TWI805967B - 丙烯複分解之乙烯最大化技術 - Google Patents

丙烯複分解之乙烯最大化技術 Download PDF

Info

Publication number
TWI805967B
TWI805967B TW109141011A TW109141011A TWI805967B TW I805967 B TWI805967 B TW I805967B TW 109141011 A TW109141011 A TW 109141011A TW 109141011 A TW109141011 A TW 109141011A TW I805967 B TWI805967 B TW I805967B
Authority
TW
Taiwan
Prior art keywords
fraction
propylene
ethylene
metathesis
hexene
Prior art date
Application number
TW109141011A
Other languages
English (en)
Other versions
TW202124341A (zh
Inventor
巴拉 瑞瑪夏德倫
Original Assignee
美商魯瑪斯科技有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商魯瑪斯科技有限責任公司 filed Critical 美商魯瑪斯科技有限責任公司
Publication of TW202124341A publication Critical patent/TW202124341A/zh
Application granted granted Critical
Publication of TWI805967B publication Critical patent/TWI805967B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/06Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/23Rearrangement of carbon-to-carbon unsaturated bonds
    • C07C5/25Migration of carbon-to-carbon double bonds
    • C07C5/2506Catalytic processes
    • C07C5/2512Catalytic processes with metal oxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C6/00Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
    • C07C6/02Metathesis reactions at an unsaturated carbon-to-carbon bond
    • C07C6/04Metathesis reactions at an unsaturated carbon-to-carbon bond at a carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/04Ethylene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/06Propene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/08Alkenes with four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/30Tungsten
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

於本文中的系統及方法改良經由複分解之丙烯至乙烯的轉化。以質量為基礎,於本文中的具體實例可使用來將多於40%的丙烯,以質量為基礎,轉化成乙烯,諸如43%至75%,以質量為基礎。在一個態樣中,於本文中之用於丙烯至乙烯的轉化之方法可包括將一丙烯進料流引進至一複分解反應器,及讓該丙烯在該複分解反應器中與一複分解觸媒接觸來將該丙烯轉化成乙烯及2-丁烯。可回收來自該複分解反應器的流出物,該流出物包括乙烯、2-丁烯及未轉化的丙烯。然後,可在一分餾系統中分離該流出物以回收乙烯餾分、丙烯餾分、C4餾分及C5+餾分。然後,可將該丙烯餾分及C4餾分進料至該複分解反應器以生產出額外的乙烯。

Description

丙烯複分解之乙烯最大化技術 發明領域
於本文中的具體實例係關於一種丙烯至乙烯之轉化技術。更特別是,於本文中的具體實例係關於一種最大化經由複分解的丙烯至乙烯之轉化的方法及系統。
發明背景
丙烯自動複分解的產物係乙烯及正丁烯類。丙烯複分解會自二莫耳的丙烯(42克/莫耳+42克/莫耳)產生一莫耳的乙烯(28克/莫耳)。作為第二產物的正丁烯類(56克/莫耳)較沒有價值。以質量為基礎,丙烯之完全轉化僅產生33.3%的丙烯轉化成乙烯及剩餘為正丁烯類。因此,甚至伴隨著C3再循環,以質量為基礎,丙烯進料轉化成乙烯一定少於35%。
發明概要
於本文中已經發展出一種改良經由複分解之丙烯至乙烯的轉化之系統及方法。以質量為基礎,於本文中的具體實例可使用來將多於40%的丙烯,以質量為基礎,轉化成乙烯。在某些具體實例中,該丙烯至乙烯的轉化範圍可在43%至75%內,以質量為基礎;在多個具體實例中,諸如大於45%、大於50%、大於60%或大於65%,以質量為基礎。
在一個態樣中,於本文中的具體實例係關於一種用於丙烯至乙烯之轉化的方法。該方法可包括將一丙烯進料流引進至一複分解反應器,及讓該丙烯在該複分解反應器中與一複分解觸媒接觸來將丙烯轉化成乙烯及2-丁烯。可回收來自該複分解反應器的流出物,其中該流出物包括乙烯、2-丁烯及未轉化的丙烯。然後,可在一分餾系統中分離該流出物以回收乙烯餾分、丙烯餾分、C4餾分及C5+餾分。然後,可將該丙烯餾分及該C4餾分進料至該複分解反應器而生產出額外的乙烯。
在另一個態樣中,於本文中的具體實例係關於一種用於乙烯之生產的方法。該方法可包括混合一丙烯進料流與一或多種含C3-C5烴餾分以形成一混合進料流。可將該混合進料流進料至一包括複分解觸媒的複分解反應器以讓該混合進料流與該複分解觸媒接觸而產生一包含乙烯、未轉化的丙烯、2-丁烯、2-戊烯及2-己烯之反應流出物。然後,可分餾該反應流出物以回收乙烯產物流、一或多種含C3-C5烴餾分及一或多種C6+餾分。
在更另一個態樣中,於本文中的具體實例係關於一種用於乙烯之生產的系統。該系統可包括:一條用以提供一丙烯進料的進料流;一包括複分解觸媒的複分解反應器,用以將該丙烯轉化成乙烯及2-丁烯;一用以分離在該複分解反應器流出物中之乙烯、2-丁烯及未轉化的丙烯的分餾系統,以回收乙烯餾分、丙烯餾分、C4餾分及C5+餾分;一或多條用以將該丙烯餾分及C4餾分進料至該複分解反應器以生產額外的乙烯之流線。
將自下列說明及附加的申請專利範圍明瞭其它態樣及優點。
10:丙烯進料流
12:烯烴轉化單元(OCU)
14:OCU流出物
16:分餾區域,分餾系統
18:去乙烯塔
20:去丙烷塔
22:去丁烷塔
23:去戊烷塔
24:包含乙烯產物的塔頂餾分
26:包含C3+烴的塔底餾分
28:C3塔頂餾分,丙烯餾分
30:C4+塔底餾分
32:包括C4烴的塔頂餾分,丁烯類餾分
33:包括C4-C5烴的塔頂餾分,C4/C5餾分,流
34:包括C5+烴的塔底餾分,重質餾分
35:包括C6+烴的塔底餾分
36:C3吹洗流
40:富含C6的側餾分
42:蒸汽裂解器
43:輕質(甲烷)流
44:乙烯流
46:C3-C5烴流
47:C4/C5吹洗流
50:固定床反應器
52:蒸餾塔
53:包括2-丁烯的C4塔頂餾出物之一部分
54:異構化反應器的流出物
56:1-丁烯類塔頂餾分
58:2-丁烯塔底餾分
60:固定床反應器
62:超分餾塔
63:包括2-己烯及3-己烯的C6側餾分之一部分
64:異構化反應器的流出物
66:1-己烯類塔頂餾分
68:2-及3-己烯類塔底餾分
圖1-5係根據本文的具體實例之方法的簡化的流程圖。
較佳實施例之詳細說明
如上述提到,在丙烯複分解中,二莫耳丙烯會生產出一莫耳乙烯及一莫耳2-丁烯。乙烯係比丁烯類更有價值的產物,因此,想要增加丙烯至乙烯的轉化。於本文中的具體實例可使用來最大化自丙烯生產出乙烯。
根據本文的具體實例之丙烯複分解可在一複分解反應區域中進行,其中該區域可包括一或多個包含複分解觸媒之反應器。若使用二或更多個反應器時,這些可呈串列或並列配置。
可將該丙烯進料流引進至該複分解反應器並與該複分解觸媒接觸以將丙烯轉化成乙烯及2-丁烯。然後,可回收來自該複分解反應器的流出物,及該流出物可包括前述提及的乙烯及2-丁烯和其它副產物及未反應(未轉化)的丙烯。
然後,可將該流出物進料至一例如包括一或多個蒸餾塔及/或萃取蒸餾塔的分餾系統;及分離成二或更多種餾分。該二或更多種餾分可包括乙烯產物餾分及一或多種選自於下列的餾分:C3餾分、C4餾分、C5+餾分或多種包括二或更多種碳數目的餾分,諸如例如,C3-C4餾分、C4-C5餾分或C3-C5餾分。
然後,可將該C3、C4及/或C5餾分與該丙烯進料流一起進料至該複分解反應器進行反應而生產出額外的乙烯。自該分餾部分返回該反應器的丙烯可經由自動複分解反應而生產出額外的乙烯及2-丁烯。該丙烯可額外地例如與任何1-丁烯類或1-戊烯類反應而各別生產出乙烯及2-戊烯類或2-己烯類。
在本文的具體實例中,有用之丙烯進料流可包括稀丙烯流,例如,包括最高50%的丙烷。在某些具體實例中,該丙烯進料流可包括低純度丙烯進料,包括60-95重量%的丙烯。在其它具體實例中,該丙烯進料流可包括高純度丙烯(95-99+重量%的丙烯)。在多個具體實例中,該丙烷/丙烯進料流可包括至少65重量%的丙烯、至少70重量%、至少75重量%、至少80重量%、至少85重量%、至少90重量%,諸如在80重量%至95重量%間,或諸如在85重量%至90重量%間 之丙烯,及可將其進料至一複分解反應器或反應區域。在其它具體實例中,該丙烯進料流可係聚合物等級丙烯流,其可具有至少98重量%、至少99重量%、至少99.5重量%或至少99.8重量%的丙烯。
可自此丙烯進料藉由該丙烯之複分解來進行乙烯之生產。在某些具體實例中,該乙烯之生產可藉由複分解與異構化之組合來進行。在此具體實例中,該異構化及複分解可於相同或不同反應器之隔離的反應區域中進行,或可在相同反應區域中使用混合觸媒系統或雙功能性觸媒進行。
在該複分解反應器或合併的複分解/異構化反應器中,用於丙烯複分解轉化成乙烯之條件可包括溫度在50℃至650℃之範圍內,及壓力在0巴表壓(barg)至40巴表壓之範圍內。該反應器可如此操作:該反應溫度係在約50℃至約600℃之範圍內;在其它具體實例中,於約200℃至約450℃之範圍內;及在更其它具體實例中,約250℃至約400℃。在某些具體實例中,於該反應器中的壓力可例如在5至15巴間。在某些具體實例中,該異構化及複分解反應可於每小時重量空間速度(weight hourly space velocity)(WHSV)範圍約2至約200下進行,及在其它具體實例中,約6至約40。
該反應可藉由在液相或氣相中讓該烯烴與該異構化及/或複分解觸媒接觸而進行,此係依該烯烴的結構及分子量而定。若該反應係在液相中進行時,該反應可使用溶劑或稀釋劑。脂肪族飽和烴,例如,戊烷類、己烷類、環己烷類、十二烷類;及芳香烴,諸如苯及甲苯係合適。若該反應係在氣相中進行時,可呈現出的稀釋劑有諸如飽和脂肪烴,例如,甲烷、乙烷、丙烷、正常及分枝的C4、C5烷烴;及/或實質上惰性氣體,諸如氮及氬。為了高產物產率,該反應可於缺乏明顯量的去活性物質諸如水及氧下進行。
獲得想要的反應產物產率所需要之接觸時間係依數種因素而定,諸如觸媒的活性、溫度、壓力及欲異構化及/或複分解的烯烴之結構。在該烯烴 與觸媒接觸期間之時間長度可於0.1秒至4小時間變化,較佳為約0.5秒至約0.5小時。該異構化及複分解反應可使用固定觸媒床、漿狀觸媒、流體化床或藉由使用任何其它習知的接觸技術成批地或連續地進行。
包括在該複分解反應器內的觸媒可係任何已知的複分解觸媒,包括在支撐物上的VIA族、VIIA族及VIIIA族金屬之氧化物。該觸媒支撐物可係任何型式及可包括氧化鋁、二氧化矽、其混合物、氧化鋯、氧化鎂、二氧化鈦、MOF(有機金屬骨架)化合物及沸石。在某些具體實例中,該複分解觸媒係在二氧化矽上的氧化鎢。
該雙鍵異構化觸媒可係任何已知的雙鍵異構化觸媒。在某些具體實例中,除了別的可能的觸媒外,該雙鍵異構化觸媒可係氧化鎂、氧化鈣、氧化鋁或混合的Mg-Al氧化物(例如,水滑石衍生出的混合氧化物)之一。
在某些具體實例中,該雙鍵異構化觸媒可係氧化鋁-二氧化鈦觸媒。該觸媒可係一包括能催化烯烴的位置異構化之活性場址的γ-氧化鋁-二氧化鈦結晶混合物,及其可呈丸粒、球形、擠出物及其類似形式,及典型將具有有效直徑0.5毫米至5毫米,諸如在1毫米至4毫米之範圍內或在2毫米至3毫米之範圍內。在某些具體實例中,該氧化鋁-二氧化鈦觸媒可具有一具有下限0.01、1、2、3、4、5、10、15、20或25至上限15、20、25、30、35、40、45或50重量%的鈦之組成物,其中任何下限可與任何上限結合。在某些具體實例中,於本文中的γ-氧化鋁-二氧化鈦觸媒可具有表面積大於200平方公尺/克;在其它具體實例中,大於250平方公尺/克;在其它具體實例中,大於300平方公尺/克;在其它具體實例中,大於350平方公尺/克;及在其它具體實例中,大於400平方公尺/克。該γ-氧化鋁-二氧化鈦觸媒可對典型視為毒劑的已氧合物種具耐受性,諸如MgO型式觸媒;可作用為保護下游觸媒床的氧化物清除劑;及在某些具體實例中,除了異構化活性外,可具有用於醇類之脫水的活性。該γ-氧化鋁-二氧化鈦觸媒相關 於該進料的環戊烯純度亦可有更大的寬容,及可允許於該進料中存在有多於5重量%、多於7.5重量%或甚至多於10重量%的環戊烯,此潛在地否定自該進料中移除環戊烯所需要的典型上游製程。這些γ-氧化鋁-二氧化鈦觸媒可單獨使用,諸如僅在異構化反應器中或在隔離式OCU的異構化觸媒床中;或可以與其它異構化觸媒或複分解觸媒的混合物使用。
現在參照圖1,其闡明根據本文的具體實例之用來生產乙烯的系統之簡化的製程流程圖。將一丙烯進料流10進料至一烯烴轉化單元(OCU)12中,其中該單元可包括一包含複分解觸媒或混合的複分解/異構化觸媒之反應區域。該OCU亦可包括一異構化反應區域,其中該異構化及複分解反應係在相同或不同反應器之隔離的反應區域中進行。
於該進料中的丙烯可反應而形成乙烯及2-丁烯,除了別的以外,可在該OCU流出物14中回收反應產物及副產物。然後,可將該流出物14進料至一分餾區域16來回收想要的乙烯產物。
該分餾區域16可包括二或更多個蒸餾塔以回收想要的烴餾分。例如,該分餾區域16可包括去乙烯塔(deethylenizer)來回收乙烯產物,和一或多個:(i)去丙烷塔來回收未反應的丙烯及讓其返回該烯烴轉化單元來產生額外的乙烯;(ii)去丁烷塔來回收C4餾分;(ii)去戊烷塔來回收C5餾分或混合的C4/C5餾分;及(iii)去己烷塔來回收重質餾分(塔底)及C6餾分、C5/C6餾分或C4/C5/C6餾分之一或多種。
如在圖1中闡明,該分餾區域16包括去乙烯塔18、去丙烷塔20及去丁烷塔22。該去乙烯塔18可使用來回收包含乙烯產物的塔頂餾分24及包含C3+烴的塔底餾分26。然後,在該塔底餾分26中的C3+烴可於去丙烷塔20中進行分離以回收C3塔頂餾分28及C4+塔底餾分30。隨後,該C4+塔底餾分可於去丁烷塔22中進行分離以回收包括C4烴的塔頂餾分32及包括C5+烴的塔底餾分34。該丙烯餾 分28及丁烯類餾分32各者可返回該烯烴轉化單元用於丙烯的複分解以生產出乙烯及丁烯類、及丁烯類的複分解以生產出額外的乙烯及戊烯類。因為該丙烯進料產生相當高的丙烯濃度,該反應平衡偏愛丙烯與丁烯類之反應。在該複分解反應器中生產的戊烯類亦可與丙烯反應而形成乙烯及己烯類。亦可形成其它重質烯烴,其係以重質餾分34回收。為了避免丙烷在該系統內積聚,可收回C3吹洗流36。但是,在某些具體實例中,該丁烯類可進行反應而消滅(extinction),因此可不需要(選擇性)C4吹洗流。
如在圖2中闡明,其中類似的數字代表類似的部分,該分餾系統16可包括去乙烯塔18、去丙烷塔20及去戊烷塔23。該去乙烯塔18可使用來回收包含乙烯產物的塔頂餾分24及包含C3+烴的塔底餾分26。然後,在該塔底餾分26中的C3+烴可於去丙烷塔20中進行分離以回收C3塔頂餾分28及C4+塔底餾分30。隨後,該C4+塔底餾分可在去戊烷塔23中進行分離以回收包括C4-C5烴的塔頂餾分33及包括C6+烴的塔底餾分35。該丙烯餾分28及C4/C5餾分33各者可返回該烯烴轉化單元用於丙烯之複分解以生產出乙烯、丁烯類之複分解及戊烯類之複分解以生產出額外的乙烯及己烯類。因為該丙烯進料產生相當高的丙烯濃度,該反應平衡偏愛丙烯與丁烯類及戊烯類之反應。亦可形成其它重質烯烴,其以重質餾分34回收。為了避免丙烷在該系統內積聚,可收回C3吹洗流34。但是,在某些具體實例中,該丁烯類及戊烯類可進行反應至消滅,因此可不需要(選擇性)C4吹洗流。
當所形成的2-丁烯類(或於雙鍵異構化觸媒與複分解觸媒一起存在下,所形成的正丁烯類)係返回該丙烯複分解反應器時,藉由丙烯與正丁烯類反應來形成乙烯及正戊烯類而產生額外莫耳的乙烯。在此方法中,該正戊烯類係與乙烯一起產生如為副產物。所形成的正戊烯類亦可返回相同的丙烯複分解反應器,以藉由丙烯與正戊烯類反應來形成乙烯及正己烯類而生產出額外的乙 烯及形成正己烯類。如在圖1及2的具體實例中闡明,藉由讓正丁烯類及正戊烯類返回該丙烯複分解反應器能生產出額外的乙烯產物且一起形成正己烯類如為副產物。
為了進一步最大化乙烯生產,可將該正己烯類送至蒸汽裂解器。此具體實例係在圖3中闡明,其中類似的數字代表類似的部分。該去戊烷塔23可包括富含C6的側餾分40,其可進料至蒸汽裂解器42。任擇地或額外地,可將該C6+塔底餾分35進料至該蒸汽裂解器42。在該蒸汽裂解器中熱裂解而產生一主要包括乙烯及丙烯的產物流及其它重質裂解產物。進一步,可自該流33收回小C4/C5吹洗流47。雖然未闡明,在某些具體實例中,該C6烯烴可經氫化及以烷烴進料至該裂解器。
該蒸汽裂解器流出物可在分別的分餾系統(未闡明)中分餾,或返回該分餾系統16用以與該複分解流出物共同分離。如在圖3中闡明,該蒸汽裂解器系統42可包括輕質塔(未闡明)以回收輕質(甲烷)流43、去乙烯塔(未闡明)以回收乙烯流44(在該蒸汽裂解器中產生的乙烯)及去戊烷塔(未闡明)以回收C3-C5烴流46。在該蒸汽裂解器流出物中回收的C6+烴可再循環至該蒸汽裂解器用以進一步轉化,及/或可自該系統吹洗出。在該蒸氣裂解中產生的乙烯產物係加入至該整體乙烯產物產率。在該蒸汽裂解器中所形成的丙烯、正丁烯類及正戊烯類可再循環回該丙烯複分解反應器用於額外的乙烯生產。在此流程圖解中,除了輕質烴損失(甲烷)及重質(C6+烴)損失外,有明顯部分的丙烯可轉化成乙烯。
圖4闡明根據本文的具體實例之另一種用以生產乙烯的製程組態,其中類似的數字代表類似的部分。在此具體實例中,該分餾系統16包括去乙烯塔18、去丙烷塔20、去丁烷塔22及去戊烷塔23。類似於圖3,該系統進一步包括一蒸汽裂解器42用以將C6或C6+烴轉化成額外的乙烯。額外地,該系統可包括一C4異構化反應系統用以將2-丁烯轉化成1-丁烯。該C4異構化反應系統可包 括固定床反應器50及蒸餾塔52。可提取出該包括2-丁烯的C4塔頂餾出物32之一部分53,並將其進料至該C4異構化反應器以將2-丁烯轉化成1-丁烯。然後,可對來自該異構化反應器的流出物54進行分離以回收1-丁烯類塔頂餾分56及2-丁烯塔底餾分58,其可再循環至該異構化反應器用於額外的轉化。任擇地,該固定床反應器可以催化型蒸餾反應器取代或補充以轉化2-丁烯而生產出1-丁烯,同時發生該反應物與產物之分離。
圖5闡明根據本文的具體實例之另一種用以生產乙烯的製程組態,其中類似的數字代表類似的部分。在此具體實例中,該分餾系統16包括去乙烯塔18、去丙烷塔20及去戊烷塔23。在該去戊烷塔23中,回收C4/C5塔頂餾分33、C6側餾分40及C6+塔底餾分35。類似於圖3,該系統進一步包括一蒸汽裂解器42用以將C6或C6+烴轉化成額外的乙烯。額外地,該系統可包括一C6異構化反應系統用以將2-己烯類及3-己烯類轉化成1-己烯。該C6異構化反應系統可包括一固定床反應器60及一超分餾塔62。可提取出該包括2-己烯及3-己烯的C6側餾分40之一部分63,及將其進料至該C6異構化反應器以將2-及3-己烯轉化成1-己烯。然後,可分離來自該異構化反應器的流出物64以回收1-己烯類塔頂餾分66與2-及3-己烯類塔底餾分68,其可再循環至該異構化反應器用於額外的轉化。
在更其它具體實例中,可提供C4異構化系統及C6異構化系統二者以生產出1-丁烯及1-己烯產物二者。
於本文中的具體實例,如上所述,可使用單一丙烯複分解反應器與蒸汽裂解器相關連來達成在整體製程方法中自全部丙烯產生的乙烯產率之最大化。在需要最大化乙烯產率的製程方法中,可使用此製程方法來達成此。
於本文中的具體實例亦能夠讓該蒸汽裂解器在低劇烈性下操作而生產出較少的乙烯及較高的丙烯及提高在該製程中之蒸汽裂解器運轉長度,因為在該裂解器中所生產的丙烯可使用該丙烯複分解反應器來轉化回乙烯。
已知丙烯複分解會生產出乙烯及正丁烯類。但是,如於本文中的具體實例所描述,正丁烯類及正戊烯類在該丙烯複分解反應器中的額外轉化可使用作為額外的進料而進一步提高乙烯產率。在具體實例中,甚至可藉由在蒸汽裂解器中轉化正己烯類來引起進一步提高乙烯產率的最大化。該整體製程方法將大部分丙烯轉化成乙烯,且使用單一複分解反應器與蒸汽裂解器相關連來達成此乙烯最大化。
於本文中的具體實例提供一種最大化自丙烯複分解之乙烯產率的方法。該丙烯複分解反應係藉由下列複分解反應進行描述:1C3+1C3 → 1C2+2C4
二莫耳丙烯於複分解觸媒存在下反應形成一莫耳乙烯及一莫耳2-丁烯。在多個具體實例中,該反應係於溫度範圍200℃-500℃及壓力範圍0-500psig下發生。可對此反應器使用WO3/SiO2複分解觸媒及雙鍵異構化觸媒。該雙鍵異構化觸媒之存在會將自丙烯複分解所形成的2-丁烯轉化成1-丁烯。類似地,該2-戊烯對1-戊烯之轉化係藉由該雙鍵異構化反應執行。
當所形成的2-丁烯類係於該雙鍵異構化觸媒存在下轉化成正丁烯類且在該丙烯複分解反應器中與該複分解觸媒接觸時,藉由丙烯與1-丁烯之反應會形成乙烯及2-戊烯而產生額外莫耳的乙烯。
1C3+1C4 → 1C2+2C5
在此製程中,正戊烯類與乙烯一起產生如為副產物。所形成的正戊烯類可在相同丙烯複分解反應器中藉由丙烯與1-戊烯反應而進一步轉化形成乙烯及2-己烯,此產生額外的乙烯及形成正己烯類。
1C3+1C5 → 1C2+2C6
如此,在根據本文的具體實例之方法中,該正丁烯類及正戊烯類在該丙烯複分解反應器中之反應造成額外的乙烯產物產生,且一起形成正己烯 類如為副產物。
為了進一步最大化乙烯生產,可將該正己烯類送至蒸汽裂解器。任擇地,在某些具體實例中,該C6烯烴可經氫化及以烷烴進料至該裂解器。在該蒸汽裂解器中,熱裂解會產生一主要包括乙烯及丙烯的產物流,及其它重質裂解產物及某些輕烴。在該蒸汽裂解器中所產生的乙烯產物將加入該乙烯產物產率之增加。在該蒸汽裂解器中所形成的丙烯、正丁烯類及正戊烯類可在該丙烯複分解反應器中轉化而用於額外的乙烯生產。在根據本文的具體實例之製程流程圖中,除了輕質烴損失(甲烷)及重質(C6+烴)損失外,有明顯部分的丙烯可轉化成乙烯。
因此,於本文中的具體實例可使用單一丙烯複分解反應器與蒸汽裂解器相關連以達成在整體製程方法中自全部丙烯所產生的乙烯產率之最大化。
於本文中的其它具體實例包括製程流程圖之變化以一起生產出1-己烯共單體作為第二產物與乙烯產物。在此組態中,該正己烯類係自該複分解或複分解/蒸汽裂解器方法中產生而生產出1-己烯共單體產物。該方法包括一正己烯類異構化反應器及一1-己烯超分餾塔,且該超分餾塔的塔底(大部分為2-己烯類、3-己烯類)係再循環回該己烯類異構化反應器。
根據本文的具體實例之製程流程圖的另一種變化將產生1-丁烯共單體產物。在此具體實例中,來自該丙烯複分解反應器的正丁烯類產物可經整合而一起生產出1-丁烯共單體產物與乙烯。該正丁烯類可送至正丁烯類異構化反應器及隨後1-丁烯超分餾塔,且將該超分餾塔的塔底(2-丁烯類)再循環回該正丁烯類異構化反應器。
於本文中的具體實例係經由複分解讓丙烯轉化成乙烯。正丁烯類及/或正戊烯類在相同反應器中與未轉化的丙烯一起進一步轉化係新穎且會產生 額外的乙烯生產。藉由在該丙烯複分解反應器中轉化該正丁烯類及正戊烯類(且將該正丁烯類及正戊烯類轉化至消滅),在某些具體實例中自該反應器形成的二種產物係乙烯及正己烯類。進一步,於本文中的具體實例可裂解該正己烯類而形成乙烯、丙烯、丁烯類、戊烯類及某些重質組分。可將該在裂解器中所形成的C3、C4及C5烯烴送至該丙烯複分解單元。如此,基本上,在該蒸汽裂解器中除了某些重質損失及CH4損失外,根據本文的具體實例,大部分的原始丙烯可轉化成乙烯。此可造成基本上自該丙烯流的乙烯生產之最大化。以質量為基礎,於本文中的具體實例可使用來讓多於40%的丙烯,以質量為基礎,轉化成乙烯。例如,根據模擬結果,根據圖1之製程的具體實例可使用來造成42%-48%的丙烯轉化成乙烯。根據模擬結果,根據圖2之製程的具體實例可使用來造成45%-55%的丙烯轉化成乙烯。根據模擬結果,根據圖3-5的具體實例可使用來造成65%-75%轉化成乙烯,以質量為基礎。
加入1-己烯作為產物及/或1-丁烯作為產物對該製程方法加入靈活性。在該方法中所產生的正己烯類流可使用來生產1-己烯產物。類似地,正丁烯類流可使用來生產1-丁烯產物。1-丁烯及1-己烯在聚乙烯生產中係共單體及可具有價值。
於本文中的具體實例提供一種自丙烯流增加乙烯產率的獨特方法,此對現在商業反應器或知識基礎係不可能。如上述提到,丙烯複分解自二莫耳丙烯(42+42)產生一莫耳乙烯(28克/莫耳)。正丁烯類(56克/莫耳)作為第二產物較沒有價值,及以質量為基礎,僅有33.3%的丙烯以乙烯為終結及剩餘為正丁烯類。於本文中的具體實例完全扭轉此局面而產生高百分比的乙烯流與最小的側產物,諸如重質及甲烷,其中丙烯使用率可高如90%,以質量為基礎。
雖然本揭示包括一些有限數目的具體實例,熟習具有本揭示的利益之技藝的人士將察知可設計出未脫離本揭示之範圍的其它具體實例。此外, 該範圍應該僅受所附加的申請專利範圍限制。
10:丙烯進料流
12:烯烴轉化單元(OCU)
14:OCU流出物
16:分餾區域,分餾系統
18:去乙烯塔
20:去丙烷塔
22:去丁烷塔
24:包含乙烯產物的塔頂餾分
26:包含C3+烴的塔底餾分
28:C3塔頂餾分,丙烯餾分
30:C4+塔底餾分
32:包括C4烴的塔頂餾分,丁烯類餾分
34:包括C5+烴的塔底餾分,重質餾分
36:C3吹洗流

Claims (13)

  1. 一種用以生產乙烯的方法,其包含:混合一丙烯進料流與一或多種含C3-C5烴餾分以形成一混合進料流;將該混合進料流進料至一包括複分解觸媒的複分解反應器;讓該混合進料流與該複分解觸媒接觸以產生一包含乙烯、未轉化的丙烯、2-丁烯、2-戊烯及2-己烯之反應流出物;在一去乙烯塔中分餾該反應流出物以回收乙烯產物流及一C3+餾分;在一去丙烷塔中分餾該C3+餾分以回收一C3餾分及一C4+餾分;在一去丁烷塔中分餾該C4+餾分以回收一C4餾分及一C5+餾分;在一去戊烷塔中分餾該C5+餾分以回收一C5餾分及一C6+餾分;將該C6+餾分的至少一部分進料至一蒸汽裂解器用以裂解在其中的烴而產生一包含乙烯、丙烯、丁烯類及/或戊烯類的裂解器流出物;及結合該裂解器流出物及該反應流出物;其中,丙烯至乙烯的整體轉化以質量為基礎為大於40質量%。
  2. 如請求項1之方法,其中該一或多種含C3-C5烴餾分包括一或多種下列餾分:C3餾分、C4餾分、C5餾分、C3-C4餾分、C4-C5餾分及/或C3-C5餾分。
  3. 如請求項1之方法,更包含:將該C3餾分、該C4餾分及該C5餾分中一或多者之至少一部分再循環至該混合步驟作為該一或多種含C3-C5烴餾分,以生產額外的乙烯。
  4. 如請求項2之方法,其中該含C3-C5烴餾分包括C4餾分,該方法更包含:將該C4餾分的一部分進料至一異構化反應器以將在其中之2-丁烯的一部分轉化成1-丁烯。
  5. 如請求項4之方法,更包含將該1-丁烯進料至該複分解反應器。
  6. 如請求項1之方法,其中在該丙烯進料流中之至少65%的丙烯係轉化成乙烯。
  7. 一種用以生產乙烯的方法,其包含:混合一丙烯進料流與一或多種含C3-C5烴餾分以形成一混合進料流;將該混合進料流進料至一包括複分解觸媒的複分解反應器;讓該混合進料流與該複分解觸媒接觸以產生一包含乙烯、未轉化的丙烯、2-丁烯、2-戊烯及2-己烯之反應流出物;在一去乙烯塔中分餾該反應流出物以回收乙烯產物流及一C3+餾分;在一去丙烷塔中分餾該C3+餾分以回收一C3餾分及一C4+餾分;在一去戊烷塔中分餾該C4+餾分以回收一C4/C5塔頂餾分、一C6側餾分及一C6+塔底餾分;將該C6側餾分的至少一部分進料至一蒸汽裂解器用以裂解在其中的烴而產生一包含乙烯、丙烯、丁烯類及/或戊烯類的裂解器流出物;及結合該裂解器流出物及該反應流出物;其中,丙烯至乙烯的整體轉化以質量為基礎為大於40質量%。
  8. 如請求項7之方法,其中該一或多種含C3-C5烴餾分包括一或多種下列餾分:C3餾分、C4餾分、C5餾分、C3-C4餾分、C4-C5餾分及/或C3-C5餾分。
  9. 如請求項7之方法,更包含:將該C3餾分及該C4/C5餾分中一或多者之至少一部分再循環至該混合步驟作為該一或多種含C3-C5烴餾分,以生產額外的乙烯。
  10. 如請求項7之方法,更包含: 將該C6側餾分的一部分進料至一異構化反應器以將在其中之2-己烯及3-己烯的一部分轉化成1-己烯並生產一異構化流出物。
  11. 如請求項10之方法,更包含分餾該異構化流出物以生產一2-己烯及3-己烯塔底餾分及一1-己烯塔頂餾分。
  12. 如請求項11之方法,更包含將該2-己烯及3-己烯塔底餾分之至少一部分再循環至該異構化反應器。
  13. 如請求項7之方法,其中在該丙烯進料流中之至少65%的丙烯係轉化成乙烯。
TW109141011A 2019-11-20 2020-11-23 丙烯複分解之乙烯最大化技術 TWI805967B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962938002P 2019-11-20 2019-11-20
US62/938,002 2019-11-20

Publications (2)

Publication Number Publication Date
TW202124341A TW202124341A (zh) 2021-07-01
TWI805967B true TWI805967B (zh) 2023-06-21

Family

ID=75909291

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109141011A TWI805967B (zh) 2019-11-20 2020-11-23 丙烯複分解之乙烯最大化技術

Country Status (4)

Country Link
US (2) US11565985B2 (zh)
EP (1) EP4061792A4 (zh)
TW (1) TWI805967B (zh)
WO (1) WO2021102346A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3261879A (en) * 1963-09-27 1966-07-19 Phillips Petroleum Co Olefin disproportionation
US3485890A (en) * 1967-04-03 1969-12-23 Phillips Petroleum Co Conversion of propylene into ethylene
CN105849070A (zh) * 2013-11-20 2016-08-10 鲁姆斯科技公司 烯烃转化方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026935A (en) * 1989-10-02 1991-06-25 Arco Chemical Technology, Inc. Enhanced production of ethylene from higher hydrocarbons
US9695096B2 (en) * 2012-07-12 2017-07-04 Lummus Technology Inc. More energy efficient C5 hydrogenation process
BR112015005606B1 (pt) * 2012-09-14 2021-03-09 Lummus Technology Inc processo para a produção de propileno
CN107973684B (zh) * 2016-10-21 2021-02-09 中国石油化工股份有限公司 丙烯歧化制乙烯的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3261879A (en) * 1963-09-27 1966-07-19 Phillips Petroleum Co Olefin disproportionation
US3485890A (en) * 1967-04-03 1969-12-23 Phillips Petroleum Co Conversion of propylene into ethylene
CN105849070A (zh) * 2013-11-20 2016-08-10 鲁姆斯科技公司 烯烃转化方法

Also Published As

Publication number Publication date
US11565985B2 (en) 2023-01-31
US20210147318A1 (en) 2021-05-20
US20230167040A1 (en) 2023-06-01
EP4061792A1 (en) 2022-09-28
EP4061792A4 (en) 2024-01-03
TW202124341A (zh) 2021-07-01
WO2021102346A1 (en) 2021-05-27

Similar Documents

Publication Publication Date Title
JP4214474B2 (ja) C4オレフィン流からプロピレン及びヘキセンを製造する方法
KR101759802B1 (ko) 저 에틸렌 또는 에틸렌을 이용하지 않는 복분해를 통한 프로필렌
US10676411B2 (en) Olefin conversion process
EP2321382B1 (en) Integrated propylene production
KR100803431B1 (ko) 선형 알파 올레핀 및 에틸렌의 생성 방법
TWI805967B (zh) 丙烯複分解之乙烯最大化技術
US11136278B2 (en) Conversion of propylene to ethylene
WO2015077343A1 (en) Olefin conversion process
US20210331989A1 (en) On-purpose propylene production from butenes