TWI801349B - 具有補償電路之二進制加權衰減器 - Google Patents

具有補償電路之二進制加權衰減器 Download PDF

Info

Publication number
TWI801349B
TWI801349B TW106129592A TW106129592A TWI801349B TW I801349 B TWI801349 B TW I801349B TW 106129592 A TW106129592 A TW 106129592A TW 106129592 A TW106129592 A TW 106129592A TW I801349 B TWI801349 B TW I801349B
Authority
TW
Taiwan
Prior art keywords
attenuation
global
circuit
attenuator
bypass
Prior art date
Application number
TW106129592A
Other languages
English (en)
Other versions
TW201813292A (zh
Inventor
顏燕
俊勇 李
Original Assignee
美商天工方案公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商天工方案公司 filed Critical 美商天工方案公司
Publication of TW201813292A publication Critical patent/TW201813292A/zh
Application granted granted Critical
Publication of TWI801349B publication Critical patent/TWI801349B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/24Frequency-independent attenuators
    • H03H11/245Frequency-independent attenuators using field-effect transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/24Frequency- independent attenuators
    • H03H7/25Frequency- independent attenuators comprising an element controlled by an electric or magnetic variable
    • H03H7/253Frequency- independent attenuators comprising an element controlled by an electric or magnetic variable the element being a diode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/24Frequency- independent attenuators
    • H03H7/25Frequency- independent attenuators comprising an element controlled by an electric or magnetic variable
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/213Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/54Modifications of networks to reduce influence of variations of temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/211Indexing scheme relating to amplifiers the input of an amplifier can be attenuated by a continuously controlled transistor attenuator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Networks Using Active Elements (AREA)
  • Attenuators (AREA)
  • Transceivers (AREA)
  • Circuits Of Receivers In General (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

本發明揭示一種具有補償電路之二進制加權衰減器。在某些實施例中,一射頻(RF)衰減器電路可包含串聯配置於一輸入節點與一輸出節點之間的複數個衰減區塊,其中該複數個衰減區塊中之每一者包含一旁路路徑。該RF衰減器電路可進一步包含一相位補償電路,該相位補償電路係針對具有該等各別旁路路徑之該等衰減區塊中之至少某些衰減區塊中之每一者而實施。該相位補償電路可經組態以補償與對應旁路路徑相關聯之一關斷電容效應。

Description

具有補償電路之二進制加權衰減器
本發明係關於用於電子應用之衰減器。
在諸如射頻(RF)應用之電子應用中,有時期望放大或衰減一信號。舉例而言,可藉由一功率放大器放大一待傳輸信號,且可藉由一低雜訊放大器放大一所接收信號。在另一實例中,可視需要或期望沿著前述傳輸路徑及接收路徑中之任一者或兩者來實施一或多個衰減器以使各別信號衰減。
根據某些實施方案,本發明係關於一種射頻衰減器電路,其包含串聯配置於一輸入節點與一輸出節點之間的複數個衰減區塊,其中該複數個衰減區塊中之每一者包含一旁路路徑。該衰減器電路進一步包含一相位補償電路,該相位補償電路係針對具有該等各別旁路路徑之該等衰減區塊中之至少某些衰減區塊中之每一者而實施。該相位補償電路經組態以補償與對應旁路路徑相關聯之一關斷電容效應。 在某些實施例中,該等衰減區塊可具有二進制加權衰減值。該等二進制加權衰減值可包含N個值,其中一第i個值係A 2i-1 ,其中A 係一步進衰減值且i係自1至N之一正整數。該步進衰減值A可係(舉例而言)大約1 dB。數量N可包含(舉例而言) 2、3、4、5、6、7或8。 在某些實施例中,該等衰減區塊中之至少一者可不具有一相位補償電路。不具有該相位補償電路之該至少一個衰減區塊可包含具有一最低衰減值之一衰減區塊。 在某些實施例中,該等衰減區塊中之至少一者可經組態為一pi衰減器。具有pi衰減器之該至少一個衰減區塊可包含具有一最高衰減值之一衰減區塊。 在某些實施例中,具有該pi衰減器之該衰減區塊之該旁路路徑可包含一旁路切換電晶體,該旁路切換電晶體經組態以在該衰減區塊處於一旁路模式中時接通且在該衰減區塊處於一衰減模式中時關斷,使得該旁路切換電晶體在處於該衰減模式中時提供一關斷電容。具有該pi衰減器之該衰減區塊之該相位補償電路可包含經組態以在該衰減器區塊處於該衰減模式中時補償該關斷電容之一相位補償電路。該pi衰減器可包含一電阻、實施於該電阻之一端與一接地之間的一第一分路路徑及實施於該電阻之另一端與該接地之間的一第二分路路徑。該第一分路路徑及該第二分路路徑中之每一者可包含一分路電阻。 在某些實施例中,與該pi衰減器相關聯之該相位補償電路可包含配置成與該第一分路電阻電並聯之一第一補償電容及配置成與該第二分路電阻電並聯之一第二補償電容。該旁路切換電晶體之該關斷電容可導致一相位超前改變,且該相位補償電路可經組態以提供一相位滯後改變來補償該相位超前改變。該第一分路電阻及該第二分路電阻可具有實質上相同值,且該第一補償電容及該第二補償電容具有實質上相同值。 在某些實施例中,該相位超前改變可達計算為
Figure 02_image001
之一量,且該相位滯後改變可達計算為
Figure 02_image003
之一量,其中ω 係頻率之 倍、RL 係負載阻抗、R1 係電阻、CC 係第一局域補償電容且R2 係該第一分路電阻與該負載阻抗之一並聯配置之一等效電阻。該第一補償電容之該值可經選擇使得該相位滯後改變之量值與該相位超前改變之量值實質上相同。該補償電容之該值可經選擇使得該衰減區塊之一增益在一選定頻率範圍內大致平穩。 在某些實施例中,該等衰減區塊中之至少一者可經組態為一橋接T形衰減器。具有該橋接T形衰減器之該衰減區塊之該旁路路徑可包含一旁路切換電晶體,該旁路切換電晶體經組態以在該衰減區塊處於一旁路模式中時接通且在該衰減區塊處於一衰減模式中時關斷,使得該旁路切換電晶體在處於該衰減模式中時提供一關斷電容。具有該橋接T形衰減器之該衰減區塊之該相位補償電路可包含經組態以在該衰減器區塊處於該衰減模式中時補償該關斷電容之一相位補償電路。 在某些實施例中,該橋接T形衰減器可包含串聯連接之兩個第一電阻、與該兩個第一電阻之串聯組合電並聯之一第二電阻及實施於一接地與該兩個第一電阻之間的一節點之間的一分路路徑,該分路路徑包含一分路電阻。與該橋接T形衰減器相關聯之該相位補償電路可包含配置成與該分路電阻電並聯之一補償電容。 在某些實施例中,該旁路切換電晶體之該關斷電容可導致一相位超前改變,且該相位補償電路可經組態以提供一相位滯後改變來補償該相位超前改變。該相位超前改變可達計算為
Figure 02_image005
之一量,且該相位滯後改變可達計算為
Figure 02_image007
之一量,其中ω 係頻率之 倍、RL 係負載阻抗、R1 係該第一電阻、R2 係該第二電阻,CC 係該補償電容且R3 係該分路電阻與該第一電阻及該負載阻抗之一串聯組合之一並聯配置之一等效電阻。該補償電容之該值可經選擇使得該相位滯後改變之量值與該相位超前改變之量值實質上相同。該補償電容之該值可經選擇使得該衰減區塊之一增益在一選定頻率範圍內大致平穩。 在某些實施例中,該衰減器電路可進一步包含一全域旁路路徑,該全域旁路路徑包含經組態以在處於一全域旁路模式中時接通且在處於一全域衰減模式中時關斷之一全域旁路切換電晶體,使得該全域旁路切換電晶體在處於該全域衰減模式中時提供一全域關斷電容。在某些實施例中,該衰減器電路可進一步包含經組態以在該衰減器電路處於該全域衰減模式中時補償該全域關斷電容之一全域相位補償電路。該全域相位補償電路可包含串聯配置於該輸入節點與該輸出節點之間的一第一全域補償電阻及一第二全域補償電阻。該全域相位補償電路可進一步包含實施於一接地與該第一全域補償電阻與該第二全域補償電阻之間的一節點之間的一全域補償電容。該全域旁路切換電晶體之該全域關斷電容可導致一相位超前改變,且該全域相位補償電路可經組態以提供一相位滯後改變來補償該相位超前改變。該第一全域補償電阻及該第二全域補償電阻可具有實質上相同值。 在某些實施例中,該相位超前改變可達計算為
Figure 02_image009
之一量,且該相位滯後改變可達計算為
Figure 02_image011
之一量,其中ω 係頻率之 倍、RL 係負載阻抗、RG1 係第一全域補償電阻且CG 係全域補償電容。該第一全域補償電阻及該全域補償電容之該等值可經選擇使得該相位滯後改變之量值與該相位超前改變之量值實質上相同。該全域補償電容之該值可經選擇使得該衰減器電路之一全域增益在一選定頻率範圍內大致平穩。 在某些教示中,本發明係關於一種具有一射頻電路之半導體晶粒。該半導體晶粒包含一半導體基板,及實施於該半導體基板上之一衰減器電路。該衰減器電路包含串聯配置於一輸入節點與一輸出節點之間的複數個衰減區塊,其中該複數個衰減區塊中之每一者包含一旁路路徑。該衰減器電路進一步包含一相位補償電路,該相位補償電路係針對具有該等各別旁路路徑之該等衰減區塊中之至少某些衰減區塊中之每一者而實施。該相位補償電路經組態以補償與對應旁路路徑相關聯之一關斷電容效應。 根據某些實施方案,本發明係關於一種射頻模組,其包含經組態以接納複數個組件之一封裝基板及實施於該封裝基板上之一射頻衰減器電路。該衰減器電路包含串聯配置於一輸入節點與一輸出節點之間的複數個衰減區塊,其中該複數個衰減區塊中之每一者包含一旁路路徑。該衰減器電路進一步包含一相位補償電路,該相位補償電路係針對具有該等各別旁路路徑之該等衰減區塊中之至少某些衰減區塊中之每一者而實施。該相位補償電路經組態以補償與對應旁路路徑相關聯之一關斷電容效應。 在某些實施例中,該射頻衰減器電路中之某些或所有射頻衰減器電路可實施於一半導體晶粒上。在某些實施例中,實質上該射頻衰減器電路中之所有射頻衰減器電路可實施於該半導體晶粒上。 在某些實施例中,該射頻模組可經組態以處理一所接收射頻信號。該射頻模組可係(舉例而言)一分集接收模組。 在某些實施例中,該射頻模組可進一步包含與該射頻衰減器電路通信且經組態以提供一控制信號以用於該射頻衰減器電路之操作之一控制器。該控制器可經組態以提供(舉例而言)一行動產業處理器介面控制信號。 根據某些實施方案,本發明係關於一種無線裝置,該無線裝置包含:一天線,其經組態以接收一射頻信號;一收發器,其與該天線通信;及一信號路徑,其位於該天線與該收發器之間。該無線裝置進一步包含一射頻衰減器電路,其沿著該信號路徑實施。該衰減器電路包含串聯配置於一輸入節點與一輸出節點之間的複數個衰減區塊,其中該複數個衰減區塊中之每一者包含一旁路路徑。該衰減器電路進一步包含一相位補償電路,該相位補償電路係針對具有該等各別旁路路徑之該等衰減區塊中之至少某些衰減區塊中之每一者而實施。該相位補償電路經組態以補償與對應旁路路徑相關聯之一關斷電容效應。 在某些實施例中,該無線裝置可進一步包含與該射頻衰減器電路通信且經組態以提供一控制信號以用於該射頻衰減器電路之操作之一控制器。該控制器可經組態以提供(舉例而言)一行動產業處理器介面控制信號。 在某些實施方案中,本發明係關於一種信號衰減器電路,該信號衰減器電路包含串聯配置於一輸入節點與一輸出節點之間的複數個局域二進制加權衰減區塊,其中每一衰減區塊包含一局域旁路路徑。該信號衰減器電路可進一步包含實施於該輸入節點與該輸出節點之間的一全域旁路路徑及與該一或多個局域衰減區塊中之至少一者相關聯之一局域相位補償電路。該局域相位補償電路經組態以補償與該各別局域旁路路徑相關聯之一關斷電容效應。 在某些實施例中,該信號衰減器電路可進一步包含經組態以補償與該全域旁路路徑相關聯之一關斷電容效應之一全域相位補償電路。 在某些實施方案中,本發明係關於一種半導體晶粒,該半導體晶粒包含一半導體基板及實施於該半導體基板上之一信號衰減器電路。該信號衰減器電路包含串聯配置於一輸入節點與一輸出節點之間的複數個局域二進制加權衰減區塊,其中每一衰減區塊包含一局域旁路路徑。該信號衰減器電路進一步實施於該輸入節點與該輸出節點之間的一全域旁路路徑及與該一或多個局域衰減區塊中之至少一者相關聯之一局域相位補償電路。該局域相位補償電路經組態以補償與該各別局域旁路路徑相關聯之一關斷電容效應。 根據某些實施方案,本發明係關於一種射頻模組,該射頻模組包含經組態以接納複數個組件之一封裝基板及實施於該封裝基板上之一信號衰減器電路。該信號衰減器電路進一步包含串聯配置於一輸入節點與一輸出節點之間的複數個局域二進制加權衰減區塊,其中每一衰減區塊包含一局域旁路路徑。該信號衰減器電路進一步包含實施於該輸入節點與該輸出節點之間的一全域旁路路徑及該一或多個局域衰減區塊中之至少一者相關聯之一局域相位補償電路。該局域相位補償電路經組態以補償與該各別局域旁路路徑相關聯之一關斷電容效應。 在某些實施方案中,本發明係關於一種無線裝置,該無線裝置包含:一天線,其經組態以接收一射頻信號,一收發器,其與該天線通信;及一信號路徑,其位於該天線與該收發器之間。該無線裝置進一步包含沿著該信號路徑實施之一信號衰減器電路,且包含串聯配置於一輸入節點與一輸出節點之間的複數個局域二進制加權衰減區塊,其中每一衰減區塊包含一局域旁路路徑。該信號衰減器電路進一步包含實施於該輸入節點與該輸出節點之間的一全域旁路路徑及與該一或多個局域衰減區塊中之至少一者相關聯之一局域相位補償電路。該局域相位補償電路經組態以補償與該各別局域旁路路徑相關聯之一關斷電容效應。 出於概述本發明之目的,本文中已闡述本發明之特定態樣、優點及新穎特徵。應理解,可未必根據本發明之任何特定實施例來達成所有此等優點。因此,本發明可以達成或優化本文中所教示之一個優點或優點群組而未必達成如本文中可教示或提出之其他優點之方式體現或實施。
相關申請案之交叉參考 本申請案主張於2016年8月30日提出申請之標題為BINARY-WEIGHTED ATTENUATOR HAVING COMPENSATION CIRCUIT之美國臨時申請案第62/381,376號之優先權,該美國臨時申請案之揭示內容據此以其各別全文引用之方式明確地併入本文中。 本文中所提供之標題(若存在)僅為了方便起見而未必影響所主張本發明之範疇或意義。 本文中揭示與可用於(舉例而言)射頻(RF)應用中之衰減器相關之電路、裝置及方法之各種實例。儘管本文中在RF應用之脈絡中闡述各種實例,但將理解與衰減器相關之此等電路、裝置及方法可用於其他電子應用中。 圖1繪示經組態以在一輸入節點(IN)處接收一RF信號且在一輸出節點(OUT)處產生一經衰減RF信號之一衰減器電路100。此一衰減器電路可包含如本文中所闡述之一或多個特徵以便提供期望功能性,諸如相移補償、增益補償及/或低損耗旁路能力。如本文中所闡述,此相位補償可提供(舉例而言)由一衰減區塊及/或衰減器電路本身產生之一大約0相移。亦如本文中所闡述,此增益補償可在一頻率範圍內提供(舉例而言)一大致平穩增益。 應注意,在一輸入信號通過一衰減器時通常不期望相位變化及增益斜率,此乃因此等效應可導致一通信鏈路之效能降級。在某些實施例中,圖1之衰減電路100可包含一局域補償方案以解決相位變化問題。在某些實施例中,此一衰減電路亦可包含一全域補償方案以解決相位變化問題。如本文中所闡述,此等補償方案可經組態以解決此等相位變化之根源。亦如本文中所闡述,此等補償方案亦可在一相對較寬頻率範圍內提供一大致平穩增益。亦如本文中所闡述,此等補償方案亦可提供具有相對較低損耗之一旁路路徑,在某些情況下(例如,在不使用一衰減路徑之情況下)期望具有相對較低損耗之該旁路路徑以將信號衰減保持至一最小值。 出於說明之目的,一衰減電路亦可稱為一衰減器總成或簡稱為一衰減器。對此一衰減電路、衰減器總成、衰減器等之說明可適用於一或多個衰減區塊(本文中亦稱為局域衰減)、整體衰減電路(本文中亦稱為全域衰減)或其之任何組合。 圖2展示經組態以在其輸入節點(IN)處接收一RF信號且在其輸出節點(OUT)處提供一輸出RF信號之一衰減電路100之一方塊圖。此一輸出RF信號可衰減達一或多個衰減值,或在不期望衰減時與輸入RF信號實質上相同(例如,透過旁路功能性)。本文中更詳細地闡述可如何實施此等衰減值及旁路功能性之實例。本文中亦闡述可如何在一局域衰減位準下、在一全域位準下或其之任何組合下實施相位補償之實例。 在圖2之實例中,複數個衰減區塊展示為實施為一個二進制加權組態。舉例而言,四個衰減區塊(102a、102b、102c、102d)展示為串聯配置於輸入(IN)節點與輸出(OUT)節點之間,且展示為分別提供1 dB、2 dB、4 dB、8 dB衰減。藉由此等衰減(及/或旁路)之不同組合,衰減電路100可以1 dB之增量提供0 dB至15 dB之一總衰減。本文中更詳細地闡述與可如何獲得此等不同總衰減相關之實例。 在圖2之實例中,以及在基於圖2之其他實例中,利用四個二進制加權衰減區塊。然而,將理解,亦可將本發明之一或多個特徵實施於具有更多或更少數目個衰減區塊之衰減電路中。舉例而言,可利用三個衰減區塊來以1 dB之增量提供0 dB至7 dB衰減值。在另一實例中,可利用五個衰減區塊來以1 dB之增量提供0 dB至31 dB衰減值。 在本文中所闡述之各種實例中,假定一步進衰減值為1 dB。然而,將理解此一步進衰減值可具有除1 dB之外的一值。因此,將理解,本發明之一或多個特徵可實施於一衰減電路中,該衰減電路具有能夠基於一個二進制加權方案而提供衰減值之複數個衰減區塊,在該二進制加權方案中一第i個衰減區塊能夠提供A 2i-1 之一衰減,其中A 係一步進衰減值(例如,0.5 dB、1 dB、2 dB等)。舉例而言,在圖2之實例中,A = 1 dB,使得第一衰減區塊(i = 1)提供1 dB x 20 = 1 dB之一衰減;第二衰減區塊(i = 2)提供1 dB x 21 = 2 dB之一衰減;等等。 在另一實例中,假定與圖2之實例中類似之一衰減範圍(例如0至15.5 dB)期望衰減之一較細粒度(例如,0.5 dB)。在此一實例中,一第一衰減區塊(i = 1)可提供0.5 dB x 20 = 0.5 dB之一衰減,一第二衰減區塊(i = 2)可提供0.5 dB x 21 = 1.0 dB之一衰減,一第三衰減區塊(i = 3)可提供0.5 dB x 22 = 2.0 dB之一衰減,一第四衰減區塊(i = 4)可提供0.5 dB x 23 = 4.0 dB之一衰減,且一第五衰減區塊(i = 5)可提供0.5 dB x 24 = 8.0 dB之一衰減。在具有此等五個二進制加權衰減區塊之情況下,可以0.5 dB之增量提供自0 dB至15.5 dB之衰減值。 在圖2之實例中,衰減區塊102a、102b、102c、102d中之每一者展示為包含一各別相位補償電路(104a、104b、104c、104d)。本文中更詳細地闡述與此等相位補償電路相關之實例。在圖2之實例中,衰減區塊中之所有衰減區塊展示為具有各別相位補償電路。然而,將理解,在某些實施例中,一或多個衰減區塊可或可不具有此等相位補償電路。 在圖2之實例中,將理解,衰減區塊102a、102b、102c、102d可或可不具有類似衰減組態。舉例而言,衰減區塊中之一或多者可具有一T衰減組態,且衰減區塊中之一或多者可具有一pi衰減組態。因此,將理解,圖2之衰減電路100可在衰減區塊當中包含一或多種類型之衰減組態。亦將理解,可將其他類型之衰減組態實施於一或多個衰減區塊中。 圖3展示可係圖2之衰減電路100之一更具體實例之一衰減電路100。在圖3之實例中,三個衰減區塊102a、102b、102c中之每一者展示為包含一橋接T形衰減器組態及一對應旁路路徑(105a、105b或105c)。舉例而言,第一衰減區塊102a展示為包含被配置成一橋接T形組態之電阻R1A 、R1’A 、R2A 、R3A 。電阻R1A 及R1’A 展示為成串聯且實施於第一衰減區塊102a之輸入節點與輸出節點之間。電阻R2A 展示為實施於輸入節點與輸出節點之間以便與R1A 與R1’A 之串聯組合電並聯。電阻R3A 展示為實施於接地與R1A 與R1’A 之間的一節點(本文中亦稱作一T形節點)之間。 類似地,第二衰減區塊102b展示為包含被配置成一橋接T形組態之電阻R1B 、R1’B 、R2B 、R3B 。電阻R1B 及R1’B 展示為成串聯且實施於第一衰減區塊102b之輸入節點與輸出節點之間。電阻R2B 展示為實施於輸入節點與輸出節點之間以便與R1B 與R1’B 之串聯組合電並聯。電阻R3B 展示為實施於接地與R1B 與R1’B 之間的一節點(本文中亦稱作一T形節點)之間。 類似地,第三衰減區塊102c展示為包含被配置成一橋接T形組態之電阻R1C 、R1’C 、R2C 、R3C 。電阻R1C 及R1’C 展示為成串聯且實施於第一衰減區塊102c之輸入節點與輸出節點之間。電阻R2C 展示為實施於輸入節點與輸出節點之間以便與R1C 與R1’C 之串聯組合電並聯。電阻R3C 展示為實施於接地與R1C 與R1’C 之間的一節點(本文中亦稱作一T形節點)之間。 在圖3之實例中,第四衰減區塊102d展示為包含被配置成一pi組態之電阻R1D 、R2D 、R3D 。電阻R1D 展示為實施於第四衰減區塊102d之輸入節點與輸出節點之間。電阻R2D 展示為實施於輸入節點與接地之間;類似地,電阻R3D 展示為實施於輸出節點與接地之間。 在圖3之三個衰減區塊102a、102b、102c中之每一者之橋接T形組態中,可在對應T形節點與分路電阻(R3A 、R3B 或R3C )之一端之間設置一切換FET (M2A 、M2B 或M2C ),其中分路電阻之另一端耦合至接地。此一切換FET (M2A 、M2B 或M2C )可在針對對應衰減區塊啟用衰減時接通,且在透過對應旁路路徑(105a、105b或105c)繞過衰減時關斷。此一旁路路徑可包含(舉例而言)可在針對對應衰減區塊啟用衰減時關斷且在透過旁路路徑繞過衰減時接通之一對應切換FET (M1A 、M1B 或M1C )。 在圖3之第四衰減區塊102d之pi組態中,可在輸入節點與電阻R2D 之一端之間設置一切換FET M2D ,其中電阻R2D 之另一端耦合至接地。類似地,可在輸出節點與電阻R3D 之一端之間設置一切換FET M3D ,其中電阻R3D 之另一端耦合至接地。此等切換FET (M2D 及M3D )可在針對第四衰減區塊102d啟用衰減時接通,且在透過旁路路徑105d繞過衰減時關斷。此一旁路路徑(105d)可包含(舉例而言)一切換FET M1D ,切換FET M1D 可在針對第四衰減區塊102d啟用衰減時關斷,且在透過旁路路徑105d繞過衰減時接通。 在圖3之第二衰減區塊102b之橋接T形組態中,可設置一電容C2以便與電阻R3B 電並聯。如本文中所闡述,此一電容可經選擇以補償在一RF信號通過衰減區塊時發生之相移。亦如本文中所闡述,此一電容亦可允許衰減區塊在一相對較寬頻率範圍內提供一較為平穩之增益曲線。 類似地,在圖3之第三衰減區塊102c之橋接T形組態中,可設置一電容C4以便與電阻R3C 電並聯。如本文中所闡述,此一電容可經選擇以補償在一RF信號通過衰減區塊時發生之相移。亦如本文中所闡述,此一電容亦可允許衰減區塊在一相對較寬頻率範圍內提供一較為平穩之增益曲線。 在圖3之第四衰減區塊102d之pi組態中,可設置一電容C8以便與電阻R2D 電並聯。類似地,可設置一電容C8’以便與電阻R3D 電並聯。如本文中所闡述,此等電容可經選擇以補償在一RF信號通過衰減區塊時發生之相移。亦如本文中所闡述,此等電容亦可允許衰減區塊在一相對較寬頻率範圍內提供一較為平穩之增益曲線。 在圖3之實例中,應注意,第一衰減區塊102a並不包含一補償電容。在某些實施例中,具有一較低衰減值之一衰減區塊不能產生一顯著相移量;因此,一補償電路(例如,一補償電容)可或可不提供顯著補償益處。 在衰減區塊102b中,與電阻R3B 並聯之電容C2之存在允許實施相位補償,如本文中所闡述。亦如本文中所闡述,此相位補償亦可取決於與衰減區塊102b相關聯之一或多個電阻之值以及切換電晶體M2B 之接通電阻值(Ron)。因此,將理解,指示為104b之一方塊可包含一各別相位補償電路之電路元件中之某些或所有電路元件,或包含可影響此相位補償之電路元件中之某些或所有電路元件。 類似地,在衰減區塊102c中,與電阻R3C 並聯之電容C4之存在允許實施相位補償,如本文中所闡述。亦如本文中所闡述,此相位補償亦可取決於與衰減區塊102c相關聯之一或多個電阻之值以及切換電晶體M2C 之接通電阻值(Ron)。因此,將理解,指示為104c之一方塊可包含一各別相位補償電路之電路元件中之某些或所有電路元件,或包含可影響此相位補償之電路元件中之某些或所有電路元件。 在衰減區塊102d中,與其各別電阻R2D 及R3D 並聯之電容C8及C8’之存在允許相位補償,如本文中所闡述。亦如本文中所闡述,此相位補償亦可取決於電阻R2D 及R3D 之值以及切換電晶體M2D 及M3D 之接通電阻值(Ron)。因此,將理解,指示為104d之一方塊包含一相位補償電路之電路元件中之某些或所有電路元件,或包含可影響此相位補償之電路元件中之某些或所有電路元件。 在圖3之實例中,各種切換FET中之某些或所有切換FET可實施為(舉例而言)絕緣體上矽(SOI)裝置。將理解,雖然此等各種切換FET繪示為NFET,但亦可利用其它類型之FET來實施本發明之一或多個特徵。亦將理解,圖3之實例中之各種切換器亦可實施為其他類型之電晶體,包含非FET電晶體。 圖4及圖5展示可如何針對圖3之實例之衰減區塊102d實施相位補償之一實例。圖6及圖7展示可如何針對圖3之實例之衰減區塊102b、102c中之每一者實施相位補償之一實例。 圖4單獨地展示衰減區塊102d,且此一衰減區塊可表示圖3之第四衰減區塊102d。在圖4之實例中,衰減區塊102d處於其衰減模式中,使得在局域輸入節點(IN)處接收之一RF信號衰減並被提供於局域輸出節點(OUT)處。因此,旁路路徑105d之旁路切換FET M1D 係關斷的,且電路104d之切換FET M2D 及M3D 中之每一者係接通的。 圖5展示圖4之實例性衰減區塊102d之一電路表示120,其中各種切換FET表示為關斷電容或接通電阻。舉例而言,M1D 之關斷狀態表示為一關斷電容Coff,且M2D 及M3D 中之每一者之接通狀態表示為一接通電阻Ron。出於說明目的,假定圖4之pi衰減器組態係大體對稱的。因此,M2D 可類似於M3D ,使得M2D 之Ron與M3D 之Ron大約相同;因此,圖5將M2D 及M3D 中之每一者繪示為Ron。類似地,假定圖4中之電阻R2D 及R3D 為大約相同;因此,圖5將R2D 及R3D 中之每一者繪示為具有一電阻R2。類似地,假定圖4中之電容C8及C8’為大約相同;因此,圖5將C8及C8’中之每一者繪示為具有Cc之一補償電容。 在圖5中,電路表示120展示為在局域輸入(IN)處具有一源阻抗Rs,且在局域輸出(OUT)處具有一負載阻抗RL。此等阻抗值可或可不相同。然而,出於說明目的,假定Rs及RL之值在一特性阻抗Z0下(例如,在50Ω下)係相同的。 在具有前述假定之情況下,可如下獲得圖5之實例中之R1及R2之值:
Figure 02_image013
在方程式1及方程式2中,參數K表示衰減區塊120之衰減值。應注意,隨著衰減變大,R1通常增大,且R2通常減小。 參考圖5,且假定M2D 及M3D 中之每一者之接通電阻Ron大約為0,指示為網路1的衰減區塊120之一部分可有助於衰減區塊120之正向增益及相移(例如,相位超前),如下:
Figure 02_image015
在圖5中,指示為網路2的衰減區塊120之一部分可有助於衰減區塊120之正向增益及相移(例如,相位滯後),如下:
Figure 02_image017
在方程式3至方程式6中,w = 2p f ,其中f 係頻率,且R2R2 RL 之並聯配置之一電阻值。 參考圖4及圖5以及方程式4及方程式6,應注意,參數ωRL Coff R 1R 2 通常係針對一給定頻率、特性阻抗、切換FET組態及衰減值而設定。然而,在某些實施例中,補償電容Cc之值可經調整使得方程式6之相位滯後補償方程式4之相位超前。此相位補償可允許與圖4及圖5之衰減區塊102d/120相關聯之相位處於或接近一所要值。舉例而言,與衰減區塊102d/120相關聯之經補償相位可具有與在一參考模式中實質上相同之相位變化。 參考圖4及圖5,應注意,由於Coff與R1呈並聯配置,因此其阻抗1/(j w Coff )將使輸入節點與輸出節點之間的一等效串聯阻抗隨著頻率增大而變小,從而導致一較高頻率下之較小衰減。相反地,可在一較低頻率下導致較高衰減。 應進一步注意,補償電容Cc經配置成與對應分路電阻R2並聯。因此,補償電容Cc之阻抗
Figure 02_image019
將使分路支路(arm)之一等效阻抗變小,從而導衰減區塊之較多衰減。因此,在某些實施例中,補償電容Cc可經選擇以補償Coff對增益之影響,且藉此在一寬頻率範圍內達成衰減區塊之一所要增益曲線(例如,大致平穩曲線)。在某些實施例中,補償電容Cc可經選擇以為衰減區塊提供本文中所闡述之至少某些相位補償,並且提供如本文中所闡述之至少某些增益補償。 圖6及圖7展示可如何針對圖3之實例之衰減區塊102b、102c中之每一者實施相位補償之一實例。圖6展示一個別衰減區塊102,且此一衰減區塊可表示圖3之兩個實例性衰減區塊102b、102c中之每一者。因此,衰減區塊102之各種元件之元件符號未展示有下標。 在圖6之實例中,衰減區塊102處於其衰減模式中,使得在局域輸入節點(IN)處接收之一RF信號衰減並被提供於局域輸出節點(OUT)處。因此,旁路路徑105之旁路切換FET M1係關斷的,且電路104之切換FET M2係接通的。 圖7展示圖6之實例性衰減區塊102之一電路表示130,其中各種切換FET表示為關斷電容或接通電阻。舉例而言,M1之關斷狀態表示為一關斷電容Coff,且M2之接通狀態表示為一接通電阻Ron。出於說明目的,假定圖6之橋接T形衰減器組態係大體對稱的。因此,假定圖6中之電阻R1及R1’大約相同;因此,圖7將R1及R1’中之每一者繪示為具有一電阻R1。在圖7中,假定圖6之電容C2為具有Cc之一補償電容。 在圖7中,電路表示130展示為在局域輸入(IN)處具有一源阻抗Rs,且在局域輸出(OUT)處具有一負載阻抗RL。此等阻抗值可或可不相同。然而,出於說明目的,假定Rs及RL之值在一特性阻抗Z0下(例如,在50Ω下)係相同的。此外,可假定電阻R1具有相同特性阻抗Z0 (例如,在50Ω下)。 在具有前述假定之情況下,可如下獲得圖7之實例中之R2及R3之值:
Figure 02_image021
在方程式7及方程式8中,參數K表示衰減區塊130之衰減值。應注意,隨著衰減變大,R2通常增大,且R3通常減小。 參考圖7,且假定M2之接通電阻Ron大約為0,指示為網路1的衰減區塊130之一部分可有助於衰減區塊130之正向增益及相移(例如,相位超前),如下:
Figure 02_image023
在圖7中,指示為網路2的衰減區塊130之一部分可有助於衰減區塊130之正向增益及相移(例如,相位滯後),如下:
Figure 02_image025
在方程式9至方程式12中,w = 2p f ,其中f 係頻率,且R3R3 (R1 +RL ) 之並聯配置之一電阻值。 參考圖6及圖7以及方程式10及方程式12,應注意,參數ωRL Coff 、R1 、R2 及R3 通常係針對一給定頻率、特性阻抗、切換FET組態及衰減值而設定。然而,在某些實施例中,補償電容Cc之值可經調整使得方程式12之相位滯後補償方程式12之相位超前。此相位補償可允許與圖6及圖7之衰減區塊102/130相關聯之相位處於或接近一所要值。舉例而言,與衰減區塊102/130相關聯之經補償相位可具有與在一參考模式中實質上相同之相位變化。 參考圖6及圖7,應注意,由於Coff與R2呈並聯配置,因此其阻抗(1/(j w Coff ))將使輸入節點與輸出節點之間的一等效串聯阻抗隨著頻率增大而變小,從而導致一較高頻率下之較小衰減。相反地,可在一較低頻率下導致較高衰減。 應進一步注意,補償電容Cc經配置成與對應分路電阻R3並聯。因此,補償電容Cc之阻抗
Figure 02_image019
將使分路支路之一等效阻抗變小,從而導衰減區塊之較多衰減。因此,在某些實施例中,補償電容Cc可經選擇以補償Coff對增益之影響,且藉此在一寬頻率範圍內達成衰減區塊之一所要增益曲線(例如,大致平穩曲線)。在某些實施例中,補償電容Cc可經選擇以為衰減區塊提供本文中所闡述之至少某些相位補償,並且提供如本文中所闡述之至少某些增益補償。 圖8A至圖8F展示可針對圖3之衰減電路100實施之不同操作模式之實例。在圖8A中,衰減電路100展示為處於一整體旁路模式中,使得衰減電路100提供總計大約0 dB衰減。在此一模式中,旁路切換器M1A 、M1B 、M1C 、M1D 中之每一者係接通的,且分路切換器M2A 、M2B 、M2C 、M2D 中之每一者(假定M2D 與圖3中之M3D 實質上相同)係關斷的。因此,一RF信號展示為按照路徑140之指示被路由。在此一模式中,RF信號通常不經受一Coff電容;因此,通常不發生不期望相移。 在圖8B中,衰減電路100展示為處於用以提供總計大約1 dB衰減之一模式中。在此一模式中,旁路切換器M1A 係關斷的,且其餘旁路切換器M1B 、M1C 、M1D 中之每一者係接通的。此外,分路切換器M2A 係接通的,且其餘分路切換器M2B 、M2C 、M2D 中之每一者係關斷的。因此,一RF信號展示為按照路徑142之指示被路由。在此一模式中,RF信號通常經受旁路切換器M1A 之僅一Coff電容;且如本文中所闡述,此一模式可或可不需要相位補償。 在圖8C中,衰減電路100展示為處於用以提供總計大約2 dB衰減之一模式中。在此一模式中,旁路切換器M1B 係關斷的,且其餘旁路切換器M1A 、M1C 、M1D 中之每一者係接通的。此外,分路切換器M2B 係接通的,且其餘分路切換器M2A 、M2C 、M2D 中之每一者係關斷的。因此,一RF信號展示為按照路徑144之指示被路由。在此一模式中,RF信號通常經受旁路切換器M1B 之一Coff電容;且如本文中所闡述,可藉由為電容C2設置一適當值而實施相位補償。 在圖8D中,衰減電路100展示為處於用以提供總計大約3 dB衰減之一模式中。在此一模式中,旁路切換器M1A 、M1B 中之每一者係關斷的,且其餘旁路切換器M1C 、M1D 中之每一者係接通的。此外,接通分路切換器M2A 、M2B 中之每一者,且關斷其餘分路切換器M2C 、M2D 中之每一者。因此,一RF信號展示為按照路徑146之指示被路由。在此一模式中,RF信號通常經受旁路切換器M1A 、M1B 中之每一者之一Coff電容;且如本文中所闡述,可藉由為電容C2設置一適當值而實施相位補償。 可以類似方式提供較高衰減值:藉由藉助二進制加權衰減區塊之不同組合以1 dB步進遞增。繼續衰減之此增加,可由衰減電路100提供大約14 dB之一總衰減,如圖8E中所展示。在此一模式中,旁路切換器M1B 、M1C 、M1D 中之每一者係關斷的,且其餘旁路切換器M1A 係接通的。此外,分路切換器M2B 、M2C 、M2D 中之每一者係接通的,且其餘分路切換器M2A 係關斷的。因此,一RF信號展示為按照路徑148之指示被路由。在此一模式中,RF信號通常經受旁路切換器M1B 、M1C 、M1D 中之每一者之一Coff電容;且如本文中所闡述,可藉由為電容C2、C4、C8設置適當值而實施相位補償。 如圖8F中所展示,可由衰減電路100提供大約15 dB之一總衰減。在此一模式中,旁路切換器M1A 、M1B 、M1C 、M1D 中之每一者係關斷的,且分路切換器M2A 、M2B 、M2C 、M2D 中之每一者係接通的。因此,一RF信號展示為按照路徑150之指示被路由。在此一模式中,RF信號通常經受旁路切換器M1A 、M1B 、M1C 、M1D 中之每一者之一Coff電容;且如本文中所闡述,可藉由為電容C2、C4、C8設置適當值而實施相位補償。 如本文中所闡述,一補償電路(例如,圖3中之104b、104c、104c)可包含一補償電容(例如,圖3中之C2、C4、C8以及圖5及圖7中之Cc)。圖9A展示包含此一局域補償電容(指示為C)之一補償路徑170。此一補償路徑亦展示為具有與C並聯之一電阻R。 圖9B展示在某些實施例中,可將圖9A之電容C實施為經組態以提供C之一所要電容值之一FET裝置172 (例如,如一MOSFET裝置)。舉例而言,FET裝置172之源極及汲極可連接至電阻R之兩端,且FET裝置172之一閘極可在無一閘極偏壓之情況下接地,使得FET裝置172充當類似於圖9A之C之電容之一電容。 當如圖9B之實例中一般實施補償電容時,可達成若干個期望特徵。舉例而言,可基本上與各種FET (例如,圖3中之旁路FET M1B 、M1C 、M1D )一起製作補償電容元件。在另一實例中,且假定前述製作程序通用,充當電容之FET裝置172受影響其他FET (包含局域旁路FET M1B 、M1C 、M1D )之基本上相同程序變化影響。因此,可在(舉例而言) FET裝置172及其他FET當中達成程序獨立性。 圖10展示在某些實施例中,具有如本文中所闡述之一或多個特徵之一衰減電路100可進一步包含一全域旁路路徑106及一全域相位補償電路108。可藉由允許將在輸入節點(IN)處接收之一RF信號透過全域旁路路徑106而路由至輸出節點(OUT)而啟動此一全域旁路路徑。在此一全域旁路模式中,輸入節點與一第一節點110之間的一第一切換器S1及一第二節點與輸出節點之間的一第二切換器S2中之每一者可經斷開以大體隔離二進制加權衰減區塊(共同地指示為102)與二進制加權衰減區塊中之一或多個局域相位補償電路(共同地指示為104)。 在本文中,當衰減電路100處於一衰減模式中時,可如本文中所闡述地操作二進制加權衰減區塊102及其局域相位補償電路104,且可停用全域旁路路徑106。因此,可透過經閉合第一切換器S1、二進制加權衰減區塊102及經閉合第二切換器S2將在輸入節點(IN)處接收之一RF信號路由至輸出節點(OUT)。在此一衰減模式中,可藉由全域相位補償電路108來補償與經停用全域旁路路徑106相關聯之相移(例如,相位超前)中之某些或所有相移。標題為ATTENUATORS HAVING PHASE SHIFT AND GAIN COMPENSATION CIRCUITS之美國專利申請案第15/687,475號中闡述關於此等全域旁路路徑及全域相位補償之額外細節,該美國專利申請案第15/687,475號之揭示內容於與本文同一日期提出申請且據此以其全文引用方式併入本文中並且被視為本申請案之說明書之一部分。 圖10進一步展示在某些實施例中,可由一控制器180控制具有如本文中所闡述之一或多個特徵之一衰減電路100。此一控制器可提供各種控制信號以(舉例而言)操作各種切換器以達成各種衰減模式(例如,如圖8A至圖8F中)。在某些實施例中,控制器180可經組態以包含MIPI (行動產業處理器介面)功能性。 圖11展示在某些實施例中,可將具有如本文中所闡述之一或多個特徵之一衰減電路100中之某些或所有衰減電路實施於一半導體晶粒200上。此一晶粒可包含一基板202,且可將一相位/增益補償電路204中之至少某些相位/增益補償電路(例如,圖3之相位補償電路104a、104b、104c、104d)實施於基板202上。舉例而言,可將補償電容C2、C4、C8、C8’中之某些或所有補償電容實施為晶粒上電容器。 圖12及圖13展示在某些實施例中,可將具有如本文中所闡述之一或多個特徵之一衰減電路100中之某些或所有衰減電路實施於一封裝模組300中。此一模組可包含經組態以接納複數個組件(諸如一或多個晶粒及一或多個被動組件)之一封裝基板302。 圖12展示在某些實施例中,封裝模組300可包含類似於圖11之實例之一半導體晶粒200。因此,此一晶粒可包含衰減電路100中之某些或所有衰減電路,其中一相位/增益補償電路204中之至少某些相位/增益補償電路(例如,圖3之相位補償電路104a、104b、104c、104d)實施於晶粒200上。 圖13展示在某些實施例中,封裝模組300可包含具有衰減電路100中之某些衰減電路之一第一半導體晶粒210,而衰減電路100之剩餘部分實施於另一晶粒212上、一晶粒(例如,在封裝基板302上)外側或其任何組合上。在此一組態中,可將一相位/增益補償電路204中之某些相位/增益補償電路(例如,圖3之相位補償電路104a、104b、104c、104d)實施於第一晶粒210上,且可將相位/增益補償電路204之剩餘部分實施於另一晶粒212上、一晶粒(例如,在封裝基板302上)外側或其之任何組合上。 圖14展示可如何將具有如本文中所闡述之一或多個特徵之一衰減器實施於一RF系統400中之非限制性實例。此一RF系統可包含經組態以促進RF信號之接收及/或傳輸之一天線402。在接收之脈絡中,由天線402接收之一RF信號可在被一低雜訊放大器(LNA) 412放大之前經濾波(例如,藉由一帶通濾波器410)且通過一衰減器100。此一經LNA放大之RF信號可經濾波(例如,藉由一帶通濾波器414)、通過一衰減器100且被路由至一混合器440。混合器440可與一振盪器(未展示)協同操作以產生一中間頻率(IF)信號。此一IF信號可在被路由至一中間頻率(IF)放大器416之前經濾波(例如,藉由一帶通濾波器442)且通過一衰減器100。前述衰減器100中之某些或所有衰減器沿著接收路徑可包含如本文中所闡述之一或多個特徵。 在傳輸之脈絡中,可將一IF信號提供至一IF放大器420。IF放大器420之一輸出可在被路由至一混合器446之前經濾波(例如,藉由一帶通濾波器444)且通過一衰減器100。混合器446可與一振盪器(未展示)協同操作以產生一RF信號。此一RF信號可在被路由至一功率放大器(PA) 424之前經濾波(例如,藉由一帶通濾波器422)且通過一衰減器100。可將經PA放大之RF信號穿過一衰減器100及一濾波器(例如,一帶通濾波器426)路由至天線402以用於傳輸。前述衰減器100中之某些或所有衰減器沿著傳輸路徑可包含如本文中所闡述之一或多個特徵。 在某些實施例中,可藉由一系統控制器430來控制及/或促進與RF系統400相關聯之各種操作。此一系統控制器可包含(舉例而言)一處理器432及一儲存媒體,諸如一非暫時性電腦可讀媒體(CRM) 434。在某些實施例中,可藉由系統控制器430來執行與RF系統400中之一或多個衰減器100之操作相關聯之至少某些控制功能性。 在某些實施例中,具有如本文中所闡述之一或多個特徵之一衰減電路可沿著一接收(Rx)鏈實施。舉例而言,可實施一分集接收(DRx)模組使得可接近於一分集天線達成對一所接收信號之處理。圖15展示此一DRx模組之一實例。 在圖15中,一分集接收器模組300可係圖12及圖13之模組300之一實例。在某些實施例中,此一DRx模組可耦合至一模組外濾波器513。DRx模組300可包含經組態以接納複數個組件之一封裝基板501及實施於封裝基板501上之一接收系統。DRx模組300可包含一或多個信號路徑,該一或多個信號路徑被佈線至DRx模組300外且可由一系統整合者、設計者或製造者用來支援任何所要頻帶之一濾波器。 圖15之DRx模組300展示為在DRx模組300之輸入與輸出之間包含若干個路徑。DRx模組300亦展示為在輸入與輸出之間包含由被DRx控制器502控制之一旁路切換器519啟動之一旁路路徑。儘管圖15繪示一單個旁路切換器519,但在某些實施方案中,旁路切換器519可包含多個切換器(例如,安置成實體地接近於輸入之一第一切換器及安置成實體地接近於輸出之一第二切換器。如圖15中所展示,旁路路徑並不包含一濾波器或一放大器。 DRx模組300展示為包含若干個多工器路徑,該等多工器路徑包含一第一多工器511及一第二多工器512。多工器路徑包含若干個模組上路徑:該若干個模組上路徑包含第一多工器511、實施於封裝基板501上之一帶通濾波器613a至613d、實施於封裝基板501上之一放大器614a至614d及第二多工器512。多工器路徑包含一或多個模組外路徑,該一或多個模組外路徑包含第一多工器511、實施於封裝基板501外之一帶通濾波器513、一放大器514及第二多工器512。放大器514可係實施於封裝基板501上或亦可係實施於封裝基板501外之一寬頻帶放大器。在某些實施例中,放大器614a至614d、514可係可變增益放大器及/或可變電流放大器。 一DRx控制器502可經組態以選擇性地啟動輸入與輸出之間的複數個路徑中之一或多者。在某些實施方案中,DRx控制器502可經組態以基於由DRx控制器502 (例如,自一通信控制器)接收之一頻帶選擇信號來選擇性地啟動複數個路徑中之一或多者。DRx控制器502可選擇性地藉由(舉例而言)斷開或閉合旁路切換器519、啟用或停用放大器614a至614d、514、控制多工器511、512或透過其他機構來啟動路徑。舉例而言,DRx控制器502可沿著路徑(例如,在濾波器613a至613d、513與放大器614a至614d、514之間)或藉由將放大器614a至614d、514之增益設定為實質上0而斷開或閉合切換器。 在圖15之實例性DRx模組300中,放大器614a至614d、514中之某些或所有放大器可具備具有如本文中所闡述之一或多個特徵之一衰減電路100。舉例而言,此等放大器中之每一者展示為具有實施於其輸入側上一衰減電路100。在某些實施例中,一給定放大器可在其輸入側上及/或在其輸出側上具有一衰減電路。 在某些實施方案中,具有本文中所闡述之一或多個特徵之一架構、裝置及/或電路可包含於諸如一無線裝置之一RF裝置中。可以無線裝置、以如本文中所闡述之一或多個模組化形式或以上述各項之某一組合來直接實施此一架構、裝置及/或電路。在某些實施例中,此一無線裝置可包含(舉例而言)一蜂巢式電話、一智慧電話、具有或不具有電話功能性之一手持式無線裝置、一無線平板電腦、一無線路由器、一無線存取點、一無線基地台等。儘管在無線裝置之內容脈絡中進行闡述,但將理解,本發明之一或多個特徵亦可實施於諸如基地台之其他RF系統中。 圖16繪示具有如本文中所闡述之一或多個有利特徵之一實例性無線裝置700。如參考圖14及圖15所闡述,具有如本文中所闡述之一或多個特徵之一或多個衰減器可實施於此一無線裝置中之若干個位置中。舉例而言,在某些實施例中,此等有利特徵可實施於諸如具有一或多個低雜訊放大器(LNA)之一分集接收(DRx)模組300之一模組中。此一DRx模組可如本文中參考圖12、圖13及圖15所闡述地被組態。在某些實施例中,可沿著一RF信號路徑在一LNA之前及/或之後實施具有如本文中所闡述之一或多個特徵之一衰減器。 在圖16之實例中,一PA模組712中之功率放大器(PA)可自一收發器710接收其各別RF信號,該收發器可經組態及經操作以產生待放大及待傳輸之RF信號且處理所接收信號。收發器710經展示為與一基頻子系統708相互作用,該基頻子系統經組態以提供適合於一使用者之資料及/或語音信號與適合於收發器710之RF信號之間的轉換。收發器710亦展示為連接至一電力管理組件706,該電力管理組件經組態以管理用於無線裝置700之操作之電力。此電力管理亦可控制基頻子系統708及無線裝置700之其他組件之操作。 基頻子系統708展示為連接至一使用者介面702以促進提供至使用者及自使用者接收之語音及/或資料之各種輸入及輸出。基頻子系統708亦可連接至一記憶體704,記憶體704經組態以儲存資料及/或指令以促進無線裝置之操作及/或為使用者提供資訊儲存。 在圖16之實例中,DRx模組300可實施於一或多個分集天線(例如,分集天線730)與ASM 714之間。此一組態可允許在來自分集天線730之RF信號少損耗或無損耗及/或少雜訊添加或無雜訊添加至RF信號之情況下處理(在某些實施例中,包含藉由一LNA放大)透過分集天線730接收之一RF信號。然後可將來自DRx模組300之此經處理信號透過一或多個信號路徑路由至ASM。 在圖16之實例中,一主天線720可經組態以(舉例而言)促進RF信號自PA模組712之傳輸。在某些實施例中,亦可透過主天線達成接收操作。 若干種其他無線裝置組態可利用本文中所闡述之一或多個特徵。舉例而言,一無線裝置不需要係一多頻帶裝置。在另一實例中,一無線裝置可包含額外天線(諸如分集天線)及額外連接性特徵(諸如Wi-Fi、藍芽及GPS)。 除非內容脈絡另外明確要求,否則在說明及申請專利範圍通篇中,應在與一排他性或窮盡性意義相反之一包含性意義上解釋措辭「包括(comprise)」、「包括(comprising)」及諸如此類;亦即,在「包含但不限於」之意義上。如本文中通常所使用,措辭「耦合」係指兩個或兩個以上元件可直接連接或藉助一或多個中間元件連接。另外,當在本申請案中使用時,措辭「本文中」、「上文」、「下文」及類似意思之措辭應將本申請案視為一整體而非本申請案之任何特定部分。在內容脈絡准許之情況下,在上文實施方式中使用單數或複數之措辭亦可分別包含複數或單數。參考含兩個或兩個以上物項之一清單之措詞「或」,彼措詞涵蓋該措詞之以下解釋之全部:該清單中之物項中之任何者、該清單中之物項之全部及該清單中之物項之任何組合。 上文對本發明之實施例之詳細說明並非意欲為窮盡性的或將本發明限制於上文所揭示之精確形式。雖然上文出於圖解說明目的闡述了本發明之具體實施例及實例,但如熟習此項技術者將認識到,可在本發明之範疇內做出各種等效修改。舉例而言,雖然以一給定次序來呈現過程或方塊,但替代實施例可以一不同次序來執行具有步驟之常式,或採用具有方塊之系統,且可刪除、移動、添加、細分、組合及/或修改某些過程或方塊。可以多種不同方式實施此等過程或方塊中之每一者。並且,雖然過程或方塊有時展示為連續執行,但此等過程或方塊可改為被並行執行,或可在不同時間處執行。 本文中所提供之本發明之教示可應用於其他系統,未必係上文所闡述之系統。可組合上文所闡述之各種實施例之元件及動作以提供另外實施例。 雖然已闡述了本發明之某些實施例,但此等實施例僅以實例方式呈現,且並非意欲限制本發明之範疇。實際上,本文所闡述之新穎方法及系統可以多種其他形式體現;此外,可在不背離本發明之精神之情況下對本文中所闡述之方法及系統之形式做出各種省略、替換及改變。隨附申請專利範圍及其等效形式意欲涵蓋將歸屬於本發明之範疇及精神內之此等形式或修改。
100‧‧‧衰減器電路/衰減電路/衰減器102‧‧‧衰減區塊/二進制加權衰減區塊102a‧‧‧衰減區塊/第一衰減區塊102b‧‧‧衰減區塊/第二衰減區塊102c‧‧‧衰減區塊/第三衰減區塊102d‧‧‧衰減區塊/第四衰減區塊104‧‧‧電路/局域相位補償電路104a‧‧‧相位補償電路104b‧‧‧相位補償電路/補償電路104c‧‧‧相位補償電路/補償電路104d‧‧‧相位補償電路/電路105‧‧‧旁路路徑105a‧‧‧旁路路徑105b‧‧‧旁路路徑105c‧‧‧旁路路徑105d‧‧‧旁路路徑106‧‧‧全域旁路路徑108‧‧‧全域相位補償電路110‧‧‧第一節點120‧‧‧電路表示/衰減區塊130‧‧‧電路表示/衰減區塊140‧‧‧路徑142‧‧‧路徑144‧‧‧路徑146‧‧‧路徑148‧‧‧路徑150‧‧‧路徑170‧‧‧補償路徑172‧‧‧FET裝置180‧‧‧控制器200‧‧‧半導體晶粒/晶粒202‧‧‧基板204‧‧‧相位/增益補償電路210‧‧‧第一半導體晶粒/第一晶粒212‧‧‧晶粒300‧‧‧封裝模組/分集接收器模組/模組/分集接收模組302‧‧‧封裝基板400‧‧‧射頻系統402‧‧‧天線410‧‧‧帶通濾波器412‧‧‧低雜訊放大器414‧‧‧帶通濾波器416‧‧‧中間頻率放大器420‧‧‧中間頻率放大器422‧‧‧帶通濾波器424‧‧‧功率放大器426‧‧‧帶通濾波器430‧‧‧系統控制器432‧‧‧處理器434‧‧‧非暫時性電腦可讀媒體440‧‧‧混合器442‧‧‧帶通濾波器444‧‧‧帶通濾波器446‧‧‧混合器501‧‧‧封裝基板502‧‧‧分集接收控制器511‧‧‧多工器/第一多工器512‧‧‧多工器/第二多工器513‧‧‧關斷模組濾波器/帶通濾波器/濾波器514‧‧‧放大器519‧‧‧旁路切換器613a-613d‧‧‧帶通濾波器/濾波器614a-614d‧‧‧放大器700‧‧‧無線裝置702‧‧‧使用者介面704‧‧‧記憶體706‧‧‧力管理組件708‧‧‧基頻子系統710‧‧‧收發器712‧‧‧功率放大器模組714‧‧‧ASM720‧‧‧主天線730‧‧‧分集天線C‧‧‧局域補償電容/電容C2‧‧‧電容/補償電容C4‧‧‧電容/補償電容C8‧‧‧電容/補償電容C8’‧‧‧電容/補償電容Cc‧‧‧補償電容Coff‧‧‧關斷電容IN‧‧‧輸入節點/局域輸入 M1‧‧‧旁路切換FET M1A‧‧‧切換FET/旁路切換器 M1B‧‧‧切換FET/旁路切換器/局域旁路FET M1C‧‧‧切換FET/旁路切換器/局域旁路FET M1D‧‧‧切換FET/旁路切換器/旁路切換FET/局域旁路FET M2‧‧‧切換FET M2A‧‧‧切換FET/分路切換器 M2B‧‧‧切換FET/切換電晶體/分路切換器 M2C‧‧‧切換FET/切換電晶體/分路切換器 M2D‧‧‧切換FET/切換電晶體/分路切換器 M3D‧‧‧切換FET/切換電晶體 OUT‧‧‧輸出節點/局域輸出/局域輸出節點 R‧‧‧電阻 R1‧‧‧第一電阻/電阻 R1’‧‧‧橋接T形組態電阻/電阻 R1A‧‧‧橋接T形組態電阻/電阻 R1’A‧‧‧橋接T形組態電阻/電阻 R1B‧‧‧電阻 R1’B‧‧‧電阻 R1C‧‧‧電阻 R1’C‧‧‧電阻 R1D‧‧‧電阻 R2‧‧‧第二電阻/電阻 R2A‧‧‧橋接T形組態電阻/電阻 R2B‧‧‧電阻 R2C‧‧‧電阻 R2D‧‧‧電阻 R3‧‧‧分路電阻 R3A‧‧‧橋接T形組態電阻/電阻/分路電阻 R3B‧‧‧電阻/分路電阻 R3C‧‧‧電阻/分路電阻 R3D‧‧‧電阻 RL‧‧‧負載阻抗 Ron‧‧‧接通電阻值/接通電阻 Rs‧‧‧源阻抗 S1‧‧‧第一切換器 S2‧‧‧第二切換器
圖1繪示經組態以在一輸入節點處接收一信號且在一輸出節點處產生一經衰減信號之一衰減器電路。 圖2展示具有實施為一個二進制加權組態之複數個衰減區塊之一衰減電路之一方塊圖。 圖3展示可係圖2之衰減電路之一更具體實例之一衰減電路。 圖4單獨地展示圖3之第四衰減區塊。 圖5展示圖4之實例性衰減區塊之一電路表示,其中各種切換電晶體表示為關斷電容或接通電阻。 圖6展示可表示圖3之第二衰減區塊及第三衰減區塊中之每一者之一個別衰減區塊。 圖7展示圖6之實例性衰減區塊之一電路表示,其中各種切換電晶體表示為關斷電容或接通電阻。 圖8A展示圖3之衰減電路之一操作模式,其中繞過每一衰減區塊以提供大約0 dB之一總衰減。 圖8B展示圖3之衰減電路之一操作模式,其中由第一衰減區塊提供衰減,且繞過第二衰減區塊至第四衰減區塊中之每一者,以提供大約1 dB之一總衰減。 圖8C展示圖3之衰減電路之一操作模式,其中由第二衰減區塊提供衰減,且繞過第一衰減區塊、第三衰減區塊及第四衰減區塊中之每一者,以提供大約2 dB之一總衰減。 圖8D展示圖3之衰減電路之一操作模式,其中由第一衰減區塊及第二衰減區塊中之每一者提供衰減,且繞過第三衰減區塊及第四衰減區塊中之每一者,以提供大約3 dB之一總衰減。 圖8E展示圖3之衰減電路之一操作模式,其中由第二衰減區塊至第四衰減區塊中之每一者提供衰減,且繞過第一衰減區塊,以提供大約14 dB之一總衰減。 圖8F展示圖3之衰減電路之一操作模式,其中由四個衰減區塊中之每一者提供衰減以提供大約15 dB之一總衰減。 圖9A展示包含一局域補償電容之一補償路徑。 圖9B展示在某些實施例中,可將圖9A之電容實施為經組態以提供一所要電容值之一電晶體裝置。 圖10展示在某些實施例中,可藉由一控制器來控制具有如本文中所闡述之一或多個特徵之一衰減電路。 圖11展示在某些實施例中,可將具有如本文中所闡述之一或多個特徵之一衰減電路中之某些或所有衰減電路實施於一半導體晶粒上。 圖12展示其中可將具有如本文中所闡述之一或多個特徵之一衰減電路中之某些或所有衰減電路實施於一封裝模組上之一實例,且此一封裝模組可包含類似於圖11之實例之一半導體晶粒。 圖13展示其中可將具有如本文中所闡述之一或多個特徵之一衰減電路中之某些或所有衰減電路實施於一封裝模組上之另一實例,且此一封裝模組可包含複數個半導體晶粒。 圖14展示可如何將具有如本文中所闡述之一或多個特徵之一衰減器實施於一射頻系統中之非限制性實例。 圖15展示包含具有如本文中所闡述之一或多個特徵之一衰減器的一分集接收模組之一實例。 圖16繪示具有本文中所闡述之一或多個優勢特徵之一實例性無線裝置。
100‧‧‧衰減器電路/衰減電路/衰減器
102a‧‧‧衰減區塊/第一衰減區塊
102b‧‧‧衰減區塊/第二衰減區塊
102c‧‧‧衰減區塊/第三衰減區塊
102d‧‧‧衰減區塊/第四衰減區塊
104a‧‧‧相位補償電路
104b‧‧‧相位補償電路/補償電路
104c‧‧‧相位補償電路/補償電路
104d‧‧‧相位補償電路/電路
105a‧‧‧旁路路徑
105b‧‧‧旁路路徑
105c‧‧‧旁路路徑
105d‧‧‧旁路路徑
C2‧‧‧電容/補償電容
C4‧‧‧電容/補償電容
C8‧‧‧電容/補償電容
C8’‧‧‧電容/補償電容
IN‧‧‧輸入節點/局域輸入
M1A‧‧‧切換FET/旁路切換器
M1B‧‧‧切換FET/旁路切換器/局域旁路FET
M1C‧‧‧切換FET/旁路切換器/局域旁路FET
M1D‧‧‧切換FET/旁路切換器/旁路切換FET/局域旁路FET
M2A‧‧‧切換FET/分路切換器
M2B‧‧‧切換FET/切換電晶體/分路切換器
M2C‧‧‧切換FET/切換電晶體/分路切換器
M2D‧‧‧切換FET/切換電晶體/分路切換器
M3D‧‧‧切換FET/切換電晶體
OUT‧‧‧輸出節點/局域輸出/局域輸出節點
R1A‧‧‧橋接T形組態電阻/電阻
R1’A‧‧‧橋接T形組態電阻/電阻
R1B‧‧‧電阻
R1’B‧‧‧電阻
R1C‧‧‧電阻
R1’C‧‧‧電阻
R1D‧‧‧電阻
R2A‧‧‧橋接T形組態電阻/電阻
R2B‧‧‧電阻
R2C‧‧‧電阻
R2D‧‧‧電阻
R3A‧‧‧橋接T形組態電阻/電阻/分路電阻
R3B‧‧‧電阻/分路電阻
R3C‧‧‧電阻/分路電阻
R3D‧‧‧電阻

Claims (16)

  1. 一種射頻衰減器電路,其包括:複數個衰減區塊,其串聯配置於一輸入節點與一輸出節點之間,每一衰減區塊包含具有(with)一各別旁路切換電晶體之一旁路路徑(bypass path),當在一關斷狀態(off state)時各別該旁路切換電晶體包括一關斷電容;一相位補償電路,其針對該等衰減區塊中之至少某些衰減區塊中之每一者實施,該相位補償電路經組態以補償各別該旁路路徑之該旁路切換電晶體之該關斷電容;一全域旁路路徑,該全域旁路路徑包含經組態以在處於一全域旁路模式中時接通(on)且在處於一全域衰減模式中時關斷(off)之一全域旁路切換電晶體,使得該全域旁路切換電晶體在處於該全域衰減模式中時提供一全域關斷電容;及一全域相位補償電路,其經組態以在該衰減器電路處於該全域衰減模式中時補償該全域關斷電容。
  2. 如請求項1之衰減器電路,其中該等衰減區塊具有二進制加權衰減值。
  3. 如請求項1之衰減器電路,其中該等衰減區塊中之至少一者經組態為一pi衰減器。
  4. 如請求項3之衰減器電路,其中具有該pi衰減器之該至少一個衰減區塊包含具有一最高衰減值之一衰減區塊。
  5. 如請求項3之衰減器電路,其中具有該pi衰減器之該衰減區塊之該旁路切換電晶體經組態以在該衰減區塊處於一旁路模式中時處於一接通狀態,且在該衰減區塊處於一衰減模式中時處於該關斷狀態。
  6. 如請求項5之衰減器電路,其中該pi衰減器包含一電阻、實施於該電阻之一端與一接地之間的一第一分路路徑、實施於該電阻之另一端與該接地之間的一第二分路路徑,該第一分路路徑及該第二分路路徑中之每一者包含一分路電阻。
  7. 如請求項6之衰減器電路,其中與該pi衰減器相關聯之該相位補償電路包含:配置成與該第一分路電阻電並聯之一第一補償電容及配置成與該第二分路電阻電並聯之一第二補償電容。
  8. 如請求項7之衰減器電路,其中該旁路切換電晶體之該關斷電容導致一相位超前改變,且該相位補償電路經組態以提供一相位滯後改變來補償該相位超前改變。
  9. 如請求項1之衰減器電路,其中該等衰減區塊中之至少一者經組態為一橋接T形衰減器。
  10. 如請求項9之衰減器電路,其中具有該橋接T形衰減器之該衰減區塊之該旁路切換電晶體經組態以在該衰減區塊處於一旁路模式中時處於一接通狀態,且在該衰減區塊處於一衰減模式中時處於該關斷狀態。
  11. 如請求項10之衰減器電路,其中該橋接T形衰減器包含串聯連接之兩個第一電阻、與該兩個第一電阻之串聯組合電並聯之一第二電阻及實施於一接地與該兩個第一電阻之間的一節點之間的一分路路徑,該分路路徑包含一分路電阻。
  12. 如請求項11之衰減器電路,其中與該橋接T形衰減器相關聯之該相位補償電路包含配置成與該分路電阻電並聯之一補償電容。
  13. 如請求項12之衰減器電路,其中該旁路切換電晶體之該關斷電容導致一相位超前改變,且該相位補償電路經組態以提供一相位滯後改變來補償該相位超前改變。
  14. 如請求項1之衰減器電路,其中該全域相位補償電路包含串聯配置於該輸入節點與該輸出節點之間的一第一全域補償電阻及一第二全域補償電阻,該全域相位補償電路進一步包含實施於一接地與該第一全域補償電阻與該第二全域補償電阻之間的一節點之間的一全域補償電容。
  15. 一種射頻模組,其包括:一封裝基板,其經組態以接納複數個組件;及 一射頻衰減器電路,其實施於該封裝基板上,該衰減器電路包含串聯配置於一輸入節點與一輸出節點之間的複數個衰減區塊,每一衰減區塊包含具有一各別旁路切換電晶體之一旁路路徑,當在一關斷狀態時,各別該旁路切換電晶體包括一關斷電容,該衰減器電路進一步包含一相位補償電路,該相位補償電路係針對該等衰減區塊中之至少某些衰減區塊中之每一者而實施,該相位補償電路經組態以補償各別該旁路路徑之該旁路切換電晶體之該關斷電容,該衰減器電路進一步包含一全域旁路路徑,該全域旁路路徑包含經組態以在處於一全域旁路模式中時接通且在處於一全域衰減模式中時關斷之一全域旁路切換電晶體,使得該全域旁路切換電晶體在處於該全域衰減模式中時提供一全域關斷電容;及一全域相位補償電路,其經組態以在該衰減器電路處於該全域衰減模式中時補償該全域關斷電容。
  16. 一種無線裝置,其包括:一天線,其經組態以接收一射頻信號;一收發器,其與該天線通信;一信號路徑,其位於該天線與該收發器之間;及一射頻衰減器電路,其沿著該信號路徑實施,該衰減器電路包含串聯配置於一輸入節點與一輸出節點之間的複數個衰減區塊,每一衰減區塊包含具有一各別旁路切換電晶體之一旁路路徑,當在一關斷狀態時,各別該旁路切換電晶體包括一關斷電容,該衰減器電路進一步包含一相位補償電路,該相位補償電路係針對該等衰減區塊中之至少某些衰減區塊中之每一者而實施,該相位補償電路經組態以補償各別該旁路路徑之該旁路切換 電晶體之該關斷電容,該衰減器電路進一步包含一全域旁路路徑,該全域旁路路徑包含經組態以在處於一全域旁路模式中時接通且在處於一全域衰減模式中時關斷之一全域旁路切換電晶體,使得該全域旁路切換電晶體在處於該全域衰減模式中時提供一全域關斷電容;及一全域相位補償電路,其經組態以在該衰減器電路處於該全域衰減模式中時補償該全域關斷電容。
TW106129592A 2016-08-30 2017-08-30 具有補償電路之二進制加權衰減器 TWI801349B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662381376P 2016-08-30 2016-08-30
US62/381,376 2016-08-30

Publications (2)

Publication Number Publication Date
TW201813292A TW201813292A (zh) 2018-04-01
TWI801349B true TWI801349B (zh) 2023-05-11

Family

ID=61240763

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106129592A TWI801349B (zh) 2016-08-30 2017-08-30 具有補償電路之二進制加權衰減器

Country Status (9)

Country Link
US (1) US20180062622A1 (zh)
JP (2) JP2019532596A (zh)
KR (1) KR102579792B1 (zh)
CN (1) CN109964407B (zh)
DE (1) DE112017004354T5 (zh)
GB (1) GB2576804A (zh)
SG (1) SG11201901793XA (zh)
TW (1) TWI801349B (zh)
WO (1) WO2018044799A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10340892B2 (en) * 2017-08-22 2019-07-02 Psemi Corporation Multi-channel digital step attenuator architecture
JP6452917B1 (ja) * 2018-03-29 2019-01-16 三菱電機株式会社 切替回路及び可変減衰器
KR102059817B1 (ko) * 2018-05-25 2019-12-27 삼성전기주식회사 증폭 이득 가변에 따른 위상 왜곡을 보상하는 가변이득 저잡음 증폭장치
US11088668B2 (en) * 2019-02-14 2021-08-10 Psemi Corporation LNA with controlled phase bypass
CN111464145B (zh) * 2020-04-07 2023-04-25 成都仕芯半导体有限公司 一种数字步进衰减器
CN112653422B (zh) * 2020-11-30 2022-11-25 北京无线电测量研究所 一种数控衰减器芯片
CN113691236B (zh) * 2021-08-04 2023-08-22 国仪量子(合肥)技术有限公司 温度补偿宽带信号衰减电路及其控制方法
US20230283268A1 (en) * 2022-03-01 2023-09-07 Qualcomm Incorporated Current-mode radio frequency attenuators
US20240243732A1 (en) * 2023-01-18 2024-07-18 Mediatek Inc. Multi-level digital step attenuator and digital step attenuation device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003309454A (ja) * 2002-04-15 2003-10-31 Mitsubishi Electric Corp 可変減衰器
JP2011182048A (ja) * 2010-02-26 2011-09-15 Mitsubishi Electric Corp 可変減衰器
US20130088403A1 (en) * 2011-10-05 2013-04-11 International Business Machines Corporation Low Phase Variation CMOS Digital Attenuator
KR20130103073A (ko) * 2012-03-09 2013-09-23 알에프코어 주식회사 위상 왜곡을 보상하는 감쇄기 및 그의 감쇄 방법
TW201406058A (zh) * 2012-05-31 2014-02-01 Advantest Singapore Pte Ltd 可變衰減器
JP2014096725A (ja) * 2012-11-09 2014-05-22 Mitsubishi Electric Corp ベクトル合成形移相器
US20150137913A1 (en) * 2013-11-19 2015-05-21 Peregrine Semiconductor Corporation Segmented Attenuator with Glitch Reduction
US20150326205A1 (en) * 2014-05-09 2015-11-12 Skyworks Solutions, Inc. Apparatus and methods for digital step attenuators with low phase shift
US20160118959A1 (en) * 2014-10-22 2016-04-28 Analog Devices Global Apparatus and methods for reducing glitches in digital step attenuators
US20160134259A1 (en) * 2014-11-11 2016-05-12 Peregrine Semiconductor Corporation Digital Step Attenuator with Reduced Relative Phase Error

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684881A (en) * 1986-09-17 1987-08-04 Tektronix, Inc. Low impedance switched attenuator
US5666089A (en) * 1996-04-12 1997-09-09 Hewlett-Packard Company Monolithic step attenuator having internal frequency compensation
ATE551773T1 (de) * 2003-02-20 2012-04-15 Sony Ericsson Mobile Comm Ab Effizienter modulation von hochfrequenzsignalen
EP1639717B1 (de) 2003-06-27 2016-08-10 Rohde & Schwarz GmbH & Co. KG Eichleitungs-anordnung
US8059705B2 (en) * 2007-02-16 2011-11-15 Applied Micro Circuits Corporation Channel equalization using frequency and phase compensation
JP2010538505A (ja) 2007-08-11 2010-12-09 躍軍 閻 可変減衰器
US8957743B2 (en) * 2008-11-18 2015-02-17 Freescale Semiconductor, Inc. Integrated circuit, communication unit and method for phase compensation
US8334718B2 (en) 2009-12-23 2012-12-18 Rf Micro Devices, Inc. Variable attenuator having stacked transistors
US8452187B2 (en) * 2010-12-02 2013-05-28 Eastern Optx Inc. Bi-directional, compact, multi-path and free space channel replicator
JP2012129721A (ja) 2010-12-14 2012-07-05 Mitsubishi Electric Corp 可変減衰器
US9100046B2 (en) * 2011-08-17 2015-08-04 Rf Micro Devices, Inc. Digital step attenuator utilizing thermometer encoded multi-bit attenuator stages
CN103050976B (zh) * 2013-01-11 2015-02-18 山西省电力公司大同供电分公司 输电线路抑制系统次同步谐振的可控串补装置
US9473194B2 (en) * 2014-02-27 2016-10-18 Skywoods Solutions, Inc. Systems, devices and methods related to radio-frequency step attenuators
US9847804B2 (en) * 2014-04-30 2017-12-19 Skyworks Solutions, Inc. Bypass path loss reduction
US9473109B2 (en) 2014-05-09 2016-10-18 Skyworks Solutions, Inc. Apparatus and methods for digital step attenuators with small output glitch
US9531359B1 (en) * 2015-10-08 2016-12-27 Peregrine Semiconductor Corporation Multi-state attenuator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003309454A (ja) * 2002-04-15 2003-10-31 Mitsubishi Electric Corp 可変減衰器
JP2011182048A (ja) * 2010-02-26 2011-09-15 Mitsubishi Electric Corp 可変減衰器
US20130088403A1 (en) * 2011-10-05 2013-04-11 International Business Machines Corporation Low Phase Variation CMOS Digital Attenuator
KR20130103073A (ko) * 2012-03-09 2013-09-23 알에프코어 주식회사 위상 왜곡을 보상하는 감쇄기 및 그의 감쇄 방법
TW201406058A (zh) * 2012-05-31 2014-02-01 Advantest Singapore Pte Ltd 可變衰減器
JP2014096725A (ja) * 2012-11-09 2014-05-22 Mitsubishi Electric Corp ベクトル合成形移相器
US20150137913A1 (en) * 2013-11-19 2015-05-21 Peregrine Semiconductor Corporation Segmented Attenuator with Glitch Reduction
US20150326205A1 (en) * 2014-05-09 2015-11-12 Skyworks Solutions, Inc. Apparatus and methods for digital step attenuators with low phase shift
US20160118959A1 (en) * 2014-10-22 2016-04-28 Analog Devices Global Apparatus and methods for reducing glitches in digital step attenuators
US20160134259A1 (en) * 2014-11-11 2016-05-12 Peregrine Semiconductor Corporation Digital Step Attenuator with Reduced Relative Phase Error

Also Published As

Publication number Publication date
JP2019532596A (ja) 2019-11-07
GB2576804A (en) 2020-03-04
DE112017004354T5 (de) 2019-05-16
CN109964407A (zh) 2019-07-02
WO2018044799A1 (en) 2018-03-08
TW201813292A (zh) 2018-04-01
KR20190052012A (ko) 2019-05-15
JP2022088429A (ja) 2022-06-14
KR102579792B1 (ko) 2023-09-19
US20180062622A1 (en) 2018-03-01
CN109964407B (zh) 2024-03-08
SG11201901793XA (en) 2019-03-28
JP7387783B2 (ja) 2023-11-28
GB201904324D0 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
TWI801349B (zh) 具有補償電路之二進制加權衰減器
CN106664086B (zh) 用于射频开关应用的寄生补偿
TWI754663B (zh) 具有相移及增益補償電路之衰減器
KR101752544B1 (ko) 무선 주파수 집적 회로에 대한 시스템 및 방법
US9729190B2 (en) Switchable antenna array
US20220158599A1 (en) Methods related to amplification of radio-frequency signals
US20180076774A1 (en) Radio-frequency amplifier having active gain bypass circuit
JP2015122628A (ja) スイッチング回路および半導体モジュール