TWI804272B - Three-dimensional memory device - Google Patents

Three-dimensional memory device Download PDF

Info

Publication number
TWI804272B
TWI804272B TW111114137A TW111114137A TWI804272B TW I804272 B TWI804272 B TW I804272B TW 111114137 A TW111114137 A TW 111114137A TW 111114137 A TW111114137 A TW 111114137A TW I804272 B TWI804272 B TW I804272B
Authority
TW
Taiwan
Prior art keywords
layer
vertical
metal silicide
dimensional memory
memory device
Prior art date
Application number
TW111114137A
Other languages
Chinese (zh)
Other versions
TW202341446A (en
Inventor
賴二琨
龍翔瀾
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW111114137A priority Critical patent/TWI804272B/en
Application granted granted Critical
Publication of TWI804272B publication Critical patent/TWI804272B/en
Publication of TW202341446A publication Critical patent/TW202341446A/en

Links

Images

Abstract

A three-dimensional memory device is provided. The three-dimensional memory device includes a substrate, a stacking structure, a vertical source structure, a vertical drain structure, and a vertical channel layer. The stacking structure is disposed on the substrate and includes a plurality of conductive layers and a plurality of insulating layer alternately stacked. The vertical source structure and the vertical drain structure are embedded in the stacking structure. The vertical source structure and the vertical drain structure respectively include single crystalline silicon and metal silicide. The vertical channel layer surrounds the vertical source structure and the vertical drain structure and is in contact with the vertical source structure and the vertical drain structure, in which the vertical channel layer includes single crystalline silicon.

Description

三維記憶體元件3D memory device

本發明係關於一種三維記憶體元件。The invention relates to a three-dimensional memory element.

非揮發性記憶體元件在設計上有一個很大的特性是,當記憶體元件失去或移除電源後仍能保存資料狀態的完整性。隨著各種應用程式的增加及功能的提升,對於記憶體元件的需求,也趨向較小的尺寸、較大的存儲容量。為了滿足這些需求,目前設計者轉而開發一種包含有多個存儲單元階層(multiple plane of memory cells)疊層的三維記憶體元件。One of the great characteristics of non-volatile memory device design is that it can still maintain the integrity of the data state when the memory device loses or removes power. With the increase of various applications and the improvement of functions, the demand for memory components also tends to be smaller in size and larger in storage capacity. To meet these needs, designers are now turning to developing a three-dimensional memory device that includes a stack of multiple planes of memory cells.

然而,隨著元件的關鍵尺寸微縮至一般存儲單元技術領域的極限,如何在更微小的元件尺寸之中,獲得到更高的儲存容量,同時又能兼顧元件的操作穩定性,已成了此技術領域所面臨的重要課題。因此,需要一種先進的三維記憶體結構,來解決現有技術所面臨的問題。However, as the critical dimension of the device shrinks to the limit of the general memory cell technology field, how to obtain a higher storage capacity in a smaller device size while taking into account the operational stability of the device has become an issue. Important issues facing the technical field. Therefore, an advanced three-dimensional memory structure is needed to solve the problems faced by the prior art.

本揭露之一態樣,提供一種三維記憶體元件。三維記憶體元件包含基板、堆疊結構、垂直源極結構、垂直汲極結構及垂直通道層。堆疊結構位於基板上方,包含交替堆疊的複數個導電層及複數個絕緣層。垂直源極結構及垂直汲極結構埋入堆疊結構中,且分別包括單晶矽及金屬矽化物。垂直通道層圍繞並接觸垂直源極結構及垂直汲極結構。An aspect of the present disclosure provides a three-dimensional memory device. The three-dimensional memory device includes a substrate, a stack structure, a vertical source structure, a vertical drain structure and a vertical channel layer. The stacked structure is located above the substrate and includes a plurality of conductive layers and a plurality of insulating layers stacked alternately. The vertical source structure and the vertical drain structure are buried in the stack structure, and respectively include single crystal silicon and metal silicide. The vertical channel layer surrounds and contacts the vertical source structure and the vertical drain structure.

根據本揭露之一些實施方式,垂直源極結構及垂直汲極結構分別包括底部金屬矽化物層、內部金屬矽化物層及單晶矽層,其中內部金屬矽化物層及單晶矽層位於底部金屬矽化物層上,且單晶矽層環繞內部金屬矽化物層。According to some embodiments of the present disclosure, the vertical source structure and the vertical drain structure respectively include a bottom metal silicide layer, an inner metal silicide layer and a single crystal silicon layer, wherein the inner metal silicide layer and the single crystal silicon layer are located on the bottom metal silicide layer. on the silicide layer, and the single crystal silicon layer surrounds the inner metal silicide layer.

根據本揭露之一些實施方式,垂直源極結構包括底部金屬矽化物層、外部金屬矽化物層、內部金屬矽化物層、及位於垂直源極結構的外部金屬矽化物層及內部金屬矽化物層之間的單晶矽層,垂直汲極結構包括底部金屬矽化物層、外部金屬矽化物層、及位於垂直汲極結構的外部金屬矽化物層及垂直通道層之間的單晶矽層。According to some embodiments of the present disclosure, the vertical source structure includes a bottom metal silicide layer, an outer metal silicide layer, an inner metal silicide layer, and a layer between the outer metal silicide layer and the inner metal silicide layer in the vertical source structure. The vertical drain structure includes a bottom metal silicide layer, an outer metal silicide layer, and a single crystal silicon layer between the outer metal silicide layer of the vertical drain structure and the vertical channel layer.

根據本揭露之一些實施方式,單晶矽具有摻雜濃度,摻雜濃度為大於約10 18/cm 3According to some embodiments of the present disclosure, the single crystal silicon has a doping concentration greater than about 10 18 /cm 3 .

根據本揭露之一些實施方式,三維記憶體元件進一步包括位元線連接垂直汲極結構及源極線連接垂直源極結構。According to some embodiments of the present disclosure, the three-dimensional memory device further includes a bit line-connected vertical drain structure and a source line-connected vertical source structure.

根據本揭露之另一態樣,提供一種三維記憶體元件。三維記憶體元件包含基板、複數個堆疊結構、複數個垂直源極結構、複數個垂直汲極結構、複數個環狀通道層及複數個狹縫結構。複數個堆疊結構位於基板上方,複數個堆疊結構中的每一個包含交替堆疊的複數個導電層及複數個絕緣層。複數個垂直源極結構及複數個垂直汲極結構埋入複數個堆疊結構中,其中複數個垂直源極結構及複數個垂直汲極結構分別包括單晶矽及金屬矽化物。複數個環狀通道層各自圍繞對應的垂直源極結構及對應的垂直汲極結構,其中複數個環狀通道層包括單晶矽。複數個狹縫結構位於複數個堆疊結構之間,分隔複數個堆疊結構。According to another aspect of the present disclosure, a three-dimensional memory device is provided. The three-dimensional memory device includes a substrate, a plurality of stacked structures, a plurality of vertical source structures, a plurality of vertical drain structures, a plurality of annular channel layers and a plurality of slit structures. A plurality of stacked structures are located above the substrate, and each of the plurality of stacked structures includes a plurality of conductive layers and a plurality of insulating layers stacked alternately. A plurality of vertical source structures and a plurality of vertical drain structures are buried in a plurality of stacked structures, wherein the plurality of vertical source structures and the plurality of vertical drain structures respectively include single crystal silicon and metal silicide. A plurality of annular channel layers each surround a corresponding vertical source structure and a corresponding vertical drain structure, wherein the plurality of annular channel layers include single crystal silicon. The plurality of slit structures are located between the plurality of stacked structures to separate the plurality of stacked structures.

根據本揭露之一些實施方式,單晶矽具有摻雜濃度,摻雜濃度為大於約10 18/cm 3According to some embodiments of the present disclosure, the single crystal silicon has a doping concentration greater than about 10 18 /cm 3 .

根據本揭露之一些實施方式,複數個導電層中的每一層包括記憶層、氮化鈦層、鎢層。According to some embodiments of the present disclosure, each of the plurality of conductive layers includes a memory layer, a titanium nitride layer, and a tungsten layer.

根據本揭露之一些實施方式,三維記憶體元件進一步包括介電層位於對應的垂直源極結構及對應的垂直汲極結構之間。According to some embodiments of the present disclosure, the three-dimensional memory device further includes a dielectric layer located between the corresponding vertical source structure and the corresponding vertical drain structure.

根據本揭露之一些實施方式,金屬矽化物包括CoSi、CoSi 2、NiSi或NiSi 2According to some embodiments of the present disclosure, the metal silicide includes CoSi, CoSi 2 , NiSi or NiSi 2 .

應當理解,前述的一般性描述和下文的詳細描述都是示例,並且旨在提供對所要求保護的本揭示內容的進一步解釋。It is to be understood that both the foregoing general description and the following detailed description are examples and are intended to provide further explanation of the disclosure as claimed.

為了使本揭示內容的敘述更加詳盡與完備,下文針對了本揭示內容的實施態樣與具體實施例提出了說明性的描述,但這並非實施或運用本揭示內容具體實施例的唯一形式。以下所揭露的各實施例,在有益的情形下可相互組合或取代,也可在一實施例中附加其他的實施例,而無須進一步的記載或說明。在以下描述中,將詳細敘述許多特定細節以使讀者能夠充分理解以下的實施例。然而,可在無此等特定細節之情況下實踐本揭示內容之實施例。In order to make the description of the present disclosure more detailed and complete, the following provides an illustrative description of the implementation aspects and specific embodiments of the present disclosure, but this is not the only form for implementing or using the specific embodiments of the present disclosure. The various embodiments disclosed below can be combined or replaced with each other when beneficial, and other embodiments can also be added to one embodiment, without further description or illustration. In the following description, numerous specific details will be set forth in order to enable readers to fully understand the following embodiments. However, embodiments of the present disclosure may be practiced without these specific details.

再者,空間相對用語,例如「下方」、「之下」、「上方」、「之上」等,這是為了便於敘述一元件或特徵與另一元件或特徵之間的相對關係,如圖中所繪示。這些空間上的相對用語的真實意義包含其他的方位。例如,當圖示上下翻轉180度時,一元件與另一元件之間的關係,可能從「下方」、「之下」變成「上方」、「之上」。此外,本文中所使用的空間上的相對敘述也應作同樣的解釋。Furthermore, relative spatial terms, such as "below", "below", "above", "above", etc., are for the convenience of describing the relative relationship between one element or feature and another element or feature, as shown in Fig. as shown in . The real meaning of these spatially relative terms includes other orientations. For example, when the diagram is turned upside down by 180 degrees, the relationship between one element and another may change from "below" and "below" to "above" and "above". In addition, the spatially relative descriptions used in this article should also be interpreted in the same way.

第1圖至第16圖繪示根據本發明之一實施方式之製造三維記憶體元件100的各步驟示意圖。請參照第1圖。在基板101上交替地形成複數個第一絕緣層110和複數個第二絕緣層120。第一絕緣層110的材料與第二絕緣層120的材料不同。在一些實施方式中,第一絕緣層110包含氧化物,例如氧化矽。在一些實施方式中,第二絕緣層120包含氮化物,例如氮化矽。應了解到,第一絕緣層110及第二絕緣層120的數量不限於第1圖所示,可以依實際應用有更多層的第一絕緣層110及第二絕緣層120。FIG. 1 to FIG. 16 are schematic diagrams illustrating various steps of manufacturing a three-dimensional memory device 100 according to an embodiment of the present invention. Please refer to Figure 1. A plurality of first insulating layers 110 and a plurality of second insulating layers 120 are alternately formed on the substrate 101 . The material of the first insulating layer 110 is different from that of the second insulating layer 120 . In some embodiments, the first insulating layer 110 includes oxide, such as silicon oxide. In some embodiments, the second insulating layer 120 includes nitride, such as silicon nitride. It should be understood that the number of the first insulating layer 110 and the second insulating layer 120 is not limited to that shown in FIG. 1 , and there may be more layers of the first insulating layer 110 and the second insulating layer 120 according to actual application.

請參照第2圖。形成第一開口OP1於複數個第一絕緣層110和複數個第二絕緣層120中。在一些實施方式中,通過蝕刻製程形成穿過複數個第一絕緣層110及複數個第二絕緣層120的第一開口OP1,且第一開口OP1停止於最底層的第一絕緣層110處。Please refer to Figure 2. The first openings OP1 are formed in the plurality of first insulating layers 110 and the plurality of second insulating layers 120 . In some embodiments, the first opening OP1 passing through the plurality of first insulating layers 110 and the plurality of second insulating layers 120 is formed through an etching process, and the first opening OP1 stops at the bottommost first insulating layer 110 .

請參照第3圖。形成通道材料層130及介電層140於第2圖所示的第一開口OP1中。通道材料層130形成於第一開口OP1的側壁上,並暴露出最底層的第一絕緣層110,之後介電層140填充剩餘的第一開口OP1。在一些實施方式中,通道材料層130為無摻雜之非晶矽層。在一些實施例中,通道材料層130具有厚度為約5~20奈米。在一些實施方式中,介電層140包含氧化物。在一些實施方式中,可以在形成通道材料層130之前,形成電荷捕捉材料(未圖示)於第一開口OP1中。在一些實施方式中,電荷捕捉材料包含氧化物-氮化物(O-N)之複合層,例如ONO複合層。可以通過任何合適的沉積方法形成通道材料層130、介電層140及電荷捕捉材料。Please refer to Figure 3. A channel material layer 130 and a dielectric layer 140 are formed in the first opening OP1 shown in FIG. 2 . The channel material layer 130 is formed on the sidewall of the first opening OP1 and exposes the bottommost first insulating layer 110 , and then the dielectric layer 140 fills the remaining first opening OP1 . In some embodiments, the channel material layer 130 is an undoped amorphous silicon layer. In some embodiments, the channel material layer 130 has a thickness of about 5-20 nm. In some embodiments, the dielectric layer 140 includes oxide. In some embodiments, a charge trapping material (not shown) may be formed in the first opening OP1 before forming the channel material layer 130 . In some embodiments, the charge trapping material comprises an oxide-nitride (O-N) composite layer, such as an ONO composite layer. The channel material layer 130, the dielectric layer 140 and the charge trapping material may be formed by any suitable deposition method.

請參照第4圖。形成第二開口OP2於介電層140中。可以通過蝕刻製程(例如反應離子蝕刻製程)形成延伸至最底層的第一絕緣層110中的第二開口OP2,並暴露出一部分的通道材料層130及最底層的第一絕緣層110。此蝕刻製程具有高選擇性,而不損害通道材料層130的非晶矽。Please refer to Figure 4. A second opening OP2 is formed in the dielectric layer 140 . The second opening OP2 extending to the bottommost first insulating layer 110 may be formed by an etching process (such as a reactive ion etching process) to expose a portion of the channel material layer 130 and the bottommost first insulating layer 110 . This etching process has high selectivity without damaging the amorphous silicon of the channel material layer 130 .

請參照第5圖。形成半導體材料層150於第4圖所示的第二開口OP2中。在一些實施方式中,半導體材料層150包含摻雜有砷(As)或磷(P)的N型非晶矽。在一些實施方式中,半導體材料層150的摻雜濃度大於約10 18/cm 3。摻雜濃度例如為10 19/cm 3或10 20/cm 3。可以通過任何合適的沉積方法形成半導體材料層150。 Please refer to Figure 5. A semiconductor material layer 150 is formed in the second opening OP2 shown in FIG. 4 . In some embodiments, the semiconductor material layer 150 includes N-type amorphous silicon doped with arsenic (As) or phosphorus (P). In some embodiments, the doping concentration of the semiconductor material layer 150 is greater than about 10 18 /cm 3 . The doping concentration is, for example, 10 19 /cm 3 or 10 20 /cm 3 . Layer 150 of semiconductor material may be formed by any suitable deposition method.

請參照第6圖。形成絕緣層112於基板101上。絕緣層112覆蓋最上層的第一絕緣層110、通道材料層130、介電層140及半導體材料層150的上表面。在一些實施方式中,絕緣層112包含氧化物。可以通過任何合適的沉積方法形成絕緣層112。Please refer to Figure 6. An insulating layer 112 is formed on the substrate 101 . The insulating layer 112 covers the upper surfaces of the uppermost first insulating layer 110 , the channel material layer 130 , the dielectric layer 140 and the semiconductor material layer 150 . In some embodiments, insulating layer 112 includes oxide. Insulating layer 112 may be formed by any suitable deposition method.

請參照第7圖。形成第三開口OP3於介電層140中。可以通過蝕刻製程(例如反應離子蝕刻製程)形成延伸至最底層的第一絕緣層110中的第三開口OP3,並暴露出一部分的通道材料層130及最底層的第一絕緣層110。此蝕刻製程具有高選擇性,而不損害通道材料層130的非晶矽。Please refer to Figure 7. A third opening OP3 is formed in the dielectric layer 140 . The third opening OP3 extending to the bottommost first insulating layer 110 may be formed by an etching process (such as a reactive ion etching process) to expose a portion of the channel material layer 130 and the bottommost first insulating layer 110 . This etching process has high selectivity without damaging the amorphous silicon of the channel material layer 130 .

請參照第8圖。形成半導體材料層160於第三開口OP3中。在一些實施方式中,半導體材料層160包含無摻雜或摻雜有砷(As)或磷(P)的N型非晶矽。具有高摻雜的N型非晶矽可以形成歐姆接觸並降低電阻。在一些實施方式中,半導體材料層160的摻雜濃度大於約10 18/cm 3。在一些實施方式中,半導體材料層160具有厚度為約10~30奈米,例如為約20奈米。覆蓋通道材料層130的半導體材料層160可以在後續的結晶化製程中作為緩衝層,以形成具有均勻單晶矽的通道層。可以通過任何合適的沉積方法形成半導體材料層160。 Please refer to Figure 8. A semiconductor material layer 160 is formed in the third opening OP3. In some embodiments, the semiconductor material layer 160 includes N-type amorphous silicon undoped or doped with arsenic (As) or phosphorus (P). N-type amorphous silicon with high doping can form ohmic contacts and reduce resistance. In some embodiments, the doping concentration of the semiconductor material layer 160 is greater than about 10 18 /cm 3 . In some embodiments, the semiconductor material layer 160 has a thickness of about 10-30 nm, such as about 20 nm. The semiconductor material layer 160 covering the channel material layer 130 can be used as a buffer layer in the subsequent crystallization process to form a channel layer with uniform single crystal silicon. Layer 160 of semiconductor material may be formed by any suitable deposition method.

請參照第9圖。形成金屬矽化物材料層170於半導體材料層160之上。在一些實施方式中,金屬矽化物材料層170包含CoSi、NiSi或其類似者。在一些實施方式中,形成金屬矽化物材料層170包含形成金屬層(例如Co或Ni)於半導體材料層160之上,之後,進行第一退火製程以形成金屬矽化物(例如CoSi或NiSi)。在一些實施方式中,金屬層具有厚度為約5~10奈米。在一些實施方式中,金屬層的厚度(表示為a)小於通道材料層130的厚度(表示為b)與半導體材料層160的厚度(表示為c)的總和,例如:b+c>1.9a。若金屬層厚度太厚,在後續結晶化製程中會消耗通道材料層130及半導體材料層160。若金屬層厚度太薄,會導致後續形成之通道層不連續。在一些實施方式中,第一退火製程包含在約400~600 oC下退火約15~120秒,例如約30~60秒。 Please refer to Figure 9. A metal silicide material layer 170 is formed on the semiconductor material layer 160 . In some embodiments, the metal silicide material layer 170 includes CoSi, NiSi, or the like. In some embodiments, forming the metal silicide material layer 170 includes forming a metal layer (such as Co or Ni) on the semiconductor material layer 160 , and then performing a first annealing process to form a metal silicide (such as CoSi or NiSi). In some embodiments, the metal layer has a thickness of about 5-10 nm. In some embodiments, the thickness of the metal layer (represented as a) is less than the sum of the thickness of the channel material layer 130 (represented as b) and the thickness of the semiconductor material layer 160 (represented as c), for example: b+c>1.9a . If the metal layer is too thick, the channel material layer 130 and the semiconductor material layer 160 will be consumed in the subsequent crystallization process. If the thickness of the metal layer is too thin, the subsequently formed channel layer will be discontinuous. In some embodiments, the first annealing process includes annealing at about 400-600 ° C. for about 15-120 seconds, such as about 30-60 seconds.

請參照第10A圖。形成半導體材料層180於金屬矽化物材料層170之上,以填充剩餘的第三開口OP3。在一些實施方式中,半導體材料層180包含摻雜有砷(As)或磷(P)的N型非晶矽。在一些實施方式中,半導體材料層180的摻雜濃度大於約10 18/cm 3。在一些實施方式中,半導體材料層180的摻雜濃度可以與半導體材料層150、160的摻雜濃度相同。在一些實施方式中,半導體材料層180具有厚度為約5~30奈米,例如為約20奈米。半導體材料層180的厚度大於金屬矽化物材料層170的厚度。可以通過任何合適的沉積方法形成半導體材料層180。 Please refer to Figure 10A. A semiconductor material layer 180 is formed on the metal silicide material layer 170 to fill the remaining third opening OP3. In some embodiments, the semiconductor material layer 180 includes N-type amorphous silicon doped with arsenic (As) or phosphorus (P). In some embodiments, the doping concentration of the semiconductor material layer 180 is greater than about 10 18 /cm 3 . In some embodiments, the doping concentration of the semiconductor material layer 180 may be the same as the doping concentration of the semiconductor material layers 150 , 160 . In some embodiments, the semiconductor material layer 180 has a thickness of about 5-30 nm, such as about 20 nm. The thickness of the semiconductor material layer 180 is greater than the thickness of the metal silicide material layer 170 . Layer 180 of semiconductor material may be formed by any suitable deposition method.

第10B圖為第10A圖所示結構的俯視圖。為清楚說明,第10B圖中未繪示絕緣層112及位於其上的半導體材料層160、180、金屬矽化物材料層170的水平部分。請參照第10B圖。通道材料層130圍繞介電層140、半導體材料層150及半導體材料層160。半導體材料層150 填充於第二開口OP2中,半導體材料層160、金屬矽化物材料層170及半導體材料層180填充於第三開口OP3中,且金屬矽化物材料層170及半導體材料層160依序環繞180。在一些實施方式中,通道材料層130可以具有橢圓形輪廓,其具有沿著第一方向D1延伸的縱長軸。在其他實施方式中,通道材料層130也可以具有圓形輪廓。在一些實施方式中,第二開口OP2及第三開口OP3可以分別具有橢圓形輪廓,且具有沿著第一方向D1或第二方向D2延伸的縱長軸。在其他實施方式中,第二開口OP2及第三開口OP3可以分別具有圓形輪廓。Figure 10B is a top view of the structure shown in Figure 10A. For clarity, the insulating layer 112 and the horizontal portions of the semiconductor material layers 160 , 180 and the metal silicide material layer 170 are not shown in FIG. 10B . Please refer to Figure 10B. The channel material layer 130 surrounds the dielectric layer 140 , the semiconductor material layer 150 and the semiconductor material layer 160 . The semiconductor material layer 150 is filled in the second opening OP2, the semiconductor material layer 160, the metal silicide material layer 170 and the semiconductor material layer 180 are filled in the third opening OP3, and the metal silicide material layer 170 and the semiconductor material layer 160 are sequentially Surround 180. In some embodiments, the channel material layer 130 may have an elliptical profile with a longitudinal axis extending along the first direction D1. In other embodiments, the channel material layer 130 may also have a circular profile. In some embodiments, the second opening OP2 and the third opening OP3 may respectively have an elliptical profile and have a longitudinal axis extending along the first direction D1 or the second direction D2. In other embodiments, the second opening OP2 and the third opening OP3 may respectively have circular profiles.

請參照第11A及第11B圖。執行結晶化製程,以形成垂直通道層132、類單晶半導體層152、162、182及金屬矽化物層172、174。在一些實施方式中,垂直通道層132為單晶矽。在一些實施方式中,類單晶半導體層152、162、182為類單晶矽。在一些實施方式中,類單晶半導體層152、162、182為摻雜有砷(As)或磷(P)的N型類單晶矽。在一些實施方式中,類單晶半導體層152、162、182具有均勻的摻雜濃度,且摻雜濃度大於約10 18/cm 3。在一些實施方式中,金屬矽化物層172包含頂部金屬矽化物層172T、內部金屬矽化物層172I及底部金屬矽化物層172B,且金屬矽化物層174包含內部金屬矽化物層174I及底部金屬矽化物層174B。在一些實施方式中,金屬矽化物層172、174的材料與金屬矽化物材料層170相同。 Please refer to Figures 11A and 11B. A crystallization process is performed to form the vertical channel layer 132 , the quasi-single crystal semiconductor layers 152 , 162 , 182 and the metal silicide layers 172 , 174 . In some embodiments, the vertical channel layer 132 is monocrystalline silicon. In some embodiments, the single crystal-like semiconductor layers 152 , 162 , 182 are single crystal silicon-like. In some embodiments, the quasi-single-crystal semiconductor layer 152 , 162 , 182 is N-type quasi-single-crystal silicon doped with arsenic (As) or phosphorus (P). In some embodiments, the quasi-single crystal semiconductor layers 152 , 162 , 182 have a uniform doping concentration, and the doping concentration is greater than about 10 18 /cm 3 . In some embodiments, metal suicide layer 172 includes top metal suicide layer 172T, inner metal suicide layer 172I, and bottom metal suicide layer 172B, and metal suicide layer 174 includes inner metal suicide layer 174I and bottom metal suicide layer 174I. layer 174B. In some embodiments, the metal silicide layers 172 , 174 are made of the same material as the metal silicide material layer 170 .

在本文中,類單晶(Single crystalline-like)代表在此材料中大部份的固相為單晶,且包含少部份未被完全單晶化的非晶及/或多晶。舉例來說,類單晶包括95體積百分比以上的單晶,以及非晶及/或多晶。在本文中,類單晶矽代表在此材料中大部份的固相為單晶矽,且包含少部份未被完全單晶化的非晶矽及/或多晶矽。在一實施例中,在類單晶矽中,類單晶矽固體的部分晶格符合單晶矽固體之晶格定義。在一實施例中,類單晶矽的晶粒內缺陷密度(intra-grain defect density)或晶粒邊界(grain boundary)缺陷密度可介於單晶矽的缺陷密度與多晶矽的缺陷密度之間。在一實施例中,類單晶矽的缺陷密度更接近於單晶矽相的缺陷密度,導電度更接近於單晶矽的導電度。單晶矽的導電度高於多晶矽的導電度。此外,在操作期間,類單晶矽的記憶胞電流(cell current)高於多晶矽的記憶胞電流。In this paper, single crystalline-like means that most of the solid phase in this material is single crystal, and includes a small part of non-crystallized and/or polycrystalline. For example, quasi-single crystals include more than 95 volume percent single crystals, as well as amorphous and/or polycrystalline. In this context, quasi-monocrystalline silicon means that most of the solid phase in this material is monocrystalline silicon, and includes a small part of amorphous silicon and/or polycrystalline silicon that has not been completely monocrystalline. In one embodiment, in monocrystalline silicon, part of the crystal lattice of the monocrystalline silicon solid conforms to the lattice definition of the monocrystalline silicon solid. In one embodiment, the intra-grain defect density or grain boundary defect density of quasi-mono-silicon may be between that of single-crystal silicon and poly-silicon. In one embodiment, the defect density of quasi-single-crystal silicon is closer to that of single-crystal silicon phase, and the electrical conductivity is closer to that of single-crystal silicon. The conductivity of monocrystalline silicon is higher than that of polycrystalline silicon. In addition, during operation, the cell current of monocrystalline silicon is higher than that of polycrystalline silicon.

在一些實施方式中,上述結晶化製程可以為金屬輔助固相結晶(Metal-Assisted Solid-Phase Crystallization, MASPC)製程。在一些實施方式中,結晶化製程包含在約450~550 oC下退火約1~4小時。在一些實施方式中,結晶化製程的執行時間大於第一退火製程的執行時間。在結晶化製程期間,第10A-10B圖所示的金屬矽化物材料層170 (例如NiSi)朝向通道材料層130、半導體材料層150、160、180(例如非晶矽)移動,同時類單晶半導體層152、162、182(例如類單晶矽)隨著金屬矽化物材料層170的移動而生長。具體而言,在結晶化製程期間,金屬矽化物持續的往非晶矽的區域延伸,而在所經之處將非晶矽轉換為類單晶矽。在一些實施方式中,一部分的金屬矽化物材料層170朝向其內部的半導體材料層180移動,最終形成內部金屬矽化物層172I於類單晶半導體層182的中心處,而一部分的金屬矽化物材料層170沿著其外部的半導體材料層160及通道材料層130移動,最終於形成內部金屬矽化物層174I於類單晶半導體層152的中心處,如第11B圖所示。 In some embodiments, the above-mentioned crystallization process may be a metal-assisted solid-phase crystallization (Metal-Assisted Solid-Phase Crystallization, MASPC) process. In some embodiments, the crystallization process includes annealing at about 450-550 ° C for about 1-4 hours. In some embodiments, the execution time of the crystallization process is longer than the execution time of the first annealing process. During the crystallization process, the metal silicide material layer 170 (such as NiSi) shown in FIGS. The semiconductor layers 152 , 162 , 182 (such as monocrystalline silicon) grow along with the movement of the metal silicide material layer 170 . Specifically, during the crystallization process, the metal silicide continues to extend to the region of amorphous silicon, and converts the amorphous silicon into quasi-single crystal silicon where it passes. In some embodiments, a part of the metal silicide material layer 170 moves toward the inner semiconductor material layer 180, finally forming the inner metal silicide layer 172I at the center of the quasi-single crystal semiconductor layer 182, and a part of the metal silicide material layer The layer 170 moves along its outer semiconductor material layer 160 and channel material layer 130, and finally forms an inner metal silicide layer 174I at the center of the quasi-single crystal semiconductor layer 152, as shown in FIG. 11B.

第11C圖及第11D圖為根據本發明之另一實施方式繪示的執行結晶化製程後的剖面圖及俯視圖。第11C圖及第11D圖與第11A圖及第11B圖所示之結構的差異在於,金屬矽化物層172包含頂部金屬矽化物層172T、內部金屬矽化物層172I、外部金屬矽化物層172S及底部金屬矽化物層172B,且金屬矽化物層174包含外部金屬矽化物層174S及底部金屬矽化物層174B。 FIG. 11C and FIG. 11D are a cross-sectional view and a top view after performing a crystallization process according to another embodiment of the present invention. The difference between Figures 11C and 11D and the structures shown in Figures 11A and 11B is that the metal silicide layer 172 includes a top metal silicide layer 172T, an inner metal silicide layer 172I, an outer metal silicide layer 172S and The bottom metal silicide layer 172B, and the metal silicide layer 174 includes an outer metal silicide layer 174S and a bottom metal silicide layer 174B.

舉例而言,在執行結晶化製程期間,第10A-10B圖所示的一部分的金屬矽化物材料層170朝向半導體材料層180移動,並形成內部金屬矽化物層172I於類單晶半導體層182的中心處,一部分的金屬矽化物材料層170朝向半導體材料層160移動,並形成外部金屬矽化物層172S在與介電層140的介面處。此外,另一部分的金屬矽化物材料層170沿著通道材料層130移動,並形成外部金屬矽化物層174S在類單晶半導體層152與介電層140的介面處,如第11D圖所示。 For example, during the crystallization process, a part of the metal silicide material layer 170 shown in FIGS. 10A-10B moves toward the semiconductor material layer 180 and forms an inner metal silicide layer 172I on the surface of the single crystal semiconductor layer 182. At the center, a portion of the metal silicide material layer 170 moves toward the semiconductor material layer 160 and forms an outer metal silicide layer 172S at the interface with the dielectric layer 140 . In addition, another part of the metal silicide material layer 170 moves along the channel material layer 130 to form an outer metal silicide layer 174S at the interface between the quasi-single crystal semiconductor layer 152 and the dielectric layer 140 , as shown in FIG. 11D .

第12A圖及第12B圖是於完成如第11A圖及第11B圖所示的結晶化製程之後續製程。請參照第12A圖及第12B圖。執行第二退火製程以形成金屬矽化物層172’、174’。在一些實施方式中,金屬矽化物層172’、174’包含CoSi2、NiSi2或其類似者。如第12A圖所示,金屬矽化物層172’包含頂部金屬矽化物層172T’、內部金屬矽化物層1721’及底部金屬矽化物層172B’,且金屬矽化物層174’包含內部金屬矽化物層174I’及底部金屬矽化物層174B’。在一些實施方式中,第二退火製程包含在約600~800℃下退火約150~120秒,例如約30~60秒。舉例而言,第二退火製程可以使金屬矽化物NiSi轉變為NiSi2以降低電阻。在一些實施方式中,第二退火製程的溫度高於結晶化製程及第一退火製程的溫度。在一些實施方式中,可以省略第二退火製程。 FIG. 12A and FIG. 12B are subsequent processes after the crystallization process shown in FIG. 11A and FIG. 11B is completed. Please refer to Figure 12A and Figure 12B. A second annealing process is performed to form metal silicide layers 172', 174'. In some embodiments, the metal silicide layers 172', 174' comprise CoSi2 , NiSi2, or the like. As shown in FIG. 12A, the metal silicide layer 172' includes a top metal silicide layer 172T', an inner metal silicide layer 1721', and a bottom metal silicide layer 172B', and the metal silicide layer 174' includes an inner metal silicide layer layer 174I' and bottom metal suicide layer 174B'. In some embodiments, the second annealing process includes annealing at about 600-800° C. for about 150-120 seconds, such as about 30-60 seconds. For example, the second annealing process can transform the metal silicide NiSi into NiSi 2 to reduce the resistance. In some embodiments, the temperature of the second annealing process is higher than the temperature of the crystallization process and the first annealing process. In some embodiments, the second annealing process can be omitted.

請參照第13圖。執行平坦化製程以移除位於絕緣層112上表面之上的金屬矽化物層172’及類單晶半導體層162、182。此時,類單晶半導體層162、182及金屬矽化物層172’形成垂直源極結構SR,且類單晶半導體層152及金屬矽化物層174’形成垂直汲極結構DR。在一些實施方式中,平坦化製程包含回蝕(etch back)、化學機械平坦化(chemical-Mechanical Planarization, CMP)、或其他合適的方法。Please refer to Figure 13. A planarization process is performed to remove the metal silicide layer 172' and the quasi-single crystal semiconductor layers 162, 182 on the upper surface of the insulating layer 112. At this time, the quasi-single crystal semiconductor layers 162, 182 and the metal silicide layer 172' form a vertical source structure SR, and the quasi-single crystal semiconductor layer 152 and the metal silicide layer 174' form a vertical drain structure DR. In some embodiments, the planarization process includes etch back, chemical-mechanical planarization (CMP), or other suitable methods.

請參照第14圖。形成覆蓋層190於絕緣層112上。在一些實施方式中,覆蓋層190包含絕緣材料,例如氧化物。可以通過任何合適的沉積方法形成覆蓋層190。Please refer to Figure 14. A capping layer 190 is formed on the insulating layer 112 . In some embodiments, capping layer 190 includes an insulating material, such as an oxide. Capping layer 190 may be formed by any suitable deposition method.

請參照第15A圖及第15B圖。形成複數個導電層210於相鄰的第一絕緣層110之間。具體而言,可以將複數個第二絕緣層120中的每一個置換為導電層210。導電層210可以為單層或多層結構。在一些實施方式中,導電層210包含氮化鈦(TiN)及鎢(W)。在一些實施方式中,導電層210進一步包含記憶層及阻擋層(未圖示)。例如,導電層210可以為記憶層(例如SiN或HFO x)、阻擋層(例如氧化物或高介電常數(High K)氧化物)、氮化鈦及鎢的多層。每一個導電層210可以作為字元線(或稱閘極)。 Please refer to Figure 15A and Figure 15B. A plurality of conductive layers 210 are formed between adjacent first insulating layers 110 . Specifically, each of the plurality of second insulating layers 120 may be replaced with a conductive layer 210 . The conductive layer 210 may be a single-layer or multi-layer structure. In some embodiments, the conductive layer 210 includes titanium nitride (TiN) and tungsten (W). In some embodiments, the conductive layer 210 further includes a memory layer and a barrier layer (not shown). For example, the conductive layer 210 may be a multilayer of memory layer (such as SiN or HFO x ), barrier layer (such as oxide or high-k oxide), titanium nitride, and tungsten. Each conductive layer 210 can be used as a word line (or gate).

如第15A圖及第15B圖所示,三維記憶體元件100包含基板101、堆疊結構200、垂直源極結構SR、垂直汲極結構DR、及垂直通道層132。堆疊結構200位於基板101上方,且包含交替堆疊的複數個導電層210及複數個第一絕緣層110。As shown in FIG. 15A and FIG. 15B , the three-dimensional memory device 100 includes a substrate 101 , a stack structure 200 , a vertical source structure SR, a vertical drain structure DR, and a vertical channel layer 132 . The stack structure 200 is located above the substrate 101 and includes a plurality of conductive layers 210 and a plurality of first insulating layers 110 stacked alternately.

垂直源極結構SR及垂直汲極結構DR埋入堆疊結構200中,且介電層140位於垂直源極結構SR及垂直汲極結構DR之間。垂直源極結構SR及垂直汲極結構DR分別包括單晶矽及金屬矽化物。在一些實施方式中,垂直源極結構SR包含底部金屬矽化物層172B’、內部金屬矽化物層172I’及類單晶半導體層162、182,其中內部金屬矽化物層172I’及類單晶半導體層162、182位於底部金屬矽化物層172B’之上,且類單晶半導體層162、182環繞內部金屬矽化物層172I’。在一些實施方式中,垂直汲極結構DR包含底部金屬矽化物層174B’、內部金屬矽化物層174I’及類單晶半導體層152,其中內部金屬矽化物層174I’及類單晶半導體層152位於底部金屬矽化物層174B’之上,且類單晶半導體層152環繞內部金屬矽化物層174I’。在其他實施方式中,垂直源極結構SR可以進一步包含外部金屬矽化物層172S(繪示於第11C圖),垂直汲極結構DR包含外部金屬矽化物層174S(繪示於第11C圖)但不包含內部金屬矽化物層174I。The vertical source structure SR and the vertical drain structure DR are buried in the stack structure 200 , and the dielectric layer 140 is located between the vertical source structure SR and the vertical drain structure DR. The vertical source structure SR and the vertical drain structure DR respectively include single crystal silicon and metal silicide. In some embodiments, the vertical source structure SR includes a bottom metal silicide layer 172B', an inner metal silicide layer 172I', and single crystal-like semiconductor layers 162, 182, wherein the inner metal silicide layer 172I' and the single crystal semiconductor The layers 162, 182 are located on the bottom silicide layer 172B', and the quasi-single crystal semiconductor layer 162, 182 surrounds the inner silicide layer 172I'. In some embodiments, the vertical drain structure DR includes a bottom metal silicide layer 174B', an inner metal silicide layer 174I' and a quasi-single crystal semiconductor layer 152, wherein the inner metal silicide layer 174I' and the quasi-single crystal semiconductor layer 152 It is located on the bottom metal silicide layer 174B′, and the quasi-single crystal semiconductor layer 152 surrounds the inner metal silicide layer 174I′. In other embodiments, the vertical source structure SR may further include an outer metal silicide layer 172S (shown in FIG. 11C ), and the vertical drain structure DR includes an outer metal silicide layer 174S (shown in FIG. 11C ). The inner metal silicide layer 174I is not included.

垂直通道層132圍繞垂直源極結構SR及垂直汲極結構DR,並與其接觸。垂直通道層132具有環狀輪廓,如第15B圖所示。在一些實施方式中,垂直通道層132包括單晶矽。可以通過垂直通道層132在垂直源極結構SR與垂直汲極結構DR之間產生電流路徑,如第15B圖中的箭頭所表示。由單晶矽所構成的垂直通道層132,可以改善單元電流及均勻性,從而提升多層儲存單元的操作速度,獲得具有優良的電性特性的三維記憶體元件100。The vertical channel layer 132 surrounds and contacts the vertical source structure SR and the vertical drain structure DR. The vertical channel layer 132 has a circular profile, as shown in FIG. 15B. In some embodiments, the vertical channel layer 132 includes monocrystalline silicon. A current path can be created between the vertical source structure SR and the vertical drain structure DR through the vertical channel layer 132, as indicated by the arrows in FIG. 15B. The vertical channel layer 132 made of single crystal silicon can improve the cell current and uniformity, thereby increasing the operation speed of the multilayer memory cell, and obtaining the three-dimensional memory device 100 with excellent electrical properties.

請參照第16圖。三維記憶體元件100更包含源極線SL及位元線BL。源極線SL及位元線BL形成於覆蓋層190之上,分別藉由源極線接觸結構310及位元線接觸結構320與垂直源極結構SR及垂直汲極結構DR電連接。Please refer to Figure 16. The three-dimensional memory device 100 further includes source lines SL and bit lines BL. The source line SL and the bit line BL are formed on the cover layer 190 , and are electrically connected to the vertical source structure SR and the vertical drain structure DR through the source line contact structure 310 and the bit line contact structure 320 respectively.

請參照第17圖。第17圖為根據本發明之某些實施方式繪示的三維記憶體陣列的俯視圖。為清楚說明,第17圖中未繪示絕緣層112、覆蓋層190、源極線接觸結構310、位元線接觸結構320、源極線SL及位元線BL。如第17圖所示,狹縫結構400分隔相鄰的堆疊結構200。每個堆疊結構200中可以包含多個環狀的垂直通道層132,且其分別圍繞對應的一個垂直源極結構SR及對應的一個垂直汲極結構DR。垂直源極結構SR及垂直汲極結構DR的材料及形成方法可以參考第1圖至第15B圖,在此不再贅述。Please refer to Figure 17. FIG. 17 is a top view of a three-dimensional memory array according to some embodiments of the present invention. For clarity, the insulating layer 112 , the cover layer 190 , the source line contact structure 310 , the bit line contact structure 320 , the source line SL and the bit line BL are not shown in FIG. 17 . As shown in FIG. 17 , the slit structure 400 separates adjacent stack structures 200 . Each stack structure 200 may include a plurality of ring-shaped vertical channel layers 132 surrounding a corresponding vertical source structure SR and a corresponding vertical drain structure DR. The materials and forming methods of the vertical source structure SR and the vertical drain structure DR can refer to FIG. 1 to FIG. 15B , and will not be repeated here.

如上所述,根據本揭示的實施方式,提供一種三維記憶體元件,其具有垂直源極結構、垂直汲極結構及垂直通道層圍繞上述垂直源極結構及垂直汲極結構。垂直源極結構、垂直汲極結構及垂直通道層可以包含單晶矽。垂直源極結構及垂直汲極結構中還包含金屬矽化物,可以降低阻值。可以在垂直源極結構與垂直汲極結構之間產生水平的電流路徑。此外,由單晶矽構成的垂直通道可以改善單元電流及均勻性,從而提升多層儲存單元的操作速度,獲得具有優良的電性特性的三維記憶體元件。As mentioned above, according to an embodiment of the present disclosure, a three-dimensional memory device is provided, which has a vertical source structure, a vertical drain structure, and a vertical channel layer surrounding the vertical source structure and the vertical drain structure. The vertical source structure, the vertical drain structure and the vertical channel layer may include monocrystalline silicon. The vertical source structure and the vertical drain structure also contain metal silicide, which can reduce the resistance value. A horizontal current path can be created between the vertical source structure and the vertical drain structure. In addition, the vertical channels made of single crystal silicon can improve cell current and uniformity, thereby increasing the operating speed of multilayer memory cells, and obtaining three-dimensional memory elements with excellent electrical properties.

儘管本揭示內容已根據某些實施方式具體描述細節,其他實施方式也是可行的。因此,所附請求項的精神和範圍不應限於本文所記載的實施方式。While this disclosure has described details in terms of certain implementations, other implementations are possible. Therefore, the spirit and scope of the appended claims should not be limited to the implementations described herein.

本領域技術人員也應當理解,在不脫離本揭示內容的精神和範圍的情況下,對於本揭示內容所做的各種修改和變形是可行的。根據前述內容,本揭示內容旨在涵蓋可落入後續請求項範圍內的本揭示內容中的各種修改和變形。Those skilled in the art will also understand that various modifications and variations to the present disclosure are possible without departing from the spirit and scope of the present disclosure. In light of the foregoing, this disclosure is intended to cover various modifications and variations in this disclosure that may fall within the scope of the subsequent claims.

100:三維記憶體元件 101:基板 110:第一絕緣層 112:絕緣層 120:第二絕緣層 130:通道材料層 132:垂直通道層 140:介電層 150, 160, 180:半導體材料層 152, 162, 182:類單晶半導體層 170:金屬矽化物材料層 172, 172’, 174, 174’:金屬矽化物層 172B,172B’, 174B, 174B’:底部金屬矽化物層 172I, 172I’, 174I, 174I’:內部金屬矽化物層 172S, 174S:外部金屬矽化物層 172T, 172T’:頂部金屬矽化物層 190:覆蓋層 200:堆疊結構 210:導電層 310:源極線接觸結構 320:位元線接觸結構 400:狹縫結構 D1:第一方向 D2:第二方向 BL:位元線 DR:垂直汲極結構 OP1:第一開口 OP2:第二開口 OP3:第三開口 SL:源極線 SR:垂直源極結構 100: Three-dimensional memory components 101: Substrate 110: the first insulating layer 112: insulation layer 120: second insulating layer 130: channel material layer 132: vertical channel layer 140: dielectric layer 150, 160, 180: Layers of semiconductor material 152, 162, 182: quasi-single crystal semiconductor layer 170: metal silicide material layer 172, 172’, 174, 174’: metal silicide layer 172B, 172B’, 174B, 174B’: bottom metal silicide layer 172I, 172I’, 174I, 174I’: inner metal silicide layer 172S, 174S: External metal silicide layer 172T, 172T’: top metal silicide layer 190: Overlay 200: stacked structure 210: conductive layer 310: Source line contact structure 320: bit line contact structure 400: slit structure D1: the first direction D2: Second direction BL: bit line DR: vertical drain structure OP1: first opening OP2: second opening OP3: the third opening SL: source line SR: vertical source structure

當與圖示一起閱讀時,從以下詳細描述可以最好地理解本揭露的態樣。應注意,根據業界標準實務,各種特徵未按比例繪製。事實上,為了清楚地討論,各個特徵的尺寸可任意地增加或減小。 第1圖為根據本發明之某些實施方式繪示的三維記憶體元件的製程各步驟的剖面圖。 第2圖為根據本發明之某些實施方式繪示的三維記憶體元件的製程各步驟的剖面圖。 第3圖為根據本發明之某些實施方式繪示的三維記憶體元件的製程各步驟的剖面圖。 第4圖為根據本發明之某些實施方式繪示的三維記憶體元件的製程各步驟的剖面圖。 第5圖為根據本發明之某些實施方式繪示的三維記憶體元件的製程各步驟的剖面圖。 第6圖為根據本發明之某些實施方式繪示的三維記憶體元件的製程各步驟的剖面圖。 第7圖為根據本發明之某些實施方式繪示的三維記憶體元件的製程各步驟的剖面圖。 第8圖為根據本發明之某些實施方式繪示的三維記憶體元件的製程各步驟的剖面圖。 第9圖為根據本發明之某些實施方式繪示的三維記憶體元件的製程各步驟的剖面圖。 第10A圖為根據本發明之某些實施方式繪示的三維記憶體元件的製程各步驟的剖面圖。第10B圖為根據本發明之某些實施方式繪示的三維記憶體元件的製程各步驟的俯視圖。 第11A圖為根據本發明之某些實施方式繪示的三維記憶體元件的製程各步驟的剖面圖。第11B圖為根據本發明之某些實施方式繪示的三維記憶體元件的製程各步驟的俯視圖。 第11C圖為根據本發明之某些實施方式繪示的三維記憶體元件的製程各步驟的剖面圖。第11D圖為根據本發明之某些實施方式繪示的三維記憶體元件的製程各步驟的俯視圖。 第12A圖為根據本發明之某些實施方式繪示的三維記憶體元件的製程各步驟的剖面圖。第12B圖為根據本發明之某些實施方式繪示的三維記憶體元件的製程各步驟的俯視圖。 第13圖為根據本發明之某些實施方式繪示的三維記憶體元件的製程各步驟的剖面圖。 第14圖為根據本發明之某些實施方式繪示的三維記憶體元件的製程各步驟的剖面圖。 第15A圖為根據本發明之某些實施方式繪示的三維記憶體元件的製程各步驟的剖面圖。第15B圖為根據本發明之某些實施方式繪示的三維記憶體元件的製程各步驟的俯視圖。 第16圖為根據本發明之某些實施方式繪示的三維記憶體元件的剖面圖。 第17圖為根據本發明之某些實施方式繪示的三維記憶體陣列的俯視圖。 Aspects of the present disclosure are best understood from the following Detailed Description when read with the illustrations. It should be noted that, in accordance with standard industry practice, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or decreased for clarity of discussion. FIG. 1 is a cross-sectional view of various steps in the manufacturing process of a three-dimensional memory device according to some embodiments of the present invention. FIG. 2 is a cross-sectional view of various steps in the manufacturing process of a three-dimensional memory device according to some embodiments of the present invention. FIG. 3 is a cross-sectional view of various steps in the manufacturing process of a three-dimensional memory device according to some embodiments of the present invention. FIG. 4 is a cross-sectional view of various steps in the manufacturing process of a three-dimensional memory device according to some embodiments of the present invention. FIG. 5 is a cross-sectional view of various steps in the manufacturing process of a three-dimensional memory device according to some embodiments of the present invention. FIG. 6 is a cross-sectional view of various steps in the manufacturing process of a three-dimensional memory device according to some embodiments of the present invention. FIG. 7 is a cross-sectional view of various steps in the manufacturing process of a three-dimensional memory device according to some embodiments of the present invention. FIG. 8 is a cross-sectional view of various steps in the manufacturing process of a three-dimensional memory device according to some embodiments of the present invention. FIG. 9 is a cross-sectional view of various steps in the manufacturing process of a three-dimensional memory device according to some embodiments of the present invention. FIG. 10A is a cross-sectional view of various steps in the manufacturing process of a three-dimensional memory device according to some embodiments of the present invention. FIG. 10B is a top view of various steps in the manufacturing process of a three-dimensional memory device according to some embodiments of the present invention. FIG. 11A is a cross-sectional view of various steps in the manufacturing process of a three-dimensional memory device according to some embodiments of the present invention. FIG. 11B is a top view of various steps in the manufacturing process of a three-dimensional memory device according to some embodiments of the present invention. FIG. 11C is a cross-sectional view of various steps in the manufacturing process of a three-dimensional memory device according to some embodiments of the present invention. FIG. 11D is a top view of various steps in the manufacturing process of a three-dimensional memory device according to some embodiments of the present invention. FIG. 12A is a cross-sectional view of various steps in the manufacturing process of a three-dimensional memory device according to some embodiments of the present invention. FIG. 12B is a top view of various steps in the manufacturing process of a three-dimensional memory device according to some embodiments of the present invention. FIG. 13 is a cross-sectional view of various steps in the manufacturing process of a three-dimensional memory device according to some embodiments of the present invention. FIG. 14 is a cross-sectional view of various steps in the manufacturing process of a three-dimensional memory device according to some embodiments of the present invention. FIG. 15A is a cross-sectional view of various steps in the manufacturing process of a three-dimensional memory device according to some embodiments of the present invention. FIG. 15B is a top view of various steps in the manufacturing process of a three-dimensional memory device according to some embodiments of the present invention. FIG. 16 is a cross-sectional view of a three-dimensional memory device according to some embodiments of the present invention. FIG. 17 is a top view of a three-dimensional memory array according to some embodiments of the present invention.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic deposit information (please note in order of depositor, date, and number) none Overseas storage information (please note in order of storage country, institution, date, and number) none

100:三維記憶體元件 100: Three-dimensional memory components

101:基板 101: Substrate

110:第一絕緣層 110: the first insulating layer

112:絕緣層 112: insulation layer

132:垂直通道層 132: vertical channel layer

140:介電層 140: dielectric layer

152,162,182:類單晶半導體層 152,162,182:Single crystal semiconductor layer

172B’,174B’:底部金屬矽化物層 172B', 174B': bottom metal silicide layer

172I’,174I’:內部金屬矽化物層 172I’, 174I’: inner metal silicide layer

190:覆蓋層 190: Overlay

200:堆疊結構 200: stacked structure

210:導電層 210: conductive layer

Claims (10)

一種三維記憶體元件,包括: 一基板; 一堆疊結構,位於該基板上方,其中該堆疊結構包含交替堆疊的複數個導電層及複數個絕緣層; 一垂直源極結構及一垂直汲極結構,埋入該堆疊結構中,其中該垂直源極結構及該垂直汲極結構分別包括一單晶矽及一金屬矽化物;及 一垂直通道層,圍繞該垂直源極結構及該垂直汲極結構,並接觸該垂直源極結構及該垂直汲極結構,其中該垂直通道層包括單晶矽。 A three-dimensional memory element, comprising: a substrate; a stacked structure located above the substrate, wherein the stacked structure includes a plurality of conductive layers and a plurality of insulating layers stacked alternately; a vertical source structure and a vertical drain structure embedded in the stack structure, wherein the vertical source structure and the vertical drain structure respectively comprise a monocrystalline silicon and a metal silicide; and A vertical channel layer surrounds the vertical source structure and the vertical drain structure and contacts the vertical source structure and the vertical drain structure, wherein the vertical channel layer includes single crystal silicon. 如請求項1所述之三維記憶體元件,其中該垂直源極結構及該垂直汲極結構分別包括一底部金屬矽化物層、一內部金屬矽化物層及一單晶矽層,其中該內部金屬矽化物層及該單晶矽層位於該底部金屬矽化物層上,且該單晶矽層環繞該內部金屬矽化物層。The three-dimensional memory device as described in claim 1, wherein the vertical source structure and the vertical drain structure respectively include a bottom metal silicide layer, an inner metal silicide layer and a single crystal silicon layer, wherein the inner metal silicide layer The silicide layer and the single crystal silicon layer are located on the bottom metal silicide layer, and the single crystal silicon layer surrounds the inner metal silicide layer. 如請求項1所述之三維記憶體元件,其中該垂直源極結構包括一底部金屬矽化物層、一外部金屬矽化物層、一內部金屬矽化物層、及位於垂直源極結構的該外部金屬矽化物層及該內部金屬矽化物層之間的一單晶矽層,該垂直汲極結構包括一底部金屬矽化物層、一外部金屬矽化物層、及位於該垂直汲極結構的該外部金屬矽化物層及該垂直通道層之間的一單晶矽層。The three-dimensional memory device as claimed in claim 1, wherein the vertical source structure includes a bottom metal silicide layer, an outer metal silicide layer, an inner metal silicide layer, and the outer metal layer in the vertical source structure a single crystal silicon layer between the silicide layer and the inner metal silicide layer, the vertical drain structure includes a bottom metal silicide layer, an outer metal silicide layer, and the outer metal silicide layer on the vertical drain structure A single crystal silicon layer between the silicide layer and the vertical channel layer. 如請求項1所述之三維記憶體元件,其中該單晶矽具有一摻雜濃度,該摻雜濃度為大於約10 18/cm 3The three-dimensional memory device as claimed in claim 1, wherein the single crystal silicon has a doping concentration greater than about 10 18 /cm 3 . 如請求項1所述之三維記憶體元件,進一步包括一位元線連接該垂直汲極結構及一源極線連接該垂直源極結構。The three-dimensional memory device according to claim 1, further comprising a bit line connected to the vertical drain structure and a source line connected to the vertical source structure. 一種三維記憶體元件,包括: 一基板; 複數個堆疊結構,位於該基板上方,其中該複數個堆疊結構中的每一個包含交替堆疊的複數個導電層及複數個絕緣層; 複數個垂直源極結構及複數個垂直汲極結構,埋入該複數個堆疊結構中,其中該複數個垂直源極結構及該複數個垂直汲極結構分別包括一單晶矽及一金屬矽化物; 複數個環狀通道層,各自圍繞對應的該垂直源極結構及對應的該垂直汲極結構,其中該複數個環狀通道層包括單晶矽;以及 複數個狹縫結構,位於該複數個堆疊結構之間,分隔該複數個堆疊結構。 A three-dimensional memory element, comprising: a substrate; A plurality of stacked structures located above the substrate, wherein each of the plurality of stacked structures includes a plurality of conductive layers and a plurality of insulating layers stacked alternately; A plurality of vertical source structures and a plurality of vertical drain structures embedded in the plurality of stacked structures, wherein the plurality of vertical source structures and the plurality of vertical drain structures respectively include a single crystal silicon and a metal silicide ; a plurality of annular channel layers, each surrounding the corresponding vertical source structure and the corresponding vertical drain structure, wherein the plurality of annular channel layers comprise single crystal silicon; and A plurality of slit structures are located between the plurality of stacked structures to separate the plurality of stacked structures. 如請求項1所述之三維記憶體元件,其中該單晶矽具有一摻雜濃度,該摻雜濃度為大於約10 18/cm 3The three-dimensional memory device as claimed in claim 1, wherein the single crystal silicon has a doping concentration greater than about 10 18 /cm 3 . 如請求項6所述之三維記憶體元件,其中該複數個導電層中的每一層包括一記憶層、一氮化鈦層、一鎢層。The three-dimensional memory device according to claim 6, wherein each of the plurality of conductive layers includes a memory layer, a titanium nitride layer, and a tungsten layer. 如請求項6所述之三維記憶體元件,進一步包括一介電層位於該對應的垂直源極結構及該對應的垂直汲極結構之間。The three-dimensional memory device as claimed in claim 6, further comprising a dielectric layer located between the corresponding vertical source structure and the corresponding vertical drain structure. 如請求項6所述之三維記憶體元件,其中該金屬矽化物包括CoSi、CoSi 2、NiSi或NiSi 2The three-dimensional memory device according to claim 6, wherein the metal silicide comprises CoSi, CoSi 2 , NiSi or NiSi 2 .
TW111114137A 2022-04-13 2022-04-13 Three-dimensional memory device TWI804272B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111114137A TWI804272B (en) 2022-04-13 2022-04-13 Three-dimensional memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111114137A TWI804272B (en) 2022-04-13 2022-04-13 Three-dimensional memory device

Publications (2)

Publication Number Publication Date
TWI804272B true TWI804272B (en) 2023-06-01
TW202341446A TW202341446A (en) 2023-10-16

Family

ID=87803370

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111114137A TWI804272B (en) 2022-04-13 2022-04-13 Three-dimensional memory device

Country Status (1)

Country Link
TW (1) TWI804272B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202040797A (en) * 2019-04-25 2020-11-01 旺宏電子股份有限公司 Memory device and method for fabricating the same
TW202114181A (en) * 2019-06-03 2021-04-01 旺宏電子股份有限公司 3d flash memory and array layout thereof
TW202125723A (en) * 2019-12-23 2021-07-01 旺宏電子股份有限公司 Semiconductor device and array layout thereof and package structure comprising the same
TW202201752A (en) * 2020-06-15 2022-01-01 台灣積體電路製造股份有限公司 Memory device
US20220013535A1 (en) * 2020-07-08 2022-01-13 Macronix International Co., Ltd. Three-dimensional flash memory device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202040797A (en) * 2019-04-25 2020-11-01 旺宏電子股份有限公司 Memory device and method for fabricating the same
TW202114181A (en) * 2019-06-03 2021-04-01 旺宏電子股份有限公司 3d flash memory and array layout thereof
TW202125723A (en) * 2019-12-23 2021-07-01 旺宏電子股份有限公司 Semiconductor device and array layout thereof and package structure comprising the same
TW202201752A (en) * 2020-06-15 2022-01-01 台灣積體電路製造股份有限公司 Memory device
US20220013535A1 (en) * 2020-07-08 2022-01-13 Macronix International Co., Ltd. Three-dimensional flash memory device

Also Published As

Publication number Publication date
TW202341446A (en) 2023-10-16

Similar Documents

Publication Publication Date Title
US20210384213A1 (en) Semiconductor memory device and semiconductor device
US9466612B2 (en) Semiconductor memory devices and methods of forming the same
US9627399B2 (en) Three-dimensional memory device with metal and silicide control gates
US9953997B2 (en) Three-dimensional semiconductor memory devices
TWI546963B (en) Wrap-around trench contact structure and methods of fabrication
CN111415944B (en) Three-dimensional memory device and method of fabricating the same
US9754880B2 (en) Semiconductor devices including a contact structure and methods of manufacturing the same
US20200020715A1 (en) Three-dimensional memory device having a slimmed aluminum oxide blocking dielectric and method of making same
CN205542903U (en) Non -volatile ic memory unit and resistive random access storage structure
CN110088906B (en) High-k dielectric layer in three-dimensional memory device and method of forming the same
US8980731B2 (en) Methods of forming a semiconductor device
CN203760476U (en) Semiconductor device
US20210296361A1 (en) Three-dimensional memory devices and fabrication methods thereof
TWI804272B (en) Three-dimensional memory device
US20220359517A1 (en) Transistor Isolation Regions and Methods of Forming the Same
US20230163180A1 (en) Non-self-aligned wrap-around contact in a tight gate pitched transistor
US11637112B2 (en) Non-volatile memory device and method for manufacturing the same
US20240114694A1 (en) Ferroelectric capacitor within backside interconnect
TWI773086B (en) Method for forming three-dimensional memory device
US10770512B1 (en) Stacked resistive random access memory with integrated access transistor and high density layout
US20240074208A1 (en) Semiconductor device
US20230038762A1 (en) Semiconductor structure and method of forming the same
US20230397391A1 (en) Support structure for multiple, alternating epitaxial silicon
TW202408009A (en) Semiconductor device