TWI803645B - Method for planarizing semiconductor structure - Google Patents

Method for planarizing semiconductor structure Download PDF

Info

Publication number
TWI803645B
TWI803645B TW108119683A TW108119683A TWI803645B TW I803645 B TWI803645 B TW I803645B TW 108119683 A TW108119683 A TW 108119683A TW 108119683 A TW108119683 A TW 108119683A TW I803645 B TWI803645 B TW I803645B
Authority
TW
Taiwan
Prior art keywords
material layer
trenches
layer
trench
grooves
Prior art date
Application number
TW108119683A
Other languages
Chinese (zh)
Other versions
TW202046374A (en
Inventor
蘇柏文
賴冠穎
呂水煙
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW108119683A priority Critical patent/TWI803645B/en
Publication of TW202046374A publication Critical patent/TW202046374A/en
Application granted granted Critical
Publication of TWI803645B publication Critical patent/TWI803645B/en

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A method for planarizing a semiconductor structure is disclosed. An etching back process is performed on a bottom anti-reflective coating, which covers the first trenches with a small width and the second trenches, so that the first trenches and the second trenches are not filled with the bottom anti-reflective coating. A photoresist layer is formed on thebottomanti-reflective coating, and a photolithography processfor the photoresist layer above the first trenches is performedto leave scum on the bottom anti-reflective coating within the first trenches, wherein the surface of the scum within the first trenches areat the same height. Then, the scum and a portion of the bottom anti-reflective coating within the first trench are removed, so that the heights of the remaining bottom anti-reflective coatings within the first trenches are substantially the same.

Description

平面化半導體結構的方法Method for planarizing semiconductor structures

本發明有關一種半導體製程,尤其是一種平面化半導體結構的方法。 The invention relates to a semiconductor manufacturing process, in particular to a method for planarizing a semiconductor structure.

在半導體積體電路中,日益縮小的幾何尺寸有助於提高生產效率與降低相關成本,然隨著裝置之幾何尺寸變的更小,半導體裝置可能導致負載問題,例如產生不希望的高電阻。 In semiconductor integrated circuits, shrinking geometries help increase production efficiency and reduce associated costs. However, as device geometries become smaller, semiconductor devices may cause loading problems, such as undesirably high resistance.

在形成場效電晶體(FET)裝置的半導體製程中,半導體基板上形成有溝槽用以設置金屬閘極,而一般在形成金屬閘極時,溝槽內會先形成功函數金屬層,再形成低阻值金屬層。其中在形成功函數金屬層時,由於半導體基板上溝槽的寬度日趨精細,因此功函數金屬層於溝槽內的高度要控制在同一高度難度較高,導致功函數金屬層無法在溝槽內具有相對平整的高度,進而影響後續沉積作為金屬閘極電極的低阻值金屬層的填入,導致場效電晶體(FET)裝置的效能受到影響。 In the semiconductor manufacturing process of forming a field effect transistor (FET) device, a trench is formed on the semiconductor substrate to set a metal gate. Generally, when forming a metal gate, a work function metal layer is first formed in the trench, and then A low-resistance metal layer is formed. When forming the work function metal layer, since the width of the trench on the semiconductor substrate is getting finer, it is difficult to control the height of the work function metal layer in the trench to be at the same height, resulting in the inability of the work function metal layer to have the same height in the trench. The relatively flat height further affects the filling of the low-resistance metal layer deposited later as the metal gate electrode, resulting in the performance of the field effect transistor (FET) device being affected.

本發明提供一種平面化半導體結構的方法,有助於製作元件特性較佳之半導體元件。 The invention provides a method for planarizing a semiconductor structure, which helps to manufacture semiconductor elements with better element characteristics.

本發明所提供的平面化半導體結構的方法包含:提供基板結構,基板結構具有第一表面,第一表面上形成有多個第一溝槽及至少一第二溝槽,第一溝槽的寬度小於第二溝槽的寬度;形成功函數金屬層以至少位於第一溝槽及第二溝槽內;形成抗反射材料層於基板結構的第一表面且填滿第一溝槽及第二溝槽;回蝕刻抗反射材料層,以移除部分抗反射材料層,使抗反射材料層未填滿第一溝槽及第二溝槽;形成光阻層於基板結構上,以覆蓋第一表面及抗反射材料層,其中光阻層具有第一部分及第二部分,第一部分對應第一溝槽的分布區域,第二部分對應第二溝槽的分布區域;對第一部分進行微影製程,以在第一溝槽內的抗反射材料層上餘留光阻殘渣;以及移除光阻殘渣及第一溝槽內的部分抗反射材料層,使得第一溝槽內之剩餘的抗反射材料層的高度實質相同。 The method for planarizing a semiconductor structure provided by the present invention includes: providing a substrate structure, the substrate structure has a first surface, a plurality of first grooves and at least one second groove are formed on the first surface, and the width of the first groove is less than the width of the second trench; forming a work function metal layer to be at least located in the first trench and the second trench; forming an anti-reflection material layer on the first surface of the substrate structure and filling the first trench and the second trench groove; etch back the anti-reflection material layer to remove part of the anti-reflection material layer so that the anti-reflection material layer does not fill the first groove and the second groove; form a photoresist layer on the substrate structure to cover the first surface and an anti-reflection material layer, wherein the photoresist layer has a first part and a second part, the first part corresponds to the distribution area of the first groove, and the second part corresponds to the distribution area of the second groove; a lithography process is performed on the first part to Remaining photoresist residue on the anti-reflection material layer in the first groove; and removing the photoresist residue and part of the anti-reflection material layer in the first groove, so that the remaining anti-reflection material layer in the first groove heights are substantially the same.

在本發明的一實施例中,上述之功函數金屬層至少形成於第一溝槽及第二溝槽的底面及內側壁。 In an embodiment of the present invention, the above-mentioned work function metal layer is formed at least on the bottom surface and the inner sidewall of the first trench and the second trench.

在本發明的一實施例中,在形成功函數金屬層之前,先形成閘極介電層於第一溝槽及第二溝槽內。 In an embodiment of the present invention, before forming the work function metal layer, a gate dielectric layer is formed in the first trench and the second trench.

在本發明的一實施例中,於進行回蝕刻抗反射材料層的步驟之後,第一溝槽內的抗反射材料層的高度高於第二溝槽內的抗反射材料層的高度。 In an embodiment of the present invention, after the step of etching back the anti-reflection material layer, the height of the anti-reflection material layer in the first trench is higher than the height of the anti-reflection material layer in the second trench.

在本發明的一實施例中,於進行回蝕刻抗反射材料層的步驟之後,第一溝槽內的抗反射材料層具有第一高度,又於微影製程的步驟之後,光阻殘渣具有第二高度,第一高度及第二高度的比值介於9至2之間。 In one embodiment of the present invention, after the step of etching back the anti-reflective material layer, the anti-reflective material layer in the first groove has a first height, and after the step of photolithography, the photoresist residue has a first height. Two heights, the ratio of the first height to the second height is between 9 and 2.

在本發明的一實施例中,上述之光阻殘渣具有第二表面,第二表面低於第一表面,且第二表面在第一溝槽內的高度實質相同。 In an embodiment of the present invention, the above photoresist residue has a second surface, the second surface is lower than the first surface, and the height of the second surface in the first trench is substantially the same.

在本發明的一實施例中,上述之光阻殘渣及第一溝槽內的部分抗反射材料層的移除速率實質相同。 In an embodiment of the present invention, the removal rates of the photoresist residue and part of the anti-reflection material layer in the first trench are substantially the same.

在本發明的一實施例中,上述之第一溝槽的寬度小於25奈米。 In an embodiment of the present invention, the width of the above-mentioned first trench is less than 25 nm.

在本發明的一實施例中,於第一溝槽內之剩餘的抗反射材料層的高度實質相同後,更進行一金屬收縮製程,以移除第一溝槽內的部分功函數金屬層。 In an embodiment of the present invention, after the heights of the remaining anti-reflection material layers in the first trenches are substantially the same, a metal shrinkage process is further performed to remove part of the work function metal layer in the first trenches.

在本發明的一實施例中,於進行金屬收縮製程時,與剩餘的抗反射材料層接觸的部分功函數金屬層不會被移除。 In an embodiment of the present invention, when the metal shrinkage process is performed, part of the work function metal layer in contact with the remaining anti-reflection material layer will not be removed.

在本發明的一實施例中,於進行金屬收縮製程之後,更移除第一溝槽內之剩餘的抗反射材料層、光阻層的第二部分、以及第二溝槽內的抗反射材料層。 In an embodiment of the present invention, after the metal shrinkage process is performed, the remaining anti-reflection material layer in the first trench, the second part of the photoresist layer, and the anti-reflection material in the second trench are further removed layer.

本發明因先對覆蓋於第一溝槽及第二溝槽上的抗反射材料層進行回蝕刻製程,使抗反射材料層未填滿第一溝槽及第二溝槽後,再覆蓋光阻層於抗反射材料層上,且針對寬度較小之第一溝槽上方的光阻層進行微影製程,以在第一溝槽內的抗反射材料層上餘留有光阻殘渣;之後同時移除光阻殘渣及第一溝槽內的部分抗反射材料層,使得第一溝槽內之剩餘抗反射材料層的高度實質相同。因此此實施例平面化半導體結構的方法將有助於製作元件特性較佳之半導體元件。 In the present invention, an etch-back process is first performed on the anti-reflection material layer covering the first groove and the second groove, so that the anti-reflection material layer does not fill the first groove and the second groove, and then covers the photoresist layer on the anti-reflection material layer, and carry out a lithography process on the photoresist layer above the first trench with a smaller width, so as to leave photoresist residues on the anti-reflection material layer in the first trench; and then at the same time removing the photoresist residue and part of the anti-reflection material layer in the first groove, so that the heights of the remaining anti-reflection material layer in the first groove are substantially the same. Therefore, the method for planarizing the semiconductor structure in this embodiment will help to manufacture semiconductor devices with better device characteristics.

為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式,作詳細說明如下。 In order to make the above and other objects, features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

10:基板結構 10: Substrate structure

101:第一表面 101: First Surface

12:層間介電質 12:Interlayer dielectric

14、14’、14”:第一溝槽 14, 14', 14": the first groove

141:內側壁 141: inner wall

142:底面 142: Bottom

16:第二溝槽 16: Second groove

161:內側壁 161: inner wall

162:底面 162: Bottom

W1、W2`:寬度 W1, W2`: Width

D:深度 D: Depth

18:閘極介電層 18: Gate dielectric layer

20、20’:功函數金屬層 20, 20': work function metal layer

22、22’:抗反射材料層 22, 22': anti-reflection material layer

Z1、Z2:區域 Z1, Z2: area

H1:第一高度 H1: first height

24:光阻層 24: photoresist layer

24a:第一部分 24a: Part I

24b:第二部分 24b: Second part

26:光阻殘渣 26: Photoresist residue

261:第二表面 261: second surface

H2:第二高度 H2: second height

R:高度差 R: height difference

T1:第一厚度 T1: first thickness

圖1A至圖1I是本發明一實施例平面化半導體結構之流程的剖面結構示意圖。 1A to 1I are cross-sectional schematic diagrams of the process of planarizing a semiconductor structure according to an embodiment of the present invention.

圖2是本發明一實施例抗反射材料層具有不同厚度示意圖。 FIG. 2 is a schematic diagram of different thicknesses of an anti-reflection material layer according to an embodiment of the present invention.

圖3是本發明一實施例第一溝槽內具有一致高度之功函數金屬層示意圖。 FIG. 3 is a schematic diagram of a work function metal layer with a uniform height in a first trench according to an embodiment of the present invention.

圖1A至圖1I是本發明一實施例平面化半導體結構之流程的剖面結構示意圖。如圖1A所示,提供一基板結構10,基板結構10具有第一表面101,第一表面101上形成多個溝槽,溝槽及溝槽之間例如具有本領域熟知的隔離結構,例如氮化矽及/或層間介電質(ILD)12,於一實施例中,溝槽包含第一溝槽14及第二溝槽16,第一溝槽14具有兩相對內側壁141及底面142,第二溝槽16具有兩相對內側壁161及底面162,第一溝槽14的寬度W1小於第二溝槽的寬度W2,其中第一溝槽14的寬度W1小於25奈米(nm),於一實施例中,第一溝槽14的寬度W1介於7奈米至25奈米之間,又第一溝槽14及第二溝槽16具有一深度D,深度D例如介於55奈米至100奈米之間。圖1A至圖1I中是繪示三個第一溝槽14及一個第二溝槽16作為說明,惟不限於此。 1A to 1I are cross-sectional schematic diagrams of the process of planarizing a semiconductor structure according to an embodiment of the present invention. As shown in FIG. 1A, a substrate structure 10 is provided. The substrate structure 10 has a first surface 101, and a plurality of grooves are formed on the first surface 101. For example, there is an isolation structure known in the art between the grooves and the grooves, such as nitrogen silicon and/or interlayer dielectric (ILD) 12, in one embodiment, the trench includes a first trench 14 and a second trench 16, the first trench 14 has two opposite inner sidewalls 141 and a bottom surface 142, The second trench 16 has two opposite inner sidewalls 161 and a bottom surface 162. The width W1 of the first trench 14 is smaller than the width W2 of the second trench, wherein the width W1 of the first trench 14 is less than 25 nanometers (nm). In one embodiment, the width W1 of the first groove 14 is between 7 nm and 25 nm, and the first groove 14 and the second groove 16 have a depth D, for example, the depth D is 55 nm. to 100 nm. 1A to 1I show three first trenches 14 and one second trench 16 for illustration, but not limited thereto.

接著,如圖1B所示,依序形成閘極介電層18及功函數金屬層20於基板結構10的第一表面101、第一溝槽14及第二溝槽16內。閘極介電層18包含高K介電材料;功函數金屬層20包含導電材料,例如金屬或金屬複合物。於一實施例中,閘極介電層18共形形成於第一溝槽14的內側壁141及底面142、第二溝槽16的內側壁161及底面162、以及部分第一表面101上,其中部分第一表面101可為層間介電層12的表面。功函數金屬層20共形覆蓋於閘極介電層18上。 Next, as shown in FIG. 1B , the gate dielectric layer 18 and the work function metal layer 20 are sequentially formed in the first surface 101 , the first trench 14 and the second trench 16 of the substrate structure 10 . The gate dielectric layer 18 includes a high-K dielectric material; the work function metal layer 20 includes a conductive material, such as a metal or a metal compound. In one embodiment, the gate dielectric layer 18 is conformally formed on the inner sidewall 141 and the bottom surface 142 of the first trench 14 , the inner sidewall 161 and the bottom surface 162 of the second trench 16 , and a portion of the first surface 101 , Part of the first surface 101 may be the surface of the interlayer dielectric layer 12 . The work function metal layer 20 conformally covers the gate dielectric layer 18 .

之後,如圖1C所示,形成抗反射材料層(Bottom Anti-Reflective Coating;BARC)22於基板結構上且填滿第一溝槽14(標示於圖1A)及第二溝槽16(標示於圖1A)。於一實施例中。抗反射材料層22可藉由塗覆製程形成於功函數金屬層20上,抗反射材料層22完全填滿並突出於第一溝槽14及第二溝槽16,且抗反射材料層22在基板結構10上方具有不同的厚度。舉例而言,第一溝槽14位在溝槽圖案密集度較高的區域Z1,則第一溝槽14上方的抗反射材料層22較厚,第二溝槽16位在圖案密集度較低的區域Z2,則第二溝槽16上方的抗反射材料層22較薄。 After that, as shown in FIG. 1C , an anti-reflective material layer (Bottom Anti-Reflective Coating; BARC) 22 is formed on the substrate structure and fills up the first trench 14 (marked in FIG. 1A ) and the second trench 16 (marked in FIG. 1A ). Figure 1A). In one embodiment. The anti-reflection material layer 22 can be formed on the work function metal layer 20 by a coating process, the anti-reflection material layer 22 completely fills and protrudes from the first groove 14 and the second groove 16, and the anti-reflection material layer 22 is in the There are different thicknesses above the substrate structure 10 . For example, if the first groove 14 is located in the region Z1 with a higher groove pattern density, the anti-reflection material layer 22 above the first groove 14 is thicker, and the second groove 16 is located in a region with a lower pattern density. area Z2, the anti-reflective material layer 22 above the second trench 16 is relatively thin.

之後,進行第一次回蝕刻製程,對抗反射材料層22進行回蝕刻,以移除部分抗反射材料層22,如圖1D所示,使抗反射材料層22未填滿第一溝槽14及第二溝槽16,於一實施例中,第一溝槽14內的抗反射材料層22的高度高於第二溝槽16內的抗反射材料層22的高度。於一實施例中,進行第一次回蝕刻製程後,多個第一溝槽內14之抗反射材料層22具有第一高度H1,且第一高度H1並不一致。其中,第一次回蝕刻製程只蝕刻抗反射材料層22而不會蝕刻到抗反射材料層22以外的材料,如圖1D所示,功函數金屬層20不會受到回蝕刻製程的影響,仍位於基板結構10的第一表面101上及第一溝槽14/第二溝槽16內。 Afterwards, the first etch-back process is carried out to etch back the anti-reflective material layer 22 to remove part of the anti-reflective material layer 22, as shown in FIG. 1D, so that the anti-reflective material layer 22 does not fill the first trench 14 and For the second trench 16 , in one embodiment, the height of the anti-reflection material layer 22 in the first trench 14 is higher than the height of the anti-reflection material layer 22 in the second trench 16 . In one embodiment, after the first etch-back process is performed, the anti-reflection material layers 22 in the plurality of first trenches 14 have a first height H1, and the first heights H1 are not uniform. Wherein, the first etch-back process only etches the anti-reflective material layer 22 and does not etch materials other than the anti-reflective material layer 22. As shown in FIG. 1D, the work function metal layer 20 will not be affected by the etch-back process and remains Located on the first surface 101 of the substrate structure 10 and in the first groove 14 /the second groove 16 .

接著,如圖1E所示,形成光阻層24於基板結構10上,以覆蓋功函數金屬層20及抗反射材料層22,其中,光阻層24可分為第一部分24a及第二部分24b,第一部分24a對應第一溝槽14(標示於圖1A)的分布區域Z1,第二部分24b對應第二溝槽16的分布區域Z2;之後,對光阻層24的第一部分24a進行微影製程,於一實施例中,微影製程例如包括曝光及顯影,其中第一溝槽14內的光阻層24在曝光製程中會與氮交互作用,從而產生光阻毒化(poison)致使在進行顯影步驟時餘留胺類(NHx)光阻殘渣(scum)26於第一溝 槽14內的抗反射材料層22上,如圖1F所示,於一實施例中,光阻殘渣26具有第二高度H2,多個第一溝槽14內之光阻殘渣26的第二高度H2並不一致,對同一第一溝槽14而言,第一高度H1(標示於圖1D)及第二高度H2的比值介於9至2之間。又光阻殘渣26具有第二表面261,且餘留在多個第一溝槽14內的光阻殘渣26的第二表面261的高度實質相同,又第二表面261可低於或等高於基板結構10的第一表面101,於一實施例中,第二表面261及第一表面101之間的高度差R介於0至10奈米之間。 Next, as shown in FIG. 1E, a photoresist layer 24 is formed on the substrate structure 10 to cover the work function metal layer 20 and the anti-reflection material layer 22, wherein the photoresist layer 24 can be divided into a first part 24a and a second part 24b , the first portion 24a corresponds to the distribution area Z1 of the first groove 14 (marked in FIG. 1A ), and the second portion 24b corresponds to the distribution area Z2 of the second groove 16; afterward, the first portion 24a of the photoresist layer 24 is lithographically process, in one embodiment, the photolithography process includes exposure and development, for example, wherein the photoresist layer 24 in the first trench 14 will interact with nitrogen during the exposure process, thereby generating photoresist poisoning (poison) so that Amine (NHx) photoresist residue (scum) 26 remains in the first groove during the developing step On the anti-reflection material layer 22 in the groove 14, as shown in FIG. H2 is not consistent. For the same first trench 14 , the ratio of the first height H1 (shown in FIG. 1D ) to the second height H2 is between 9 and 2. The photoresist residue 26 has a second surface 261, and the heights of the second surface 261 of the photoresist residue 26 remaining in the plurality of first grooves 14 are substantially the same, and the second surface 261 can be lower than or equal to the height For the first surface 101 of the substrate structure 10 , in one embodiment, the height difference R between the second surface 261 and the first surface 101 is between 0 and 10 nm.

之後,在光阻層24的第二部分24b仍覆蓋第二溝槽分布區域Z2的前提下,進行第二次回蝕刻製程,以移除光阻殘渣26及第一溝槽14(標示於圖1A)內的一部分抗反射材料層22。於一實施例中,進行第二次回蝕刻製程時,光阻殘渣26及第一溝槽14內的部分抗反射材料層22的移除速率實質相同,如圖1G所示,使得第二次回蝕刻製程後,多個第一溝槽14內之剩餘的抗反射材料層22’的高度實質相同。 Afterwards, under the premise that the second portion 24b of the photoresist layer 24 still covers the second groove distribution area Z2, a second etch-back process is performed to remove the photoresist residue 26 and the first groove 14 (marked in FIG. 1A ) part of the anti-reflection material layer 22. In one embodiment, when performing the second etch-back process, the removal rates of the photoresist residue 26 and part of the anti-reflective material layer 22 in the first trench 14 are substantially the same, as shown in FIG. 1G , so that the second etch-back After the process, the heights of the remaining anti-reflection material layers 22 ′ in the plurality of first trenches 14 are substantially the same.

接著,在光阻層24的第二部分24b仍覆蓋第二溝槽分布區域Z2的前提下,進行金屬收縮製程,移除未被光阻層24的第二部分24b保護的功函數金屬層20。於一實施例中,金屬收縮製程包含一蝕刻製程,其中蝕刻劑會移除功函數金屬層20的材料但不會影響其他材料,因此執行金屬收縮製程後,沉積於第一表面101上方的部分功函數金屬層20及第一溝槽14之內側壁141上的部分功函數金屬層20將被移除,如圖1H所示,而與第一溝槽14內剩餘的抗反射材料層22’接觸的部分功函數金屬層20’不會被移除。其中,由於第一溝槽14內剩餘的抗反射材料層22’具有實質相同的高度,因此,第一溝槽14內因與剩餘的抗反射材料層22’接觸而不會被移除的部分功函數金屬層20’的高度亦實質相同。 Next, under the premise that the second portion 24b of the photoresist layer 24 still covers the second groove distribution area Z2, a metal shrinkage process is performed to remove the work function metal layer 20 not protected by the second portion 24b of the photoresist layer 24. . In one embodiment, the metal shrinking process includes an etching process, wherein the etchant will remove the material of the work function metal layer 20 but will not affect other materials, so after performing the metal shrinking process, the portion deposited on the first surface 101 The work function metal layer 20 and part of the work function metal layer 20 on the inner wall 141 of the first trench 14 will be removed, as shown in FIG. The contacted portion of the work function metal layer 20' will not be removed. Wherein, since the remaining anti-reflection material layer 22' in the first groove 14 has substantially the same height, the part of the work in the first groove 14 that will not be removed due to contact with the remaining anti-reflection material layer 22' The heights of the functional metal layers 20' are also substantially the same.

接著,移除光阻層24的第二部分24b、第二溝槽16內的抗反射材料層22及第一溝槽14之剩餘的抗反射材料層22’,以顯露第二溝槽16內及第二溝槽16周圍之第一表面101上的功函數金屬層20、以及第一溝槽14內的功函數金屬層20’,如圖1I所示,其中多個第一溝槽14內的功函數金屬層20’的高度具有一致性,且第一溝槽14內的功函數金屬層20’的高度皆小於第二溝槽16內之功函數金屬層20的高度。 Next, remove the second portion 24b of the photoresist layer 24, the anti-reflection material layer 22 in the second trench 16, and the remaining anti-reflection material layer 22' in the first trench 14 to expose the second trench 16. And the work function metal layer 20 on the first surface 101 around the second trench 16, and the work function metal layer 20' in the first trench 14, as shown in FIG. 1I, wherein the plurality of first trenches 14 The heights of the work function metal layers 20 ′ are consistent, and the heights of the work function metal layers 20 ′ in the first trench 14 are smaller than the heights of the work function metal layers 20 in the second trench 16 .

之後,於後續未繪示的一實施例中,可在上述第一溝槽14及第二溝槽16內形成低阻值金屬層,使低阻值金屬層位於功函數金屬層20、20’上且填滿第一溝槽14及第二溝槽16。於一實施例中,更進一步執行平坦化製程,例如化學機械研磨製程,以移除第一溝槽14及第二溝槽16外之多餘的低阻值金屬層及第一表面101上的閘極介電層18與功函數金屬層20,從而完成金屬閘極電極的製作。 After that, in an embodiment not shown in the follow-up, a low-resistance metal layer can be formed in the first trench 14 and the second trench 16, so that the low-resistance metal layer is located in the work function metal layer 20, 20' and fill the first trench 14 and the second trench 16 . In one embodiment, a planarization process, such as a chemical mechanical polishing process, is further performed to remove the redundant low-resistance metal layer outside the first trench 14 and the second trench 16 and the gate on the first surface 101 The dielectric layer 18 and the work function metal layer 20 are used to complete the fabrication of the metal gate electrode.

在上述實施例中,抗反射材料層22的沉積厚度與溝槽圖案的密集度有關,於一實施例中,溝槽圖案密集度較高的區域,其上方的抗反射材料層22較厚,溝槽圖案密集度較低的區域,其上方的抗反射材料層22較薄。圖2是本發明一實施例抗反射材料層具有不同厚度示意圖,如圖2所示,多個第一溝槽14、14’位在溝槽圖案密集度較高的區域Z1,則第一溝槽14、14’上方的抗反射材料層22的厚度較厚,例如具有第一厚度T1,其中一第一溝槽14’鄰近寬度較大的第二溝槽16,使得此第一溝槽14’上方的抗反射材料層22的厚度略小於第一厚度T1,又另有一第一溝槽14”被兩個寬度較大的第二溝槽16所圍繞,則此第一溝槽14”上方的抗反射材料層22的厚度亦略小於第一厚度T1。又如圖2所示,第一溝槽14、14’、14”及第二溝槽16內形成有功函數金屬層20,其中,可以理解的,功函數金屬層20與第一溝槽14、14’、14”/第二溝槽16的內側壁及底面之間存在有一未繪示的閘極介電層。 In the above-mentioned embodiment, the deposition thickness of the anti-reflection material layer 22 is related to the density of the groove patterns. In one embodiment, the anti-reflection material layer 22 above the area with a higher density of groove patterns is thicker. The anti-reflection material layer 22 is thinner in the region where the concentration of groove patterns is lower. Fig. 2 is a schematic diagram of different thicknesses of the anti-reflection material layer according to an embodiment of the present invention. The thickness of the anti-reflection material layer 22 above the grooves 14, 14' is relatively thick, for example, it has a first thickness T1, and one of the first grooves 14' is adjacent to the second groove 16 with a larger width, so that the first groove 14 'The thickness of the upper anti-reflection material layer 22 is slightly smaller than the first thickness T1, and there is another first groove 14" surrounded by two second grooves 16 with larger widths, then the upper part of the first groove 14" The thickness of the anti-reflection material layer 22 is also slightly smaller than the first thickness T1. Also as shown in FIG. 2 , a work function metal layer 20 is formed in the first trenches 14 , 14 ′, 14 ″ and the second trench 16 . 14 ′, 14 ″/a gate dielectric layer (not shown) exists between the inner sidewall and the bottom surface of the second trench 16 .

圖3是本發明一實施例第一溝槽內具有一致高度之功函數金屬層示意圖,其中,基板結構上之第一溝槽及第二溝槽的圖案為與圖2所示之實施例相同,在圖2所示之實施例中,抗反射材料層22的沉積厚度不相同,而在根據上述圖1D至圖1I所示之實施例的平面化半導體結構的方法中,此厚度不同的抗反射材料層22先被進行第一次回蝕刻製程,使抗反射材料層22未填滿第一溝槽14、14’、14”及第二溝槽16後,再覆蓋光阻層24(標示於圖1E)於抗反射材料層22上,且針對寬度較小之第一溝槽14、14’、14”上方的光阻層24進行微影製程,以在第一溝槽14、14’、14”的抗反射材料層22上餘留有光阻殘渣26(標示於圖1F),之後同時移除光阻殘渣26及第一溝槽14、14’、14”內的部分抗反射材料層22,使得第一溝槽14、14’、14”內之剩餘抗反射材料層22’的高度實質相同,進而在後續的金屬收縮製程以及移除剩餘的光阻層24與抗反射材料層22之後,多個第一溝槽14、14’、14”內的功函數金屬層20’的高度皆具有一致性。 Fig. 3 is a schematic diagram of a work function metal layer with a uniform height in the first trench according to an embodiment of the present invention, wherein the pattern of the first trench and the second trench on the substrate structure is the same as that of the embodiment shown in Fig. 2 , in the embodiment shown in FIG. 2, the deposition thickness of the anti-reflection material layer 22 is different, and in the method for planarizing the semiconductor structure according to the embodiment shown in the above-mentioned FIG. 1D to FIG. The reflective material layer 22 is first etched back for the first time, so that the anti-reflective material layer 22 does not fill the first trenches 14, 14', 14" and the second trenches 16, and then covers the photoresist layer 24 (marked In FIG. 1E ) on the anti-reflection material layer 22, and for the photoresist layer 24 above the first grooves 14, 14', 14" with a smaller width, the lithography process is carried out, so that the first grooves 14, 14' , 14 "on the anti-reflection material layer 22, photoresist residue 26 (marked in Fig. 1F) remains, and then the photoresist residue 26 and part of the anti-reflection material in the first trenches 14, 14', 14" are removed simultaneously layer 22, so that the heights of the remaining anti-reflective material layer 22' in the first grooves 14, 14', 14" are substantially the same, and then the remaining photoresist layer 24 and anti-reflective material layer are removed in the subsequent metal shrinkage process After 22, the heights of the work function metal layers 20' in the plurality of first trenches 14, 14', 14" are all consistent.

根據上述,本發明使寬度較小之第一溝槽內的抗反射材料層上餘留有光阻殘渣,且光阻殘渣在第一溝槽內的表面高度實質相同;之後移除光阻殘渣及第一溝槽內的部分抗反射材料層,使得第一溝槽內之剩餘抗反射材料層的高度實質相同;進而在後續進行金屬收縮製程後,第一溝槽內的功函數金屬層具有相對平整的高度,因此,可改善隨後沉積作為金屬閘極的低阻值金屬的高度平整性,使得金屬閘極電極具有較優的效能,有助於製作元件特性較佳之半導體元件。 According to the above, in the present invention, photoresist residues remain on the anti-reflection material layer in the first trench with a smaller width, and the surface heights of the photoresist residues in the first trenches are substantially the same; then the photoresist residues are removed and part of the anti-reflective material layer in the first trench, so that the heights of the remaining anti-reflective material layer in the first trench are substantially the same; furthermore, after the subsequent metal shrinkage process, the work function metal layer in the first trench has Relatively flat height, therefore, can improve the flatness of the low-resistance metal that is subsequently deposited as the metal gate, so that the metal gate electrode has better performance and helps to manufacture semiconductor devices with better device characteristics.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed above with the embodiments, it is not intended to limit the present invention. Those with ordinary knowledge in the technical field of the present invention can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention should be defined by the scope of the appended patent application.

101:第一表面 101: First Surface

20:功函數金屬層 20: Work function metal layer

22:抗反射材料層 22: Anti-reflection material layer

Z2:區域 Z2: area

24:光阻層 24: photoresist layer

24b:第二部分 24b: Second part

26:光阻殘渣 26: Photoresist residue

261:第二表面 261: second surface

H2:第二高度 H2: second height

R:高度差 R: height difference

Claims (11)

一種平面化半導體結構的方法,包含: 提供一基板結構,該基板結構具有一第一表面,該第一表面上形成有多個第一溝槽及至少一第二溝槽,該些第一溝槽的寬度小於該第二溝槽的寬度; 形成一功函數金屬層以至少位於該些第一溝槽及該第二溝槽內; 形成一抗反射材料層於該基板結構的該第一表面且填滿該些第一溝槽及該第二溝槽; 回蝕刻該抗反射材料層,以移除部分該抗反射材料層,使該抗反射材料層未填滿該些第一溝槽及該第二溝槽; 形成一光阻層於該基板結構上,以覆蓋該第一表面及該抗反射材料層,其中該光阻層具有一第一部分及一第二部分,該第一部分對應該些第一溝槽的分布區域,該第二部分對應該第二溝槽的分布區域; 對該第一部分進行微影製程,以在該些第一溝槽內的該抗反射材料層上餘留一光阻殘渣;以及 移除該光阻殘渣及該些第一溝槽內的部分該抗反射材料層,使得該些第一溝槽內之剩餘的該抗反射材料層的高度實質相同。A method of planarizing a semiconductor structure, comprising: A substrate structure is provided, the substrate structure has a first surface, a plurality of first grooves and at least one second groove are formed on the first surface, the width of the first grooves is smaller than that of the second grooves width; forming a work function metal layer to be located at least in the first trenches and the second trenches; forming an anti-reflection material layer on the first surface of the substrate structure and filling the first grooves and the second grooves; Etching back the anti-reflection material layer to remove part of the anti-reflection material layer so that the anti-reflection material layer does not fill the first grooves and the second grooves; forming a photoresist layer on the substrate structure to cover the first surface and the anti-reflective material layer, wherein the photoresist layer has a first portion and a second portion, the first portion corresponds to the first grooves distribution area, the second part corresponds to the distribution area of the second trench; performing a lithography process on the first portion to leave a photoresist residue on the anti-reflective material layer in the first grooves; and The photoresist residue and part of the anti-reflection material layer in the first grooves are removed, so that the remaining heights of the anti-reflection material layer in the first grooves are substantially the same. 如請求項1所述之平面化半導體結構的方法,其中,該功函數金屬層至少形成於該些第一溝槽及該第二溝槽的底面及內側壁。The method for planarizing a semiconductor structure as claimed in claim 1, wherein the work function metal layer is formed at least on the bottom surfaces and inner sidewalls of the first trenches and the second trenches. 如請求項1所述之平面化半導體結構的方法,其中,在形成該功函數金屬層之前,先形成一閘極介電層於該些第一溝槽及該第二溝槽內。The method for planarizing a semiconductor structure as claimed in claim 1, wherein, before forming the work function metal layer, a gate dielectric layer is formed in the first trenches and the second trenches. 如請求項1所述之平面化半導體結構的方法,其中,於進行回蝕刻該抗反射材料層的步驟之後,該些第一溝槽內的該抗反射材料層的高度高於該第二溝槽內的該抗反射材料層的高度。The method for planarizing a semiconductor structure as claimed in claim 1, wherein, after the step of etching back the antireflection material layer, the height of the antireflection material layer in the first trenches is higher than that of the second trenches The height of the layer of anti-reflection material inside the groove. 如請求項1所述之平面化半導體結構的方法,其中,於進行回蝕刻該抗反射材料層的步驟之後,該些第一溝槽內的該抗反射材料層具有一第一高度,又於該微影製程的步驟之後,該光阻殘渣具有一第二高度,該第一高度及該第二高度的比值介於9至2之間。The method for planarizing a semiconductor structure as claimed in claim 1, wherein, after the step of etching back the antireflective material layer, the antireflective material layer in the first trenches has a first height, and After the photolithography process step, the photoresist residue has a second height, and the ratio of the first height to the second height is between 9 and 2. 如請求項1所述之平面化半導體結構的方法,其中,其中該光阻殘渣具有一第二表面,該第二表面低於該第一表面,且該第二表面在該些第一溝槽內的高度實質相同。The method for planarizing a semiconductor structure as claimed in claim 1, wherein the photoresist residue has a second surface, the second surface is lower than the first surface, and the second surface is above the first grooves The heights inside are substantially the same. 如請求項1所述之平面化半導體結構的方法,其中,該光阻殘渣及該些第一溝槽內的部分抗反射材料層的移除速率實質相同。The method for planarizing a semiconductor structure as claimed in claim 1, wherein the removal rates of the photoresist residue and part of the anti-reflection material layer in the first trenches are substantially the same. 如請求項1所述之平面化半導體結構的方法,其中,該些第一溝槽的寬度小於25奈米。The method for planarizing a semiconductor structure as claimed in claim 1, wherein the width of the first trenches is less than 25 nm. 如請求項1所述之平面化半導體結構的方法,其中,於該些第一溝槽內之剩餘的該抗反射材料層的高度實質相同後,更進行一金屬收縮製程,以移除該些第一溝槽內的部分該功函數金屬層。The method for planarizing a semiconductor structure as claimed in claim 1, wherein after the heights of the remaining anti-reflective material layers in the first trenches are substantially the same, a metal shrinkage process is further performed to remove the layers A portion of the work function metal layer within the first trench. 如請求項9所述之平面化半導體結構的方法,其中,於進行該金屬收縮製程時,與剩餘的該抗反射材料層接觸的部分該功函數金屬層不會被移除。The method for planarizing a semiconductor structure as claimed in claim 9, wherein when the metal shrinkage process is performed, the part of the work function metal layer in contact with the remaining anti-reflection material layer will not be removed. 如請求項10所述之平面化半導體結構的方法,其中,於進行該金屬收縮製程之後,更移除該些第一溝槽內之剩餘的該抗反射材料層、該光阻層的該第二部分、以及該第二溝槽內的該抗反射材料層。The method for planarizing a semiconductor structure according to claim 10, wherein after the metal shrinkage process is performed, the remaining anti-reflective material layer and the first photoresist layer in the first trenches are further removed Two parts, and the anti-reflection material layer in the second groove.
TW108119683A 2019-06-06 2019-06-06 Method for planarizing semiconductor structure TWI803645B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108119683A TWI803645B (en) 2019-06-06 2019-06-06 Method for planarizing semiconductor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108119683A TWI803645B (en) 2019-06-06 2019-06-06 Method for planarizing semiconductor structure

Publications (2)

Publication Number Publication Date
TW202046374A TW202046374A (en) 2020-12-16
TWI803645B true TWI803645B (en) 2023-06-01

Family

ID=74668582

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108119683A TWI803645B (en) 2019-06-06 2019-06-06 Method for planarizing semiconductor structure

Country Status (1)

Country Link
TW (1) TWI803645B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120313178A1 (en) * 2011-06-13 2012-12-13 Po-Jui Liao Semiconductor device having metal gate and manufacturing method thereof
TW201448054A (en) * 2013-06-13 2014-12-16 Samsung Electronics Co Ltd Method for fabricating semiconductor device
TW201614841A (en) * 2014-10-08 2016-04-16 United Microelectronics Corp Semiconductor device having metal gate and method for manufacturing the same
CN106298656A (en) * 2015-05-20 2017-01-04 联华电子股份有限公司 Semiconductor device manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120313178A1 (en) * 2011-06-13 2012-12-13 Po-Jui Liao Semiconductor device having metal gate and manufacturing method thereof
TW201448054A (en) * 2013-06-13 2014-12-16 Samsung Electronics Co Ltd Method for fabricating semiconductor device
TW201614841A (en) * 2014-10-08 2016-04-16 United Microelectronics Corp Semiconductor device having metal gate and method for manufacturing the same
CN106298656A (en) * 2015-05-20 2017-01-04 联华电子股份有限公司 Semiconductor device manufacturing method

Also Published As

Publication number Publication date
TW202046374A (en) 2020-12-16

Similar Documents

Publication Publication Date Title
JP5532303B2 (en) Method for reducing critical dimensions of semiconductor devices
KR101087835B1 (en) Method for fabricating fine pattern of semiconductor device
KR100822621B1 (en) Method of forming a micro pattern in a semiconductor device
KR20180049101A (en) Method for forming an etching mask for substrate patterning with less resolution
US8110340B2 (en) Method of forming a pattern of a semiconductor device
KR20180072828A (en) Method for forming an etching mask for substrate patterning with less resolution
CN112151608B (en) Semiconductor structure and forming method thereof
KR20090070474A (en) Method for a micro pattern in a semiconductor device
US8089153B2 (en) Method for eliminating loading effect using a via plug
KR101867503B1 (en) Method of forming fine pattern for semiconductor device
KR20090023825A (en) Method of forming a micro pattern in a semiconductor device
CN109427651B (en) Semiconductor structure and forming method thereof
TW202203295A (en) Methods for forming semiconductor devices and method for manufacturing an integrated circuit using the same
TWI803645B (en) Method for planarizing semiconductor structure
TWI252535B (en) Method for forming contact plug of semiconductor device
CN115410991A (en) Contact hole forming method
CN115206979A (en) Memory assembly and manufacturing method thereof
CN103441067B (en) Be applied to the double-pattern forming method of grid line end cutting
TWI833601B (en) Method of processing a substrate
CN111627801B (en) Method for forming semiconductor structure
CN107958868B (en) Method for manufacturing isolation structure
KR100650902B1 (en) Semiconductor metal wiring and its manufacturing method
KR20070040596A (en) Method for forming contact hole in semiconductor device
KR100712983B1 (en) method for passvation of semiconductor device
KR100685618B1 (en) Methoe for fabricating of semiconductor device