TWI806418B - Double-epitaxy metal oxide half-field-effect transistor manufacturing method - Google Patents

Double-epitaxy metal oxide half-field-effect transistor manufacturing method Download PDF

Info

Publication number
TWI806418B
TWI806418B TW111105004A TW111105004A TWI806418B TW I806418 B TWI806418 B TW I806418B TW 111105004 A TW111105004 A TW 111105004A TW 111105004 A TW111105004 A TW 111105004A TW I806418 B TWI806418 B TW I806418B
Authority
TW
Taiwan
Prior art keywords
epitaxial
layer
effect transistor
metal oxide
double
Prior art date
Application number
TW111105004A
Other languages
Chinese (zh)
Other versions
TW202333203A (en
Inventor
林家慶
李坤彥
李宜軒
張國仁
陳志典
Original Assignee
國家中山科學研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國家中山科學研究院 filed Critical 國家中山科學研究院
Priority to TW111105004A priority Critical patent/TWI806418B/en
Application granted granted Critical
Publication of TWI806418B publication Critical patent/TWI806418B/en
Publication of TW202333203A publication Critical patent/TW202333203A/en

Links

Images

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本發明係提供一種雙重磊晶的金氧半場效電晶體製作方法,步驟包括:(A)提供碳化矽晶圓基材;(B)於碳化矽晶圓基材之上,沉積飄移區磊晶層;(C)於飄移區磊晶層之上,沉積緩衝層;(D)於接面場效電晶體的區域,植入與飄移區磊晶層及緩衝層同型的離子佈植摻雜以形成電流擴散層區域,本發明藉由使用雙層不同濃度之磊晶製程,來使閘極氧化層電場能在承受高壓時帶有較小的電場。 The present invention provides a double-epitaxy method for manufacturing a metal-oxygen half-field-effect transistor. The steps include: (A) providing a silicon carbide wafer substrate; (B) depositing a drift region epitaxy on the silicon carbide wafer substrate. layer; (C) deposit a buffer layer on the epitaxial layer in the drift region; (D) implant the same type of ion implantation doping as the epitaxial layer in the drift region and the buffer layer in the region of the junction field effect transistor to To form the current diffusion layer region, the present invention enables the electric field of the gate oxide layer to have a smaller electric field when it withstands high voltage by using epitaxial processes with two layers of different concentrations.

Description

雙重磊晶的金氧半場效電晶體製作方法 Double epitaxial metal oxide half field effect transistor manufacturing method

本發明係關於一種雙重磊晶的金氧半場效電晶體製作方法,特別是關於新型緩衝層結構設計應用於高功率金氧半場效電晶體之製作方法。 The invention relates to a method for manufacturing a double-epitaxy metal-oxygen half-field-effect transistor, in particular to a method for manufacturing a high-power metal-oxygen half-field-effect transistor with a novel buffer layer structure design.

習知技術中,請參考第一圖習知1200V高功率金氧半場效電晶體(Power MOSFET)的製作流程,於垂直型高功率金氧半場效電晶體中的接面場效電晶體(Junction Field Effect Transistor,JFET)區域,植入電流擴散層3(Current Spreading Layer,CSL)。由於電流擴散層3(CSL)的植入,導致在接面場效電晶體寬度相同的情況下,閘極氧化層電場較大,因此特徵導通電阻(Ron,sp)值下降範圍有限。 In the conventional technology, please refer to the first figure for the production process of the conventional 1200V high-power metal-oxide half-field effect transistor (Power MOSFET), and the junction field-effect transistor (Junction MOSFET) in the vertical high-power metal-oxide half-field effect transistor (Power MOSFET) Field Effect Transistor, JFET) region, implanted with a current spreading layer 3 (Current Spreading Layer, CSL). Due to the implantation of the current spreading layer 3 (CSL), in the case of the same junction field effect transistor width, the electric field of the gate oxide layer is relatively large, so the characteristic on-resistance (R on,sp ) value drops within a limited range.

在電動車產業蓬勃發展下,全球對於高功率電子元件的需求也日益增加,許多半導體相關的學者以及晶圓代工廠商亦針對碳化矽電晶體投入心血,在1200V高功率金氧半場效電晶體已成為市售標準化產品的今日,大部分設計皆已能滿足崩潰電壓之需求,因此如何降低元件之特徵導通電阻是未來的一大需求。 With the vigorous development of the electric vehicle industry, the global demand for high-power electronic components is also increasing. Many semiconductor-related scholars and wafer foundries have also devoted their efforts to silicon carbide transistors. The 1200V high-power metal oxide half field effect transistor Today, it has become a standardized product on the market, and most designs can already meet the demand for breakdown voltage. Therefore, how to reduce the characteristic on-resistance of components is a major demand in the future.

綜上所述,目前垂直型高功率金氧半場效電晶體 仍有缺陷,因此本案之申請人研究發展出了一種雙重磊晶的金氧半場效電晶體製作方法,有效解決在接面場效電晶體寬度相同的情況下,閘極氧化層電場較大,導致特徵導通電阻(Ron,sp)值下降範圍有限之問題。 To sum up, the current vertical high-power metal oxide half field effect transistor still has defects. Therefore, the applicant of this case researched and developed a double epitaxial metal oxide half field effect transistor manufacturing method, which effectively solves the problem of junction field effect. In the case of the same transistor width, the electric field of the gate oxide layer is relatively large, resulting in a limited range of drop in the characteristic on-resistance (R on,sp ).

鑒於上述悉知技術之缺點,本發明之主要目的在於提供一種雙重磊晶的金氧半場效電晶體製作方法,使用雙層不同濃度之磊晶製程,提高飄移區磊晶層摻雜濃度,並於其上沉積摻雜較淡的緩衝層(N-buffer)磊晶,電流擴散層的植入區域則維持在接面場效電晶體的區域,使閘極氧化層電場能在承受高壓時帶有較小的電場。 In view of the shortcomings of the above-mentioned known technologies, the main purpose of the present invention is to provide a method for manufacturing a double-epitaxy metal oxide half field effect transistor, which uses a double-layer epitaxy process with different concentrations to increase the doping concentration of the epitaxy layer in the drift region, and Deposit a lightly doped buffer layer (N-buffer) epitaxy on it, and the implanted area of the current diffusion layer is maintained in the area of the junction field effect transistor, so that the electric field of the gate oxide layer can be brought under high voltage. There is a small electric field.

為了達到上述目的,根據本發明所提出之一方案,提供一種雙重磊晶的金氧半場效電晶體製作方法,步驟包括:(A)提供碳化矽晶圓基材;(B)於碳化矽晶圓基材之上,沉積飄移區磊晶層;(C)於飄移區磊晶層之上,沉積緩衝層;(D)於接面場效電晶體的區域,植入與飄移區磊晶層及緩衝層同型的離子佈植摻雜以形成電流擴散層區域。 In order to achieve the above object, according to a solution proposed by the present invention, a method for manufacturing a double-epitaxy metal oxide half field effect transistor is provided. The steps include: (A) providing a silicon carbide wafer substrate; On the round substrate, deposit the drift region epitaxial layer; (C) deposit the buffer layer on the drift region epitaxial layer; (D) implant and drift region epitaxial layer in the junction field effect transistor area Ion implantation doping with the same type as the buffer layer to form the current diffusion layer region.

較佳地,緩衝層之磊晶摻雜濃度可小於飄移區磊晶層之磊晶摻雜濃度。 Preferably, the epitaxial doping concentration of the buffer layer can be smaller than that of the epitaxial layer of the drift region.

較佳地,緩衝層之磊晶摻雜濃度可為3E15cm-3~6E15cm-3Preferably, the epitaxial doping concentration of the buffer layer may be 3E15cm -3 -6E15cm -3 .

較佳地,飄移區磊晶層之濃度可為8E15cm-3~1E16cm-3Preferably, the concentration of the epitaxial layer in the drift region may be 8E15cm -3 -1E16cm -3 .

較佳地,緩衝層之磊晶厚度可小於電流擴散層的離子佈植最大深度。 Preferably, the epitaxial thickness of the buffer layer may be smaller than the maximum ion implantation depth of the current diffusion layer.

較佳地,緩衝層之厚度可為0.1至0.9微米。 Preferably, the buffer layer has a thickness of 0.1 to 0.9 microns.

較佳地,緩衝層之厚度可為0.5微米。 Preferably, the thickness of the buffer layer may be 0.5 microns.

較佳地,緩衝層之磊晶摻雜濃度可為1E15cm-3~9E15cm-3Preferably, the epitaxial doping concentration of the buffer layer may be 1E15cm -3 -9E15cm -3 .

較佳地,飄移區磊晶層之濃度可為1E16cm-3Preferably, the concentration of the epitaxial layer in the drift region can be 1E16cm -3 .

較佳地,電流擴散層的離子佈植最大深度可為1μm。 Preferably, the maximum depth of ion implantation in the current diffusion layer may be 1 μm.

以上之概述與接下來的詳細說明及附圖,皆是為了能進一步說明本發明達到預定目的所採取的方式、手段及功效。而有關本發明的其他目的及優點,將在後續的說明及圖式中加以闡述。 The above overview, the following detailed description and the accompanying drawings are all for further explaining the ways, means and effects of the present invention to achieve the intended purpose. Other purposes and advantages of the present invention will be described in the subsequent description and drawings.

1:碳化矽晶圓基材 1: Silicon carbide wafer substrate

2:飄移區磊晶層 2: Epitaxy layer in the drift region

3:電流擴散層 3: Current spreading layer

4:P-型井 4: P-type well

5:緩衝層 5: buffer layer

第一圖係為習知1200V高功率金氧半場效電晶體(Power MOSFET)的製作流程圖。 The first figure is a production flow chart of a conventional 1200V high-power metal-oxide-semiconductor field-effect transistor (Power MOSFET).

第二圖係為本發明之一種雙重磊晶的金氧半場效電晶體製作流程圖。 The second figure is a flow chart of the fabrication of a double epitaxial metal oxide half field effect transistor of the present invention.

以下係藉由特定的具體實例說明本發明之實施方式,熟悉此技藝之人士可由本說明書所揭示之內容輕易地了解本創作之優點及功效。 The implementation of the present invention is described below through specific examples, and those skilled in the art can easily understand the advantages and effects of this creation from the content disclosed in this specification.

請參閱第二圖,第二圖係為本發明之一種雙重磊晶的金氧半場效電晶體製作流程圖。本發明在於提供一種雙重磊晶的金氧半場效電晶體製作方法,步驟包括:首先提供碳化矽晶圓基材1,接著於碳化矽晶圓基材1之上,沉積飄移區(Drift region)磊晶層2,接著於飄移區磊晶層2之上,沉積緩衝層5,接著於接面場效電晶體的區域,植入與飄移區磊晶層2及緩衝層5同型的離子佈植摻雜以形成電流擴散層3區域,但不限制於N型或P型半導體,本發明提出的結構不限制於1200V功率金氧半場效電晶體,相似結構但不同耐壓的電晶體亦適用。 Please refer to the second figure. The second figure is a flow chart of the fabrication of a double epitaxial metal oxide half field effect transistor of the present invention. The present invention is to provide a double epitaxial metal oxide half field effect transistor manufacturing method, the steps include: first provide a silicon carbide wafer substrate 1, and then deposit a drift region (Drift region) on the silicon carbide wafer substrate 1 The epitaxial layer 2, then depositing a buffer layer 5 on the epitaxial layer 2 in the drift region, and then implanting the same type of ion implantation as the epitaxial layer 2 in the drift region and the buffer layer 5 in the region of the junction field effect transistor Doping to form the current diffusion layer 3 region, but not limited to N-type or P-type semiconductors, the structure proposed by the present invention is not limited to 1200V power metal oxide semiconductor field effect transistors, transistors with similar structures but different withstand voltages are also applicable.

在本實施方式中,緩衝層5之磊晶摻雜濃度可小於飄移區磊晶層2之磊晶摻雜濃度。緩衝層5之磊晶摻雜濃度可為3E15cm-3~6E15cm-3,而飄移區磊晶層2之濃度可為8E15cm-3~1E16cm-3。較佳地,緩衝層5之磊晶摻雜濃度可為1E15cm-3~9E15cm-3,飄移區磊晶層2之濃度可為1E16cm-3In this embodiment, the epitaxial doping concentration of the buffer layer 5 may be lower than the epitaxial doping concentration of the drift region epitaxial layer 2 . The epitaxial doping concentration of the buffer layer 5 can be 3E15cm -3 ~6E15cm -3 , and the concentration of the drift region epitaxial layer 2 can be 8E15cm -3 ~1E16cm -3 . Preferably, the epitaxial doping concentration of the buffer layer 5 can be 1E15cm −3 to 9E15cm −3 , and the concentration of the epitaxial layer 2 in the drift region can be 1E16cm −3 .

以上,本發明創作藉由使用較高的飄移區磊晶層2濃度將特徵導通電阻降低,使電晶體在開關操作中能具有更佳的電流表現,提高元件在集成電路中的轉換效率。 As mentioned above, the present invention reduces the characteristic on-resistance by using a higher concentration of the epitaxial layer 2 in the drift region, so that the transistor can have better current performance in the switching operation, and the conversion efficiency of the device in the integrated circuit can be improved.

在本實施方式中,緩衝層5之磊晶厚度可小於電 流擴散層3的離子佈植最大深度。若電流擴散層3的離子佈植最大深度為1μm時,則緩衝層5之厚度可為0.1至0.9微米,較佳地,緩衝層之厚度可為0.5微米。 In this embodiment, the epitaxial thickness of the buffer layer 5 can be smaller than that of the electrode The maximum depth of ion implantation in the flow diffusion layer 3 . If the maximum ion implantation depth of the current diffusion layer 3 is 1 μm, the thickness of the buffer layer 5 can be 0.1 to 0.9 μm, preferably, the thickness of the buffer layer can be 0.5 μm.

以上,本發明創作藉由形成磊晶厚度小於電流擴散層3的離子佈植最大深度的緩衝層5,以避免P-型井4區中的通道(Channel)區域因為過高的N型磊晶濃度而轉換成N-type區域,使電晶體本身形成Normally-on元件,失去結構對於閘極的控制能力。 As mentioned above, the present invention creates a buffer layer 5 with an epitaxial thickness smaller than the maximum ion implantation depth of the current diffusion layer 3, so as to avoid the channel (Channel) area in the P-type well 4 region due to excessive N-type epitaxial The concentration is converted into an N-type region, so that the transistor itself forms a Normally-on element, and loses the control ability of the structure over the gate.

更詳言之,本發明使用雙層碳化矽磊晶製程,預計可降低1200V高功率金氧半場效電晶體之特徵導通電阻。本發明使用較高濃度(8E15cm-3~1E16cm-3)之飄移區磊晶層2,並於其上再沉積0.5微米厚度之較低濃度(3E15cm-3~6E15cm-3)的磊晶層,以避免P-型井4區中的通道區域因為過高的N型磊晶濃度而轉換成N-type區域,使電晶體本身形成Normally-on元件,失去結構對於閘極的控制能力。使用較低濃度的上層磊晶,除了可以使通道區域維持P-type,同時閘極下方的接面場效電晶體(JFET)區域也因為載子濃度降低,使閘極氧化層電場能在承受高壓時帶有較小的電場。除此之外,濃度較高的下層磊晶濃度,也代表佔據元件結構大部分面積的飄移區帶有較高數量的載子,因此能夠使特徵導通電阻下降,使元件操作在相同汲極電壓(Vdrain)下能有更佳的電流表現。 More specifically, the present invention uses a double-layer silicon carbide epitaxy process, which is expected to reduce the characteristic on-resistance of the 1200V high-power metal-oxide-semiconductor field effect transistor. The present invention uses a higher concentration (8E15cm -3 ~1E16cm -3 ) drift zone epitaxial layer 2, and then deposits a lower concentration (3E15cm -3 ~6E15cm -3 ) epitaxial layer on it with a thickness of 0.5 microns, To prevent the channel region in region 4 of the P-type well from being converted into an N-type region due to an excessively high N-type epitaxial concentration, so that the transistor itself forms a Normally-on element and loses the control ability of the structure over the gate. Using a lower concentration of epitaxy on the upper layer, in addition to maintaining the P-type channel region, at the same time, the junction field effect transistor (JFET) region under the gate is also reduced in carrier concentration, so that the electric field of the gate oxide layer can withstand High voltage has a small electric field. In addition, the higher epitaxy concentration of the lower layer also means that the drift region occupying most of the device structure has a higher number of carriers, so it can reduce the characteristic on-resistance and make the device operate at the same drain voltage (V drain ) can have better current performance.

以耐壓1200V之高功率金氧半場效電晶體為例,模擬數據結果如下表所示,本次提案使用較高濃度的飄移區磊晶層2(N-drift Epi),雖然崩潰電壓降低約250V,但其可使特徵導通電阻(Ron,sp)大幅降低約0.27mΩ*cm2,並且在加入N-buffer緩衝層5後,亦可小幅度降低氧化層電場(Oxide field)。 Taking a high-power metal-oxide-semiconductor field-effect transistor with a withstand voltage of 1200V as an example, the simulation data results are shown in the table below. This proposal uses a higher concentration of the drift region epitaxial layer 2 (N-drift Epi), although the breakdown voltage is reduced by about 250V, but it can greatly reduce the characteristic on-resistance (R on,sp ) by about 0.27mΩ*cm 2 , and after adding the N-buffer layer 5, it can also slightly reduce the oxide field.

Figure 111105004-A0101-12-0006-1
Figure 111105004-A0101-12-0006-1

綜上所述,本發明之雙重磊晶的金氧半場效電晶體製作方法,在降低氧化層電場並且提高元件可靠度、維持閘極控制能力的同時,亦使用較高的飄移區濃度將特徵導通電阻降低,使電晶體在開關操作中能具有更佳的電流表現,提高元件在集成電路中的轉換效率。 In summary, the double epitaxial metal oxide semiconductor field effect transistor manufacturing method of the present invention reduces the electric field of the oxide layer, improves the reliability of the device, and maintains the gate control ability, and also uses a higher concentration of the drift region to make the characteristic The on-resistance is reduced, so that the transistor can have better current performance in the switching operation, and the conversion efficiency of the element in the integrated circuit is improved.

在各種大型機電系統下,需要能在高壓、高溫下穩定運作的功率元件,包括如今正在蓬勃發展的電動車產業,對於高能源轉換效率且低功率損耗的元件的需求逐漸上升。而現今的電晶體的設計為了能乘載更高的電壓,其導通電阻不可避免的上升,進而提高其損耗,且對於需要高效率、輕量化及發電續航力的電動車來說,相當的致命。 In various large-scale electromechanical systems, power components that can operate stably under high pressure and high temperature are required, including the booming electric vehicle industry, and the demand for components with high energy conversion efficiency and low power loss is gradually increasing. Today's transistors are designed to be able to carry higher voltages, and their on-resistance inevitably increases, thereby increasing their losses, and it is quite fatal for electric vehicles that require high efficiency, light weight, and power generation endurance.

因此本發明在現今正在發展的1200V等級的高 功率電晶體設計上,提出一有效的高功率電晶體結構,在不影響其耐壓能力下,能夠達到更低的導通電阻,且其氧化層電場峰值降低,能夠有效地提高可靠度,最終能夠提供電動車產業所需的低能源損耗和高穩定性,此一結構對於電動車產業的未來發展上有相當的助益。 Therefore the present invention is in the 1200V class high In terms of power transistor design, an effective high-power transistor structure is proposed, which can achieve lower on-resistance without affecting its withstand voltage capability, and the peak value of the electric field of the oxide layer can be reduced, which can effectively improve reliability and finally enable Provide the low energy loss and high stability required by the electric vehicle industry. This structure is of great help to the future development of the electric vehicle industry.

上述之實施例僅為例示性說明本創作之特點及功效,非用以限制本發明之實質技術內容的範圍。任何熟悉此技藝之人士均可在不違背創作之精神及範疇下,對上述實施例進行修飾與變化。因此,本發明之權利保護範圍,應如後述之申請專利範圍所列。 The above-mentioned embodiments are only illustrative to illustrate the characteristics and functions of the invention, and are not intended to limit the scope of the essential technical content of the invention. Any person familiar with the art can modify and change the above-mentioned embodiments without departing from the spirit and scope of creation. Therefore, the scope of protection of the rights of the present invention should be listed in the scope of the patent application described later.

1:碳化矽晶圓基材 1: Silicon carbide wafer substrate

2:飄移區磊晶層 2: Epitaxy layer in the drift region

3:電流擴散層 3: Current spreading layer

4:P-型井 4: P-type well

5:緩衝層 5: buffer layer

Claims (9)

一種雙重磊晶的金氧半場效電晶體製作方法,步驟包括:(A)提供一碳化矽晶圓基材;(B)於該碳化矽晶圓基材之上,沉積一飄移區磊晶層;(C)於該飄移區磊晶層之上,沉積一緩衝層;(D)於一接面場效電晶體的區域,植入與該飄移區磊晶層及該緩衝層同型的離子佈植摻雜以形成一電流擴散層區域,其中該緩衝層之磊晶摻雜濃度小於該飄移區磊晶層之磊晶摻雜濃度。 A double-epitaxy metal oxide half-field-effect transistor manufacturing method, the steps comprising: (A) providing a silicon carbide wafer substrate; (B) depositing a drift region epitaxial layer on the silicon carbide wafer substrate (C) depositing a buffer layer on the epitaxial layer in the drift region; (D) implanting an ion distribution of the same type as the epitaxial layer in the drift region and the buffer layer in a region of a junction field effect transistor Implanting doping to form a current diffusion layer region, wherein the epitaxial doping concentration of the buffer layer is smaller than that of the drift region epitaxial layer. 如申請專利範圍第1項所述之雙重磊晶的金氧半場效電晶體製作方法,其中該緩衝層之磊晶摻雜濃度為3E15cm-3~6E15 cm-3The double epitaxial metal oxide half-field-effect transistor manufacturing method described in item 1 of the scope of the patent application, wherein the epitaxial doping concentration of the buffer layer is 3E15 cm -3 ~6E15 cm -3 . 如申請專利範圍第2項所述之雙重磊晶的金氧半場效電晶體製作方法,其中該飄移區磊晶層之濃度為8E15cm-3~1E16 cm-3The double epitaxial metal oxide half-field-effect transistor manufacturing method described in item 2 of the scope of the patent application, wherein the concentration of the epitaxial layer in the drift region is 8E15 cm -3 to 1E16 cm -3 . 如申請專利範圍第1項所述之雙重磊晶的金氧半場效電晶體製作方法,其中該緩衝層之磊晶厚度小於該電流擴散層的離子佈植最大深度。 The double epitaxial metal oxide semiconductor field-effect transistor manufacturing method described in item 1 of the scope of the patent application, wherein the epitaxial thickness of the buffer layer is smaller than the maximum ion implantation depth of the current diffusion layer. 如申請專利範圍第4項所述之雙重磊晶的金氧半場效電晶體製作方法,其中該緩衝層之厚度為0.1至0.9微米。 The method for manufacturing a double epitaxial metal oxide half field effect transistor as described in item 4 of the scope of the patent application, wherein the thickness of the buffer layer is 0.1 to 0.9 microns. 如申請專利範圍第5項所述之雙重磊晶的金氧半場效電晶體製作方法,其中該緩衝層之厚度為0.5微米。 The method for manufacturing double epitaxial metal oxide half-field-effect transistors as described in item 5 of the scope of the patent application, wherein the thickness of the buffer layer is 0.5 microns. 如申請專利範圍第2項所述之雙重磊晶的金氧半場效電晶體製作方法,其中該緩衝層之磊晶摻雜濃度為1E15cm-3~9E15 cm-3The double epitaxial metal oxide semiconductor field-effect transistor manufacturing method described in item 2 of the scope of the patent application, wherein the epitaxial doping concentration of the buffer layer is 1E15 cm -3 ~9E15 cm -3 . 如申請專利範圍第3項所述之雙重磊晶的金氧半場效電晶體製作方法,其中該飄移區磊晶層之濃度為1E16 cm-3The double epitaxial metal oxide half-field-effect transistor manufacturing method described in item 3 of the scope of the patent application, wherein the concentration of the epitaxial layer in the drift region is 1E16 cm -3 . 如申請專利範圍第4項所述之雙重磊晶的金氧半場效電晶體製作方法,其中該電流擴散層的離子佈植最大深度為1μm。 The method for manufacturing a double epitaxial metal oxide half-field effect transistor as described in item 4 of the scope of the patent application, wherein the maximum depth of ion implantation in the current diffusion layer is 1 μm.
TW111105004A 2022-02-09 2022-02-09 Double-epitaxy metal oxide half-field-effect transistor manufacturing method TWI806418B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111105004A TWI806418B (en) 2022-02-09 2022-02-09 Double-epitaxy metal oxide half-field-effect transistor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111105004A TWI806418B (en) 2022-02-09 2022-02-09 Double-epitaxy metal oxide half-field-effect transistor manufacturing method

Publications (2)

Publication Number Publication Date
TWI806418B true TWI806418B (en) 2023-06-21
TW202333203A TW202333203A (en) 2023-08-16

Family

ID=87803106

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111105004A TWI806418B (en) 2022-02-09 2022-02-09 Double-epitaxy metal oxide half-field-effect transistor manufacturing method

Country Status (1)

Country Link
TW (1) TWI806418B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI725418B (en) * 2019-04-24 2021-04-21 行政院原子能委員會核能研究所 Structure of epitaxial on heterogeneous substrate and preparation method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI725418B (en) * 2019-04-24 2021-04-21 行政院原子能委員會核能研究所 Structure of epitaxial on heterogeneous substrate and preparation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
本案自述先前技術 *

Also Published As

Publication number Publication date
TW202333203A (en) 2023-08-16

Similar Documents

Publication Publication Date Title
TWI520337B (en) Step trench metal-oxide-semiconductor field-effect transistor and method of fabrication the same
US10211304B2 (en) Semiconductor device having gate trench in JFET region
JP6066219B2 (en) Field effect transistor device with low source resistance
US20060006458A1 (en) Semiconductor device and method for manufacturing the same
KR101167530B1 (en) Super heterojunction semiconductor device structure and its fabrication method
US9054075B2 (en) Strip-shaped gate tunneling field effect transistor with double-diffusion and a preparation method thereof
CN104282758B (en) Metal-oxide semiconductor (MOS) with increased channel periphery(MOS)Device and the method for manufacture
KR19990013112A (en) MOS transistor and manufacturing method thereof
CN109148586B (en) Gallium oxide field effect transistor
US8981421B2 (en) Strip-shaped gate-modulated tunneling field effect transistor and a preparation method thereof
CN107093623B (en) Vertical double-diffusion metal oxide semiconductor field effect transistor with wide band gap substrate material
CN117080269A (en) Silicon carbide MOSFET device and preparation method thereof
CN117497600B (en) Structure, manufacturing method and electronic equipment of super-junction silicon carbide transistor
CN103872108B (en) A kind of IGBT structure and preparation method thereof
TWI806418B (en) Double-epitaxy metal oxide half-field-effect transistor manufacturing method
JP4838976B2 (en) Method for forming MOSFET semiconductor device
US20200203477A1 (en) Systems and methods for junction termination of wide band gap super-junction power devices
US20230047794A1 (en) Multi-trench Super-Junction IGBT Device
CN110518069A (en) With partially carbonized silicon/silicon semiconductor material hetero-junctions VDMOS and preparation method thereof
CN101834208A (en) Power MOS (Metal Oxide Semiconductor) field effect tube with low conduction resistance and manufacturing method
CN111162009B (en) Manufacturing method of low-on-resistance low-voltage separation gate MOS device
CN113053997B (en) Junction terminal extension structure of high-voltage silicon carbide device and manufacturing method thereof
CN114141877A (en) Silicon carbide LDMOS (laterally diffused metal oxide semiconductor) and manufacturing method thereof
KR101339277B1 (en) Semiconductor device and method manufacturing the same
CN105070755A (en) Type-II heterojunction tunneling field-effect transistor based on SiGeSn-GeSn material