TWI803953B - 低溫膨脹機 - Google Patents

低溫膨脹機 Download PDF

Info

Publication number
TWI803953B
TWI803953B TW110131835A TW110131835A TWI803953B TW I803953 B TWI803953 B TW I803953B TW 110131835 A TW110131835 A TW 110131835A TW 110131835 A TW110131835 A TW 110131835A TW I803953 B TWI803953 B TW I803953B
Authority
TW
Taiwan
Prior art keywords
valve
port
displacer
drive piston
cooling
Prior art date
Application number
TW110131835A
Other languages
English (en)
Other versions
TW202214992A (zh
Inventor
拉爾夫 C 隆斯沃斯
許名堯
Original Assignee
美商住友(Shi)美國低溫研究有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商住友(Shi)美國低溫研究有限公司 filed Critical 美商住友(Shi)美國低溫研究有限公司
Publication of TW202214992A publication Critical patent/TW202214992A/zh
Application granted granted Critical
Publication of TWI803953B publication Critical patent/TWI803953B/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/10Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/003Gas cycle refrigeration machines characterised by construction or composition of the regenerator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/006Gas cycle refrigeration machines using a distributing valve of the rotary type

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Multiple-Way Valves (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一種主要基於吉福特-麥克馬洪(GM)循環操作之氣動驅動低溫冷凍機藉由一旋轉閥與致使置換器往復運動之一驅動活塞之間的一開關閥而自冷卻切換至加熱。該旋轉閥具有分別在兩個半徑處之埠,一個埠使流循環至該置換器,一第二埠則使流循環至該驅動活塞。兩個埠使流循環至該驅動活塞之頂部,「冷卻」埠最佳化冷卻循環,「加熱」埠則提供一良好加熱循環。改變自一個埠至另一埠之流之一開關閥可為線性地或旋轉地致動。該旋轉閥不反轉方向。

Description

低溫膨脹機
本發明係關於一種用於併入在產生冷卻或加熱之間切換之一閥之一往復式低溫膨脹機之氣動驅動機構。
半導體係在通常使用由吉福特-麥克馬洪(GM)冷凍機冷卻之低溫泵來產生真空之真空室中製造。一典型低溫泵具有冷卻至約80K之一熱板(I族氣體,包含水蒸氣凍結於該熱板上),及冷卻至約20K之一冷板(II族氣體,諸如氮氣及氧氣凍結於該冷板上)。冷板之背側上之木炭吸附較輕的氣體氫氣及氦氣。在操作數天或數週之後,必須加熱低溫泵以移除低溫沈積物。氣體之可燃組合物可累積於一低溫泵中,因此需避免在低溫泵內部設置加熱器而低溫板通常由低溫泵外殼外部之加熱器間接加熱。現今使用之大多數GM型膨脹機在一個方向運行時產生冷卻,而在反向運行時繼續以一降低的速率產生冷卻。讓一低溫泵包含可交替地產生加熱之一膨脹機能提供更快地加熱或降低成本或兩者之選項。
W.E.Gifford及H.O.McMahon之美國專利3,045,436(「‘436專利」)描述了GM循環。本文中所描述之系統主要基於GM循環操作且一般而言具有在5kW至15kW之範圍內之輸入功率,但更大及更小系統可落入本發明之範疇內。GM循環及諸多布雷登循環冷凍機使用為空 氣調節應用設計之油潤滑壓縮機來將氣體(氦氣)供應至往複式低溫膨脹機。一GM膨脹機透過處於室溫之入口及出口閥以及一再生器使氣體循環至冷膨脹空間,而一布雷登循環膨脹機具有氣體在室溫下進入及離開之一逆流熱交換器以及使氣體循環至冷膨脹空間之冷入口及出口閥。該膨脹機中之置換器係機械或氣動驅動的。
Gifford之美國專利3,205,668(「‘668專利」)描述一種具有附接至置換器之熱端之一桿之GM膨脹機,該GM膨脹機藉由憑藉一旋轉閥使驅動桿上方之壓力與膨脹空間之壓力異相地循環來驅動置換器上下。當閥在一向前方向上旋轉時,一循環可假定以置換器向下(冷置換容積最小)並處於低壓且桿上方之壓力為高開始。將置換器之壓力切換至高壓,接著在一短暫延遲之後將驅動桿之壓力切換至低壓。此致使置換器向上移動,從而透過再生器將高壓氣體抽取至冷置換容積中。置換器之高壓閥通常在置換器到達頂部之前閉合且氣體在其到達頂部時存在一部分膨脹。置換器之低壓閥接著開啟且膨脹氣體變冷。驅動桿上方之壓力接著切換至高壓且向下推動置換器,從而推動冷低壓氣體通過冷端熱交換器且透過再生器返回,由此完成循環。當置換器之壓力切換時,通過再生器之壓降導致在相同於驅動桿上之力之方向之一力。當壓力位移關係P-V繪製於一圖上時,該等關係之序列係在一順時針方向上且面積等於每循環產生之冷卻。當‘668專利之旋轉閥反向運行時,驅動桿之壓力在置換器之壓力之前切換且P-V序列仍在一順時針方向上,但冷卻由於不良時序而減少。在置換器中及驅動桿上之壓力相同時之循環階段期間,不存在淨力來移動置換器。
Longsworth之美國專利8,448,461(「‘461專利」)描述一 種具有置換器/活塞上之一桿、氣動驅動且可使用本發明之機構以自一冷卻循環切換至一加熱循環之布雷登循環膨脹機。本發明之機構亦可用來實施控制置換器/活塞向上及向下移動之速度以最佳化冷卻期間之冷卻之孔口之調整。大多數布雷登循環膨脹機具有包含將冷置換容積與熱端分開之一密封件之一活塞,而‘461專利具有在其中包含使熱及冷置換容積中之壓力相等且因此可稱為置換器之一再生器之一活塞。
為了使一膨脹機在反向運行時產生加熱,當壓力自低壓切換至高壓時,置換器必須在頂部處或附近,且儘管再生器壓降產生向下力,但仍停留於頂部處或附近,使得由頂部處或附近壓縮之氣體加熱冷置換容積。處於高壓之此熱氣體透過再生器推出且壓力在置換器向下時切換至低壓。此已藉由具有如Asami之美國專利5,361,588(「‘588專利」)中所描述之一旋轉閥之一蘇格蘭軛驅動置換器來實現。當馬達旋轉時,蘇格蘭軛驅動器固定置換器之位置,而與壓力無關。當閥在向前方向上旋轉時,透過閥流入及流出置換器之氣體之時序經最佳化以產生冷凍。旋轉閥盤具有在一閥座中之埠上方滑動之一面且藉由具有帶有接合閥盤之背側上之一槽之一銷之一軸件而轉動。‘588專利之閥盤具有改變銷接合槽之角度之一環形槽。此導致當置換器在頂部處並向下移動時高壓埠開啟且當置換器在底部處並移動至頂部時低壓埠開啟。P-V序列係逆時針的。閥時序使得可達成一接近的最佳加熱循環。
隨著膨脹機之冷卻能力增加以冷卻更大低溫泵,蘇格蘭軛驅動器變得比一氣動驅動器更大且更昂貴,因此需要可自一冷卻循環改變為一加熱循環之一更高效氣動驅動膨脹機。
Gao及Longsworth之美國專利7,191,600(「‘600專利」)描 述一種具有用於至再生器之流及至脈衝管之流之單獨旋轉閥之脈衝管膨脹機。當閥馬達在一向前方向上轉動時,兩個閥之間的相差產生冷卻且當在相反方向上旋轉時,兩個閥之間的一相移產生加熱。專利申請案WO 2018/168305(「‘305申請案」)描述不同於‘600專利中所描述之在反向運行時產生加熱之脈衝管膨脹機之一脈衝管膨脹機之一閥配置。
‘588專利之原理係具有向上及向下驅動置換器(蘇格蘭軛)、獨立於閥(一旋轉閥)、切換置換器之壓力且壓力切換之定相在改變旋轉方向時轉變之機構。專利申請案WO 2018/168304(「‘304申請案」)描述一種用於置換器之氣動驅動器,該氣動驅動器具有附接至一驅動桿之一活塞,該活塞大於該驅動桿且經連接至不同於連接至置換器之閥之入口及出口閥。該等閥係在一固定閥座上滑動之同心盤。內盤將流切換至置換器且外盤將流切換至驅動活塞之頂部。當閥馬達反向運行時,外盤相對於內盤旋轉一固定角度且提供產生加熱而非冷卻所需之相移。圖8a至圖8d分別展示‘304申請案之圖1、圖8(a)、圖8(c)及圖9(c)。容積48中之驅動活塞之背側上之氣體受困於驅動活塞及驅動桿上之密封件50、32之間,如圖8a中所展示。該氣體以大約取決於容積48之一平均壓力循環。為了達成圖8c中所展示之矩形P-V圖,容積48必須至少係驅動活塞上方之容積46之兩倍。圖8b展示閥V3及V4,其等控制至驅動桿之流,以180°之一差開啟且保持開啟達相同時間長度,而閥V2在V1之後開啟約100°且保持開啟達相同時間長度。雖然此不對稱性可提供最佳的冷卻時序,但其導致少於最佳加熱時序,如圖8d中所展示之較小P-V圖中所反映。本發明之一重要態樣係,當自冷卻切換至加熱時,開啟及閉合驅動桿之閥之等效物之時序可不同。
本發明之目的係使用一氣動驅動GM型膨脹機自冷卻切換至加熱,而無需反轉驅動馬達之方向,同時為冷卻及加熱提供閥時序,從而導致冷卻及加熱兩者之良好效率。冷卻及加熱兩者時之高效率係藉由利用可將膨脹機置換器驅動至衝程末端而與置換器中之壓力無關之一驅動馬達來使該置換器往復運動,使用具有用於切換該置換器及驅動活塞之壓力之單獨軌道之一旋轉閥,及具有改變來自驅動活塞之軌道上之一埠之流以導致冷卻一第二埠從而導致加熱之一單獨開關閥來達成。開關閥可由一線性抑或旋轉驅動器致動。驅動活塞可為單動式或雙動式的且致動器可簡單地切換至驅動活塞之流或連接至亦改變通過開關閥之壓降以控制置換器向上及向下移動之速度之一控制器。
此等優點可藉由一種用於自一壓縮機接收處於一第一壓力之氣體且返回處於一第二壓力之該氣體之低溫膨脹機。該低溫膨脹機包含一氣動及往復式置換器總成以及能夠提供冷卻及加熱模式以分別產生冷卻及加熱之一閥總成。該置換器總成包含:一置換器,其在一置換器汽缸中,在該置換器汽缸之一熱端與一冷端之間往復運動;一驅動桿,其經附接至該置換器之一熱端且延伸穿過一桿套;及一驅動活塞,其具有一頂部及一底部,該驅動活塞之該底部經附接至該驅動桿之一頂端,在一驅動活塞汽缸中往復運動。該驅動活塞可具有大於該驅動桿之一直徑。氣體在該等熱與冷置換容積之間流動通過一再生器。該閥總成包含一閥座及在該閥座上旋轉之一閥盤。該閥座具有在一第一半徑處之連接至該置換器汽缸或閥致動器之埠、在一第二半徑處之連接至該驅動活塞汽缸之埠及在該第二壓力下連接至該壓縮機之一中央埠。該閥盤具有將處於該第一壓力及第二 壓力之該氣體交替地連接至該等第一及第二半徑處之該等埠之槽。該第二半徑處之該等埠包含一冷卻埠及一加熱埠。該閥盤之旋轉方向保持恆定。該閥總成進一步包含在該第二半徑處之該等埠與該驅動活塞上方之該頂部容積之間的一開關閥。該開關閥經配置以將該冷卻埠或該加熱埠連接至該驅動活塞上方之該頂部容積以提供該冷卻或加熱模式。
1:開關閥
1a:線性致動器/線性啟動致動器
1b:線軸
2:旋轉閥
2’:旋轉閥
2a:盤/閥盤
2b:閥座
3:開關閥
3a:旋轉致動器
3b:線軸
4:旋轉閥/閥盤
4a:閥盤
4b:閥座
5a:驅動活塞
5b:驅動活塞
6a:驅動活塞汽缸
6b:汽缸
7:驅動桿
8:桿套
9:管線
9a:主入口閥
9b:主出口閥
10a:第一半徑
10b:第二半徑
10c:第一半徑
11a:第二半徑
11b:第二半徑
12a:頂部容積
12b:驅動活塞容積
13a:緩衝容積
13b:活塞容積
15:壓縮機
16:高壓管線
16a:高壓槽
17:低壓管線
17a:低壓槽
18:管線
18a:冷卻管線
18b:加熱管線
19:管線
20a:置換器
21a:置換器主體
21b:置換器
22a:再生器
22b:再生器
23:埠
24:埠
25:熱置換容積/熱端容積
26:冷置換容積/冷端容積
27:密封件
28:密封件
29a:氣動致動器
29b:氣動致動器
30:置換器汽缸
31:密封件
32:密封件
40:閥馬達
41:馬達軸
42:銷
44:槽
45:第二半徑
46:第一半徑
48:容積
50:密封件/逆流熱交換器
100:低溫冷凍系統
200:低溫冷凍系統
300:低溫冷凍系統
Ph:第一壓力或高壓/供應壓力
Pl:第二壓力或低壓/回流壓力
V1:閥
V2:低壓閥
V3:閥
V3a:閥
V3b:閥
V4:閥
V4a:低壓閥
V4b:低壓閥
圖式圖僅以實例方式而非限制方式描繪符合本概念之一或多項實施方案。在該等圖中,類似元件符號指代相同或類似元件。
圖1係包括具有透過互連管道自一壓縮機供應氣體之一單動式驅動活塞、一旋轉閥及一開關閥之一氣動致動GM循環膨脹機之低溫冷凍系統100之一示意圖。
圖2係包括具有透過互連管道自一壓縮機供應氣體之一雙動式驅動活塞、一旋轉閥及一開關閥之一氣動致動GM循環膨脹機之低溫冷凍系統200之一示意圖。
圖3係包括具有透過互連管道自一壓縮機供應氣體之一單動式驅動活塞、一旋轉閥及一開關閥之一氣動致動布雷登循環膨脹機之低溫冷凍系統300之一示意圖。
圖4展示系統100之旋轉閥、開關閥及驅動活塞之一截面。
圖5展示系統200之旋轉閥、開關閥及驅動活塞之一截面。
圖6a展示當系統100中之置換器即將排放至低壓時,疊加於閥座上之閥盤中之槽之圖案。
圖6b展示當膨脹機產生冷卻時,隨著系統100之閥盤旋轉該閥盤中之槽經過閥座中之埠之序列。
圖6c展示一冷卻循環之P-V圖,其中該循環上之點如圖6b中所展示般編號。
圖7a展示當系統100中之置換器即將加壓至高壓時,疊加於閥座上之閥盤中之槽之圖案。
圖7b展示當膨脹機產生加熱時,隨著系統100之閥盤旋轉該閥盤中之槽經過閥座中之埠之序列。
圖7c展示一加熱循環之P-V圖,其中該循環上之點如圖7b中所展示編號。
圖8a至圖8d分別展示‘304申請案之圖1、圖8(a)、圖8(c)及圖9(c)。
相關申請案之交叉參考
本申請案主張2020年8月28日申請之美國臨時申請案第63/071,669號之優先權,該案之全文以引用的方式併入本文中。
在本節中,將參考隨附圖式更全面地描述本發明之一些實施例,在隨附圖式中展示本發明之較佳實施例。然而,本發明可以諸多不同形式實施且不應被解釋為限於本文中所闡述之實施例。相反地,提供此等實施例使得本發明將係徹底及完整的,且將本發明之範圍傳達給熟習此項技術者。類似數字自始至終指代類似元件,且在替代實施例中使用素數來指示類似元件。圖式中相同或類似之部件具有相同數字且通常不重複描述。
低溫膨脹機通常在冷端向下時操作,因此術語向上及向下以及頂部及底部參考此定向。圖式中之相同數字用於相同組件且下標用來 區分具有不同配置之等效部件。
參考圖1,展示低溫冷凍系統100之一示意圖,其詳細展示本發明之重要特徵、閥及驅動活塞與系統之其餘部分(即汽缸30中之置換器20a,及壓縮機15,壓縮機15透過高壓管線16將處於一第一壓力或高壓Ph之氣體供應至旋轉閥2,且透過低壓管線17自旋轉閥2接收處於一第二壓力或低壓Pl之氣體)之關係。旋轉閥2具有在一旋轉盤上之經過一固定座上之埠之埠。該座上之一第一半徑10a處之埠透過管線9使氣體循環至置換器汽缸30之熱端,且一第二半徑11a處之埠透過開關閥1及管線18使氣體循環至驅動活塞汽缸6a之頂端。管線18a開始於閥座之第二半徑11a上之一第一埠(稱為冷卻埠)處,且管線18b開始於閥座之第二半徑11a上之一第二埠(稱為加熱埠)處。開關閥1之示意圖式展示其固定於冷卻位置中且逆時針轉動90°以便加熱。閥2之示意圖式展示隨著置換器20a向上移動連接至汽缸30處於高壓Ph之在管線9中之氣體及連接至汽缸6a處於低壓Pl之在管線18中之氣體。
置換器20a在汽缸30中之一熱端與一冷端之間往復運動,從而產生熱置換容積25及冷置換容積26。氣體在容積25與26之間流動通過置換器主體21a中之熱端處之埠23、再生器22a及冷端處之埠24。密封件27防止氣體繞過再生器22a。置換器20a由驅動桿7向上及向下驅動,驅動桿7在其底端處連接至置換器20a之頂端且在其頂端處連接至驅動活塞5a之底端。驅動活塞5a由驅動活塞5a上方之頂部容積12a(亦稱作驅動活塞容積)中之循環氣壓與驅動活塞5a下方之緩衝容積13a中作用於驅動桿7外部之區域上之壓力之間的壓力差向上及向下驅動。因為驅動活塞5a僅藉由壓力自高壓Ph改變為低壓Pl而在該活塞之一側上驅動,所以其被描述為單 動式。驅動活塞5a中之密封件31保持頂部容積12a中之氣體與容積13a中之氣體分開。桿套8中之密封件28保持容積13a中之氣體與容積25中之氣體分開。
典型操作壓力係供應壓力Ph約2.2Mpa且回流壓力Pl約0.8MPa,壓力比為2.8,因此緩衝容積13a必須係置換頂部容積12a約三倍以上以便驅動活塞5a完成一全衝程。然而,需要一大得多的容積來減少頂部容積12a中之壓力變化以在全衝程期間跨驅動活塞5a擁有幾乎恆定的壓差。緩衝容積13a相對於頂部容積12a之此大容積被示意性地展示為與驅動活塞5a下方之置換容積分開之一容積。
參考圖2,展示低溫冷凍系統200之一示意圖,與系統100不同之處在於其具有一驅動活塞5b,該驅動活塞5b為雙動式驅動活塞。驅動活塞5b之底部上之壓力在頂部上之壓力係高壓Ph時為低壓Pl,且在頂部上之壓力係低壓Pl時為高壓Ph。在系統100中,來自旋轉閥2中之加熱埠之管線18b在冷卻期間被阻擋於開關閥1處,但在系統200中,其透過開關閥3及管線19連接至驅動活塞5b下方之容積13b。驅動活塞5b可具有小於單動式驅動活塞5a之一直徑,因為全壓差Ph-Pl作用於其上,且驅動活塞5b上方及下方之容積12b及13b可與由驅動活塞5b置換之容積一樣小。
旋轉閥4與旋轉閥2類似之處在於在閥座上之一第一半徑處具有至線9及第二半徑10b之埠,且在一第二半徑11b處具有至管線18a及18b且至管線18之埠。開關閥3經構形使得當來自冷卻管線18a之氣體連接至管線18時來自旋轉閥4中之加熱管線18b之氣體連接至管線19,因此隨著閥盤4旋轉將驅動活塞5b上方及下方之壓力切換為相反壓力。
開關閥3經固定於所展示之冷卻位置中且逆時針轉動90°以 便加熱。閥4之示意圖式展示隨著置換器20a向上移動連接至汽缸30處於高壓Ph之在管線9中之氣體、連接至汽缸6b之頂部處於低壓之在管線18中之氣體及連接至汽缸6b之底部處於高壓Ph之在管線19中之氣體。雖然用於將一氣動低溫膨脹機自冷卻轉變至加熱之機構最適用於由一GM循環膨脹機冷卻之一低溫泵,但其亦可適用於如圖3中所展示之一氣動驅動布雷登循環膨脹機。
參考圖3,展示包括具有一單動式驅動活塞之一氣動致動布雷登循環膨脹機之低溫冷凍系統300之一示意圖。系統300之布雷登循環膨脹機在汽缸30b之冷端處具有主入口閥及出口閥9a及9b。氣體透過逆流熱交換器50自壓縮機15自高壓管線16流動至入口閥9a,且透過熱交換器50及低壓管線17自出口閥9b返回。置換器21b具有一再生器22b,再生器22b使氣體自冷端容積26循環至熱端容積25以保持置換器21b上方及下方之壓力幾乎相同且允許系統100或系統200之閥機構及驅動活塞機構用來產生冷卻或加熱。第一半徑10c處之旋轉閥2’上之埠係相對小的,因為其等僅使少量氣體循環至開啟及閉合冷入口及出口閥9a及9b之氣動致動器29a及29b。氣動致動器29a在其經連接至高壓Ph時開啟閥9a且在連接至低壓Pl時閉合。致動器29b及閥9b亦係如此。
參考圖4,展示系統100之開關閥1、旋轉閥2及驅動活塞5a之一截面。旋轉盤2a由閥馬達40、馬達軸41及在盤2a之頂部中接合槽44之銷42轉動。本發明所展示之閥盤每轉具有兩個循環且因此具有兩個對稱的高及低壓槽。閥座具有用於至置換器之流之兩個對稱埠,但可能僅具有用於至驅動活塞之流之一對埠。閥盤2a之底部與閥座2b接觸且被展示為具有低壓槽17a,低壓槽17a將低壓管線17與通過線軸1b至頂部容積12a之管 線18a連接。此係冷卻模式。當線性致動器1a向右拉動線軸1b使得管線18b連接至頂部容積12a時,系統100切換至一加熱模式。管線18a及18b可具有不同流阻抗使得驅動活塞5a在加熱及冷卻模式中向上及向下移動之速度可不同。不同流阻抗可由開關閥之開啟程度或由固定埠大小來確立。控制開關閥開啟之程度可用來控制活塞速度。
開關閥1可經配置使得當膨脹機處於冷卻模式中時僅冷卻管線18a與驅動活塞5a上方之頂部容積12a流體連通且當膨脹機處於加熱模式中時僅加熱管線18b與驅動活塞5a上方之頂部容積12a流體連通。線性啟動致動器1a可經配置以控制通過開關閥1之壓降以控制置換器20a向上及向下移動之速度。
參考圖5,展示系統200之開關閥3、旋轉閥4及驅動活塞5b之一截面。閥盤4a之底部與閥座4b接觸且被展示為具有:高壓槽16a,其將高壓管線16與通過線軸3b及管線18至驅動活塞容積12b之管線18b連接;及低壓槽17a,其將低壓管線17與通過線軸3b及管線19至驅動活塞容積13b之管線18a連接。此係加熱模式。當旋轉致動器3a將線軸3b轉動90°使得管線18a連接至驅動活塞容積12b且管線18b連接至活塞容積13b時,系統200切換至一冷卻模式。
圖6a及圖7a實例性地展示兩個位置中之系統100至300之旋轉閥。圖6b針對冷卻且圖7b針對加熱,展示閥盤中之高及低壓槽經過閥座(其係開啟及閉合閥之等效物)中之埠之時序。接著,圖6c及圖7c在冷卻及加熱之P-V圖上展示閥之開啟及閉合。圖6a及圖7a展示自閥馬達查看且抵靠閥座2b逆時針轉動之閥盤2a之面中之高壓槽16a及低壓槽17a。閥座2b中之一第一半徑46處之埠9連接至置換器汽缸30且當高壓槽16a經過其 時作為閥V1(參見圖6b)開啟且當低壓槽17a經過其時作為低壓閥V2開啟。閥座2b中之一第二半徑45處之管線18a及18b連接至驅動活塞汽缸6a之頂部且當高壓槽16a經過其等時作為閥V3a及V3b開啟且當低壓槽17a經過其等時作為低壓閥V4a及V4b開啟。開關閥1在膨脹機正在冷卻時阻擋來自管線18b之流且在膨脹機加熱時阻擋來自管線18a之流。
圖6a、圖6b及圖6c展示在膨脹階段結束時開始之冷卻循環,其中冷置換容積26最大,置換器20a在頂部處,且壓力大於低壓Pl。圖6b及圖6c中之數字1至8展示如下般概述之閥時序及對應P-V循環。
1:閥V2開啟使得置換器中之壓力降至低壓Pl。
2:在壓力降至Pl之後,V3a開啟且跨驅動活塞之壓差將置換器推向底部。
3:在置換器到達底部之前,V2閉合使得壓力隨著冷氣體轉移至熱端而增加,而置換器將一路移動至底部。
4:V1開啟使得壓力增加至高壓Ph。
5:V3閉合。
6:V4開啟且跨驅動活塞之壓差將置換器推向頂部。
7:在置換器到達頂部之前,V1閉合使得壓力隨著熱氣體轉移至冷端而減小,而置換器將一路移動至頂部。
8:V4閉合。
此循環中存在兩個原理,第一原理係在切換置換器中壓力之後切換驅動活塞中之壓力,且第二原理係閥V1及V2在置換器到達衝程末端、頂部及底部之前閉合。
圖7a、圖7b及圖7c展示在低壓階段起始時開始之加熱循 環,其中置換容積26最小,置換器20a在底部處,且壓力大於低壓Pl。圖7b及圖7c中之數字1至8展示如下般概述之閥時序及對應P-V循環。
1:閥V2開啟使得置換器中之壓力降至Pl。應注意,閥V3b仍開啟,從而保持驅動活塞5a上之高壓氣體以將其壓制。
6:在壓力降至之Pl後,V4b開啟使得跨驅動活塞之壓差將置換器拉向頂部。
3:在置換器到達頂部之前,V2閉合使得壓力隨著熱氣體轉移至底端而增加,而置換器將一路移動至頂部。
4:V1開啟因此壓力增加至高壓Ph。應注意,V4b仍開啟,從而引起驅動活塞將置換器固持於頂部處。
7:V1閉合,接著壓力隨著置換器移動至底部及氣體自冷端轉移至熱端而下降。
此循環中存在三個原則。第一原則係當閥V1及V2切換壓力時,驅動活塞上方之壓力將置換器固持於頂部或底部處。第二原則係在達到高或低壓之後切換驅動活塞上方之壓力,且第三原則係在置換器到達頂部或底部之前閉合閥V1及V2。重要的是應注意,藉由使V2開啟長於V1且在V2之後使V1開啟超過90°來最佳化冷卻循環不會對加熱循環不利,因為加熱管線18b可位於距冷卻管線18a超過90°之位置。
系統300之閥時序可相同於系統100。系統200之閥及閥時序之表示將展示更大的對稱性,因為驅動活塞5b上方及下方之壓力必須在相同時間切換。因此需要折衷以平衡一良好冷卻循環與一良好加熱循環。
下文發明申請專利範圍不限於所引用之特定組件。例如,展示為線性致動之開關閥1可用一旋轉致動閥取代。第二半徑上之加熱埠 或可改為在一第三半徑上。包含對於簡化機械設計而言並非最佳之操作限制亦在此發明申請專利範圍之範疇內。本文中所使用之術語及描述僅以闡釋方式闡述且並非意謂為限制。熟習此項技術者將認知,在本發明及本文中所描述之實施例之精神及範疇內,諸多變化型態係可能的。
1:開關閥
2:旋轉閥
5a:驅動活塞
6a:驅動活塞汽缸
7:驅動桿
8:桿套
9:管線
10a:第一半徑
11a:第二半徑
12a:頂部容積
13a:緩衝容積
15:壓縮機
16:高壓管線
17:低壓管線
18:管線
18a:冷卻管線
18b:加熱管線
20a:置換器
21a:置換器主體
22a:再生器
23:埠
24:埠
25:熱置換容積/熱端容積
26:冷置換容積/冷端容積
27:密封件
28:密封件
30:置換器汽缸
31:密封件
100:低溫冷凍系統
Ph:第一壓力或高壓/供應壓力
Pl:第二壓力或低壓/回流壓力

Claims (14)

  1. 一種用於自一壓縮機接收處於一第一壓力之氣體且返回處於一第二壓力之該氣體之低溫膨脹機,其包括:一氣動驅動及往復式置換器總成,其包括:一置換器,其在一置換器汽缸中,在該置換器汽缸之一熱端與一冷端之間往復運動,從而在該置換器汽缸中產生一熱置換容積及一冷置換容積,氣體在該等熱與冷置換容積之間流動通過一再生器;一驅動桿,其經附接至該置換器之一熱端且延伸穿過一桿套;及一驅動活塞,其具有一頂部及一底部,該驅動活塞之該底部經附接至該驅動桿之一頂端,在一驅動活塞汽缸中往復運動,該驅動活塞具有大於該驅動桿之一直徑,該驅動活塞將該驅動活塞上方之一頂部容積及該驅動活塞下方之一底部容積分開;及一閥總成,其能夠提供冷卻及加熱模式以分別產生冷卻及加熱,該閥總成包括:一閥座;一閥盤,其在該閥座上旋轉,其中該閥座具有在一第一半徑處之連接至該置換器汽缸或閥致動器之埠、在一第二半徑處之連接至該驅動活塞汽缸之埠及在該第二壓力下連接至該壓縮機之一中央埠,該閥盤具有將處於該第一壓力及第二壓力之該氣體交替地連接至該等第一及第二半徑處之該等埠之槽,且該第二半徑處之該等埠包括一冷卻埠及一加熱埠,且其中該閥盤之一旋轉方向保持恆定;及一開關閥,其在該第二半徑處之該等埠與該驅動活塞上方之該頂 部容積之間,其中該開關閥經配置以將該冷卻埠或該加熱埠連接至該驅動活塞上方之該頂部容積以提供該冷卻或加熱模式。
  2. 如請求項1之低溫膨脹機,其中該開關閥經配置以當該膨脹機處於該冷卻模式中時將該加熱埠連接至該驅動活塞下方之該底部容積,且當該膨脹機處於該加熱模式中時將該冷卻埠連接至該驅動活塞下方之該底部容積。
  3. 如請求項2之低溫膨脹機,其中該開關閥經配置以當該膨脹機處於該冷卻模式中時將該冷卻埠連接至該驅動活塞上方之該頂部容積,且當該膨脹機處於該加熱模式中時將該加熱埠連接至該驅動活塞上方之該頂部容積。
  4. 如請求項2之低溫膨脹機,其中該開關閥包括經配置以旋轉地切換該加熱埠及冷卻埠至該驅動活塞下方之該底部容積之該等連接之一線軸。
  5. 如請求項1之低溫膨脹機,其中該開關閥經配置使得當該膨脹機處於該冷卻模式中時僅該冷卻埠與該驅動活塞上方之該頂部容積流體連通,且當該膨脹機處於該加熱模式中時僅該加熱埠與該驅動活塞上方之該頂部容積流體連通。
  6. 如請求項5之低溫膨脹機,其中該開關閥包括經配置以線性地切換該冷卻埠及加熱埠與該驅動活塞上方之該頂部容積之該等連通之一線軸。
  7. 如請求項5之低溫膨脹機,其中分別將該冷卻埠及該加熱埠連接至該驅動活塞上方之該頂部容積之管線具有不同流阻抗。
  8. 如請求項1之低溫膨脹機,其中該開關閥包括:一線軸,其用來將該冷卻埠或該加熱埠連接至該驅動活塞上方之該頂部容積;及一致動器,其用來線性地或旋轉地啟動該線軸。
  9. 如請求項8之低溫膨脹機,其中該線性啟動致動器經配置以控制通過該開關閥之壓降以控制該置換器向上及向下移動之速度。
  10. 如請求項9之低溫膨脹機,其中該致動器為一線性啟動致動器,其經配置以控制該開關閥開啟之程度以控制該壓降。
  11. 如請求項1之低溫膨脹機,其中當冷卻及加熱時,該置換器停留於該置換器汽缸之該熱端或該冷端處直至該壓力達到該第一或第二壓力,該置換器才移向另一端。
  12. 如請求項1之低溫膨脹機,其中該第一半徑處之該等埠經連接至該置換器汽缸之該熱置換容積。
  13. 如請求項1之低溫膨脹機,其中該置換器總成進一步包括連接至該置 換器汽缸之該冷置換容積之冷入口及出口閥,且其中:該第一半徑處之該等埠經連接至該等閥致動器;該等閥致動器包括一第一閥致動器以當該第一閥致動器經連接至該壓縮機之該第一壓力時開啟該入口閥;且該等閥致動器包括一第二閥致動器以當該第二閥致動器經連接至該壓縮機之該第一壓力時開啟該出口閥。
  14. 如請求項1之低溫膨脹機,其中該加熱埠位於比該冷卻埠更接近該第一半徑處之該等埠之一者之位置。
TW110131835A 2020-08-28 2021-08-27 低溫膨脹機 TWI803953B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063071669P 2020-08-28 2020-08-28
US63/071,669 2020-08-28

Publications (2)

Publication Number Publication Date
TW202214992A TW202214992A (zh) 2022-04-16
TWI803953B true TWI803953B (zh) 2023-06-01

Family

ID=80355578

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110131835A TWI803953B (zh) 2020-08-28 2021-08-27 低溫膨脹機

Country Status (7)

Country Link
US (1) US11662123B2 (zh)
EP (1) EP4204744A1 (zh)
JP (1) JP7441379B2 (zh)
KR (1) KR20230050414A (zh)
CN (1) CN116249865A (zh)
TW (1) TWI803953B (zh)
WO (1) WO2022046468A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040123605A1 (en) * 2001-09-28 2004-07-01 Pruitt Gerald R. Expansion-nozzle cryogenic refrigeration system with reciprocating compressor
TWM425258U (en) * 2011-10-13 2012-03-21 Hanbell Precise Machinery Co Ltd Bearing and rotor lubricating device of expander

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3045436A (en) 1959-12-28 1962-07-24 Ibm Pneumatic expansion method and apparatus
US3205668A (en) 1964-01-27 1965-09-14 William E Gifford Fluid control apparatus
JPH0468267A (ja) * 1990-07-09 1992-03-04 Daikin Ind Ltd 極低温冷凍機
WO1993010407A1 (en) 1991-11-18 1993-05-27 Sumitomo Heavy Industries, Ltd. Cryogenic refrigerating device
AU2003217905A1 (en) 2002-03-05 2003-09-22 Shi-Apd Cryogenics, Inc. Fast warm up pulse tube
US9080794B2 (en) 2010-03-15 2015-07-14 Sumitomo (Shi) Cryogenics Of America, Inc. Gas balanced cryogenic expansion engine
EP2625474B1 (en) 2010-10-08 2017-05-24 Sumitomo Cryogenics Of America Inc. Fast cool down cryogenic refrigerator
FR3047551B1 (fr) * 2016-02-08 2018-01-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif de refrigeration cryogenique
US10634393B2 (en) 2016-07-25 2020-04-28 Sumitomo (Shi) Cryogenic Of America, Inc. Cryogenic expander with collar bumper for reduced noise and vibration characteristics
JP6759133B2 (ja) 2017-03-13 2020-09-23 住友重機械工業株式会社 パルス管冷凍機、パルス管冷凍機用のロータリーバルブユニット及びロータリーバルブ
JP6781651B2 (ja) 2017-03-13 2020-11-04 住友重機械工業株式会社 極低温冷凍機、極低温冷凍機用のロータリーバルブユニット及びロータリーバルブ
KR102350313B1 (ko) 2018-04-09 2022-01-11 에드워즈 배큠 엘엘시 공기압 드라이브 극저온 냉동기

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040123605A1 (en) * 2001-09-28 2004-07-01 Pruitt Gerald R. Expansion-nozzle cryogenic refrigeration system with reciprocating compressor
TWM425258U (en) * 2011-10-13 2012-03-21 Hanbell Precise Machinery Co Ltd Bearing and rotor lubricating device of expander

Also Published As

Publication number Publication date
EP4204744A1 (en) 2023-07-05
US20220065499A1 (en) 2022-03-03
US11662123B2 (en) 2023-05-30
CN116249865A (zh) 2023-06-09
WO2022046468A1 (en) 2022-03-03
KR20230050414A (ko) 2023-04-14
JP2023539517A (ja) 2023-09-14
JP7441379B2 (ja) 2024-02-29
TW202214992A (zh) 2022-04-16

Similar Documents

Publication Publication Date Title
US9080794B2 (en) Gas balanced cryogenic expansion engine
US7549295B2 (en) Three track valve for cryogenic refrigerator
CN102947652B (zh) 冰箱的冷却系统和用于压缩机流体的吸入系统
CN101080600B (zh) 输入功率减小的低温制冷机
US11022353B2 (en) Pulse tube cryocooler and rotary valve unit for pulse tube cryocooler
WO2005072194A2 (en) Reduced torque valve for cryogenic refrigerator
US5642623A (en) Gas cycle refrigerator
WO2012154299A1 (en) Gas balanced cryogenic expansion engine
JP6781651B2 (ja) 極低温冷凍機、極低温冷凍機用のロータリーバルブユニット及びロータリーバルブ
TWI803953B (zh) 低溫膨脹機
JP3936117B2 (ja) パルス管冷凍機および超電導磁石装置
US20160216010A1 (en) HYBRID GIFFORD-McMAHON - BRAYTON EXPANDER
JP2001099506A (ja) パルス管冷凍機
JP2000035253A (ja) 冷却装置
JP6087168B2 (ja) 極低温冷凍機
JP7033009B2 (ja) パルス管冷凍機
US11137181B2 (en) Gas balanced engine with buffer
CN112368525B (zh) 超低温制冷机及超低温制冷机的流路切换机构
WO2020235554A1 (ja) パルス管冷凍機、パルス管冷凍機のコールドヘッド
JP2019128115A (ja) パルス管冷凍機
JPH0424215Y2 (zh)
JPH0621724B2 (ja) 極低温冷凍機の給排気装置