TWI804325B - 可變資料之窄頻多通道通訊系統 - Google Patents

可變資料之窄頻多通道通訊系統 Download PDF

Info

Publication number
TWI804325B
TWI804325B TW111118973A TW111118973A TWI804325B TW I804325 B TWI804325 B TW I804325B TW 111118973 A TW111118973 A TW 111118973A TW 111118973 A TW111118973 A TW 111118973A TW I804325 B TWI804325 B TW I804325B
Authority
TW
Taiwan
Prior art keywords
data
signal
transmission
communication system
module
Prior art date
Application number
TW111118973A
Other languages
English (en)
Other versions
TW202347982A (zh
Inventor
卜文正
Original Assignee
國立勤益科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立勤益科技大學 filed Critical 國立勤益科技大學
Priority to TW111118973A priority Critical patent/TWI804325B/zh
Application granted granted Critical
Publication of TWI804325B publication Critical patent/TWI804325B/zh
Publication of TW202347982A publication Critical patent/TW202347982A/zh

Links

Images

Landscapes

  • Communication Control (AREA)
  • Dc Digital Transmission (AREA)

Abstract

本發明可變資料之窄頻多通道通訊系統,包含有傳送模組、接收模組及通訊媒介,通過該傳送模組可將多數傳遞之常數/動態資料建立為PK位元狀態,並經一函數演算法則的轉換後形成為複數個相鄰頻率,且每個頻率間具有正弦及餘弦函數正交特性同時封裝轉換為具備同步脈波串,並將其疊代串列整合為一具有多維度資料通訊通道的串列傳輸模式架構的模擬量子信號,如此在相鄰較窄的頻率中可使得傳送資料得以具有加密之特性,更可防止雜訊干擾而造成脈波數量誤差情事產生,同時更可增進由該通訊媒介的傳送速率。

Description

可變資料之窄頻多通道通訊系統
本發明係有關於一種窄頻多通道通訊的設計,特別是指一種可變資料之窄頻多通道通訊系統。
隨著資訊產業進步,電腦已經是生活上及工作上不可或缺的工具,然而以現行的通訊模式,可分類成串列通訊與並列通訊模式,前者利用一個通訊通道傳送資料,且速度較慢,後者同時結合數個通道傳送資料,且速度相對快速,同時通訊通道除採硬體建立外,常會利用通訊之頻譜分佈架構而成,且電磁波更會依照頻譜分佈可分成不同之通訊區段,即採用分頻多工技術,以區分不同之頻率區段作為通訊通道;當然如常用的區段依WRC-2007規劃,有低頻(LF;30kHz)、中頻(MF;300kHz~3000kHz)、高頻(HF;3MHz~30MHz)、特高頻(VHF;30MHz~300MHz)、超高頻(UHF;300MHz~3000MHz)、極高頻(SHF;3GHz~30GHz)及至高頻(EHF;30GMHz~300GHz)七個區段,是以,各國除提供ISM(Information、Science及Medision)通道,以提供研究及公益使用外,其餘皆屬於國家資源,且各有規劃,並嚴禁任意使用;因此,在WLAN網路IEEE802.11標準,原始規劃出四個頻段即2.4 GHz、3.6GHz、4.9GHz和5.8GHz,其中包含為避免各通道傳送資料過程中彼此信號干擾,且所需之通道間還要看守頻帶(guard band)的設置,故現有發展技術,是以一個通道傳輸資訊,需要以Mhz為單位的頻段,但又僅只能採用串列模式,不但傳送速率慢外,更會導致通訊速度因此被限制在通道之頻寬容量中,實有待改進。
因此,本發明之目的,是在提供一種可變資料之窄頻多通道通訊系統,藉由將多數傳遞之常數/動態資料轉換,且形成為複數個相鄰頻率,使每個頻率間具有正弦及餘弦函數正交特性,並封裝為具備同步脈波串之PK位元狀態且加以疊代串列整合,以在相鄰較窄的頻率中使傳送資料得以具有加密性,進而增進由該通訊媒介的傳送速率。
於是,本發明可變資料之窄頻多通道通訊系統包含有傳送模組、接收模組及通訊媒介;其中,藉由該傳送模組之PK編碼單元及信號整合單元,係可針對接收之多數傳遞之常數/動態資料,建立為具PK位元狀態,並通過一函數演算法則同時轉換,以找出該常數/動態資料中的正弦及餘弦函數,為具備同步脈波串之PK位元進行狀態的確立,並形成為追蹤PK位元所輸出波形,反推出欲傳遞之常數/動態資料,以防雜訊造成脈波數量誤差,且於傳送前由該信號整合單元將該等具備同步脈波串之PK位元進行疊代串列整合,且封裝為一具有多維度資料之通訊通道的串列傳輸模式架構的模擬量子信號;另,該接收模組之PK解碼追蹤單元,係可針對接收之模擬量子信號進行解析,且對封裝於該信號中的多維資料進行分析,並統計出脈波串之PK位元後並進行追蹤,再予以反推 解碼還原成原始的多數傳遞之常數/動態資料;因此,該等常數/動態資料透過建立轉換成具備同步脈波串的PK位元,使一次一個頻率即能載送兩個位元的資料,同時因為每個頻率間皆具獨立性,可以防止雜訊造成脈波數量誤差產生,進而再以疊代串列整合方式,進一步成為具有多維度資料通訊通道的串列傳輸模式架構的模擬量子信號,不須看守頻帶(guard band)的設置,相鄰頻率即可被使用來同時載送資料,大幅減少通訊通道所需之頻率,節省頻率資源的浪費,相對增加傳輸速度,如此在相鄰較窄的頻率中不但可以達到使傳送資料得以具有加密之特性,同時再經該接收模組以該PK解碼追蹤單元對該模擬量子信號進行解析,且進一步反推解碼還原成原始的多數傳遞之常數/動態資料,故在封裝轉換該模擬量子信號經疊代整合傳送過程中,得以藉由一通訊信號線的連結效益,達到短時間內一併進行多數資料的傳送,藉以增進傳送速度效益。
有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之較佳實施例的詳細說明中,將可清楚的明白。
參閱圖1,本發明可變資料之窄頻多通道通訊系統3之一較佳實施例(圖中以簡圖表示),其適用於電腦所執行,該可變資料之窄頻多通道通訊系統3包含有一傳送模組31,一接收模組32,以及一分別與該傳送模組31、接收模組32連接之通訊媒介33;其中,該傳送模組31包括有一PK編碼單元311,以及一與該PK編碼單元311連接之信號整合單元312,而前述該PK編碼單元311建立有一用來確定之函數演算法則311a,以針對接收之多數欲傳遞之常數/動態資料建立為PK位元狀態,且更可將該等PK位元轉換為具備同步脈波串,特別是,在本實施例中該函數演算法則為正弦及餘弦演算法則,是以通過該函數演算法則311a的轉換,來找出該常數/動態資料中的正弦(sin)及餘弦(Cos)函數,對該等具備同步脈波串之PK位元進行狀態的確立,並形成為複數個相鄰頻率,使每個頻率間具有正弦(sin)及餘弦(Cos)函數正交特性,即一次一個頻率即能載送兩個位元的資料,同時又因為每個頻率間皆具獨立性,因此通過此演算法則,不須看守頻帶(guard band)的設置,相鄰頻率即可被使用來同時載送資料,大幅減少通訊通道所需之頻率,節省頻率資源的浪費,相對增加傳輸速度,更可用以防止雜訊造成脈波數量誤差,而該信號整合單元312為具備有重疊與纏結之特性,同時該信號整合單元312中另建立有一修正率312a,俾利該等具備同步脈波串之PK位元在該信號整合單元312的疊代串列整合過程中,使該修正率312a可自行針對疊代整合時之不足的部分進行調整修正後,而形成為連續型頻率之信號,再封裝成一具且有多維度資料之多通道通訊的串列傳輸模式架構的模擬量子信號,並在相鄰較窄的頻率中進行傳送,同時在本實施例中,該傳送模組31所傳送之模擬量子信號可為以類比信號或為數位信號方式呈現。
仍續前述,該接收模組32可接收該傳送模組31所傳送具有串列整合之該模擬量子信號,而該接收模組32包括有一PK解碼追蹤單元321,以及一演算法則322,使而該PK解碼追蹤單元321可對接收之該模擬量子信號進行解析,並對封裝於該模擬量子信號中的多維資料進行追蹤後,再由該演算法則322採用不同追蹤以對不同頻率正弦(sin)及餘弦(Cos)函數進行演算,而得到由該傳送模組31經該函數演算法則311a轉換之具PK位元的同步脈波串時,再予以反推解碼還原成原始的多數傳遞之常數/動態資料;至於,該通訊媒介33其分別與該傳送模組31及接收模組32連接,且針對經該傳送模組31封裝為具有串列傳模式架構的模擬量子信號進行傳送。
是以,當欲傳遞之多數常數/動態資料經由該傳送模組31後,並由該PK編碼單元311接收時,該PK編碼單元311便會利用該函數演算法則311a來對該等常數/動態資料進行確定轉換,並找出該常數/動態資料中的正弦及餘弦函數,即通過該PK編碼單元311利用該函數演算法則311a以適當的臨界值ε設定,而形成為複數個相鄰頻率,並使每個頻率間具有正弦(sin)及餘弦(Cos)函數正交特性,以定義一個類比信號可轉換成數位信號之轉換函數ƒ(Magnitude),其轉換關係式為:
Figure 02_image001
………(1)
經由上述揭示之關係式的轉換,即能使該等常數/動態資料以數位資料傳送,當然其他資料也可經過上述關係式的轉換,以建立為PK位元狀態,以使該等PK位元具備同步性質,並形成傳送的數位資料,所以能自動調適通訊速度與資料長度,更可控制通訊信號的頻譜分佈,因此若定義基底為d,而經該函數演算法則311a輸出的PK數位位元信號為N表示為十進制值脈波數量,則傳輸之資料為DA之編碼原理如下:
Figure 111118973-A0305-02-0009-3
在PK編碼的原理中,n為整數,
Figure 111118973-A0305-02-0009-1
用來防止雜訊造成脈 波數量誤差,此設計容許傳輸過程中計算脈波數量之結果,可有+(
Figure 111118973-A0305-02-0009-5
- 1)與-(
Figure 111118973-A0305-02-0009-4
)範圍間之計數誤差。
因此,在該等常數/動態資料經該PK編碼單元建立轉換為可輸出之PK位元波形,是採用同速度的一串脈波,所以在頻譜的分佈也固定,而且改變脈波的速度,也可以控制頻譜位置,且一連串脈波可很容易分離出低頻的同步信號,即如圖2所示,同時PK編碼的另一個特性是,可在輸出信號隱藏著同步信號;並藉由該信號整合單元312具備有重疊與纏結特性,且可將該等具備同步脈波串之PK位元進行疊代串列整合,以封裝形成一具有多維度資料之多通道通訊的串列傳輸模式架構的模擬量子信號,而採用疊代之模式如圖3所示,可讓模擬量子信號的中的PK位元信號λ(x,t)具備重疊(Superposition)及纏結特性,使該信號整合單元312運用窄頻寬技術建立更多的通道,更可讓PK位元信號聚集在特定頻率附近,同時對於該PK位元信號λ(x,t)的設計,對於封裝資料,不僅有固定值,同時還能封裝具備時間維度,變動的資料及資料特性等,藉此可達到欲傳送資料得以具有加密之特性,這皆是通過該PK編碼單元311中用該轉函數演算法則311a來找出該常數/動態資料中的正弦 及餘弦函數的概念來對PK位元進行狀態確定;因此,無論具有多少個位元資料,該傳送模組31可一次傳送該等位元資料,以滿足用來模擬之量子空間之狀態;當然,通過在該PK編碼單元311之技術中具有該函數演算法則311a的建立,以用來確定的PKbit位元(PK Bit,PKQ)狀態及特性,架構出如一泛用型之量子計算引擎,讓PK位元架構之空間更適泛用於各種應用領域,是以,運用該PK編碼單元311中之轉換技術可依據不同的信號交流需求,而將該等傳遞之常數/動態資料建立轉換為可通過如RS323等通訊使用之更多不同動/固態編碼。
仍續上述,因此在該信號整合單元312對該等具備同步脈波串之PK位元進行疊代串列整合時,必需定義一次疊代收斂之時間為Tw,或稱為一次視窗時間(Window Time),其時間Tw的長短也是決定通訊速度的主要因素之一,要縮短收斂時間Tw,必須選擇適當的修正率的加入,而在該信號整合單元312中便可帶入運用,其修正率關係式如下:
Figure 111118973-A0305-02-0010-6
通過上述修正率關係式表示,其中L代表誤差平方函數,而在該信號整合單元中可由▽E為所表示的修正率η總是決定疊代收斂之最後結果與速度,且可再加入最陡變化法(Steepest Descent Method)運用,因為▽L所指定方向永遠指向誤差e最小方向,而收斂速度快慢就由修正率η來決定,以讓疊代後的目標方程式為E(n+1)<E(n),即關係式為:
Figure 111118973-A0305-02-0010-7
無論如何,當e(n+1)-e(n)<0才會讓疊代收斂,其關係式為:e(n+1)-e(n)=[y(n+1)-W(n+1)X T (n+1)]-[y(n)-W(n)X T (n)]<0‥(5)
也因為輸出信號y是連續類比信號,當取樣頻率高,取樣時間足夠小時,其關係式可設定為:X T (n+1)=X T (n)……(6)
並將此關係式(6)帶入關係式(5)中,整理而到之關係式為:y(n+1)-y(n)<ηe(n)X(n)X T (n)……(7)
且修正率η之收斂範圍之關係式如下:
Figure 111118973-A0305-02-0011-8
Figure 111118973-A0305-02-0011-9
在上述關係式(9)中RNK(X)代表矩陣的行數
Figure 111118973-A0305-02-0011-10
Figure 111118973-A0305-02-0011-11
Figure 111118973-A0305-02-0011-12
Figure 111118973-A0305-02-0011-40
因此可藉由下列說明即可清楚得知,在該信號整合單元312所進行的疊代結果中,因為省略了高次項及雜訊,在追蹤類比信號時必然會引起穩定的誤差e*,此外,由於使用連續頻率作為通道,修正率必須增加加速因子,即會需考慮誤差變動量
Figure 111118973-A0305-02-0011-30
的影響,且更會呈如前述該關係式中所示,因此該PK編碼單元311以線性組合方式中,其參考誤差e及誤差之變動量
Figure 111118973-A0305-02-0011-32
,而該修正率312a會隨機改變,請配合參閱圖4所示,在圖中R為目標值,y為實際值,G代表目標函數(Object Function),如此 在單個疊代過程中,其每次疊代期間就像一個滑動模式,其說明由誤差e及誤差變動量
Figure 111118973-A0305-02-0012-34
構成的滑動平面S,且整體由複數個滑動模式串聯而成,因為每個滑動平面S在穩定後趨近為0,所以經推論可得到之關係式為:
Figure 111118973-A0305-02-0012-41
Figure 111118973-A0305-02-0012-15
則為證明時間趨向穩定目標值其關係式為:
Figure 111118973-A0305-02-0012-16
並於下列關係式為換以成相對之離散表示關係式:
Figure 111118973-A0305-02-0012-17
接下來將關係式(15)及(16)帶入關係式(17)後,其整理可得關係式為:
Figure 111118973-A0305-02-0012-18
再者,若函數為V時,其關係式定義為V=S2時,則只 要
Figure 111118973-A0305-02-0012-23
,其信號傳輸過程便會穩定;換言之,只要關係式如下:
Figure 111118973-A0305-02-0012-19
Figure 111118973-A0305-02-0012-20
Figure 111118973-A0305-02-0012-21
Figure 111118973-A0305-02-0012-22
由上即滿足穩定之要求,而以成相對之離散表式之關係式為下所示:y(n)>m……(23)
其中,
Figure 111118973-A0305-02-0012-25
,總結 前述推論,故在該PK編碼單元311中只要滿足關係式(14)、(15)和(23),就能證明經該信號整合單元312疊代後之傳輸信號,就會形成如圖5所示,讓L(W)逐漸縮小,W(n)趨近於最佳W*,因此△W(n)修正為關係式如下:
Figure 111118973-A0305-02-0013-42
而上述關係式(24)中μ及η皆為未知係數,但遵循下列步 驟,先依選取
Figure 111118973-A0305-02-0013-26
,接著選擇η值,最後藉由上述關係式(24)及μ求 η(請配合參閱圖6)。
仍續上述,故當該接收模組32在接收該傳送模組31所傳送出之具有串列傳輸模式架構的模擬量子信號,在該PK解碼追蹤單元321接收後,通過該PK解碼追蹤單元321解析封裝在該模擬量子信號中之多維資料,利用內存於該PK位元信號內之原經該函數演算法則311a轉換輸出之信號,再由該演算法則322採用不同追蹤以對不同頻率正弦(sin)及餘弦(Cos)函數進行演算,來對該等常數/動態資料進行確定轉換,並進行統計與分析,以印證資料是否正確,以追蹤經PK位元所輸出波形,反推出欲傳遞之常數/動態資料,即可對多維資料中之a、η及μ這些參數值之選取,並依圖6所示,考慮多維資料在經過0.001秒後,y要到達目標值之70%時,可先將條件帶入至關係式(17)中,即為:
Figure 111118973-A0305-02-0013-27
求得
Figure 111118973-A0305-02-0013-28
是以,給予初值條件後便可判別是否滿足穩定之關係式,再選出η=0.01及μ=0.00001,同時參考函數演算法則311a,且在解封 分析過程中,會在對分析之資料進行輕微修正,且修正後之參數會被替換,通常能夠在大約一個x1週期內,將封裝在PK位元之數位多維資料,正確的解析出來,如以即完成一次將多個常數/動態資料的傳輸作業;因此,透過該PK編碼單元311與信號整合單元312就能將多數傳遞之常數/動態資料,且封裝呈多維的連續資料並具有同步脈波串的PK位元,增加通訊處理的能量,使傳送資料得以在相鄰較窄的頻率中具有加密與防干擾之特性,以在該通訊媒介33的連結效益,達到短時間內可一併進行多數資料的傳送,有效增進傳送速率。
歸納前述,本發明可變資料之窄頻多通道通訊系統,利用傳送模組可對欲傳送之多數傳遞之常數/動態資料,建立轉換成具備同步脈波串的PK位元,並經一函數演算法則的轉換後形成為複數個相鄰頻率,且每個頻率間具有正弦(sin)及餘弦(Cos)函數正交特性,以防止雜訊造成脈波數量誤差產生,進而再以疊代串列整合方式,以成為具有多維度資料通訊通道的串列傳輸模式架構的模擬量子信號輸出,且在該接收模組可進一步反推解碼還原成原始的多數傳遞之常數/動態資料,因此在傳輸過程中,不但可以達到在相鄰較窄的頻率中使傳送資料得以具有加密之特性,且更可防干擾,進而達到短時間內一併進行多數資料的傳送,藉以增進傳送速度效益。
惟以上所述者,僅為說明本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明書內容所作之簡單的等效變化與修飾,皆應仍屬本發明專利涵蓋之範圍內。
(本發明) 3:窄頻多通道通訊系統 31:傳送模組 32:接收模組 33:通訊媒介 311:PK編碼單元 312:信號整合單元 311a:函數演算法則 312a:修正率 321:PK解碼追蹤單元 322:演算法則
圖1是本發明一較佳實施例之示意圖。
圖2是該較佳實施例之編碼後輸出信號示意圖。
圖3是該較佳實施例之PK編碼及疊代整合多通道通訊之示意圖。
圖4是該較佳實施例之滑動模式之驗證方塊示意圖。
圖5是該較佳實施例之目標函數分佈示意圖。
圖6是該較佳實施例之修正率選擇流程方塊圖。
(本發明)
3:窄頻多通道通訊系統
31:傳送模組
32:接收模組
33:通訊媒介
311:PK編碼單元
312:信號整合單元
311a:函數演算法則
312a:修正率
321:PK解碼追蹤單元
322:演算法則

Claims (4)

  1. 一種可變資料之窄頻多通道通訊系統,其適用於電腦執行,該窄頻多通道通訊系統包含有:一傳送模組,其可接收多數傳遞之常數/動態資料,而該傳送模組包括有一PK編碼單元,以及一與該PK編碼單元連接之信號整合單元;其中,該PK編碼單元建立有一用來確定之函數演算法則,使該PK編碼單元可將傳遞之常數/動態資料建立為PK位元狀態,並使該PK位元轉換為具備同步脈波串,同時通過該函數演算法則的轉換,找出該常數/動態資料中的正弦及餘弦函數,來對該等具備同步脈波串之PK位元進行狀態的確立,且形成為複數個相鄰頻率,使每個頻率間具有正弦及餘弦函數正交特性,用以防止雜訊造成脈波數量誤差,而該信號整合單元具備有重疊與纏結特性,可將該等具備同步脈波串之PK位元進行疊代串列整合,以封裝形成一具有多維度資料之通訊通道的串列傳輸模式架構的模擬量子信號,以進行傳送;一接收模組,其可接收傳送模組的模擬量子信號,該接收模組包括有一PK解碼追蹤單元,而該PK解碼追蹤單元可對接收之疊代串列整合的模擬量子信號進行解析,並對封裝於該模擬量子信號中的多維資料進行分析,以統計出脈波串之PK位元,並對統計出該脈波串之PK位元進行追蹤後,而得到由該傳送模組經該函數演算法則轉換之具PK位元的同步脈波串時,再予以反推解碼還原成原始的多數傳遞之常數/動態資料;以及一通訊媒介,其分別與傳送模組及接收模組連接,且針對經該傳送模組封裝形成具有串列傳輸模式架構的模擬量子信號進行傳送。
  2. 根據請求項1所述可變資料之窄頻多通道通訊系統,其中,基於所述PK編碼單元還包括能自動調適通訊速度與資料長度,以及控制通訊之該模擬量子信號的頻譜分佈。
  3. 根據請求項1所述可變資料之窄頻多通道通訊系統,其中,該傳送模組所傳送之模擬量子信號可為以類比信號、或為數位信號傳送方式呈現。
  4. 根據請求項1所述可變資料之窄頻多通道通訊系統,其中,該接收模組另有一演算法則,其可採用不同追蹤以對不同頻率正弦及餘弦函數進行演算。
TW111118973A 2022-05-20 2022-05-20 可變資料之窄頻多通道通訊系統 TWI804325B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111118973A TWI804325B (zh) 2022-05-20 2022-05-20 可變資料之窄頻多通道通訊系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111118973A TWI804325B (zh) 2022-05-20 2022-05-20 可變資料之窄頻多通道通訊系統

Publications (2)

Publication Number Publication Date
TWI804325B true TWI804325B (zh) 2023-06-01
TW202347982A TW202347982A (zh) 2023-12-01

Family

ID=87803374

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111118973A TWI804325B (zh) 2022-05-20 2022-05-20 可變資料之窄頻多通道通訊系統

Country Status (1)

Country Link
TW (1) TWI804325B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW331685B (en) * 1994-08-02 1998-05-11 P Johnson Neldon Digital information transfer to provide a method and an apparatus for multiple frequency, multiple channel digital information transfer through time slot allocation.
TW516283B (en) * 2000-06-07 2003-01-01 Conexant Systems Inc Method and apparatus for dual-band modulation in powerline communication network systems
US7020218B2 (en) * 2001-06-18 2006-03-28 Arnesen David M Sliding-window transform with integrated windowing
TWI687038B (zh) * 2018-12-07 2020-03-01 國立勤益科技大學 並列通訊控制方法
US20200091608A1 (en) * 2016-12-21 2020-03-19 Intel Corporation Wireless communication technology, apparatuses, and methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW331685B (en) * 1994-08-02 1998-05-11 P Johnson Neldon Digital information transfer to provide a method and an apparatus for multiple frequency, multiple channel digital information transfer through time slot allocation.
TW516283B (en) * 2000-06-07 2003-01-01 Conexant Systems Inc Method and apparatus for dual-band modulation in powerline communication network systems
US7020218B2 (en) * 2001-06-18 2006-03-28 Arnesen David M Sliding-window transform with integrated windowing
US20200091608A1 (en) * 2016-12-21 2020-03-19 Intel Corporation Wireless communication technology, apparatuses, and methods
TWI687038B (zh) * 2018-12-07 2020-03-01 國立勤益科技大學 並列通訊控制方法

Also Published As

Publication number Publication date
TW202347982A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
Goyal et al. Multiple description transform coding: Robustness to erasures using tight frame expansions
CN113179109B (zh) 一种去蜂窝大规模mimo上行频谱效率优化方法
TW431088B (en) Data transmission over a communications link with variable transmission rates
Lee et al. Compressed sensing and routing in multi-hop networks
CN113067610B (zh) 基于swipt的毫米波noma系统安全能效最大化功率分配方法
Chan et al. DeepSense: Enabling carrier sense in low-power wide area networks using deep learning
CN103763696A (zh) 一种基于跨层安全压缩的节能传感器数据收集方法
Li et al. Asynchronous activity detection for cell-free massive MIMO: From centralized to distributed algorithms
TWI804325B (zh) 可變資料之窄頻多通道通訊系統
Yazdani et al. Protocols to reduce CPS sensor traffic using smart indexing and edge computing support
Yang et al. Vehicle text data compression and transmission method based on maximum entropy neural network and optimized huffman encoding algorithms
CN103701468B (zh) 基于正交小波包变换与旋转门算法的数据压缩与解压方法
Shevchuk Theoretical and algorithmic foundations of improving the efficiency of packet data transmission in high-speed and secure radio networks
Ginde et al. Game theoretic analysis of joint link adaptation and distributed power control in GPRS
Hesham et al. On the performance of large-scale wireless networks in the finite block-length regime
CN114828151A (zh) 一种硬件损伤下star-ris辅助noma系统的中断概率和遍历容量性能分析方法
Kazemi et al. A lower capacity bound of secure end to end data transmission via GSM network
CN113923141B (zh) 一种高密度ap分布的无线局域网络吞吐量估计方法及系统
Eslami et al. A centralized PSD map construction by distributed compressive sensing
CN112636799A (zh) 一种mimo安全通信中最优伪噪声功率配置方法
JP6744982B2 (ja) OvXDMシステムに適用される一種類のファストデコード方法、装置及びOvXDMシステム
TWI769911B (zh) 基於自適性學習之聯合波束選擇和功率控制的系統和方法
Gu et al. Critical phase of connectivity in wireless network expansion
CN108810165A (zh) 一种物联网数据融合中传输调度算法
CN116318299A (zh) 一种基于通信感知联合优化的波束赋形和资源分配方法