to third gate patterns GT1, GT2 and GT3 having different widths may be simultaneously formed in the first to third regions R1, R2 and R3. By performing a gate replacement process, the first to third gate patterns GT1, GT2, and GT3 can be replaced by It is replaced by the first gate structure to the third gate structure GS1, GS2 and GS3 shown in FIG. 1 and FIG. 2 .

圖15至圖23是示出根據例示性實施例的製造半導體元件的方法中的階段的剖視圖。圖15至圖23中的剖視圖對應於圖2所示剖視圖。 15 to 23 are cross-sectional views illustrating stages in a method of manufacturing a semiconductor element according to an exemplary embodiment. The sectional views in FIGS. 15 to 23 correspond to the sectional views shown in FIG. 2 .

參照圖15,可在基板101上依序地形成硬遮罩層115、犧牲層121、抗反射層125、上部犧牲層141及上部抗反射層145。 Referring to FIG. 15 , a hard mask layer 115 , a sacrificial layer 121 , an antireflection layer 125 , an upper sacrificial layer 141 and an upper antireflection layer 145 may be sequentially formed on a substrate 101 .

基板101可為例如矽晶圓等半導體基板。舉例而言,基板101可為絕緣體上矽(SOI)基板。 The substrate 101 can be a semiconductor substrate such as a silicon wafer. For example, the substrate 101 may be a silicon-on-insulator (SOI) substrate.

硬遮罩層115可由含矽材料(例如,氧化矽(SiOx)、氮氧化矽(SiON)、氮化矽(SixNy)或多晶矽)、含碳材料(例如,非晶碳層(ACL)或旋塗硬遮罩(SOH))和金屬中的至少一者形成。舉例而言,硬遮罩層115可包括多個層。 The hard mask layer 115 can be made of silicon-containing material (eg, silicon oxide (SiO x ), silicon oxynitride (SiON), silicon nitride ( Six N y ) or polysilicon), carbon-containing material (eg, amorphous carbon layer ( ACL) or spin-on-hard-mask (SOH)) and metal. For example, hard mask layer 115 may include multiple layers.

犧牲層121及上部犧牲層141可各自包含例如多晶矽、非晶碳層(ACL)及旋塗硬遮罩(SOH)中的至少一者。 The sacrificial layer 121 and the upper sacrificial layer 141 may each include, for example, at least one of polysilicon, an amorphous carbon layer (ACL), and a spin-on hard mask (SOH).

抗反射層125及上部抗反射層145可為用於在微影製程期間防止光反射的層。抗反射層125及上部抗反射層145可由例如氮氧化矽膜(SiON)形成。 The anti-reflection layer 125 and the upper anti-reflection layer 145 may be layers for preventing light reflection during the lithography process. The anti-reflection layer 125 and the upper anti-reflection layer 145 can be formed of, for example, a silicon oxynitride film (SiON).

可利用例如原子層沉積(ALD)、化學氣相沉積(CVD)、旋塗等來形成硬遮罩層115、犧牲層121及141以及抗反射層125及145。視材料而定,可另外執行烘烤製程或固化製程。接著,可在上部犧牲層141上形成光阻,且接著可利用微影製程形成呈線 形式的第一光阻圖案190。 The hard mask layer 115, the sacrificial layers 121 and 141, and the anti-reflection layers 125 and 145 may be formed using, for example, atomic layer deposition (ALD), chemical vapor deposition (CVD), spin coating, and the like. Depending on the material, a baking process or a curing process may additionally be performed. Then, a photoresist can be formed on the upper sacrificial layer 141, and then a lithography process can be used to form a line form the first photoresist pattern 190 .

基板101可具有第一區域R1’、第二區域R2’及第三區域R3’。第一區域R1’可為其中形成芯體電晶體的區域,第二區域R2’可為其中形成使用較芯體電晶體的電壓高的電壓的I/O電晶體或橫向擴散MOSFET(LDMOS)電晶體的區域,且第三區域R3’可為其中形成平面電晶體的區域。 The substrate 101 may have a first region R1', a second region R2' and a third region R3'. The first region R1' may be a region where core transistors are formed, and the second region R2' may be a region where I/O transistors or laterally diffused MOSFET (LDMOS) transistors are formed using a voltage higher than that of the core transistors. crystal region, and the third region R3' may be a region where a planar transistor is formed.

第一光阻圖案190的第一圖案可在具有第一寬度W11的同時以第一間隔S11形成於第一區域R1’上。第一光阻圖案190的第一圖案可以第一節距P11形成於第一區域R1’上。第一節距P11可被定義為第一寬度W11與第一間隔S11的和。第一光阻圖案190的第二圖案可在具有第二寬度W12的同時以第二間隔S12形成於第二區域R2’上。第一光阻圖案190的第二圖案可以第二節距P12形成於第二區域R2’上。第二節距P12可被定義為第二寬度W12與第二間隔S12的和。第二寬度W12可不同於第一寬度W11。第二間隔S12可不同於第一間隔S11。 A first pattern of the first photoresist pattern 190 may be formed on the first region R1' at a first interval S11 while having a first width W11. A first pattern of the first photoresist pattern 190 may be formed on the first region R1' at a first pitch P11. The first pitch P11 may be defined as the sum of the first width W11 and the first interval S11. The second pattern of the first photoresist pattern 190 may be formed on the second region R2' with the second interval S12 while having the second width W12. The second pattern of the first photoresist pattern 190 may be formed on the second region R2' at a second pitch P12. The second pitch P12 may be defined as the sum of the second width W12 and the second interval S12. The second width W12 may be different from the first width W11. The second interval S12 may be different from the first interval S11.

參照圖16,可使用第一光阻圖案190作為蝕刻遮罩來各向異性地蝕刻上部抗反射層145及上部犧牲層141,以在第一區域R1’上形成第一上部犧牲芯體SC1’且在第二區域R2’上形成第二上部犧牲芯體SC2’。第一上部犧牲芯體SC1’可以第一寬度W11及第一間隔S11(即,第一節距P11)形成於第一區域R1’上。第二上部犧牲芯體SC2’可以第二寬度W12及第二間隔S12(即,第二節距P12)形成於第二區域R2’上。 Referring to FIG. 16, the upper anti-reflection layer 145 and the upper sacrificial layer 141 may be anisotropically etched using the first photoresist pattern 190 as an etching mask to form a first upper sacrificial core SC1' on the first region R1'. And a second upper sacrificial core body SC2' is formed on the second region R2'. The first upper sacrificial core SC1' may be formed on the first region R1' with a first width W11 and a first interval S11 (ie, a first pitch P11). The second upper sacrificial core SC2' may be formed on the second region R2' with a second width W12 and a second interval S12 (ie, a second pitch P12).

參照圖17,可在第一上部犧牲芯體SC1’的側壁上及第二上部犧牲芯體SC2’的側壁上提供第一間隙壁155。詳言之,可形成共形地覆蓋第一上部犧牲芯體SC1’及第二上部犧牲芯體SC2’的第一間隙壁材料層,且接著執行回蝕製程以在第一上部犧牲芯體SC1’的側壁上及第二上部犧牲芯體SC2’的側壁上形成第一間隙壁155。 Referring to FIG. 17 , a first spacer wall 155 may be provided on a sidewall of the first upper sacrificial core SC1' and a sidewall of the second upper sacrificial core SC2'. Specifically, a first spacer material layer conformally covering the first upper sacrificial core body SC1 ′ and the second upper sacrificial core body SC2 ′ may be formed, and then an etch-back process is performed to form a layer on the first upper sacrificial core body SC1 ′. ' and the sidewalls of the second upper sacrificial core body SC2' are formed with a first spacer wall 155.

可考量欲最終形成的第一主動區域(AT1’,參見圖23)之間的間隔Sa’來確定第一間隙壁材料層的厚度。欲最終形成的第一主動區域AT1’之間的間隔Sa’可窄於可商業購得的微影設備的解析度限值。 The thickness of the first spacer material layer can be determined by considering the interval Sa' between the first active regions (AT1', see FIG. 23 ) to be finally formed. The interval Sa' between the first active regions AT1' to be finally formed may be narrower than the resolution limit of commercially available lithography equipment.

第一間隙壁材料層可由相對於上部犧牲層141的材料而言具有蝕刻選擇性的材料形成。舉例而言,當上部犧牲層141可由例如多晶矽、非晶碳層(ACL)和旋塗硬遮罩(SOH)中的一者形成時,第一間隙壁材料層可由例如氧化矽或氮化矽形成。可利用原子層沉積(ALD)來形成第一間隙壁材料層。 The first spacer material layer may be formed of a material having etch selectivity with respect to the material of the upper sacrificial layer 141 . For example, when the upper sacrificial layer 141 can be formed of, for example, one of polysilicon, amorphous carbon layer (ACL) and spin-on hard mask (SOH), the first spacer material layer can be formed of, for example, silicon oxide or silicon nitride form. The first layer of spacer material may be formed using atomic layer deposition (ALD).

參照圖18,可相對於第一間隙壁155選擇性地移除第一上部犧牲芯體SC1’及第二上部犧牲芯體SC2’,可提供獨立地保留於犧牲層121上的第一間隙壁155。此外,可在第三區域R3’上形成具有較第一上部犧牲芯體SC1’的第一寬度W11寬的第三寬度W13的第二光阻圖案192。第二光阻圖案192的第三寬度W13可為最終決定第三主動區域AT3’的寬度Wc’的組件。就此而言,可調整第二光阻圖案192的寬度W13,藉此自由地調整第三主動區 域AT3’的寬度Wc’。 Referring to FIG. 18 , the first upper sacrificial core SC1' and the second upper sacrificial core SC2' can be selectively removed relative to the first spacer 155, and the first spacer independently retained on the sacrificial layer 121 can be provided. 155. In addition, a second photoresist pattern 192 having a third width W13 wider than the first width W11 of the first upper sacrificial core SC1' may be formed on the third region R3'. The third width W13 of the second photoresist pattern 192 may be a component that ultimately determines the width Wc' of the third active region AT3'. In this regard, the width W13 of the second photoresist pattern 192 can be adjusted, thereby freely adjusting the third active region. Width Wc' of domain AT3'.

參照圖19,可在第一區域R1’上形成第一下部犧牲芯體SC1”,可在第二區域R2’上形成第二下部犧牲芯體SC2”且可在第三區域R3’上形成第三下部犧牲芯體SC3”。可使用第一間隙壁155及第二光阻圖案192作為蝕刻遮罩來蝕刻抗反射層125及犧牲層121。因此,可在硬遮罩層115上形成第一下部犧牲芯體SC1”、第二下部犧牲芯體SC2”及第三下部犧牲芯體SC3”。第一下部犧牲芯體SC1”及第二下部犧牲芯體SC2”可形成於與第一間隙壁155的位置對應的位置中,且第三下部犧牲芯體SC3”可形成於與第二光阻圖案192的位置對應的位置中。 Referring to FIG. 19 , a first lower sacrificial core SC1 ″ may be formed on the first region R1 ′, a second lower sacrificial core SC2 ″ may be formed on the second region R2 ′, and may be formed on the third region R3 ′. The third lower sacrificial core body SC3 ". The antireflection layer 125 and the sacrificial layer 121 can be etched using the first spacer 155 and the second photoresist pattern 192 as an etching mask. Therefore, the first hard mask layer 115 can be formed on the hard mask layer 115. The first lower sacrificial core body SC1", the second lower sacrificial core body SC2" and the third lower sacrificial core body SC3". The first lower sacrificial core SC1 ″ and the second lower sacrificial core SC2 ″ may be formed in a position corresponding to the position of the first spacer 155 , and the third lower sacrificial core SC3 ″ may be formed in a position corresponding to the position of the second optical spacer 155 . In the position corresponding to the position of the resist pattern 192 .

第一下部犧牲芯體SC1”可在具有第四寬度W1’的同時以第四間隔S1’形成於第一區域R1’上。第一下部犧牲芯體SC1”可以第四節距P1’形成。第二下部犧牲芯體SC2”可在具有第五寬度W2’的同時以第五間隔S2’形成於第二區域R2’上。第二下部犧牲芯體SC2”可以第五節距P2’形成。第三下部犧牲芯體SC3”可具有較第四寬度W1’及第五寬度W2’大的第六寬度W3’。 The first lower sacrificial cores SC1 ″ may be formed on the first region R1 ′ at a fourth interval S1 ′ while having a fourth width W1 ′. The first lower sacrificial cores SC1 ″ may have a fourth pitch P1 ′. form. The second lower sacrificial cores SC2" may be formed on the second region R2' at a fifth interval S2' while having a fifth width W2'. The second lower sacrificial cores SC2" may be formed at a fifth pitch P2'. The third lower sacrificial core SC3" may have a sixth width W3' greater than the fourth width W1' and the fifth width W2'.

參照圖20,可在第一下部犧牲芯體SC1”的側壁上、第二下部犧牲芯體SC2”的側壁上及第三下部犧牲芯體SC3”的側壁上形成第二間隙壁150。因此,可在第一區域R1’上形成第一遮罩結構SM1’,可在第二區域R2’上形成第二遮罩結構SM2’且可在第三區域R3’上形成第三遮罩結構SM3’。第一遮罩結構SM1’、第二遮罩結構SM2’及第三遮罩結構SM3’中的每一者可包括下部犧牲 層121、下部抗反射層125及一對第二間隙壁150。 Referring to FIG. 20 , second spacer walls 150 may be formed on the sidewalls of the first lower sacrificial core SC1 ″, the second lower sacrificial core SC2 ″, and the third lower sacrificial core SC3 ″. Therefore, , the first mask structure SM1' can be formed on the first region R1', the second mask structure SM2' can be formed on the second region R2', and the third mask structure SM3 can be formed on the third region R3' '. Each of the first mask structure SM1', the second mask structure SM2' and the third mask structure SM3' may include a lower sacrificial layer 121 , a lower anti-reflection layer 125 and a pair of second spacers 150 .

詳言之,可形成共形地覆蓋第一下部犧牲芯體SC1”、第二下部犧牲芯體SC2”及第三下部犧牲芯體SC3”的第二間隙壁材料層,且接著可執行回蝕製程以在第一下部犧牲芯體SC1”的側壁上、第二下部犧牲芯體SC2”的側壁上及第三下部犧牲芯體SC3”的側壁上形成第二間隙壁150。 In particular, a second spacer material layer conformally covering the first lower sacrificial core SC1 ″, the second lower sacrificial core SC2 ″, and the third lower sacrificial core SC3 ″ may be formed, and then a return step may be performed. etch process to form the second spacers 150 on the sidewalls of the first lower sacrificial core SC1 ″, the second lower sacrificial core SC2 ″ and the third lower sacrificial core SC3 ″.

可考量欲最終形成的第一主動區域(AT1’,參見圖23)的寬度Wa’來確定第二間隙壁材料層的厚度,即第二間隙壁150的寬度Ws’。欲最終形成的第一主動區域AT1’的寬度Wa’可小於可商業購得的微影設備的解析度限值。 The thickness of the second spacer material layer, that is, the width Ws' of the second spacer 150 can be determined by considering the width Wa' of the first active region (AT1', see FIG. 23 ) to be finally formed. The width Wa' of the first active area AT1' to be finally formed may be smaller than the resolution limit of commercially available lithography equipment.

第二間隙壁材料層可由相對於下部犧牲層121的材料而言具有蝕刻選擇性的材料形成。舉例而言,當下部犧牲層121可由多晶矽、非晶碳層(ACL)和旋塗硬遮罩(SOH)中的一者形成時,第二間隙壁材料層可由氧化矽或氮化矽形成。可利用原子層沉積(ALD)來形成第二間隙壁材料層。 The second spacer material layer may be formed of a material having etch selectivity with respect to the material of the lower sacrificial layer 121 . For example, when the lower sacrificial layer 121 may be formed of one of polysilicon, amorphous carbon layer (ACL) and spin-on-hard-mask (SOH), the second spacer material layer may be formed of silicon oxide or silicon nitride. The second spacer material layer may be formed using atomic layer deposition (ALD).

參照圖21,可提供覆蓋第二區域R2’及第三區域R3’的保護圖案194。保護圖案194可由例如光阻材料形成。保護圖案194覆蓋第二區域R2’的第二遮罩結構SM2’及第三區域R3’的第三遮罩結構SM3’,且暴露出第一遮罩結構SM1’。 Referring to FIG. 21 , a protection pattern 194 covering the second region R2' and the third region R3' may be provided. The protection pattern 194 may be formed of, for example, a photoresist material. The protection pattern 194 covers the second mask structure SM2' in the second region R2' and the third mask structure SM3' in the third region R3', and exposes the first mask structure SM1'.

藉由移除第一下部犧牲芯體SC1”,可提供保留於第一區域R1’的硬遮罩層115上的第二間隙壁150。第二間隙壁150可以與第一下部犧牲芯體SC1”的第四寬度W1’相等的間隔進行配 置。 By removing the first lower sacrificial core SC1 ″, the second spacer 150 remaining on the hard mask layer 115 of the first region R1 ′ can be provided. The second spacer 150 can be separated from the first lower sacrificial core The fourth width W1' of the body SC1" is equally spaced for matching place.

參照圖22,可使用第一區域R1’上的第二間隙壁150、第二區域R2’上的第二遮罩結構SM2’及第三區域R3’上的第三遮罩結構SM3’作為蝕刻遮罩來各向異性地蝕刻硬遮罩層115。在硬遮罩層115可被各向異性蝕刻的同時,第二間隙壁150、第二遮罩結構SM2’及第三遮罩結構SM3’的部分或全部可被消耗。 Referring to FIG. 22, the second spacer 150 on the first region R1', the second mask structure SM2' on the second region R2', and the third mask structure SM3' on the third region R3' can be used as etching mask to anisotropically etch the hard mask layer 115. While the hard mask layer 115 may be anisotropically etched, part or all of the second spacer 150, the second mask structure SM2' and the third mask structure SM3' may be consumed.

參照圖23,可使用圖案化硬遮罩層115作為蝕刻遮罩來各向異性地蝕刻基板101,以在基板101的第一區域R1’上形成第一主動區域AT1’,在第二區域R2’上形成第二主動區域AT2’且在第三區域R3’上形成第三主動區域AT3’。在對基板101的各向異性蝕刻完成之後,硬遮罩層115的部分可保留於第一主動區域至第三主動區域AT1’、AT2’及AT3’上。如圖23所示,節距Pa’等於單一第一主動區域AT1’的寬度Wa’與間隔Sa’的和,且節距Pb’等於單一第二主動區域AT2’的寬度Wb’與間隔Sb’的和。 Referring to FIG. 23, the substrate 101 may be anisotropically etched using the patterned hard mask layer 115 as an etching mask to form a first active region AT1' on the first region R1' of the substrate 101, and a first active region AT1' on the second region R2. The second active region AT2' is formed on ', and the third active region AT3' is formed on the third region R3'. After the anisotropic etching of the substrate 101 is completed, portions of the hard mask layer 115 may remain on the first to third active regions AT1', AT2' and AT3'. As shown in FIG. 23, the pitch Pa' is equal to the sum of the width Wa' and the interval Sa' of the single first active area AT1', and the pitch Pb' is equal to the width Wb' and the interval Sb' of the single second active area AT2' of and.

可將元件隔離層103形成為使得第一主動區域至第三主動區域AT1’、AT2’及AT3’的上部部分能夠突出。詳言之,可以元件隔離層103填充第一主動區域至第三主動區域AT1’、AT2’及AT3’之間的間隔。可移除保留於第一主動區域至第三主動區域AT1’、AT2’及AT3’上的硬遮罩層115,且接著可將元件隔離層103的部分蝕刻至預定深度,以使得第一主動區域至第三主動區域AT1’、AT2’及AT3’的上部部分能夠突出。 The element isolation layer 103 may be formed such that upper portions of the first to third active regions AT1', AT2', and AT3' can protrude. In detail, the device isolation layer 103 can be used to fill the space between the first active region to the third active region AT1', AT2' and AT3'. The hard mask layer 115 remaining on the first to third active regions AT1', AT2' and AT3' may be removed, and then part of the device isolation layer 103 may be etched to a predetermined depth, so that the first active region The upper parts of the areas to the third active areas AT1 ′, AT2 ′ and AT3 ′ can protrude.

綜上所述,例示性實施例提供一種能夠形成寬度彼此不 同的精細圖案的製造半導體元件的方法。即,根據例示性實施例,可在不移除芯軸(mandrel)的條件下製造包括具有不同寬度的精細圖案(例如,主動區域及閘極圖案)(例如,其中可形成I/O電晶體或橫向擴散MOSFET(LDMOS)的區域的主動鰭可寬於其中可形成芯體電晶體的區域的主動鰭)的半導體元件。換言之,在使用相同的芯軸的同時(即,使用形成於芯軸的側上的間隙壁作為用於較寬圖案的遮罩),可同時形成具有不同寬度的精細圖案。因此,單一芯軸及位於其側壁中的兩個間隙壁可用作用於乾法蝕刻製程(dry etch process)的蝕刻遮罩,藉此改善製造製程並提供具有極佳可靠性的半導體元件。 In summary, the exemplary embodiments provide a method capable of forming widths different from each other A method of manufacturing semiconductor elements with different fine patterns. That is, according to exemplary embodiments, fine patterns including fine patterns (eg, active regions and gate patterns) having different widths (eg, in which I/O transistors can be formed) can be fabricated without removing the mandrel. Or a laterally diffused MOSFET (LDMOS) where the active fin of the region can be wider than the active fin of the region where the core transistor can be formed). In other words, while using the same mandrel (ie, using the spacer formed on the side of the mandrel as a mask for the wider pattern), fine patterns having different widths can be formed simultaneously. Therefore, a single mandrel with two spacers in its sidewalls can be used as an etch mask for a dry etch process, thereby improving the manufacturing process and providing semiconductor devices with excellent reliability.

本文中已揭露例示性實施例,且儘管採用特定用語,然而所述用語可僅以一般說明性意義來使用且可僅以一般說明性意義來解釋,而非用於限制。在一些情形中,如將對於此項技術中具有通常知識者而言顯而易見,自提出本申請案時起,除非另有具體指示,否則結合特定實施例闡述的特徵、特性及/或組件可單獨使用或與結合其他實施例闡述的特徵、特性及/或組件組合使用。因此,熟習此項技術者將理解,在不背離如以下申請專利範圍中闡述的本發明的精神及範圍的情況下,可作出各種形式及細節上的改變。 Exemplary embodiments have been disclosed herein, and although specific terms are employed, such terms are used and interpreted in a generic, descriptive sense only, and not of limitation. In some cases, as will be apparent to those of ordinary skill in the art, as of the filing of this application, unless specifically indicated otherwise, features, characteristics, and/or components described in connection with a particular embodiment may be independently described Use or combine features, characteristics and/or components described in connection with other embodiments. Accordingly, those of ordinary skill in the art will understand that various changes in form and details may be made without departing from the spirit and scope of the present invention as set forth in the following claims.

101:基板 101: Substrate

115:硬遮罩層 115: Hard mask layer

150:間隙壁/第二間隙壁 150: spacer/second spacer

182:保護圖案 182: protection pattern

P2:第二節距 P2: second pitch

R1:第一區域 R1: the first region

R2:第二區域 R2: second region

R3:第三區域 R3: the third area

S2:第二間隔 S2: second interval

SM2:第二遮罩結構 SM2: Second mask structure

SM3:第三遮罩結構 SM3: Third mask structure

W1:第一寬度 W1: first width

W2:第二寬度 W2: second width

W3:第三寬度 W3: third width

Ws:寬度 Ws: width

Claims (19)

一種製造半導體元件的方法,所述方法包括:在下部結構的第一區域上形成第一犧牲芯體,且在所述下部結構的第二區域上形成第二犧牲芯體;在所述第一犧牲芯體的側壁上及所述第二犧牲芯體的側壁上形成間隙壁;形成覆蓋所述下部結構的所述第二區域上的所述第二犧牲芯體的保護圖案;自所述第一區域移除所述第一犧牲芯體;以及使用所述第一區域上的所述間隙壁以及所述第二區域上的所述第二犧牲芯體及所述間隙壁蝕刻所述下部結構,其中所述第一犧牲芯體的寬度等於所述第二犧牲芯體的寬度。 A method of manufacturing a semiconductor element, the method comprising: forming a first sacrificial core on a first region of a lower structure, and forming a second sacrificial core on a second region of the lower structure; A spacer wall is formed on the side wall of the sacrificial core and the side wall of the second sacrificial core; a protective pattern covering the second sacrificial core on the second region of the lower structure is formed; from the first removing the first sacrificial core in an area; and etching the lower structure using the spacer on the first area and the second sacrificial core and the spacer on the second area , wherein the width of the first sacrificial core is equal to the width of the second sacrificial core. 如申請專利範圍第1項所述的製造半導體元件的方法,其中:所述下部結構包括半導體基板,且蝕刻所述下部結構包括:在所述第一區域中形成具有第一寬度的第一主動區域;以及在所述第二區域中形成具有第二寬度的第二主動區域,使所述第二寬度大於所述第一寬度。 The method for manufacturing a semiconductor element as described in claim 1 of the scope of the patent application, wherein: the lower structure includes a semiconductor substrate, and etching the lower structure includes: forming a first active area with a first width in the first region region; and forming a second active region having a second width in the second region such that the second width is greater than the first width. 如申請專利範圍第2項所述的製造半導體元件的方 法,其中所述第二寬度大於所述第一寬度的兩倍。 The method of manufacturing semiconductor elements as described in item 2 of the scope of patent application method, wherein the second width is greater than twice the first width. 如申請專利範圍第1項所述的製造半導體元件的方法,其中:所述下部結構包括閘極導電層,且蝕刻所述下部結構包括:在所述第一區域中形成具有第三寬度的第一閘極圖案;以及在所述第二區域中形成具有較所述第三寬度大的第四寬度的第二閘極圖案。 The method for manufacturing a semiconductor device as described in claim 1 of the patent scope, wherein: the lower structure includes a gate conductive layer, and etching the lower structure includes: forming a first region having a third width in the first region a gate pattern; and a second gate pattern having a fourth width greater than the third width formed in the second region. 如申請專利範圍第4項所述的製造半導體元件的方法,其中所述第四寬度大於所述第三寬度的兩倍。 The method for manufacturing a semiconductor device as described in claim 4, wherein the fourth width is greater than twice the third width. 如申請專利範圍第1項所述的製造半導體元件的方法,其中所述間隙壁的寬度等於所述第一犧牲芯體的所述寬度。 The method for manufacturing a semiconductor device as described in claim 1, wherein the width of the spacer is equal to the width of the first sacrificial core. 如申請專利範圍第1項所述的製造半導體元件的方法,其中形成所述第一犧牲芯體及所述第二犧牲芯體包括在所述下部結構的第三區域上形成第三犧牲芯體,使所述第三犧牲芯體具有較所述第二犧牲芯體的所述寬度及所述第一犧牲芯體的所述寬度中的每一者寬的寬度。 The method for manufacturing a semiconductor element as described in claim 1 of the patent scope, wherein forming the first sacrificial core and the second sacrificial core includes forming a third sacrificial core on the third region of the lower structure , causing the third sacrificial core to have a width wider than each of the width of the second sacrificial core and the width of the first sacrificial core. 如申請專利範圍第7項所述的製造半導體元件的方法,其中在所述第一犧牲芯體的側壁上及所述第二犧牲芯體的側壁上形成所述間隙壁包括在所述第三犧牲芯體的側壁上形成所述間隙壁。 The method for manufacturing a semiconductor element as described in claim 7 of the patent scope, wherein forming the spacer on the sidewall of the first sacrificial core and the sidewall of the second sacrificial core includes forming the spacer on the third sacrificial core. The spacers are formed on the sidewalls of the sacrificial core. 如申請專利範圍第8項所述的製造半導體元件的方法,其中形成覆蓋所述下部結構的所述第二區域上的所述第二犧牲芯體的所述保護圖案包括形成覆蓋所述第三區域上的所述第三犧牲芯體的所述保護圖案。 The method of manufacturing a semiconductor device according to claim 8, wherein forming the protective pattern covering the second sacrificial core on the second region of the lower structure includes forming a covering pattern covering the third area on the protection pattern of the third sacrificial core. 如申請專利範圍第9項所述的製造半導體元件的方法,其中蝕刻所述下部結構包括使用所述第一區域上的所述間隙壁、所述第二區域上的所述第二犧牲芯體及所述間隙壁以及所述第三區域上的所述第三犧牲芯體及所述間隙壁來蝕刻所述下部結構。 The method of manufacturing a semiconductor element as described in claim 9, wherein etching the lower structure includes using the spacer on the first region, the second sacrificial core on the second region and the third sacrificial core and the spacer on the spacer and the third region to etch the lower structure. 如申請專利範圍第10項所述的製造半導體元件的方法,其中:所述下部結構包括半導體基板,且蝕刻所述下部結構包括:在所述第一區域中形成具有第一寬度的第一主動區域;在所述第二區域中形成具有較所述第一寬度大的第二寬度的第二主動區域;以及在所述第三區域中形成具有較所述第二寬度大的第三寬度的第三主動區域。 The method for manufacturing a semiconductor device as described in claim 10 of the scope of the patent application, wherein: the lower structure includes a semiconductor substrate, and etching the lower structure includes: forming a first active area with a first width in the first region region; forming a second active region having a second width greater than the first width in the second region; and forming a second active region having a third width greater than the second width in the third region The third active area. 如申請專利範圍第10項所述的製造半導體元件的方法,其中:所述下部結構包括閘極導電層,且蝕刻所述下部結構包括: 在所述第一區域中形成具有第四寬度的第一閘極圖案;在所述第二區域中形成具有較所述第四寬度大的第五寬度的第二閘極圖案;以及在所述第三區域中形成具有較所述第五寬度大的第六寬度的第三閘極圖案。 The method for manufacturing a semiconductor element as described in item 10 of the scope of the patent application, wherein: the lower structure includes a gate conductive layer, and etching the lower structure includes: A first gate pattern having a fourth width is formed in the first region; a second gate pattern having a fifth width greater than the fourth width is formed in the second region; and A third gate pattern having a sixth width larger than the fifth width is formed in the third region. 一種製造半導體元件的方法,所述方法包括:製備具有第一區域、第二區域及第三區域的下部結構;在所述第一區域上形成具有第一寬度的第一犧牲芯體,在所述第二區域上形成具有第二寬度的第二犧牲芯體,且在所述第三區域上形成具有較所述第一寬度及所述第二寬度大的第三寬度的第三犧牲芯體;在所述下部結構的所述第一區域上形成間隙壁,在所述下部結構的所述第二區域上形成包括所述第二犧牲芯體及所述間隙壁的第一遮罩結構,且在所述下部結構的所述第三區域上形成包括所述第三犧牲芯體及所述間隙壁的第二遮罩結構;以及使用所述間隙壁、所述第一遮罩結構及所述第二遮罩結構蝕刻所述下部結構,其中所述第一寬度等於所述第二寬度,且所述間隙壁的寬度等於所述第一寬度。 A method of manufacturing a semiconductor element, the method comprising: preparing a lower structure having a first region, a second region and a third region; forming a first sacrificial core with a first width on the first region, and A second sacrificial core with a second width is formed on the second area, and a third sacrificial core with a third width larger than the first width and the second width is formed on the third area forming a spacer on the first region of the lower structure, forming a first mask structure including the second sacrificial core and the spacer on the second region of the lower structure, and forming a second mask structure including the third sacrificial core and the spacer on the third region of the lower structure; and using the spacer, the first mask structure and the The second mask structure etches the lower structure, wherein the first width is equal to the second width, and the width of the spacer is equal to the first width. 如申請專利範圍第13項所述的製造半導體元件的方法,其中形成所述間隙壁、所述第一遮罩結構及所述第二遮罩結構包括: 在所述第一犧牲芯體的側壁上、所述第二犧牲芯體的側壁上及所述第三犧牲芯體的側壁上形成所述間隙壁;形成覆蓋所述第二區域上的所述第二犧牲芯體及所述第三區域上的所述第三犧牲芯體的保護圖案;自所述第一區域移除所述第一犧牲芯體;以及移除所述保護圖案。 The method for manufacturing a semiconductor device as described in item 13 of the scope of the patent application, wherein forming the spacer, the first mask structure, and the second mask structure includes: The gap wall is formed on the side wall of the first sacrificial core body, the side wall of the second sacrificial core body and the side wall of the third sacrificial core body; The protection pattern of the third sacrificial core on the second sacrificial core and the third region; removing the first sacrificial core from the first region; and removing the protection pattern. 如申請專利範圍第13項所述的製造半導體元件的方法,其中:所述下部結構包括半導體基板,且蝕刻所述下部結構包括:形成具有與所述第一寬度相等的間隔的多個第一主動區域,且所述第一主動區域具有與所述間隙壁的寬度相等的寬度;形成具有與所述第二寬度相等的間隔的多個第二主動區域,且所述第二主動區域具有較所述第一主動區域的所述寬度大的寬度;以及形成第三主動區域,所述第三主動區域具有較所述第二主動區域的所述寬度大的寬度。 The method for manufacturing a semiconductor element according to claim 13, wherein: the lower structure includes a semiconductor substrate, and etching the lower structure includes: forming a plurality of first an active region, and the first active region has a width equal to the width of the spacer; a plurality of second active regions are formed with intervals equal to the second width, and the second active region has a smaller a width greater than the width of the first active region; and forming a third active region having a width greater than the width of the second active region. 如申請專利範圍第13項所述的製造半導體元件的方法,其中:所述下部結構包括半導體基板,且蝕刻所述下部結構包括: 在所述第一區域中形成具有所述第一寬度的第一主動區域;在所述第二區域中形成具有與所述第一寬度的三倍相等的寬度的第二主動區域;以及在所述第三區域中形成具有較所述第二主動區域的所述寬度大的寬度的第三主動區域。 The method for manufacturing a semiconductor element as described in claim 13 of the patent application, wherein: the lower structure includes a semiconductor substrate, and etching the lower structure includes: A first active region having the first width is formed in the first region; a second active region having a width equal to three times the first width is formed in the second region; and A third active region having a width larger than the width of the second active region is formed in the third region. 一種製造半導體元件的方法,所述方法包括:在具有第一區域、第二區域及第三區域的下部結構上堆疊下部犧牲層及上部犧牲層;藉由蝕刻所述上部犧牲層來在所述第一區域上形成第一上部犧牲芯體以及在所述第二區域上形成第二上部犧牲芯體;在所述第一上部犧牲芯體的側壁上及所述第二上部犧牲芯體的側壁上形成第一間隙壁;移除所述第一上部犧牲芯體及所述第二上部犧牲芯體;在所述第三區域上形成所具有的寬度較所述第一上部犧牲芯體的寬度寬的光阻圖案;藉由使用所述第一間隙壁及所述光阻圖案作為蝕刻遮罩來蝕刻所述下部犧牲層來在所述第一區域上形成第一下部犧牲芯體、在所述第二區域上形成第二下部犧牲芯體以及在所述第三區域上形成第三下部犧牲芯體;在所述第一下部犧牲芯體的側壁上、所述第二下部犧牲芯體的側壁上及所述第三下部犧牲芯體的側壁上形成第二間隙壁; 形成覆蓋所述第二區域及所述第三區域的保護圖案;移除形成於所述第一區域上的所述第一下部犧牲芯體;以及使用所述第一區域上的所述第二間隙壁、所述第二區域上的所述第二下部犧牲芯體及所述第二間隙壁以及所述第三區域上的所述第三下部犧牲芯體及所述第二間隙壁來蝕刻所述下部結構,其中所述第一下部犧牲芯體與所述第二下部犧牲芯體具有相同的寬度。 A method of manufacturing a semiconductor element, the method comprising: stacking a lower sacrificial layer and an upper sacrificial layer on a lower structure having a first region, a second region, and a third region; A first upper sacrificial core is formed on the first area and a second upper sacrificial core is formed on the second area; on the side wall of the first upper sacrificial core and the side wall of the second upper sacrificial core forming a first spacer; removing the first upper sacrificial core and the second upper sacrificial core; wide photoresist pattern; forming a first lower sacrificial core on the first region by etching the lower sacrificial layer using the first spacer and the photoresist pattern as an etch mask, A second lower sacrificial core is formed on the second area and a third lower sacrificial core is formed on the third area; on the sidewall of the first lower sacrificial core, the second lower sacrificial core A second spacer wall is formed on the side wall of the body and the side wall of the third lower sacrificial core; forming a protection pattern covering the second region and the third region; removing the first lower sacrificial core formed on the first region; and using the first lower sacrificial core formed on the first region Two spacers, the second lower sacrificial core body and the second spacer wall on the second region, and the third lower sacrificial core body and the second spacer wall on the third region The lower structure is etched, wherein the first lower sacrificial core and the second lower sacrificial core have the same width. 如申請專利範圍第17項所述的製造半導體元件的方法,其中:所述下部結構包括半導體基板,且蝕刻所述下部結構包括:在所述第一區域中形成具有第一寬度的第一主動區域;在所述第二區域中形成具有較所述第一寬度大的第二寬度的第二主動區域;以及在所述第三區域中形成具有較所述第二寬度大的第三寬度的第三主動區域。 The method for manufacturing a semiconductor device as described in claim 17 of the scope of the patent application, wherein: the lower structure includes a semiconductor substrate, and etching the lower structure includes: forming a first active area with a first width in the first region region; forming a second active region having a second width greater than the first width in the second region; and forming a second active region having a third width greater than the second width in the third region The third active area. 如申請專利範圍第18項所述的製造半導體元件的方法,其中所述第二寬度大於所述第一寬度的兩倍。 The method of manufacturing a semiconductor device according to claim 18, wherein the second width is greater than twice the first width.
TW108124058A 2018-11-09 2019-07-09 Method of manufacturing semiconductor devices TWI809140B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180137287A KR20200054407A (en) 2018-11-09 2018-11-09 Method of manufacturing semiconductor devices
KR10-2018-0137287 2018-11-09

Publications (2)

Publication Number Publication Date
TW202018791A TW202018791A (en) 2020-05-16
TWI809140B true TWI809140B (en) 2023-07-21

Family

ID=70550768

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108124058A TWI809140B (en) 2018-11-09 2019-07-09 Method of manufacturing semiconductor devices

Country Status (4)

Country Link
US (1) US10854452B2 (en)
KR (1) KR20200054407A (en)
CN (1) CN111180327A (en)
TW (1) TWI809140B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10879125B2 (en) * 2018-12-27 2020-12-29 Nanya Technology Corporation FinFET structure and method of manufacturing the same
US20210202321A1 (en) * 2019-12-30 2021-07-01 Taiwan Semiconductor Manufacturing Co., Ltd. High Voltage Devices
US20210265350A1 (en) * 2020-02-26 2021-08-26 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and method
US20210343596A1 (en) * 2020-04-29 2021-11-04 Taiwan Semiconductor Manufacturing Co., Ltd. Source/drain epitaxial structures for high voltage transistors
TWI737342B (en) * 2020-06-10 2021-08-21 力晶積成電子製造股份有限公司 Method of manufacturing semiconductor device
US20220093587A1 (en) * 2020-09-18 2022-03-24 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated circuit layout and method thereof
KR20220146239A (en) 2021-04-23 2022-11-01 삼성전자주식회사 Semiconductor Device Comprising hard mask structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080070165A1 (en) * 2006-09-14 2008-03-20 Mark Fischer Efficient pitch multiplication process

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7253650B2 (en) 2004-05-25 2007-08-07 International Business Machines Corporation Increase productivity at wafer test using probe retest data analysis
US9196540B2 (en) 2012-02-07 2015-11-24 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET structure with novel edge fins
US8896067B2 (en) 2013-01-08 2014-11-25 International Business Machines Corporation Method of forming finFET of variable channel width
US9525068B1 (en) 2013-03-15 2016-12-20 Altera Corporation Variable gate width FinFET
US9437445B1 (en) 2015-02-24 2016-09-06 International Business Machines Corporation Dual fin integration for electron and hole mobility enhancement
US9852917B2 (en) 2016-03-22 2017-12-26 International Business Machines Corporation Methods of fabricating semiconductor fins by double sidewall image transfer patterning through localized oxidation enhancement of sacrificial mandrel sidewalls
US9786788B1 (en) 2016-07-07 2017-10-10 Globalfoundries Inc. Vertical-transport FinFET device with variable Fin pitch
US9887135B1 (en) 2017-04-28 2018-02-06 Globalfoundries Inc. Methods for providing variable feature widths in a self-aligned spacer-mask patterning process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080070165A1 (en) * 2006-09-14 2008-03-20 Mark Fischer Efficient pitch multiplication process

Also Published As

Publication number Publication date
US20200152461A1 (en) 2020-05-14
US10854452B2 (en) 2020-12-01
KR20200054407A (en) 2020-05-20
CN111180327A (en) 2020-05-19
TW202018791A (en) 2020-05-16

Similar Documents

Publication Publication Date Title
TWI809140B (en) Method of manufacturing semiconductor devices
US10622259B2 (en) Semiconductor devices with sidewall spacers of equal thickness
US9087722B2 (en) Semiconductor devices having different gate oxide thicknesses
US9236269B2 (en) Field effect transistor (FinFET) device with a planar block area to enable variable Fin pitch and width
US8796156B2 (en) Cross OD FinFET patterning
TWI728413B (en) Methods for forming semiconductor device and semiconductor structure, and semiconductor device
US11894238B2 (en) Method of fabricating semiconductor device with reduced trench distortions
US8912056B2 (en) Dual epitaxial integration for FinFETS
US9911619B1 (en) Fin cut with alternating two color fin hardmask
CN112530943A (en) Semiconductor device and method for manufacturing the same
US20150325692A1 (en) Fin field effect transistor (finfet) device including a set of merged fins formed adjacent a set of unmerged fins
TW201903856A (en) Semiconductor device and method for fabricating the same
US20160086952A1 (en) Preventing epi damage for cap nitride strip scheme in a fin-shaped field effect transistor (finfet) device
US11282835B2 (en) Semiconductor device and method for fabricating the same
TWI579899B (en) A method of making semiconductor device
WO2013033952A1 (en) Semiconductor device and manufacturing method thereof
US9978608B2 (en) Fin patterning for a fin-type field-effect transistor
WO2015008548A1 (en) Method for manufacturing semiconductor device
WO2014071663A1 (en) Semiconductor device and manufacturing method therefor