TWI798598B - 電壓調節器和調節電壓的方法 - Google Patents

電壓調節器和調節電壓的方法 Download PDF

Info

Publication number
TWI798598B
TWI798598B TW109141159A TW109141159A TWI798598B TW I798598 B TWI798598 B TW I798598B TW 109141159 A TW109141159 A TW 109141159A TW 109141159 A TW109141159 A TW 109141159A TW I798598 B TWI798598 B TW I798598B
Authority
TW
Taiwan
Prior art keywords
signal
phase
circuit
voltage
voltage regulator
Prior art date
Application number
TW109141159A
Other languages
English (en)
Other versions
TW202129453A (zh
Inventor
浩華 周
黃智強
玫 徐
李雲漢
Original Assignee
台灣積體電路製造股份有限公司
大陸商台積電(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司, 大陸商台積電(南京)有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW202129453A publication Critical patent/TW202129453A/zh
Application granted granted Critical
Publication of TWI798598B publication Critical patent/TWI798598B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/24Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1566Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with means for compensating against rapid load changes, e.g. with auxiliary current source, with dual mode control or with inductance variation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Nonlinear Science (AREA)
  • Dc-Dc Converters (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本揭露涉及電壓調節器和調節電壓的方法。一種電壓調節器包括輸出節點、控制電路和功率級。此控制電路被配置以從耦合至輸出節點的負載電路接收功率狀態信號,並基於此功率狀態信號輸出控制信號。此功率級包括耦合至輸出節點的多個相位電路,並且被配置以響應於控制信號而啟用多個相位電路中的相位電路。

Description

電壓調節器和調節電壓的方法
本揭露是關於一種電壓調節器和調節電壓的方法。
電壓調節器通常用於基於各種電源電壓輸入來生成穩定的輸出電壓電平。在升壓轉換器配置中,直流(DC)輸出電壓電平高於DC電源電壓電平,而在降壓轉換器配置中,DC輸出電壓電平低於DC電源電壓電平。
在一些情況下,電壓調節器包括多個相位,每個相位在輸出時間段的給定部分中提供負載電流。與單相位電壓調節器相位比,多相位佈置可提供更高的效率、更快的瞬態回應,並減少輸出電壓漣波。
本揭露之一態樣係提供一種電壓調節器,包括:輸出節點;控制電路,所述控制電路被配置以從耦合至所述輸出節點的負載電路接收功率狀態信號,並且基於所述功 率狀態信號來輸出控制信號;以及功率級,所述功率級包括多個相位電路,所述多個相位電路中的每個相位電路耦合至所述輸出節點,其中,所述功率級被配置以回應於所述控制信號而啟用所述多個相位電路中的相位電路。
本揭露之另一態樣係提供一種調節電壓的方法,所述方法包括:在多相電壓調節器的控制電路處接收功率狀態信號;以及回應於所述功率狀態信號,啟用所述電壓調節器的預設數量的相位。
本揭露之又一態樣係提供一種電壓調節器,包括:控制電路,所述控制電路被配置以輸出控制信號和啟用信號;以及功率級,所述功率級包括多個相位電路,所述多個相位電路中的每個相位電路包括多個分段,其中,所述功率級被配置以:響應於所述控制信號而啟用所述多個相位電路中的相位電路,並且響應於所述啟用信號而啟用所述多個相位電路中的所述相位電路的所述多個分段之一。
100:電壓調節器電路
100L:負載電路
100VR:電壓調節器
110:控制電路
112:信號生成器
114:相位控制塊
114T:表
120:功率級
200:方法
210:操作
220:操作
230:操作
300:電壓調節器電路
300VR:電壓調節器
310:控制電路
316:信號生成器
316T:表
320:功率級
3D1:驅動器電路
3DX:驅動器電路
3PH1:相位電路
3PHM:相位電路
4D1:驅動器電路
4DX:驅動器電路
4PHM:相位電路
5D1:驅動器電路
5D1:驅動器電路
5DX:驅動器電路
5PHM:相位電路
6D1:驅動器電路
6D1:驅動器電路
6DX:驅動器電路
6PHM:相位電路
6PHM1:信號
6PHM2:信號
710:操作
720:操作
730:操作
740:操作
AND1-ANDX:及閘
ANDDT:及閘
BN1-BNX:緩衝器
BP1-BPX:緩衝器
Cout:電容器
CTRL:控制信號
D1:驅動器電路
DP1-DPX:驅動器電壓
DN1-DNX:驅動器電壓
ENNm[1]-ENNm[X]:啟用信號
ENPm[1]-ENPm[X]:啟用信號
I1:電流
IA:負載電流值
IB:負載電流值
IC:負載電流值
IL:負載電流
IM:電流
IN:節點
L1:電感器
MCTRL:主控制信號
N1:n型電晶體
NL:節點
NX:n型電晶體
OR1-ORX:或閘
ORDT:或閘
OUT:節點
P1:p型電晶體
PCTRLm/NCTRLm:控制信號對
PH1:相位電路
PHM:相位電路
PSP:信號路徑
PSS:信號
PSSIT:輸入端子
PX:p型電晶體
S1:電源開關
SENSE:節點
t1:時間
t2:時間
t3:時間
TS:熱感測器
TSS:感測器信號
Vin:電源電壓
Vout:電壓
Vsense:電壓
VSS:電壓
VSSN:電源參考節點
根據以下詳細說明並配合附圖閱讀,使本揭露的態樣獲致較佳的理解。需注意的是,如同業界的標準作法,許多特徵並不是按照比例繪示的。事實上,為了進行清楚討論,許多特徵的尺寸可以經過任意縮放。
第1圖是根據一些實施例的電壓調節器電路的示意圖。
第2A圖是根據一些實施例的電壓調節序列的表示。
第2B圖是根據一些實施例的調節電壓的方法的流程圖。
第3圖是根據一些實施例的電壓調節器電路的示意圖。
第4圖是根據一些實施例的相位電路(phase circuit)的示意圖。
第5圖是根據一些實施例的相位電路的示意圖。
第6圖是根據一些實施例的相位電路的示意圖。
第7圖是根據一些實施例的調節電壓的方法的流程圖。
下面的公開內容提供了用於實現所提供的主題的不同特徵的許多不同的實施例或示例。下文描述了組件、值、操作、材料、佈置等的具體示例以簡化本公開。當然,這些僅僅是示例而不意圖是限制性的。預期其他組件、值、操作、材料、佈置等。例如,在下面的說明中,在第二特徵上方或之上形成第一特徵可以包括以直接接觸的方式形成第一特徵和第二特徵的實施例,並且還可以包括可以在第一特徵和第二特徵之間形成附加特徵,使得第一特徵和第二特徵可以不直接接觸的實施例。此外,本公開可以在各種示例中重複參考標號和/或字母。此重複是為了簡單和清楚的目的,並且本身並不表示所討論的各種實施例和/或配置之間的關係。
此外,本文中可能使用了空間相關術語(例如,“下方”、“之下”、“低於”、“以上”、“上部”等),以易於描述圖中所示的一個要素或特徵相對於另外(一個或多個)要素或(一個或多個)特徵的關係。這些空間相 關術語意在涵蓋器件在使用或工作中除了圖中所示朝向之外的不同朝向。裝置可能以其他方式定向(旋轉90度或處於其他朝向),並且本文中所用的空間相關描述符同樣可能被相應地解釋。
在各種實施例中,電壓調節器接收指示負載電路的功率狀態的信號,並且作為響應,啟用耦合到負載電路的預設數量的相位電路。在一些實施例中,使用基於修整(trim-based)的電流平衡機制來於啟用電壓調節器的相位電路。與其中電流平衡和所啟用的相位電路的數量基於監測輸出電流的方法相比,電壓調節器的複雜性和回應時間因此得以減少。
第1圖是根據一些實施例的電壓調節器電路100的示意圖。電壓調節器電路100包括耦合到負載電路100L的電壓調節器100VR。
兩個或更多個電路元件被認為是基於直接電連接或包括一個或多個附加電路元件(例如,一個或多個邏輯或傳輸門)的電連接而耦合的,從而能夠被控制,例如,通過電晶體或其他開關器件而變為阻性或開路。
在第1圖所示的實施例中,電壓調節器100VR通過節點SENSE並通過信號路徑PSP直接連接到負載電路100L。在各種實施例中,一個或多個附加電路元件(例如,一個或多個開關器件)沿著信號路徑PSP耦合在電壓調節器100VR和節點SENSE、節點SENSE和負載電路100L、或電壓調節器100VR和負載電路100L中的一個 或多個之間。
電壓調節器100VR是如下討論被配置以多相降壓轉換器型電壓調節器的電子電路,包括一個或多個輸入端子(第1圖中未示出),其被配置以接收一個或多個電源電壓電平,並且響應於節點SENSE處的電壓Vsense在輸出節點OUT處產生電壓Vout。電壓調節器100VR包括被配置以在信號路徑PSP上接收信號PSS的輸入端子PSSIT。
負載電路100L是被配置以在多個功率狀態下操作的電子電路,每個功率狀態對應於電壓調節器100VR輸出的負載電流IL的值,負載電流IL的值在最小負載電流值到最大負載電流值的範圍內。負載電路100L被配置以生成指示多個功率狀態中的特定功率狀態的信號PSS。信號PSS包括對應於邏輯狀態的多個電壓電平,多個電壓電平的每個配置從而指示多個功率狀態中的相應的功率狀態。在各種實施例中,信號PSS包括電壓電平的並行或串列配置中的一者或兩者。
在一些實施例中,功率狀態和負載電流值具有一對一的對應關係,使得特定負載電流值唯一地應用於信號PSS所指示的功率狀態。在一些實施例中,功率狀態的數量超過負載電流值的數量,使得特定負載電流值應用於信號PSS所指示的一個以上功率狀態。在一些實施例中,信號PSS被配置以指示負載電流值,使得多個電壓電平的特定配置指示能夠對應於負載電路100L的一個以上功率狀 態的負載電流值或值範圍。
在一些實施例中,負載電路100L包括多個電子電路。在一些實施例中,負載電路100L包括片上系統(SOC)的一些或全部。在一些實施例中,信號PSS所指示的功率狀態對應於SOC操作模式,例如,睡眠模式、待機模式、部分啟動模式、完全啟動模式、或高性能模式中的一種或多種。
在一些實施例中,負載電路100L被包括在第一積體電路(IC)晶片中,並且電壓調節器100VR的一些或全部被包括在除第一IC晶片之外的一個或多個IC晶片中。在一些實施例中,負載電路100L以及電壓調節器100VR的一些或全部被包括在同一IC晶片中。
電壓調節器100VR包括耦合到功率級120的控制電路110,以及耦合在輸出節點OUT與電源參考節點VSSN之間的電容器Cout,電容器Cout被配置以承載電源參考電壓電平,例如,地。
控制電路110是被配置以接收信號PSS並基於信號PSS生成控制信號CTRL的電子電路,如下所述。在各種實施例中,控制電路110包括一個或多個處理器、一個或多個邏輯電路、一個或多個記憶體電路等的一個或組合。
在各種實施例中,控制信號CTRL包括對應於邏輯狀態的多個電壓電平,多個電壓電平的每個配置對應於功率級120的特定配置,如下所述。在各種實施例中,控 制信號CTRL包括電壓狀態的並行或串列配置的一者或兩者。在一些實施例中,控制信號CTRL包括一個或多個脈衝寬度調製(PWM)信號。
功率級120是包括M個相位電路PH1-PHM(在一些實施例中也稱為相位)的電子電路。每個相位電路PH1-PHM被配置以產生電流I1-IM中的相應的一個並將其輸出到輸出節點OUT。功率級120被配置以接收控制信號CTRL並基於控制信號CTRL啟用相位電路PH1-PHM中的一個或多個,從而在操作中基於控制信號CTRL生成電流I1-IM中的相應的一個或多個。
在一些實施例中,功率級120包括兩個到十六個的範圍內的M個相位電路PH1-PHM。在一些實施例中,功率級120包括四個到八個的範圍內的M個相位電路PH1-PHM。在一些實施例中,功率級120包括大於十六的M個相位電路PH1-PHM。在一些實施例中,功率級120不包括相位電路PH1-PHM中的一些或全部,並且功率級120以其他方式被配置以基於控制信號CTRL產生電流I1-IM中的一個或多個。
每個相位電路PH1-PHM包括一個或多個驅動器電路D1、一個或多個電源開關S1和電感器L1。驅動器電路(例如,一個或多個驅動器電路D1)是被配置以接收控制信號CTRL中的一些或全部,並且回應於控制信號CTRL輸出一個或多個驅動器電壓(第1圖中未示出)的電子電路。在一些實施例中,驅動器電路包括一個或多個 邏輯門。
一個或多個電源開關S1被耦合在節點VSSN以及被配置以承載一個或多個電源電壓電平的電源節點(第1圖中未示出)之間。每個電源開關S1被配置以接收驅動器電壓中的一個,並且響應於驅動器電壓,選擇性地將電感器L1的第一端子耦合到電源節點或節點VSSN之一、或將電感器L1的第一端子從電源節點或節點VSSN之一解耦。電感器L1的第二端子耦合到輸出節點OUT。
在各種實施例中,對於相位電路PH1-PHM中的一個或多個,一個或多個驅動器電路D1、一個或多個功率開關S1或電感器L1中的至少一個是與一個或多個驅動器電路D1、一個或多個功率開關S1或電感器L1中的另外一個或多個中的一者或兩者分離的分立器件。在各種實施例中,對於相位電路PH1-PHM中的一個或多個,一個或多個驅動器電路D1、一個或多個功率開關S1以及電感器L1中的每一個都被包括在同一IC晶片中。在一些實施例中,同一IC晶片包括具有片上磁電感器的電感器L1。
在一些實施例中,控制電路110和負載電路100L被包括在第一IC晶片中,並且相位電路PH1-PHM中的一個或多個被包括在除了第一IC晶片之外的一個或多個相應的IC晶片中。在一些實施例中,一個或多個附加晶片對應於基於第一特徵尺寸的第一IC製造工藝,並且第一IC晶片對應於基於第二特徵尺寸(小於第一特徵尺寸)的第二IC製造工藝。
每個相位電路PH1-PHM因而被配置以(在操作中,回應於控制信號CTRL中的一些或全部)生成電流I1-IM中的相應的一個,其基於一個或多個電源開關S1被閉合一個或多個預設持續時間而處於啟用狀態而具有兩個極性之一,或者基於一個或多個電源開關S1中的每一個被斷開而處於禁用狀態而具有基本上為零的幅度。每個相位電路PH1-PHM因而在啟用狀態下能夠通過電感器L1對耦合到輸出節點OUT的電容器Cout的第一端子進行充電和放電,並且在禁用狀態下相對於電容器Cout的第一端子是電中性的。
控制電路110包括耦合到相位控制塊114的信號生成器112。信號生成器112是被配置以接收電壓Vsense並基於電壓Vsense生成主控制信號MCTRL的電子電路,主控制信號MCTRL被配置以啟用相位電路PH1-PHM中的每一個達信號週期的預設部分或相位,使得電流I1-IM順序地對電容器Cout進行充電和/或放電,從而在操作中在調節輸出節點OUT上的電壓Vout的同時共同提供負載電流IL。
相位控制塊114是被配置以接收來自信號生成器112的主控制信號MCTRL和來自輸入端子PSSIT的信號PSS,並基於信號PSS輸出主控制信號MCTRL的預設部分或全部作為控制信號CTRL的電子電路。作為控制信號CTRL被輸出的主控制信號MCTRL的預設部分或全部被配置以啟用相位電路PH1-PHM的預設子集或全部。
在一些實施例中,信號生成器112被配置以生成主控制信號MCTRL作為多個M個信號或信號對,例如,PWM信號,每個信號或信號對對應於相位電路PH1-PHM之一。在M個信號對的情況下,多個信號對中的每一對包括被配置以使第一電源開關S1選擇性地將電感器L1的第一端子耦合到電源節點的第一信號,以及被配置以使第二電源開關S1選擇性地將電感器L1的第一端子耦合到節點VSSN的第二信號。
在這樣的實施例中,相位控制塊114被配置以通過將相位電路PH1-PHM的相應子集或全部耦合到信號生成器112,並且將任何剩餘的相位電路PH1-PHM從信號生成器112解耦,來輸出主控制信號MCTRL的預設部分或全部作為控制信號CTRL,相位控制塊114因而被配置以相位門控電路。
在操作中,從相位電路PH1-PHM輸出的電流I1-IM貢獻負載電流IL的相應部分,使得相位電路PH1-PHM的預設子集或全部的數量對應於負載電流IL的預設負載電流值。由於信號PSS指示負載電路100L的一個或多個功率狀態,控制電路110因而被配置以在操作中輸出控制信號CTRL,啟用與對應於信號PSS所指示負載電路100L的一個或多個功率狀態的負載電流IL相匹配的相位電路PH1-PHM的預設子集或全部。
在一些實施例中,相位控制塊114被配置以基於映射到如由信號PSS指示的負載電路100L的功率狀態的 相位電路PH1-PHM的表114T來輸出主控制信號MCTRL的預設部分或全部作為控制信號CTRL。在各種實施例中,表114T被包括在相位控制塊114中、或除了相位控制塊114之外的電路(未示出)中。
在各種實施例中,表114T被存儲在記憶體(例如,非易失性記憶體(NVM))中和/或包括一個或多個邏輯門,其被配置以接收信號PSS中的一些或全部,並提供可用於輸出主控制信號MCTRL的預設部分或全部作為控制信號CTRL的一個或多個信號。
在一些實施例中,除了被配置以接收一個或多個信號的輸入端子PSSIT之外,電壓調節器100VR還包括被配置以使表114T存儲在電壓調節器100VR中(例如,相位控制塊114中)的一個或多個輸入端子(未示出)。在一些實施例中,負載電路100L被配置以生成可用於在電壓調節器100VR中創建和/或存儲表114T的資訊,並且電壓調節器100VR被配置以接收由負載電路100L生成的資訊。
通過上述配置,電壓調節器100VR能夠基於信號PSS來控制所啟用的相位電路PH1-PHM的數量。在一些實施例中,電壓調節器100VR以其他方式被配置以例如通過將相位控制塊114包括在信號生成器112內以便能夠基於信號PSS來控制所啟用的相位電路PH1-PHM的數量。通過被配置以基於信號PSS來控制所啟用的相位電路PH1-PHM的數量,電壓調節器100VR能夠比基於來自 一個或多個監測電路的回饋來控制所啟用的相位電路的數量的電壓調節器更快地響應負載變化。
通過上述配置,電壓調節器100VR還能夠獨立於監測電流(例如,負載電流IL、或電流I1-IM中的一些或全部)來控制所啟用的相位電路PH1-PHM的數量。在一些實施例中,電壓調節器100VR不包括被配置以監測電流I1-IM中的一個或多個、或負載電流IL的電路。因此,與其中所啟用的相位電路的數量是基於監測一個或多個輸出電流的方法相比,電壓調節器100VR能夠具有降低的複雜度。
第2A圖是根據一些實施例的電壓調節序列的表示。第2A圖根據時間描繪了上面關於第1圖討論的負載電路100L的負載電流IL的非限制性示例。電流IL被繪製在包括時間(Time)作為引數以及電流(Current)作為因變數的曲線圖上。
在時間t1之前,負載電流IL具有負載電流值IA,並且負載電路100L輸出指示負載電路100L的相應第一功率狀態的信號PSS。回應於指示第一功率狀態的信號PSS,電壓調節器100VR的控制電路110輸出被配置以啟用單個相位電路PH1-PHM的控制信號CTRL。
在時間t1處,負載電路100L發起到如信號PSS所指示的第二功率狀態的轉換。回應於指示第二功率狀態的信號PSS,控制電路110輸出被配置以啟用一共八個相位電路PH1-PHM的控制信號CTRL。
從時間t1到時間t2,負載電流I1保持在負載電流值IA,這反映了負載電路100L在第二功率狀態的開始到對應於第二功率狀態的負載電流IL的實際增加之間的回應時間。在時間t2之後,負載電流IL斜坡上升至大於負載電流值IA的負載電流值IC。
因為控制電路110回應於信號PSS而輸出控制信號CTRL,因此電壓調節器100VR在負載電流IL斜坡上升到負載電流值IC之前,從單個啟用的相位電路PH1-PHM增加到八個啟用的相位電路PH1-PHM。電壓調節器100VR因而能夠在負載電流IL實際增加之前提供具有負載電流值IC的負載電流IL,並且避免否則可能在基於測量負載電流啟用相位的方法中發生的功率下降。
在時間t3處,負載電路100L轉換為對應於減小到負載電流值IB的負載電流IL的第三功率狀態,此負載電流值IB小於負載電流值IC且大於負載電流值IA,如信號PSS所示。回應於指示第三功率狀態的信號PSS,控制電路110輸出被配置以啟用總共兩個相位電路PH1-PHM的控制信號CTRL。
因為控制電路110回應於信號PSS而輸出控制信號CTRL,因此電壓調節器100VR比基於測量負載電流啟用相位的方法更快地從八個啟用的相位電路PH1-PHM減少到兩個啟用的相位電路PH1-PHM,從而與這種方法相比降低了功率。
第2B圖是根據一個或多個實施例的調節電壓的 方法200的流程圖。方法200可與包括多相電壓調節器的電壓調節器電路一起使用,例如,包括上面關於第1圖討論的電壓調節器100VR的電壓調節器電路100,或者包括下面關於第3圖討論的電壓調節器300VR的電壓調節器電路300。
第2B圖中描繪方法200的操作的順序僅用於說明;方法200的操作能夠按照與第2B圖所示的順序不同的順序來執行。在一些實施例中,在第2B圖中描繪的操作之前、之間、之中、和/或之後執行除了第2B圖中描繪的那些操作之外的操作。在一些實施例中,方法200的操作是操作SOC的方法的操作的子集。
在操作210中,在一些實施例中,通過將負載電路功率狀態映射到電壓調節器相位要求來創建映射表。將負載電路功率狀態映射到電壓調節器相位要求包括每個負載電路功率狀態對應於電壓調節器的負載電流值。在各種實施例中,單個負載電路功率狀態對應於給定負載電流值,和/或多個負載電路功率狀態對應於一個或多個其他負載電流值。
將負載電路功率狀態映射到電壓調節器相位要求包括確定與每個負載電路功率狀態相對應的啟用相位的數量。在一些實施例中,確定與給定負載電路功率狀態相對應的啟用相位的數量包括確定電壓調節器的每個相的預設電流的倍數,使得啟用相位的數量乘以每個相位的預設電流大於或等於與負載電路功率狀態相對應的負載電流值。 在一些實施例中,每個相位的預設電流是每個相位的最大電流。
在一些實施例中,創建映射表包括將SOC的功率狀態映射到電壓調節器相位要求。在一些實施例中,映射SOC的功率狀態包括映射功率狀態對應于下列項中的一項或多項:睡眠模式、待機模式、部分啟動模式、完全啟動模式、或高性能模式。
在一些實施例中,創建映射表包括通過執行負載電路的模擬來創建映射表。在一些實施例中,執行負載電路的模擬包括執行SOC設計工具,例如,黃金時間功率比較器(PTPX)。在一些實施例中,創建映射表包括通過執行負載電路和/或電壓調節器的一個或多個功率和/或電流測量來創建映射表。
在一些實施例中,創建映射表包括將映射表存儲在電壓調節器中。在一些實施例中,創建映射表包括映射被配置以接收其中存儲有映射表的電壓調節器的輸出電壓的負載電路的功率狀態。在一些實施例中,創建映射表包括創建上面關於第1圖討論的表114T。
在操作220處,在電壓調節器的控制電路接收負載電路功率狀態信號。接收負載電路功率狀態信號包括接收對應於邏輯狀態的多個電壓電平。在各種實施例中,接收多個電壓電平包括接收電壓電平的並行或串列配置中的一者或兩者。
接收功率狀態信號包括接收具有對被配置以接收 電壓調節器的輸出電壓的負載電路的一個或多個功率電平的指示的功率狀態信號。
在一些實施例中,在電壓調節器的控制電路處接收功率狀態信號包括在控制電路110處接收信號PSS,如上面關於第1圖所討論的及以下面關於第3圖所討論的。
在操作230處,為回應於功率狀態信號,啟用電壓調節器的預設數量的相位。啟用電壓調節器的預設數量的相位包括啟用電壓調節器的相位的預設子集或全部。
在一些實施例中,啟用電壓調節器的預設數量的相位包括基於功率狀態信號從映射表中擷取預設數量。在一些實施例中,從映射表中擷取預設數量包括預設數量乘以電壓調節器的每個相位的預設電流大於或等於由功率狀態信號指示的負載電流水準。在一些實施例中,從映射表中擷取預設數量包括從以上面關於第1圖所討論的表114T中擷取預設數量。
在一些實施例中,啟用電壓調節器的預設數量的相位包括啟用上面關於第1圖所討論的相位電路PH1-PHM中的一個或多個。在一些實施例中,啟用電壓調節器的預設數量的相位包括執行控制信號門控(gating)功能,例如,上面關於相位控制塊114和第1圖所討論的。
在一些實施例中,啟用電壓調節器的預設數量的相位包括執行下面關於第7圖討論的方法700的一個或多個操作。
通過執行方法200的操作中的一些或全部,電壓 調節器回應於指示負載電路的功率狀態的功率狀態信號而啟用預設數量的相位,從而獲得上面關於電壓調節器電路100和第1圖討論的益處。
第3圖是根據一些實施例的電壓調節器電路300的示意圖。電壓調節器電路300包括負載電路100L、信號路徑PSP和節點SENSE(各自在上面關於第1圖進行了討論),以及電壓調節器300VR。電壓調節器300VR包括輸出節點OUT、電容器Cout、電源參考節點VSSN和輸入端子PSSIT(各自在上面關於第1圖進行了討論),以及耦合到功率級320的控制電路310。
控制電路310包括信號生成器112以及被配置以接收信號PSS並生成控制信號CTRL的相位控制塊114(各自在上面關於第1圖進行了討論),以及下面討論的信號生成器316。功率級320包括相位電路3PH1-3PHM,每個相位電路3PH1-3PHM被配置以響應於控制信號CTRL而生成電流I1-IM中的相應的一個並將其輸出到輸出節點OUT,如上面關於相位電路PH1-PHM和第1圖所討論的,以及在下面進一步討論的。
在一些實施例中,控制電路310不包括信號生成器112或相位控制塊114中的一者或兩者,並且控制電路310以其他方式被配置以生成控制信號CTRL。在各種實施例中,控制電路310被配置以生成被配置以在除了通過接收信號PSS之外啟用相位電路3PH1-3PHM的子集或全部的控制信號CTRL,或者被配置以連續地啟用全部相 位電路3PH1-3PHM。
在第3圖所示的實施例中,控制電路310被配置以輸出控制信號CTRL作為多對控制信號PCTRL1-PCTRLM和NCTRL1-NCTRLM的預設子集或全部,此多個對中的每一對與相位電路3PH1-3PHM中的給定的一個相對應。在一些實施例中,控制電路310被配置以輸出多對控制信號PCTRL1-PCTRLM和NCTRL1-NCTRLM的預設子集或全部中的每個控制信號PCTRL1-PCTRLM和NCTRL1-NCTRLM作為PWM信號。
相位電路3PH1-3PHM中的每一個均包括電感器L1和節點VSSN(各自在上面關於第1圖進行了討論)、被配置以接收電源電壓Vin的節點IN、耦合到電感器L1的第一端子的節點NL、數量為X的多個驅動器電路3D1-3DX、數量為X的多個p型電晶體P1-PX、以及數量為X的多個n型電晶體N1-NX。
在第3圖所示的實施例中,每個相位電路3PH1-3PHM包括熱感測器TS。熱感測器TS是能夠共同生成指示相位電路3PH1-3PHM的溫度的感測器信號TSS的電子或機電設備,如下文進一步討論的。在一些實施例中,每個相位電路3PH1-3PHM不包括熱感測器TS。
對於給定的相位電路3PH1-3PHM,每個驅動器電路3D1-3DX被配置以接收控制信號對 PCTRLm/NCTRLm、相應的啟用信號ENPm[1]-ENPm[X]、以及相應的啟用信號ENNm[1]-ENNm[X],其中,m對應於給定的1..M相位電路3PH1-3PHM。每個驅動器電路3D1-3DX被配置以響應於控制信號PCTRLm和相應的啟用信號ENPm[1]-ENPm[X]來生成相應的驅動器電壓DP1-DPX,並且回應於控制信號NCTRLm和相應的啟用信號ENNm[1]-ENNm[X]來生成相應的驅動器電壓DN1-DNX。
P型電晶體P1-PX被配置以接收相應的驅動器電壓DP1-DPX,並且響應於驅動器電壓DP1-DPX而選擇性地將節點NL耦合到節點IN以及從節點IN解耦。N型電晶體N1-NX被配置以接收相應的驅動器電壓DN1-DNX,並且響應於驅動器電壓DN1-DNX而選擇性地將節點NL耦合到節點VSSN以及從節點VSSN解耦。因此,P型電晶體P1-PX並行地耦合在節點IN和NL之間,並且n型電晶體N1-NX並行地耦合在節點NL和VSSN之間。因此,p型電晶體P1-PX和n型電晶體N1-NX中的每一個被配置以通過源極-漏極電阻Rds(未標記)將節點NL耦合到相應的節點IN或VSSN。
驅動器電路3D1-3DX因而被配置以回應於控制信號PCTRLm,通過p型電晶體P1-PX的預設子集或全部來選擇性地將節點NL耦合到節點IN,p型電晶體P1-PX的預設子集或全部由啟用信號 ENPm[1]-ENPm[X]控制。
通過控制用於將節點NL耦合到節點IN的並行p型電晶體P1-PX的數量,驅動器電路3D1-3DX能夠將節點IN耦合電阻的值控制為等於並行地耦合在節點NL與IN之間的p型電晶體P1-PX的子集或全部的電阻Rds的等效電阻。
在各種實施例中,每個p型電晶體P1-PX具有相同的標稱電阻(Nominal Resistance)Rds值,或者p型電晶體P1-PX的一個或多個標稱電阻Rds值與一個或多個其他的標稱電阻Rds值不同。在一些實施例中,每個p型電晶體P1-PX具有唯一的標稱電阻Rds值。在一些實施例中,p型電晶體P1-PX具有由R0×2(x-1)給出的標稱電阻Rds值,其中,R0是最小標稱電阻Rds值,並且x對應於給定的1..Xp型電晶體P1-PX,標稱電阻Rds值因而對應于二進位加權機制。
因此,驅動器電路3D1-3DX還被配置以回應於控制信號NCTRLm,通過n型電晶體N1-NX的預設子集或全部來選擇性地將節點NL耦合至節點VSSN,n型電晶體N1-NX的預設子集或全部由啟用信號ENNm[1]-ENNm[X]控制。
通過控制用於將節點NL耦合到節點VSSN的並行n型電晶體N1-NX的數量,驅動器電路3D1-3DX能夠將節點VSSN耦合電阻的值控制為等於並行地耦合在節點NL與VSSN之間的n型電晶體N1-NX的子集或全部 的電阻Rds的等效電阻。
在各種實施例中,每個n型電晶體N1-NX具有相同的標稱電阻Rds值,或者n型電晶體N1-NX的一個或多個標稱電阻Rds值與一個或多個其他的標稱電阻Rds值不同。在一些實施例中,每個n型電晶體N1-NX具有唯一的標稱電阻Rds值。在一些實施例中,n型電晶體N1-NX具有根據上面關於p型電晶體P1-PX討論的二進位加權機制的標稱電阻Rds值。
驅動器電路3D1-3DX、相應的p型電晶體P1-PX、以及相應的n型電晶體N1-NX因而被配置以給定相位電路3PH1-3PHM的X個分段。給定相位電路3PH1-3PHM的X個分段因此被配置以響應於相應的控制信號對PCTRLm/NCTRLm而被共同地啟用和禁用。在一些實施例中,控制信號對PCTRLm/NCTRLm包括PWM信號,此PWM信號被配置以通過控制p型電晶體P1-PX和n型電晶體N1-NX的占空比來啟用給定相位電路3PH1-3PHM,從而控制節點NL耦合到節點IN或VSSN之一的持續時間,以及節點NL既不耦合到節點IN也不耦合到節點VSSN的死區時間。
如上所述,給定相位電路3PH1-3PHM的每個單獨的分段因而被配置以回應於啟用信號ENPm[1]-ENPm[X]和ENNm[1]-ENNm[X]而進一步單獨地啟用和禁用。相位電路3PH1-3PHM因此能夠在基於修整的電流平衡機制中進行配置,如下文進一步討論 的。
信號生成器316是這樣的電子電路,其被配置以針對具有與邏輯狀態相對應的電壓電平的從1到M的m個值中的每個值來生成啟用信號ENPm[1]-ENPm[X]和ENNm[1]-ENNm[X],使得功率相位電路3PH1-3PHM中的每一個功率相位電路的驅動器電路3D1-3DX響應於相應的控制信號對PCTRLm/NCTRLm而生成驅動器電壓DP1-DPX和DN1-DNX,如上所述。
因此,包括信號生成器316的控制電路310以及包括相位電路3PH1-3PHM的功率級320被配置以控制每個相位電路3PH1-3PHM的節點IN和節點VSSN耦合電阻的值。在操作中,每個相位電路3PH1-3PHM通過將電感器L1與節點IN耦合電阻或節點VSSN耦合電阻串聯地耦合以使得相應的節點IN或VSSN耦合電阻的值被添加到電感器L1的DC電阻值來生成相應的電流I1-IM。
被添加到電感器L1的DC電阻值的節點IN耦合電阻對應於給定相位電路3PH1-3PHM的總IN-OUT電阻,並且被添加到電感器L1的DC電阻值的節點VSSN耦合電阻對應於給定的相位電路3PH1-3PHM的總VSSN-OUT電阻。因此,給定電流I1-IM的幅度具有基於電壓Vin和Vout之間的差值除以相應的IN-OUT電阻值的值,或者基於電壓VSS和Vout之間的差值除以相應的VSSN-OUT電阻值的值。
基於功率級320被配置以控制每個相位電路3PH1-3PHM的節點IN和節點VSSN耦合電阻的值,控制電路310被配置以通過啟用信號ENPm[1]-ENPm[X]和ENNm[1]-ENNm[X](1
Figure 109141159-A0305-02-0026-3
m
Figure 109141159-A0305-02-0026-4
M)的配置來控制每個電流I1-IM的幅度。對於相位電路3PH1-3PHM的每個IN-OUT和VSSN-OUT電阻,與所有相應的電晶體相對應的最小默認電阻值由相應的啟用信號ENPm[1]-ENPm[X]或ENNm[1]-ENNm[X](1
Figure 109141159-A0305-02-0026-5
m
Figure 109141159-A0305-02-0026-6
M)啟用。隨著由相應的啟用信號ENPm[1]-ENPm[X]或ENNm[1]-ENNm[X](1
Figure 109141159-A0305-02-0026-7
m
Figure 109141159-A0305-02-0026-8
M)啟用的電晶體的數量減少,電阻值增加,並且相應的電流幅度減小。
在一些實施例中,控制電路310被配置以生成一些或全部啟用信號ENPm[1]-ENPm[X]或ENNm[1]-ENNm[X](1
Figure 109141159-A0305-02-0026-9
m
Figure 109141159-A0305-02-0026-10
M),其被配置以增加至少一個IN-OUT電阻值或至少一個VSSN-OUT電阻值,從而與至少另一個其他的相應IN-OUT電阻值和/或VSSN-OUT電阻值匹配。在一些實施例中,控制電路310被配置以生成啟用信號ENPm[1]-ENPm[X]或ENNm[1]-ENNm[X](1
Figure 109141159-A0305-02-0026-11
m
Figure 109141159-A0305-02-0026-12
M),其被配置以增加除一個IN-OUT電阻值之外的所有IN-OUT電阻值以及除一個VSSN-OUT電阻值之外的所有VSSN-OUT電阻值,從而將每個IN-OUT電阻值與最壞情況下的最大IN-OUT電阻值匹配,並將每個VSSN-OUT電阻值與最 壞情況下的最大VSSN-OUT電阻值匹配。
由於工藝控制的變化,p型電晶體P1-PX和n型電晶體N1-NX的電阻Rds的值以及電感器L1的DC電阻的值在相位電路3PH1-3PHM之間不均勻。在一些實施例中,控制電路310被配置以生成如上所述被配置以補償一些或全部這種非均勻性的啟用信號ENPm[1]-ENPm[X]和ENNm[1]-ENNm[X](1
Figure 109141159-A0305-02-0027-13
m
Figure 109141159-A0305-02-0027-14
M),從而與在不補償此非均勻性的情況下生成的電流I1-IM的幅度變化相比減小電流I1-IM的幅度變化。在一些實施例中,上面討論的能夠減小電流I1-IM的幅度變化的配置被稱為基於修整的電流平衡機制。
在一些實施例中,信號生成器316被配置以基於與如上所述的功率相位電路3PH1-3PHM中的每一個相對應的修整資料的表316T生成啟用信號ENPm[1]-ENPm[X]和ENNm[1]-ENNm[X](1
Figure 109141159-A0305-02-0027-15
m
Figure 109141159-A0305-02-0027-16
M)。在一些實施例中,表316T被稱為修剪表。在各種實施例中,表316T被包括在信號生成器316中或者在除信號生成器316之外的電路(未示出)中。在各種實施例中,表316T被存儲在諸如非易失性記憶體(NVM)之類的記憶體中。
在一些實施例中,除了被配置以接收一個或多個信號的輸入端子PSSIT之外,電壓調節器300VR還包括被配置以使表316T被存儲在電壓調節器300VR中(例如,在信號生成器315中)的一個或多個輸入端子(未示出)。 在一些實施例中,負載電路100L被配置以生成可用於在電壓調節器300VR中創建和/或存儲表316T的資訊,並且電壓調節器300VR被配置以接收由負載電路100L生成的資訊。
在一些實施例中,通過上述配置,控制電路310和功率級320進一步能夠測量p型電晶體P1-PX和n型電晶體N1-NX的電阻Rds,以及每個相位電路3PH1-3PHM的電感器L1的DC電阻。在操作中,對於給定的相位電路3PHm,控制電路310生成信號對PCTRLm/NCTRLm以及信號ENPm[1]-ENPm[X]和ENNm[1]-ENNm[X],其被配置以通過電感器L1以及p型電晶體P1-PX中的一個或多個來耦合節點IN和OUT並同時測量串聯電阻值,並且通過電感器L1和n型電晶體N1-NX中的一個或多個來耦合節點VSSN和OUT並同時測量串聯電阻值。
在一些實施例中,電壓調節器300VR和/或負載電路100L被配置以通過執行如上所述的電阻測量來生成存儲在表316T中的修整資料。在一些實施例中,電壓調節器300VR和/或負載電路100L被配置以通過執行以下關於第7圖所討論的方法700的一個或多個操作來生成存儲在表316T中的修整資料。在一些實施例中,負載電路100L包括被配置以例如作為離線上電序列的一部分或作為線上操作的一部分來生成存儲在表316T中的修整資料的一些或全部SOC。
在其中相位電路3PH1-3PHM包括熱感測器TS的一些實施例中,存儲在表316T中的修整資料包括基於溫度的縮放資料,例如,電阻值的一個或多個基於工藝的熱係數,其對應於電感器L1、p型電晶體P1-PX、或n型電晶體N1-NX中的一些或全部。在這樣的實施例中,信號生成器316被配置以基於根據由從熱感測器TS接收的感測器信號TSS和縮放資料指示的溫度資訊而調整的修整資料來生成啟用信號ENPm[1]-ENPm[X]和ENNm[1]-ENNm[X](1
Figure 109141159-A0305-02-0029-17
m
Figure 109141159-A0305-02-0029-18
M)。
通過上述配置,電壓調節器300VR能夠控制由相位電路3PH1-3PHM輸出的電流I1-IM的相對值,從而避免過多的局部加熱或過度設計以適應工藝和溫度變化。在一些實施例中,電壓調節器300VR以其他方式被配置以例如通過從電壓調節器300VR外部的電路(例如,負載電路100L)接收啟用信號ENPm[1]-ENPm[X]或ENNm[1]-ENNm[X](1
Figure 109141159-A0305-02-0029-19
m
Figure 109141159-A0305-02-0029-20
M)中的一個或多個來控制電流I1-IM的相對值。
基於以上討論的基於修整的電流平衡機制,電壓調節器300VR能夠控制電流I1-IM的相對值而無需來自電流I1-IM的一個或多個監測值的回饋。在一些實施例中,電壓調節器300VR不包括被配置以監測電流I1-IM中的一個或多個或負載電流IL的電路。與其中基於監測一個或多個輸出電流來調整相電流的相對值的方法相比,電壓調節器300VR從而能夠具有降低的複雜度。
第4圖是根據一些實施例的相位電路4PHm的示意圖。相位電路4PHm可用作上面關於第3圖討論的相位電路3PH1-3PHM中的一個或多個。
相位電路4PHm包括節點VSSN和電感器L1(上面參考第1圖進行了討論),以及節點IN和NL、p型電晶體P1-PX和n型電晶體N1-NX(上面參考第3圖進行了討論)。在一些實施例中,相位電路4PHm包括上面參考第3圖所討論的熱感測器TS(未示出)。相位電路4PHm還包括驅動器電路4D1-4DX,其可用作上面參考第3圖所討論的相應的驅動器電路3D1-3DX。
驅動器電路4D1-4DX包括相應的或閘(OR gates)OR1-ORX、及閘(ANDgates)AND1-ANDX、以及緩衝器BP1-BPX和BN1-BNX。或閘OR1-ORX包括被配置以接收控制信號PCTRLm和相應的啟用信號ENPm[1]-ENPm[X]的輸入端子,並且被耦合到相應的緩衝器BN1-BNX的輸出端子。及閘AND1-ANDX包括被配置以接收控制信號NCTRLm和相應的啟用信號ENNm[1]-ENNm[X]的輸入端子,並且被耦合到相應的緩衝器BP1-BPX的輸出端子。
緩衝器BP1-BPX包括被耦合到相應的或閘OR1-ORX的輸出端子的輸入端子,以及被耦合到相應的p型電晶體P1-PX的柵極的輸出端子,並被配置以輸出上面關於第3圖所討論的相應的驅動器電壓DP1-DPX。緩衝器BN1-BNX包括被耦合到相應的及閘AND1-ANDX 的輸出端子的輸入端子,以及被耦合到相應的n型電晶體N1-NX的柵極的輸出端子,並且並被配置以輸出上面關於第3圖所討論的相應的驅動器電壓DN1-DNX。
驅動器電路4D1-4DX因而被配置以接收控制信號對PCTRLm/NCTRLm以及啟用信號ENPm[1]-ENPm[X]和ENNm[1]-ENNm[X],並且回應於控制信號對PCTRLm/NCTRLm以及啟用信號ENPm[1]-ENPm[X]和ENNm[1]-ENNm[X]來生成相應的驅動器電壓DP1-DPX和NP1-NPX。驅動器電路4D1-4DX因而能夠控制上面關於第3圖所討論的p型電晶體P1-PX和n型電晶體N1-NX,並且用作相位電路3PH1-3PHM中的一個或多個的相位電路PH4m因而能夠實現以上關於電壓調節器300VR和第3圖所討論的益處。
通過包括被配置以接收相應的驅動器電壓DN1-DNX作為輸入的或閘OR1-ORX以及被配置以接收相應的驅動器電壓DP1-DPX作為輸入的及閘AND1-ANDX,驅動器電路4D1-4DX被配置以響應於相應的驅動器電壓DN1-DNX而輸出相應的驅動器電壓DP1-DPX,並回應於相應的驅動器電壓DP1-DPX而輸出相應的驅動器電壓DN1-DNX。
基於或閘OR1-ORX和緩衝器BP1-BPX中的切換延遲,相應的驅動器電壓DN1-DNX的下降沿從而防止緩衝器BP1-BPX輸出具有低邏輯值的相應的驅動器電壓 DP1-DPX,直到相應的切換延遲已經過去為止。基於及閘AND1-ANDX和緩衝器BN1-BNX中的切換延遲,相應的驅動器電壓DP1-DPX的上升沿從而防止緩衝器BN1-BNX輸出具有高邏輯值的相應的驅動器電壓DN1-DNX,直到相應的切換延遲已經過去為止。
相位電路4PHm從而被配置以控制死區時間(dead-times),在此些死區時間中,在耦合到節點IN和VSSN之任一者後,節點NL從節點IN和VSSN兩者解開耦合。死區時間可防止一導通(shoot-through)場景,在此導通場景中,節點NL同時耦合到節點IN和VSSN,因而基於節點IN和VSSN之間的短路而導致過多的電流流過。通過由設計控制死區時間,相位電路4PHm因而能夠防止過多的電流流過而不依賴于控制信號時序,與依賴于控制信號時序的方法相比,提高了電路可靠性。
在一些實施例中,驅動器電路4D1-4DX不包括耦合到緩衝器BN1-BNX的或閘OR1-ORX以及和耦合到至緩衝器BP1-BPX的及閘AND1-ANDX,並且相位電路4PHm未被配置以通過設計控制死區時間。
第5圖是根據一些實施例的相位電路5PHm的示意圖。相位電路5PHm可用作以上關於第3圖所討論的相位電路3PH1-3PHM中的一個或多個。相位電路5PHm具有與上述相位電路4PHm的配置相匹配的配置,除了相位電路5PHm包括驅動器電路5D1-5DX而不是驅動器電路4D1-4DX。
與驅動器電路4D1-4DX(其中,每個或閘OR1-ORX耦合到相應的緩衝器BN1-BNX並且每個及閘AND1-ANDX耦合到相應的緩衝器BP1-BPX)不同,驅動器電路5D1-5DX包括耦合到緩衝器BN1-BNX中的單個緩衝器的或閘OR1-ORX,以及耦合到緩衝器BP1-BPX中的單個緩衝器的及閘AND1-ANDX。
在第5圖所示的非限制性示例中,每個或閘OR1-ORX被耦合到緩衝器BNX,並且每個及閘AND1-ANDX被耦合到緩衝器BPX。在各種實施例中,每個或閘OR1-ORX被耦合到除緩衝器BNX之外的緩衝器,和/或每個及閘AND1-ANDX被耦合到除緩衝器BPX之外的緩衝器。在一些實施例中,相位電路5PHm包括一個或多個切換電路(未示出),例如,多工器,其被配置以選擇性地將每個或閘OR1-ORX耦合到緩衝器BN1-BNX之一和/或選擇性地將每個及閘AND1-ANDX耦合到緩衝器BP1-BPX之一。
通過上述配置,相位電路5PHm能夠基於驅動器電路5D1-5DX的一個或多個最壞情況切換延遲的切換延遲來控制死區時間,從而實現上面關於相位電路4PHm所討論的益處。
第6圖是根據一些實施例的相位電路6PHm的示意圖。相位電路6PHm可用作上面關於第3圖所討論的相位電路3PH1-3PHM中的一個或多個。相位電路6PHm具有與上述相位電路4PHm的配置相匹配的配置,除了相 位電路6PHm包括驅動器電路6D1-6DX而不是驅動器電路4D1-4DX,並且包括被配置以生成信號6PHm2的或閘ORDT以及被配置以生成信號6PHm1的及閘ANDDT,如下所述。
與驅動器電路4D1-4DX(其中,每個或閘OR1-ORX被耦合至相應的緩衝器BN1-BNX並且每個及閘AND1-ANDX被耦合至相應的緩衝器BP1-BPX)不同,驅動器電路6D1-6DX包括被耦合到及閘ANDDT的輸出端子的或閘OR1-ORX,以及被耦合到或閘ORDT的輸出端子的及閘AND1-ANDX。緩衝器BP1-BPX的輸出端子被耦合至或閘ORDT的輸入端子,並且緩衝器BN1-BNX的輸出端子被耦合至及閘ANDDT的輸入端子。
及閘ANDDT因而被配置以基於或閘OR1-ORX和緩衝器BP1-BPX根據驅動器電路6D1-6DX的最壞情況切換延遲來輸出信號6PHm2,並且或閘ORDT因而被配置以基於及閘AND1-ANDX和緩衝器BN1-BNX根據驅動器電路6D1-6DX的最壞情況切換延遲來輸出信號6PHm1。因此,被配置以基於驅動器電路6D1-6DX的最壞情況切換延遲來控制死區時間的相位電路6PHm能夠實現上面關於相位電路4PHm所討論的益處。
第7圖是根據一些實施例的調節電壓的方法700的流程圖。方法700可以與包括多相電壓調節器的電壓調節器電路一起使用,例如,包括上面關於第3圖-6所討論 的電壓調節器300VR的電壓調節器電路300。
在第7圖中描繪方法700的操作的順序僅用於說明;方法700的操作能夠以與第7圖所示的順序不同的順序來執行。在一些實施例中,在第7圖所示的操作之前、之間、之中和/或之後執行除了第7圖中描繪的那些操作之外的操作。在一些實施例中,方法700的操作是操作SOC的方法的操作的子集。
在操作710中,在一些實施例中,通過測量多個相位電路中的每個相位電路的電阻值來創建修整表。創建修整表包括存儲每個相位電路的修整資料,此修整資料被計算以基於相應的相位電路的測量電阻值來控制每個相位電路的多個分段。在一些實施例中,計算修整資料包括計算修整資料以減小多個相位電路之間的電流值的差異。在一些實施例中,計算修整資料包括計算修整資料以增加一個或多個相位電路電阻值,以使得一個或多個相位電路具有匹配的電阻值。
在各種實施例中,創建修整表包括創建新修整表或更新現有修整表。在一些實施例中,創建修整表包括將修整資料存儲在諸如NVM之類的記憶體中。在一些實施例中,創建修整表包括執行SOC的一個或多個操作。在各種實施例中,創建修整表包括作為上電序列的一部分或作為線上操作的一部分來測量電阻值。
在一些實施例中,創建修整表包括創建上面關於第3圖所討論的修整表316T。在一些實施例中,創建修整表 包括使用上面關於第1圖和條3所討論的負載電路100L來創建修剪表。
測量相位電路電阻值包括測量電感器的DC電阻值。在各種實施例中,測量相位電路電阻值包括測量耦合在電感器和電源節點之間的多個電晶體中的一個或多個電晶體的Rds電阻值、和/或測量耦合在電感器和參考節點或接地節點之間的多個電晶體中的一個或多個電晶體的Rds電阻值。在一些實施例中,測量相位電路電阻值包括測量電感器L1的DC電阻值、和/或p型電晶體P1-PX和/或n型電晶體N1-NX的一個或多個Rds電阻值,如上面關於第3圖-6所討論的。
在一些實施例中,測量相位電路電阻值包括施加電流並測量跨輸出節點和電源或參考節點的電壓。在一些實施例中,測量相位電路電阻值包括施加電流並測量跨節點OUT和節點IN或節點VSSN的電壓,如上面關於第3圖所討論的。
在各種實施例中,測量相位電路電阻值包括禁用用於控制操作中的相位電路的一個或多個控制信號,例如,一個或多個PWM信號。在一些實施例中,禁用一個或多個控制信號包括禁用上面關於第3圖-6所討論的控制信號PCTRL1-PCTRLM或NCTRL1-NCTRLM中的一個或多個。
在各種實施例中,測量相位電路電阻值包括配置一個或多個啟用信號(例如,上面關於第3圖-6所討論的啟 用信號ENPm[1]-ENPm[X]和/或ENNm[1]-ENNm[X])以使得相位電路的所有的多個分段的預設子集被啟用。
在一些實施例中,創建修整表包括基於以下步驟來計算修整資料,如下示之非限制性的例子所示:對於每個相位電路,並對於啟用的X個分段之一者和全部,測量電源和輸出節點之間及參考節點和輸出節點之間的電阻值;對於所啟用的所有分段的測量,確定最大相位電路電源/輸出節點電阻值Rp和最大參考/輸出節點電阻值Rn;對於每個相位電路,基於下列公式計算每個分段的電源/輸出節點電阻值Rxp和參考/輸出節點電阻值Rxn:K=1/(2X-2)(1)
Rxp=(R(一個分段)-R(所有分段))x(1+K)(電源/輸出節點) (2)
Rxn=(R(一個分段)-R(所有分段))x(1+K)(參考/輸出節點) (3)
對於每個相位電路,基於下列公式計算修整資料:Ptrim=Rxp/(Rp+Rxp-R(一個分段))(電源/輸出節點) (4)
Ntrim=Rxn/(Rn+Rxn-R(一個分段))(參考/輸出節點) (5)
因而修整計算資料以使得多相電壓調節器的每個相位電 路具有與最大電源/輸出節點和參考/輸出節點電阻值相匹配的電源/輸出節點和參考/輸出節點電阻值。
在基於第3圖所示的實施例的非限制性例子中,相位電路電阻測量係基於以下之電壓調節器300VR的配置:M=2個相位電路3PH1和3PH2中的每一者包括基於二進位加權機制的X=4個分段:
分段1包括驅動器電路3D1、具有標稱Rds值R0的p型/n型電晶體P1/N1;
分段2包括驅動器電路3D2、具有標稱Rds值2×R0的p型/n型電晶體P2/N2。
分段3包括驅動器電路3D3、具有標稱Rds值為4×R0的p型/n型電晶體P3/N3。
分段4包括驅動器電路3D4、具有標稱Rds值為8×R0的p型/n型電晶體P4/N4。
測量相位電路電阻值的非限制性例子包括以下操作:在與表1所示相同的溫度下測量每個相位電路3PH1和3PH2的總IN-OUT和VSSN-OUT電阻值(電阻值以毫歐姆為單位)。
Figure 109141159-A0305-02-0038-23
Figure 109141159-A0305-02-0039-2
在啟用所有分段的情況下確定最大電阻值:對於相位電路3PH2,IN-OUT=max(10,15)=15mohm;對於相位電路3PH2,VSSN-OUT=max(8,13)=13mohm。
基於等式(1)-(3)確定每個分段的Rds電阻值:K=1/(24-2)=0.07;Rxp(3PH1)=(80-10)x(1+0.07)=75 mohm;Rxn(3PH1)=(55-8)x(1+0.07)=50.4mohm;Rxp(3PH2)=(108-15)x(1+0.07)=99.6mohm;Rxn(3PH2)=(78-13)x(1+0.07)=69.6mohm。
基於等式(4)和(5)計算修整值:Ptrim(3PH1)=75/(15-80+75)=7.5(~8);Ntrim(3PH1)=50/(13-55+50)=6.02(~6);Ptrim(3PH2)=99.6/(15-108+99.6)=15.1(~15);Ntrim(3PH2)=69.6/(13-78+69.6)=15.1(~15)。
量化修整值以確定修整資料:ENP1[4:1]=1000(14.4mohm);ENN1[4:1]=0110(13mohm);ENP2[4:1]=0000(15mohm)(3PH1的96%匹配);ENN2[4:1]=1111(13mohm)(3PH1的100%匹配)。
在非限制性的例子中,相位電路3PH2的IN-OUT電阻因而增加到相位電路3PH1的IN-OUT電阻的96%以內,並且相位電路3PH2的VSSN-OUT電阻因而增加到相位電路3PH1的VSSN-OUT電阻的約100%。
在一些實施例中,創建修整表包括存儲縮放資料,例如:與相位電路的一個或多個元件(例如,電感器)相對應的電阻值的一個或多個基於工藝的熱係數。
在操作720中,從修整表中擷取修整資料。從修整表中擷取修整資料包括擷取與電壓調節器的一個或多個相位電路的多個分段相對應的修整資料。在各種實施例中,擷取修整資料包括擷取與電壓調節器的相位電路的子集或全部相對應的修整資料。
在一些實施例中,擷取修整資料包括使用上面關於第3圖所討論的控制電路310來擷取修整資料。在一些實施例中,擷取修整資料包括從上面關於第3圖所討論的修整表316T中擷取修整資料。
在一些實施例中,擷取修整資料包括從修整表中擷取縮放資料。在一些實施例中,擷取縮放資料包括從相位電路中的至少一個接收溫度資料(例如,上面關於第3圖所討論的感測器信號TSS中的資訊),並基於溫度資料和縮放資料來調整修整資料。
在操作730中,將啟用信號輸出到多相電壓調節器的相位電路,此啟用信號基於修整資料。在各種實施例中,輸出啟用信號包括將啟用信號輸出到電壓調節器的相 位電路的子集或全部。
在一些實施例中,將啟用信號輸出到相位電路包括將控制信號輸出到相位電路。在一些實施例中,將啟用信號輸出到相位電路包括將一個或多個PWM信號輸出到相位電路。在各種實施例中,將啟用信號輸出到相位電路包括將控制信號CTRL輸出到上面關於第3圖所討論的相位電路3PH1-3PHM、上面關於第4圖所討論的相位電路4PHm、上面關於第5圖所討論的相位電路5PHm、或者上面關於第6圖所討論的相位電路6PHm中的一個或多個。
在一些實施例中,輸出啟用信號包括輸出被配置以增加相位電路的電阻值的啟用信號。在一些實施例中,輸出啟用信號包括輸出被配置以基於一個或多個非均勻相電流電阻值來減小相位電路電流的差異的啟用信號。
在一些實施例中,輸出啟用信號包括輸出啟用信號ENPm[1]-ENPm[x]和ENNm[1]-ENNm[X]的一部分或全部(1
Figure 109141159-A0305-02-0042-21
m
Figure 109141159-A0305-02-0042-22
M)。在一些實施例中,輸出啟用信號包括將啟用信號輸出到上面關於第3圖所討論的相位電路3PH1-3PHM、上面關於第4圖所討論的相位電路4PHm、上面關於第5圖所討論的相位電路5PHm、或者上面關於第6圖所討論的相位電路6PHm中的一個或多個。
在操作740中,基於啟用信號來配置相位電路的多個分段。配置多個分段包括啟用相位電路的分段的預設子集或全部。
在一些實施例中,配置多個分段包括增加相位電路的一個或多個電阻值。在一些實施例中,增加一個或多個電阻值包括減少在輸出節點和電源或參考節點之間並聯配置的電晶體的數量。在一些實施例中,減少並聯配置的電晶體的數量包括減少具有與二進位加權機制相對應的標稱電阻Rds值的電阻的數量。
在各種實施例中,配置多個分段包括配置p型電晶體P1-PX和n型電晶體N1-NX中的一個或多個、以及上面關於第3圖所討論的相位電路3PH1-3PHM的驅動器電路3D1-3DX、上面關於第4圖所討論的相位電路4PHm的驅動器電路4D1-4DX、上面關於第5圖所討論的相位電路5PHm的驅動器電路5D1-5DX、或者上面關於第6圖所討論的相位電路6PHm的驅動器電路6D1-6DX中的一個或多個。
在一些實施例中,配置多個分段包括啟用驅動器電路的死區時間,例如,上面關於第4圖所討論的驅動器電路4D1-4DX、上面關於第5圖所討論的驅動器電路5D1-5DX、或者上面關於第6圖所討論的驅動器電路6D1-6DX之一。
通過執行方法700的一些或全部操作,電壓調節器基於修整資料來調整一個或多個輸出電流值,從而獲得上面關於電壓調節器電路300和第3圖-6所討論的益處。
在一些實施例中,一種電壓調節器包括:輸出節點;控制電路,此控制電路被配置以從耦合至輸出節點的負載 電路接收功率狀態信號,並基於此功率狀態信號輸出控制信號;以及功率級,其包括多個相位電路,此多個相位電路中的每個相位電路耦合至輸出節點。功率級被配置以響應於控制信號而啟用多個相位電路中的相位電路。
在一些實施例中,一種調節電壓的方法包括在多相電壓調節器的控制電路處接收功率狀態信號,並且回應於該功率狀態信號,啟用電壓調節器的預設數量的相位。
在一些實施例中,一種電壓調節器包括:控制電路,被配置以輸出控制信號和啟用信號;以及功率級,其包括多個相位電路,此多個相位電路中的每個相位電路包括多個分段。功率級被配置以響應於控制信號而啟用此多個相位電路中的相位電路,並且響應於啟用信號而啟用此多個相位電路中的相位電路的多個分段中的分段。
以上概述了若干實施例的特徵,使得本領域技術人員可以更好地理解本公開的各方面。本領域技術人員應當理解,他們可以容易地使用本公開作為設計或修改其他工藝和結構以實現本文介紹的實施例或示例的相同目的和/或實現本文介紹的實施例或示例的相同優點的基礎。本領域技術人員還應該認識到,這樣的等同配置不脫離本公開的精神和範圍,並且他們可以在不脫離本公開的精神和範圍的情況下在本文中進行各種改變、替換和變更。
實施例1是一種電壓調節器,包括:輸出節點;控制電路,所述控制電路被配置以從耦合至所述輸出節點的負載電路接收功率狀態信號,並且基於所述功率狀態信 號來輸出控制信號;以及功率級,所述功率級包括多個相位電路,所述多個相位電路中的每個相位電路耦合至所述輸出節點,其中,所述功率級被配置以回應於所述控制信號而啟用所述多個相位電路中的相位電路。
實施例2是實施例1所述的電壓調節器,其中,所述控制電路被配置以基於所述功率狀態信號和映射表來確定所述多個相位電路中被啟用的相位電路的數量。
實施例3是實施例1所述的電壓調節器,其中,所述控制信號包括脈衝寬度調製信號,所述脈衝寬度調製信號被配置以在所述輸出節點上生成輸出電壓。
實施例4是實施例3所述的電壓調節器,其中,所述控制電路被配置以:基於所述輸出電壓來接收感測電壓,並且基於所述感測電壓來控制所述脈衝寬度調製信號。
實施例5是實施例1所述的電壓調節器,其中,所述多個相位電路中的每個相位電路包括多個電晶體,並且每個相位電路被配置以基於所述控制信號以及從所述控制電路接收的啟用信號來控制所述多個電晶體中的電晶體。
實施例6是實施例5所述的電壓調節器,其中,所述控制電路被配置以基於修整表來生成所述啟用信號。
實施例7是實施例1所述的電壓調節器,其中,所述控制電路和所述負載電路位於第一積體電路(IC)晶片上,並且所述多個相位電路中的所述相位電路位於第二 IC晶片上。
實施例8是一種調節電壓的方法,所述方法包括:在多相電壓調節器的控制電路處接收功率狀態信號;以及回應於所述功率狀態信號,啟用所述電壓調節器的預設數量的相位。
實施例9是實施例8所述的方法,其中,接收所述功率狀態信號包括:接收包括對負載電路的功率水準的指示的所述功率狀態信號,所述負載電路被配置以接收所述電壓調節器的輸出電壓。
實施例10是實施例8所述的方法,其中,啟用所述電壓調節器的所述預設數量的相位包括:基於所述功率狀態信號,從映射表中擷取所述預設數量。
實施例11是實施例10所述的方法,其中,從所述映射表中擷取所述預設數量包括:所述預設數量與所述電壓調節器的每相預設電流相乘大於或等於由所述功率狀態信號指示的負載電流水準。
實施例12是實施例10所述的方法,進一步包括:通過執行對被配置以生成所述功率狀態信號的負載電路的模擬來創建所述映射表。
實施例13是實施例8所述的方法,其中,啟用所述電壓調節器的所述預設數量的相位包括:執行門控功能以生成控制信號。
實施例14是一種電壓調節器,包括:控制電路,所述控制電路被配置以輸出控制信號和啟用信號;以及功 率級,所述功率級包括多個相位電路,所述多個相位電路中的每個相位電路包括多個分段,其中,所述功率級被配置以:響應於所述控制信號而啟用所述多個相位電路中的相位電路,並且響應於所述啟用信號而啟用所述多個相位電路中的所述相位電路的所述多個分段中的分段。
實施例15是實施例14所述的電壓調節器,其中所述多個相位電路中的每個相位電路包括電感器,並且所述多個相位電路中的每個相位電路的所述多個分段中的每個分段包括p型電晶體和n型電晶體,其中所述p型電晶體被配置以選擇性地將所述電感器耦合到電源節點,並且所述n型電晶體被配置以選擇性地將所述電感器耦合到參考節點。
實施例16是實施例14所述的電壓調節器,其中,所述控制電路被配置以生成所述啟用信號,所述啟用信號被配置以使得所述功率級增加所述多個相位電路中的第一相位電路的電阻值以匹配所述多個相位電路中的第二相位電路的電阻值。
實施例17是實施例16所述的電壓調節器,其中,所述控制電路被配置以生成所述啟用信號,所述啟用信號被配置以通過啟用所述多個分段的預設子集來使得所述功率級增加所述多個相位電路中的所述第一相位電路的所述電阻值。
實施例18是實施例14所述的電壓調節器,其中,所述控制電路被配置以基於修整表來生成所述啟用信號。
實施例19是實施例18所述的電壓調節器,其中,所述多個相位電路中的每個相位電路包括熱感測器,所述熱感測器被配置以生成感測器信號的一部分,並且所述控制電路被配置以基於所述感測器信號和所述修整表中的縮放資料來生成所述啟用信號。
實施例20是實施例14所述的電壓調節器,其中,所述控制電路被配置以從負載電路接收功率狀態信號,並且回應於所述功率狀態信號而生成所述控制信號。
100:電壓調節器電路
100L:負載電路
100VR:電壓調節器
110:控制電路
120:功率級
Cout:電容器
CTRL:控制信號
I1:電流
IL:負載電流
IM:電流
MCTRL:主控制信號
PH1:相位電路
PHM:相位電路
PSP:信號路徑
PSS:信號
PSSIT:輸入端子
SENSE:節點
Vout:電壓
Vsense:電壓
D1:驅動器電路
S1:電源開關
L1:電感器
114:相位控制塊
114T:表
112:信號生成器
VSS、Vout:電壓
VSSN、OUT:節點

Claims (10)

  1. 一種電壓調節器,包括:輸出節點;控制電路,配置以從耦合至該輸出節點的負載電路接收功率狀態信號,並且基於該功率狀態信號來輸出控制信號,該控制電路包括:一信號生成器,被配置以基於該輸出節點處的一輸出電壓接收一感測電壓並基於該感測電壓生成一主控制信號;以及一相位控制塊,被配置以接收該功率狀態信號以及來自該信號生成器的該主控制信號,並基於該功率狀態信號輸出該主控制信號的預設部分或全部作為該控制信號;以及功率級,包括複數個相位電路,每一該些相位電路耦合至該輸出節點,其中,該功率級被配置以為回應於該控制信號而啟用該些相位電路之一者。
  2. 如請求項1所述之電壓調節器,其中該控制電路被配置以基於該功率狀態信號和映射表來決定該些相位電路中被啟用之相位電路的數量。
  3. 如請求項1所述之電壓調節器,其中該控制信號包括脈衝寬度調製信號,該脈衝寬度調製信號被配置 以在該輸出節點上生成該輸出電壓。
  4. 如請求項3所述之電壓調節器,其中該控制電路被配置以基於該感測電壓來控制該脈衝寬度調製信號。
  5. 如請求項1所述之電壓調節器,其中每一該些相位電路包括複數個電晶體,並被配置以基於該控制信號和從該控制電路接收的啟用信號,來控制該些電晶體之一者。
  6. 如請求項5所述之電壓調節器,其中,該控制電路被配置以基於一修整表來生成該啟用信號。
  7. 如請求項1所述之電壓調節器,其中,該控制電路和該負載電路位於一第一積體電路晶片上,並且該些相位電路之該者位於第二積體電路晶片上。
  8. 一種調節電壓的方法,包括:在一多相電壓調節器的一控制電路從一負載電路接收一功率狀態信號;基於該多相電壓調節器的一輸出電壓接收一感測電壓;基於該感測電壓生成一主控制信號;以及 為回應於該功率狀態信號,輸出該主控制信號的預設部分或全部作為一控制信號以啟用該多相電壓調節器之一預設數量的相位。
  9. 如請求項8所述之調節電壓的方法,其中,接收該功率狀態信號包括:接收包含有該負載電路之一功率水準的一指示的該功率狀態信號,該負載電路被配置以接收該多相電壓調節器的該輸出電壓。
  10. 一種電壓調節器,包括:一控制電路,配置以輸出一控制信號和一啟用信號,該控制電路包括:一信號生成器,被配置以基於一輸出電壓接收一感測電壓並基於該感測電壓生成一主控制信號;以及一相位控制塊,被配置以接收該功率狀態信號以及來自該信號生成器的該主控制信號,並基於該功率狀態信號輸出該主控制信號的預設部分或全部作為該控制信號;以及一功率級,包括複數個相位電路,每一該些相位電路包括複數個分段,其中,該功率級被配置以:響應於該控制信號來啟用該些相位電路之一者,並且響應於該啟用信號來啟用該些相位電路之該相位電路的該些分段之一者。
TW109141159A 2020-01-22 2020-11-24 電壓調節器和調節電壓的方法 TWI798598B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010075340.6A CN113157045B (zh) 2020-01-22 2020-01-22 电压调节器电路和方法
CN202010075340.6 2020-01-22

Publications (2)

Publication Number Publication Date
TW202129453A TW202129453A (zh) 2021-08-01
TWI798598B true TWI798598B (zh) 2023-04-11

Family

ID=76857576

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109141159A TWI798598B (zh) 2020-01-22 2020-11-24 電壓調節器和調節電壓的方法

Country Status (3)

Country Link
US (2) US11632048B2 (zh)
CN (1) CN113157045B (zh)
TW (1) TWI798598B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224592B (zh) * 2019-06-13 2021-08-13 南京矽力微电子技术有限公司 多相临界导通功率变换器及其控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101218736A (zh) * 2005-07-07 2008-07-09 英特尔公司 使用具有磁耦合电感器的并联电感电路的多相电压调节
CN103580477A (zh) * 2012-07-12 2014-02-12 英飞凌科技奥地利有限公司 具有动态电流分配的多相数字电流模式控制器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6452366B1 (en) * 2000-02-11 2002-09-17 Champion Microelectronic Corp. Low power mode and feedback arrangement for a switching power converter
US6281666B1 (en) * 2000-03-14 2001-08-28 Advanced Micro Devices, Inc. Efficiency of a multiphase switching power supply during low power mode
US6965219B2 (en) * 2002-06-28 2005-11-15 Microsemi Corporation Method and apparatus for auto-interleaving synchronization in a multiphase switching power converter
US7477084B2 (en) 2005-11-28 2009-01-13 Semiconductor Components Industries, L.L.C. Multi-phase power supply controller and method therefor
US8179116B2 (en) * 2007-06-08 2012-05-15 Intersil Americas LLC Inductor assembly having a core with magnetically isolated forms
TWI375872B (en) 2008-08-11 2012-11-01 Asustek Comp Inc Multi-phase voltage regulator module and method controlling the same
JP5160371B2 (ja) * 2008-10-17 2013-03-13 本田技研工業株式会社 交流電力供給装置及びその制御方法
US20110254531A1 (en) * 2010-04-20 2011-10-20 Astec International Limited Current Balancing Multiphase Power Converters, Controllers and Methods
TWM443878U (en) * 2012-07-23 2012-12-21 Richtek Technology Corp Multi-phase switching regulator and droop circuit therefor
CN103872915A (zh) * 2014-02-28 2014-06-18 台达电子企业管理(上海)有限公司 直流-直流变换器及其直流-直流变换器系统
US9912234B2 (en) 2014-03-24 2018-03-06 Intersil Americas LLC Systems and methods for mitigation of resistor nonlinearity errors in single or multiphase switching voltage regulators employing inductor DCR current sensing
US9231573B2 (en) 2014-05-30 2016-01-05 Taiwan Semiconductor Manufacturing Company, Ltd. Delay controlling circuit for driving circuit, driving circuit having delay controlling circuit, and method of operating driving circuit
US9391518B2 (en) * 2014-06-11 2016-07-12 Semiconductor Components Industries, Llc Current sensing circuit for switching power converters
US10069421B2 (en) * 2015-02-05 2018-09-04 Infineon Technologies Austria Ag Multi-phase switching voltage regulator having asymmetric phase inductance
CN108628383A (zh) 2017-03-22 2018-10-09 瑞萨电子美国有限公司 在多相电压调节器中组合温度监测和真实的不同电流感测
US10270346B2 (en) * 2017-04-07 2019-04-23 Texas Instruments Incorporated Multiphase power regulator with discontinuous conduction mode control
TWI683520B (zh) * 2019-02-25 2020-01-21 茂達電子股份有限公司 多相dc-dc電源轉換器及其驅動方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101218736A (zh) * 2005-07-07 2008-07-09 英特尔公司 使用具有磁耦合电感器的并联电感电路的多相电压调节
CN103580477A (zh) * 2012-07-12 2014-02-12 英飞凌科技奥地利有限公司 具有动态电流分配的多相数字电流模式控制器

Also Published As

Publication number Publication date
US20230299678A1 (en) 2023-09-21
CN113157045A (zh) 2021-07-23
CN113157045B (zh) 2023-10-24
TW202129453A (zh) 2021-08-01
US20210226537A1 (en) 2021-07-22
US11632048B2 (en) 2023-04-18

Similar Documents

Publication Publication Date Title
CN107707118B (zh) 包括电源管理集成电路的电子装置
US8912778B1 (en) Switching voltage regulator employing current pre-adjust based on power mode
US20200067408A1 (en) Method of Calibrating a Regulator
US7312538B2 (en) Method and apparatus for regulating multiple outputs of a single inductor DC to DC converter
US9639102B2 (en) Predictive current sensing
US8085020B1 (en) Switching voltage regulator employing dynamic voltage scaling with hysteretic comparator
US20080278123A1 (en) Switching regulator circuit, system, and method for providing input current measurement without a dedicated input current sense element
US7668607B1 (en) Accurately setting parameters inside integrated circuits using inaccurate external components
EP2144355A1 (en) Voltage converter
JP2013162585A (ja) Dc/dcコンバータ
TW201433898A (zh) 脈衝電流感應
JP2014027832A (ja) 電源装置、半導体装置、及びデータ処理システム
CN112994428A (zh) 具有均流控制的非调节电源转换器
US20160033611A1 (en) Systems And Methods Of Current Sense Calibration For Voltage Regulator Circuits
WO2019125729A1 (en) Multiphase interleaved pulse frequency modulation for a dc-dc converter
TW201919317A (zh) 轉換器及其驅動及控制方法
TW202202967A (zh) 功率級
US20230299678A1 (en) Voltage regulator circuit and method
CN112840544A (zh) 用于测量开关电容器调节器的输出电流的电路和方法
Lin et al. Digital multiphase buck converter with current balance/phase shedding control
US9537395B2 (en) Switched mode power supply peak-efficiency detection
EP2821799B1 (en) Highly accurate current measurement
US10331159B2 (en) Startup current limiters
US20190305684A1 (en) Apparatus for Power Converter with Improved Performance and Associated Methods
US8648500B1 (en) Power supply regulation and optimization by multiple circuits sharing a single supply