TWI806202B - 放射線檢測器及包含該檢測器之放射線攝像裝置 - Google Patents

放射線檢測器及包含該檢測器之放射線攝像裝置 Download PDF

Info

Publication number
TWI806202B
TWI806202B TW110139310A TW110139310A TWI806202B TW I806202 B TWI806202 B TW I806202B TW 110139310 A TW110139310 A TW 110139310A TW 110139310 A TW110139310 A TW 110139310A TW I806202 B TWI806202 B TW I806202B
Authority
TW
Taiwan
Prior art keywords
radiation
image
aforementioned
radiation detector
intensity
Prior art date
Application number
TW110139310A
Other languages
English (en)
Other versions
TW202225731A (zh
Inventor
青木徹
都木克之
木村洸介
小池昭史
Original Assignee
國立大學法人靜岡大學
日商ANSeeN股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立大學法人靜岡大學, 日商ANSeeN股份有限公司 filed Critical 國立大學法人靜岡大學
Publication of TW202225731A publication Critical patent/TW202225731A/zh
Application granted granted Critical
Publication of TWI806202B publication Critical patent/TWI806202B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/247Detector read-out circuitry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/36Measuring spectral distribution of X-rays or of nuclear radiation spectrometry
    • G01T1/365Measuring spectral distribution of X-rays or of nuclear radiation spectrometry with ionisation detectors, e.g. proportional counter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • A61B6/035Mechanical aspects of CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4241Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using energy resolving detectors, e.g. photon counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/241Electrode arrangements, e.g. continuous or parallel strips or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/36Measuring spectral distribution of X-rays or of nuclear radiation spectrometry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Theoretical Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本發明之目的為可在減輕處理負荷及消耗電力的狀態下提供強度資訊及能量資訊。放射線檢測器100係由放射線檢測元件1及複數個讀出電路8a、8b彼此堆疊而構成,該放射線檢測元件1係以二維方式排列有用以生成與透射被攝體後之X射線的能量對應的電荷之複數個像素7d,該複數個讀出電路8a、8b係輸出基於藉由複數個像素7d之各者所生成的電荷之透射X射線的強度信號;且從複數個讀出電路8a、8b之中間隔地挑選出的一部分的讀出電路8a係基於電荷而生成與透射X射線的光譜有關的光譜信號,並且輸出光譜信號。

Description

放射線檢測器及包含該檢測器之放射線攝像裝置
本揭示係說明放射線檢測器及包含該檢測器之放射線攝像裝置。
如下述專利文獻1所記載,就以往之使用X射線的攝像裝置而言,已知有一種X射線CT(Computed Tomography:電腦斷層攝影)裝置。此X射線CT裝置係具有藉由進行利用二個以上的能階(energy level)來透射被攝體之X射線的檢測,以重建可辨別物質的CT影像之功能(以下,稱為光譜CT(Spectrum CT))。依據光譜CT,不僅可獲得屬於線性衰減係數的分布的CT影像,還可獲得有效原子序等之物性資料(data)的分布。
[先前技術文獻]
[專利文獻]
[專利文獻1]日本特開2020-99667號公報
具有上述光譜CT的功能的攝像裝置係可生成使物性資料的分布映射(mapping)於色彩並重疊於通常的CT影像所成的剖面影像。此種攝像裝置中,在採用具備具有複數個像素之放射線檢測器的構成時,必須從所有像素取得CT影像的重建所使用的強度資訊與二以上的能階的強度資訊(以下,也稱為能量資訊。)。結果,以往之攝像裝置中,會有處理負荷及消耗電力增大的傾向。
本揭示係說明一種可在減輕處理負荷及消耗電力的狀態下提供強度資訊及能量資訊的放射線檢測器及包含該檢測器之放射線攝像裝置。
本揭示之一型態的放射線檢測器係由電荷生成部與複數個讀出電路彼此堆疊而構成,該電荷生成部係以二維方式排列有複數個電荷生成區域,該複數個電荷生成區域係用以生成與透射被攝體後之放射線的能量或粒子的數量對應的電荷,該複數個讀出電路係輸出放射線的強度信號,該放射線的強度信號係基於藉由複數個電荷生成區域之各者所生成的電荷者;且從複數個讀出電路之中間隔地挑選出的一部分的讀出電路係基於電荷而生成與放射線的光譜有關的光譜信號(spectral signal),並且輸出光譜信號。
此放射線檢測器中,係在電荷生成部的複數個電荷生成區域生成與射入的放射線的能量或粒子的數量對應的電荷,且在與各個電荷生 成區域對應的讀出電路輸出基於電荷的放射線的強度資訊。伴隨於此,在從複數個讀出電路之中間隔地挑選出的一部分的讀出電路生成及輸出與基於電荷的放射線的光譜有關的光譜信號。藉此,可保持被攝體之影像的強度資訊之解析度,並且削減放射線檢測器所輸出的每個電荷生成區域之能量資訊,結果,可在維持所輸出的被攝體的影像之解析度的狀態下減少處理負荷及消耗電力。
一型態中,一部分的讀出電路也可基於在與該讀出電路對應而配置的電荷生成區域所生成的電荷而生成光譜信號。此時,係基於在從複數個電荷生成區域之中間隔地挑選出的一部分的電荷生成區域所生成的電荷,而生成及輸出與射入各個電荷生成區域的放射線的光譜有關的光譜信號。藉此,能夠以減少處理負荷及消耗電力的狀態輸出強度資訊及能量資訊。
一型態中,一部分的讀出電路也可基於在與該讀出電路對應而配置的電荷生成區域所生成的電荷,以及在該電荷生成區域之既定範圍內的電荷生成區域所生成的電荷而生成光譜信號。此時,係基於在複數個電荷生成區域之中之既定範圍內包含的複數個電荷生成區域所生成的電荷,而生成及輸出由射入既定範圍內的各個電荷生成區域的放射線的光譜彙整而成的光譜信號。藉此,能夠以減少處理負荷及消耗電力的狀態輸出強度資訊及能量資訊。
一型態中,一部分的讀出電路也可生成顯示放射線的能量以及與能量對應的強度值的複數個組合之資料,以作為光譜信號。依據此構成,可有效率地僅從間隔地挑選出的一部分的讀出電路輸出用以獲得物性 資料的分布之能量資訊。結果,能夠以減少處理負荷及消耗電力的狀態輸出強度資訊及能量資訊。
本揭示之其它型態的放射線攝像裝置係具備上述的放射線檢測器,以及基於從放射線檢測器所輸出的強度信號及光譜信號而生成影像的處理器。依據此放射線攝像裝置,能夠實現以減少處理負荷及消耗電力的狀態基於強度資訊及能量資訊進行的影像生成。
其它型態中,處理器也可基於從複數個讀出電路所輸出的強度信號而將表示被攝體之影像的資訊生成為高解析度的亮度資訊,且基於從一部分的讀出電路所輸出的光譜信號而將表示被攝體之物性的分布的資訊生成為低解析度的色彩資訊,並且將亮度資訊與色彩資訊組合,藉此生成被攝體之彩色影像。依據此構成,能夠以可視覺識別物性分布的狀態有效率地生成被攝體之細緻的影像。
其它型態中,處理器也可具有基於從放射線檢測器所輸出的強度信號及光譜信號來重建CT影像的功能。此種構成中,可實現減少處理負荷及消耗電力的光譜CT。
本揭示之放射線檢測器及放射線攝像裝置係可在減輕處理負荷及消耗電力的狀態下提供強度資訊及能量資訊。
1:放射線檢測元件
2:處理部
3:控制部
4:配線部
6:配線部
7:檢測元件基板(電荷生成部)
7a:檢測元件
7b:表面電極
7c:凸塊電極
7d:像素(電荷生成區域)
8:讀出電路基板
8a,8b,8c:讀出電路
9:處理器
11:強度影像生成部
12:能量影像生成部
13:CT影像生成部
14:影像重疊部
100:放射線檢測器
200:放射線攝像裝置
G1至G10:影像
圖1係顯示實施型態之放射線檢測器100的立體圖。
圖2係圖1之放射線檢測元件1的剖面圖。
圖3係顯示實施型態之放射線攝像裝置200之構成的方塊圖。
圖4係顯示圖3之處理器9的功能構成之一例的方塊圖。
圖5係顯示藉由處理器9處理後的影像之一例的圖。
圖6係顯示藉由處理器9處理後的影像之一例的圖。
圖7係變形例之放射線檢測元件1的剖面圖。
以下,參照所附圖式,詳細說明本揭示之放射線檢測器及放射線攝像裝置。圖式之說明中,係對相同構件附加相同符號,並省略重複的說明。
圖1所示的實施型態之放射線檢測器100係用以獲得基於透射被攝體而到達的放射線之剖面影像的裝置。放射線例如可為γ射線、X射線、α射線、β射線等,本實施型態中為X射線。放射線檢測器100係具有放射線檢測元件1、處理部2以及控制部3。
放射線檢測元件1係具有矩形板狀的讀出電路基板8與堆疊於該讀出電路基板8上之矩形板狀的檢測元件基板(電荷生成部)7。檢測元件基板7係由用以生成與透射被攝體而射入的X射線的能量對應之電荷的材料所構成之基板。但是,在將粒子線作為放射線而設為檢測對象時,檢測元件基板7係由用以生成與放射線之粒子的數量對應的電荷的材料所構成。檢測元件基板7係具有複數個像素,藉由依每個像素射入的X射線而生成電子正孔對(電荷對)。就此檢測元件基板7而言,也可利用例如 Cd(Zn)Te電荷生成器、Si電荷生成器、Ge電荷生成器、GaAs電荷生成器、GaN電荷生成器、TlBr電荷生成器等。此外,就檢測元件基板7而言,也可使用依每個像素具備閃爍器(scintillator)與光檢測器的裝置。閃爍器係將X射線轉換為光。光檢測器係將閃爍器所生成的光轉換為電荷。讀出電路基板8係內建電路群的基板,生成及輸出基於藉由檢測元件基板7而依每個像素之各者所生成的電荷之信號。
圖2係放射線檢測元件1的剖面圖。如此,檢測元件基板7包含由矩形平板狀之CdTe等化合物半導體所構成的檢測元件7a、表面電極7b及複數個凸塊電極7c。表面電極7b形成於檢測元件7a之放射線射入側的表面整體。屬於以2維方式排列之突起狀的電極之凸塊電極7c形成於檢測元件7a的背面。此種構造的檢測元件基板7中,與凸塊電極7c相對向的檢測元件7a的複數個區域之各者係形成像素(電荷生成區域)7d。在放射線檢測器100的使用時,係從外部對表面電極7b施加正的偏電壓。藉此,在檢測元件7a的各個像素7d生成與射入的X射線的能量對應的電荷作為電流信號,且將電流信號從與各個像素7d對應的凸塊電極7c取出至讀出電路基板8。例如,凸塊電極7c於檢測元件7a的背面以二維方式排列96個×96個。此種構成中,放射線檢測元件1具有以二維方式排列96個×96個的像素7d。
讀出電路基板8係以與凸塊電極7c接合的狀態配置在檢測元件基板7的背面側。此讀出電路基板8內建有配置在與檢測元件基板7的複數個像素7d相對向的位置之複數個讀出電路8a、8b。複數個讀出電路8a、8b之各者係經由凸塊電極7c而與檢測元件基板7的複數個像素7d 電性連接。此等複數個讀出電路8a、8b係設置於與複數個像素7d相對向的位置,讀出電路8a係設置於與複數個像素7d之中之在二維的各個排列方向以每3個像素而間隔地挑選出的像素7d相對向的位置,讀出電路8b係設置於與上述間隔地挑選出的像素7d以外的像素7d相對向的位置。亦即,讀出電路8a係指從與檢測元件基板7之所有的像素7d相對向的複數個讀出電路8a、8b之中被間隔地挑選出的一部分的讀出電路。另外,本實施型態中,係依每3個像素而間隔地挑選出的每個像素7d設置讀出電路8a,但其間隔地挑選的方式也可適當變更為每8個、每16個、每32個等。
讀出電路8b係處理檢測元件基板7的各個像素7d所生成的電荷。詳言之,讀出電路8b係基於與該讀出電路8b相對向的像素7d所輸出的電流信號,將電流信號蓄積某個一定期間而生成X射線的強度信號。而且,讀出電路8b係將每個像素7d的強度信號輸出至後述的處理部2。讀出電路8b所輸出的每個像素7d的強度信號為顯示射入各個像素7d的X射線的強度的信號。
讀出電路8a係處理從檢測元件基板7的所有像素7d中間隔地挑選出的像素7d所生成的電荷。亦即,讀出電路8a係包含多頻道分析儀(Multi Channel Analyzer:MCA),將與該讀出電路8a對應的像素7d所輸出的電流信號作為脈衝信號進行計數,且檢測該脈衝信號的高度作為X射線光子的能量,記錄每個能量的計數值(強度值)。而且,讀出電路8a還生成顯示X射線光子的能量之值與該能量的計數值(強度值)的複數個組合之資料,以作為表示射入的X射線之光譜的光譜信號。而且,讀出電路8a將每個像素7d的光譜信號輸出至後述的處理部2。在此,除了生成及輸出 對應的每個像素7d的光譜信號之外,讀出電路8a也可與讀出電路8b同樣具有生成及輸出每個像素7d的強度信號的功能。另外,與讀出電路8b比較,讀出電路8a由於具有生成光譜信號的功能,因此在讀出電路基板8內所佔的電路規模會變大。
回到圖1,處理部2係經由配線部4而與讀出電路基板8的各個讀出電路8a、8b連接。處理部2係從各個讀出電路8a、8b接收每個像素的強度信號及光譜信號。例如,處理部2係從讀出電路8b依序接收每個像素的強度信號,且從讀出電路8a接收隔開的每個像素的光譜信號,而將接收到的每個像素的強度信號及光譜信號輸出至外部。
控制部3係經由配線部6而與讀出電路基板8的各個讀出電路8a、8b連接。控制部3係對複數個讀出電路8a、8b提供用以控制複數個讀出電路8a、8b之電荷的檢測時序(timing)、強度信號與光譜信號的生成時序及其輸出時序之控制信號。例如,控制部3提供控制信號以與外部的X射線的照射時序同步設定電荷的檢測時序,然後,提供控制信號,以從檢測元件基板7的各個像素7d依序輸出強度信號及光譜信號。
圖3係顯示實施型態之放射線攝像裝置200之構成的方塊圖。放射線攝像裝置200係具備上述的放射線檢測器100與處理器9。處理器9係處理從放射線檢測器100所輸出的各個像素的強度信號及各個像素的光譜信號,並生成及輸出被攝體的剖面影像。處理器9係經由有線通信或無線通信的網路而從放射線檢測器100的處理部2接收強度信號及光譜信號。
處理器9係具備:執行作業系統、應用程式等的CPU(Central Processing Unit,中央處理器);以ROM及RAM構成的主記憶裝置;以硬碟、快閃記憶體等構成的輔助記憶裝置;以網路卡或無線通信模組構成的通信控制裝置;鍵盤、滑鼠、觸控面板等輸入裝置;及螢幕、觸控面板顯示器等輸出裝置。處理器9的各個功能構件係藉由將預定的程式讀入CPU或主記憶裝置上,且令CPU執行該程式而實現。CPU依循該程式而使通信控制裝置、輸入裝置或輸出裝置動作,且進行主記憶裝置或輔助記憶裝置之資料的讀出及寫入。處理所須的資料或資料庫(data base)係儲存於主記憶裝置或輔助記憶裝置內。
圖4係顯示處理器9的功能構成之一例的方塊圖。處理器9係具備強度影像生成部11、能量影像生成部12、CT影像生成部13、及影像重疊部14作為功能構件。
強度影像生成部11係使用從放射線檢測器100所輸出的各個像素的強度信號及各個像素的光譜信號,生成顯示被攝體之X射線之透射像的強度分布的高解析度的強度影像。亦即,強度影像生成部11將各個影像的強度信號及光譜信號轉換為強度影像的各個像素之像素值。在此,強度影像生成部11在針對與讀出電路8a對應的像素而僅取得光譜信號時,係基於該光譜信號,遍及所有的能量將複數個能量之各者的強度值進行積分,藉此轉換為對應的像素的強度值。
能量影像生成部12係使用從放射線檢測器100所輸出的間隔地挑選出的各個像素的光譜信號,針對複數個能帶而生成顯示被攝體之既定能帶之X射線之透射像的強度分布之低解析度的能量影像。本實施型 態中,為了CT影像生成部13以雙能量CT(Dual Energy Computed Tomography:DECT,雙能量電腦斷層掃描)方式取得2種能量資訊,係生成兩種能帶(例如,25keV與65keV的能帶)的能量影像。在此,能量影像生成部12係基於與讀出電路8a對應的像素的光譜信號,針對兩個能帶之各者而將強度值進行積分,藉此轉換為能量影像之像素的強度值。
CT影像生成部13係針對X射線對於被攝體照射的各個照射方向取得藉由強度影像生成部11所生成的高解析度的強度影像,並解析各個照射方向的強度影像,藉此生成表示被攝體之既定斷層面之高解析度的線性衰減係數的分布之CT影像。此時,就CT影像的生成時所使用之影像重建的方式而言,CT影像生成部13可採用2維傅立葉轉換法、濾波反投影法、逐次近似法等。
此外,CT影像生成部13係針對各個照射方向取得藉由能量影像生成部12所生成的複數種類之能帶之低解析度的能量影像,將該等低解析度的能量影像進行解析,藉此生成被攝體之既定斷層面之複數種類之能帶之低解析度的CT影像。此時,就CT影像的生成時所使用之影像重建的方式而言,CT影像生成部13可採用上述的方式。
此外,CT影像生成部13係基於複數種類之能帶之低解析度的CT影像,而生成顯示被攝體之斷層面中之物性的分布的物性分布影像。例如,在CT影像生成部13採用雙能量CT方式時,係使用顯示線性衰減係數μ、能量值E、電子密度ρ、原子序Z、光電吸收衰減係數F及散射衰減係數G的關係的下述式:
μ=ρ〔Z4F(E,Z)+G(E,Z)〕 的關係,並基於顯示兩個能帶之CT影像的線性衰減係數,依每個像素之各者算出有效原子序Z及電子密度ρ。在此,光電吸收衰減係數F及散射衰減係數G係以能量值E及原子序Z為引數之已知的函數(例如,映射表(mapping table)),且預先記憶於處理器9內。而且,CT影像生成部13係藉由分配所算出之每個像素之各者的有效原子序Z或電子密度ρ,而生成顯示低解析度的有效原子序Z或電子密度ρ的分布的物性分布影像。
影像重疊部14係將藉由CT影像生成部13所生成的高解析度之CT影像的各個像素值設定於輸出影像的亮度資訊,將藉由CT影像生成部13所生成的低解析度的物性分布影像的各個像素值設定於輸出影像的色彩資訊,依每個像素之各者組合亮度資訊與色彩資訊,而生成屬於彩色影像的輸出影像。藉此,影像重疊部14能夠以可視覺識別的方式同時輸出被攝體之既定斷層面之線性衰減係數的分布以及既定斷層面之物性值的分布。此種輸出影像中,藉由將低解析度之色彩的格點(grid)(線或點)重疊於高解析度的黑白影像,可利用眼睛的錯覺而令視覺識別人員辨認為高解析度之彩色影像。
圖5及圖6中,顯示將模擬骨骼與血管而成的模型作為被攝體且藉由處理器9處理而成的影像之一例。圖5中,影像G1顯示25keV之能帶之低解析度的CT影像,影像G2顯示65keV之能帶之低解析度的CT影像,影像G3顯示基於影像G1及影像G2所生成的有效原子序的物性分布影像,影像G4顯示基於影像G1及影像G2所生成的電子密度的物性分布影像。圖6中,影像G5係顯示光譜信號在每8個像素間隔地挑選出時之電子密度的物性分布影像,影像G6係顯示重疊了影像G5而成的輸 出影像,影像G7係顯示光譜信號在每16個像素間隔地挑選出時之電子密度的物性分布影像,影像G8係顯示重疊了影像G7而成的輸出影像,影像G9係顯示光譜信號在每32個像素間隔地挑選出時之電子密度的物性分布影像,影像G10係顯示重疊了影像G9而成的輸出影像。藉由此等結果可得知,在間隔地挑選的方式為每8個及每16個時,電子密度的分布明確地呈現於輸出影像,能夠以可視覺識別的方式表示物性分布。
以上說明的放射線檢測器100中,係在檢測元件基板7的複數個像素7d生成與射入的X射線的能量對應的電荷,且在與各個像素7d對應的讀出電路8a、8b輸出顯示基於電荷的透射X射線的強度分布的強度信號。伴隨於此,在從複數個讀出電路8a、8b之中間隔地挑選出的一部分的讀出電路8a生成及輸出與基於電荷的透射X射線的光譜有關的光譜信號。藉此,可保持被攝體的透射X射線像的強度資訊之解析度,並且削減放射線檢測器100所輸出的每個像素7d之能量資訊,結果,可在維持所輸出的被攝體的影像之解析度的狀態下減少處理負荷及消耗電力。
本實施型態中,一部分的讀出電路8a係基於在與該讀出電路8a對應而配置的像素7d所生成的電荷而生成光譜信號。此時,係基於在從複數個像素7d之中間隔地挑選出的一部分的像素7d所生成的電荷,而生成及輸出與射入各個像素7d的透射X射線的光譜有關的光譜信號。藉此,能夠以減少處理負荷及消耗電力的狀態輸出強度資訊及能量資訊。
本實施型態中,一部分的讀出電路8a係生成顯示透射X射線的能量以及與能量對應的強度值的複數個組合之資料,以作為光譜信號。依據此構成,可有效率地僅從間隔地挑選出的一部分的讀出電路8a輸出用 以獲得物性資料的分布之能量資訊。結果,能夠以減少處理負荷及消耗電力的狀態輸出強度資訊及能量資訊。
依據本實施型態之放射線攝像裝置200,由於具備上述的放射線檢測器100,因此能夠實現以減少處理負荷及消耗電力的狀態基於強度資訊及能量資訊進行的影像生成。
尤其是,放射線攝像裝置200所具備的處理器9係基於從複數個讀出電路8a、8b所輸出的強度信號而將表示被攝體之X射線透射像的資訊生成為高解析度的亮度資訊,且基於從一部分的讀出電路8a所輸出的光譜信號而將表示被攝體之物性的分布的資訊生成為低解析度的色彩資訊,並且將亮度資訊與色彩資訊組合,藉此生成被攝體之彩色影像。依據此構成,能夠以可同時視覺識別物性分布的狀態有效率地生成被攝體之細緻的CT影像。
此外,本實施型態中,處理器9也可具有基於從放射線檢測器100所輸出的強度信號及光譜信號來重建CT影像的功能。此種構成中,可實現減少處理負荷及消耗電力的光譜CT。
本揭示之放射線檢測器不限定於前述的實施型態。本揭示之放射線檢測器可在不脫離請求項之要旨的範圍內進行各種變形。
上述的實施型態之放射線檢測器100的像素數或間隔地挑選的方式係為一例,也能夠變更為各種方式。
此外,放射線檢測器100所輸出的資料不限定為基於與放射線的能量對應的電荷而得的強度信號及光譜信號,也能夠為基於與射入放射線檢測器100的各個像素之放射線粒子的數量對應的電荷而得的信號。
上述的實施型態之放射線檢測器100的讀出電路基板8之構成也可變更為例如圖7所示的構成。圖7所示的變形例中,係更設置有與在讀出電路基板8內沿2維方向隣接之既定範圍內的讀出電路8a連接之複數個讀出電路8c。讀出電路8c可將基於藉由與1個讀出電路8a相對向而設置的像素7d所生成的電荷的光譜信號、以及藉由與該像素7d之既定範圍內的像素7d相對向的1以上的讀出電路8a所生成的光譜信號進行彙整而生成及輸出1個光譜信號(進行合併(bining)處理)。例如,讀出電路8c可在將複數個光譜信號彙整為1個信號之時,將每個能量的強度值加總或平均。
依據本變形例,係基於在複數個像素7d之中之既定範圍內包含的複數個像素7d所生成的電荷,而生成及輸出由射入既定範圍內的各個像素7d的透射X射線的光譜彙整而成的光譜信號。藉此,能夠以減少處理負荷及消耗電力的狀態輸出強度資訊及能量資訊。
此外,上述變形例中,也可使放射線檢測元件1之與像素7d相對向的所有的讀出電路具有生成光譜信號的功能,且由複數個讀出電路8c以從既定範圍內的讀出電路所輸出的光譜信號為對象進行合併處理。
7:檢測元件基板(電荷生成部)
7a:檢測元件
7b:表面電極
7c:凸塊電極
7d:像素(電荷生成區域)
8:讀出電路基板
8a,8b:讀出電路

Claims (7)

  1. 一種放射線檢測器,係由電荷生成部與複數個讀出電路彼此堆疊而構成,該電荷生成部係以二維方式排列有複數個電荷生成區域,該複數個電荷生成區域係用以生成與透射被攝體後之放射線的能量或粒子的數量對應的電荷,該複數個讀出電路係輸出前述放射線的強度信號,該放射線的強度信號為基於藉由前述複數個電荷生成區域之各者所生成的前述電荷者;且從前述複數個讀出電路之中依每複數個而間隔地挑選出的一部分的讀出電路係基於前述電荷而生成與前述放射線的光譜有關的光譜信號,並且輸出前述光譜信號。
  2. 如請求項1所述之放射線檢測器,其中,前述一部分的讀出電路係基於在與前述一部分的讀出電路對應而配置的前述電荷生成區域所生成的前述電荷而生成前述光譜信號。
  3. 如請求項1所述之放射線檢測器,其中,前述一部分的讀出電路係基於在與前述一部分的讀出電路對應而配置的前述電荷生成區域所生成的前述電荷以及在該電荷生成區域之既定範圍內的前述電荷生成區域所生成的前述電荷而生成前述光譜信號。
  4. 如請求項1至3中任一項所述之放射線檢測器,其中,前述一部分的讀出電路係生成顯示前述放射線的能量以及與前述能量對應的強度值的複數個組合之資料,以作為前述光譜信號。
  5. 一種放射線攝像裝置,係具備:如請求項1至4中任一項所述之放射線檢測器;以及 處理器,係基於從前述放射線檢測器所輸出的前述強度信號及前述光譜信號而生成影像。
  6. 如請求項5所述之放射線攝像裝置,其中,前述處理器係基於從前述複數個讀出電路所輸出的前述強度信號而將表示前述被攝體之影像的資訊生成為高解析度的亮度資訊,且基於從前述一部分的讀出電路所輸出的前述光譜信號而將表示前述被攝體之物性的分布的資訊生成為低解析度的色彩資訊,並且將前述亮度資訊與前述色彩資訊組合,藉此生成前述被攝體之彩色影像。
  7. 如請求項5或6所述之放射線攝像裝置,其中,前述處理器係具有基於從前述放射線檢測器所輸出的前述強度信號及前述光譜信號來重建CT影像的功能。
TW110139310A 2020-11-24 2021-10-22 放射線檢測器及包含該檢測器之放射線攝像裝置 TWI806202B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/043669 WO2022113170A1 (ja) 2020-11-24 2020-11-24 放射線検出器及びそれを含む放射線撮像装置
WOPCT/JP2020/043669 2020-11-24

Publications (2)

Publication Number Publication Date
TW202225731A TW202225731A (zh) 2022-07-01
TWI806202B true TWI806202B (zh) 2023-06-21

Family

ID=81754109

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110139310A TWI806202B (zh) 2020-11-24 2021-10-22 放射線檢測器及包含該檢測器之放射線攝像裝置

Country Status (7)

Country Link
US (1) US20230341571A1 (zh)
EP (1) EP4071519A4 (zh)
JP (1) JP7201195B2 (zh)
KR (1) KR20220075315A (zh)
CN (1) CN114868042A (zh)
TW (1) TWI806202B (zh)
WO (1) WO2022113170A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11128214A (ja) * 1997-10-30 1999-05-18 Shimadzu Corp X線診断装置
JP2013096993A (ja) * 2011-11-01 2013-05-20 Samsung Electronics Co Ltd 光子計数検出装置及びその方法
JP2015104664A (ja) * 2013-11-28 2015-06-08 株式会社東芝 X線ct装置、モジュール型x線検出装置およびx線ct撮像方法
TW202011046A (zh) * 2018-09-07 2020-03-16 大陸商深圳幀觀德芯科技有限公司 輻射探測器
JP2020099667A (ja) * 2018-12-21 2020-07-02 キヤノンメディカルシステムズ株式会社 X線ctシステム及び方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829860B2 (en) * 2006-10-31 2010-11-09 Dxray, Inc. Photon counting imaging detector system
JP5981273B2 (ja) * 2012-08-30 2016-08-31 東芝メディカルシステムズ株式会社 X線コンピュータ断層撮影装置
KR20190085740A (ko) * 2018-01-11 2019-07-19 삼성전자주식회사 단층 촬영 장치, 그 제어 방법, 및 컴퓨터 프로그램 제품

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11128214A (ja) * 1997-10-30 1999-05-18 Shimadzu Corp X線診断装置
JP2013096993A (ja) * 2011-11-01 2013-05-20 Samsung Electronics Co Ltd 光子計数検出装置及びその方法
JP2015104664A (ja) * 2013-11-28 2015-06-08 株式会社東芝 X線ct装置、モジュール型x線検出装置およびx線ct撮像方法
TW202011046A (zh) * 2018-09-07 2020-03-16 大陸商深圳幀觀德芯科技有限公司 輻射探測器
JP2020099667A (ja) * 2018-12-21 2020-07-02 キヤノンメディカルシステムズ株式会社 X線ctシステム及び方法

Also Published As

Publication number Publication date
US20230341571A1 (en) 2023-10-26
EP4071519A4 (en) 2023-09-20
JP7201195B2 (ja) 2023-01-10
TW202225731A (zh) 2022-07-01
WO2022113170A1 (ja) 2022-06-02
JPWO2022113170A1 (zh) 2022-06-02
CN114868042A (zh) 2022-08-05
EP4071519A1 (en) 2022-10-12
KR20220075315A (ko) 2022-06-08

Similar Documents

Publication Publication Date Title
US11123028B2 (en) System and method for a X-ray detector
US7671342B2 (en) Multi-layer detector and method for imaging
US7606347B2 (en) Photon counting x-ray detector with overrange logic control
US9389320B2 (en) Radiation detector, and radiation imaging apparatus provided with detector
US20090290680A1 (en) High resolution imaging system
CN107850682B (zh) 高能量分辨率/高x射线通量光子计数探测器
KR20110134843A (ko) 디지털 방사능투과 이미징 장치 및 디지털 방사능투과 이미징 장치 동작 방법
KR20130048001A (ko) 고해상도 및 고대조도 영상을 동시에 생성하기 위한 광자 계수 검출 장치 및 방법
KR20140084912A (ko) 엑스선 영상 생성 모듈, 엑스선 촬영 장치 및 엑스선 영상 생성 방법
US10236091B2 (en) Backscatter shields and methods of shielding
US11826186B2 (en) Image processing apparatus, image processing method, and program
RU2647206C1 (ru) Сенсорное устройство и система визуализации для обнаружения сигналов излучения
EP2981987B1 (en) Integrated diode das detector
US6912266B2 (en) X-ray diagnostic facility having a digital X-ray detector and a stray radiation grid
WO2011013390A1 (ja) 放射線画像撮影装置
Barber et al. High flux energy-resolved photon-counting x-ray imaging arrays with CdTe and CdZnTe for clinical CT
TWI806202B (zh) 放射線檢測器及包含該檢測器之放射線攝像裝置
US20180267177A1 (en) Radiation imaging system, signal processing apparatus, and signal processing method for radiographic image
JP6470986B2 (ja) 放射線検出器及び放射線断層撮影装置
JP6758249B2 (ja) 画像処理装置、放射線画像撮影システム、画像処理方法、及び画像処理プログラム
CN219810870U (zh) 多层x射线探测器
Barber et al. Optimizing CdTe detectors and ASIC readouts for high-flux x-ray imaging
JP2015141037A (ja) 放射線検出器
US20130119258A1 (en) Method and apparatus for the detection of x-ray quants
CN116148288A (zh) 多层x射线探测器