TWI795646B - Exposure apparatus, exposure method, and method of manufacturing article - Google Patents

Exposure apparatus, exposure method, and method of manufacturing article Download PDF

Info

Publication number
TWI795646B
TWI795646B TW109119830A TW109119830A TWI795646B TW I795646 B TWI795646 B TW I795646B TW 109119830 A TW109119830 A TW 109119830A TW 109119830 A TW109119830 A TW 109119830A TW I795646 B TWI795646 B TW I795646B
Authority
TW
Taiwan
Prior art keywords
temperature
temperature controller
period
exposure
optical element
Prior art date
Application number
TW109119830A
Other languages
Chinese (zh)
Other versions
TW202109202A (en
Inventor
宮野皓貴
小泉僚
茂泉純
三上晃司
Original Assignee
日商佳能股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商佳能股份有限公司 filed Critical 日商佳能股份有限公司
Publication of TW202109202A publication Critical patent/TW202109202A/en
Application granted granted Critical
Publication of TWI795646B publication Critical patent/TWI795646B/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • G03F7/70891Temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70316Details of optical elements, e.g. of Bragg reflectors, extreme ultraviolet [EUV] multilayer or bilayer mirrors or diffractive optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Abstract

An exposure apparatus includes a first temperature controller for controlling a temperature distribution on an optical element of a projection optical system, and a second temperature controller for controlling a temperature distribution on an optical element of the projection optical system, wherein in a first period in which the exposure operation is executed, at least one of the first temperature controller and the second temperature controller operates to reduce a change in an aberration of the projection optical system due to the exposure operation being executed, and in a second period which follows the first period and in which the exposure operation is not executed, at least one of the first temperature controller and the second temperature controller operates to reduce a change in an aberration due to the exposure operation not being executed.

Description

曝光設備、曝光方法、及製造物品的方法Exposure apparatus, exposure method, and method of manufacturing article

本發明關於曝光設備、曝光方法、及製造物品的方法。The present invention relates to exposure equipment, exposure methods, and methods of manufacturing articles.

在像是半導體裝置等的物品的製造中,藉由照明光學系統對原版(標線片或遮罩)進行照明的曝光設備將原版的圖案經由投影光學系統投影到基板上,並曝光基板。由於投影光學系統的成像特性(imaging characteristic)根據曝光光的照射操作而改變,可藉由控制光學元件的姿勢和位置來在曝光設備中校正成像特性。可藉由控制光學元件的姿勢和位置來校正的像差分量為有限的,且不能校正像是像散之類的非旋轉對稱成像特性。日本專利第5266641號揭露了藉由使用調整機構調整光學構件的溫度來改變光學構件上的溫度分佈,調整投影光學系統的光學特性,此光學構件被佈置在投影光學系統的光瞳面(pupil plane)附近。In the manufacture of articles such as semiconductor devices, exposure equipment that illuminates a master plate (reticle or mask) with an illumination optical system projects a pattern of the master plate onto a substrate through a projection optical system, and exposes the substrate. Since the imaging characteristic of the projection optical system changes according to the irradiation operation of the exposure light, the imaging characteristic can be corrected in the exposure apparatus by controlling the posture and position of the optical element. The aberration components that can be corrected by controlling the orientation and position of the optical elements are limited, and non-rotationally symmetric imaging characteristics such as astigmatism cannot be corrected. Japanese Patent No. 5266641 discloses that by using an adjustment mechanism to adjust the temperature of the optical component to change the temperature distribution on the optical component and adjust the optical characteristics of the projection optical system, the optical component is arranged on the pupil plane of the projection optical system. )nearby.

日本專利第5266641號僅揭露了在執行曝光操作的時段期間藉由調整機構來調整投影光學系統的成像特性,而未揭露在不執行曝光操作的時段期間藉由調整機構來執行成像特性的調整。如果在不執行曝光操作的時段中停止藉由調整機構進行的調整,則當重新開始曝光操作時,存在將產生大的校正殘餘誤差(residual error)的可能性。這是因為在曝光操作結束之後的成像特性的時間變化不同於藉由調整機構進行的調整結束之後的成像特性的時間變化。Japanese Patent No. 5266641 only discloses adjusting the imaging characteristics of the projection optical system by an adjustment mechanism during the exposure period, but does not disclose the adjustment of the imaging characteristics by the adjustment mechanism during the non-exposure period. If the adjustment by the adjustment mechanism is stopped during the period in which the exposure operation is not performed, there is a possibility that a large correction residual error will be generated when the exposure operation is restarted. This is because the temporal change of the imaging characteristic after the exposure operation ends is different from the temporal change of the imaging characteristic after the adjustment by the adjustment mechanism ends.

本發明提供了一種即使在曝光操作已經停止之後重新開始曝光操作的情況下也有利於以高精度校正投影光學系統的像差的技術。The present invention provides a technique that facilitates correcting the aberration of the projection optical system with high precision even in the case of restarting the exposure operation after the exposure operation has been stopped.

本發明的第一面向提供了一種曝光設備,其執行曝光操作,以經由投影光學系統對基板進行曝光。此曝光設備包括:第一溫度控制器,被配置成控制投影光學系統的光學元件上的溫度分佈;以及第二溫度控制器,被配置成控制投影光學系統的光學元件上的溫度分佈。在執行曝光操作的第一時段中,第一溫度控制器和第二溫度控制器中的至少一者操作來減少由於執行曝光操作而引起的投影光學系統的像差的變化,並且,在第一時段之後且不執行曝光操作的第二時段中,第一溫度控制器和第二溫度控制器中的至少一者操作來減少由於不執行曝光操作而引起的像差的變化。A first aspect of the present invention provides an exposure apparatus that performs an exposure operation to expose a substrate via a projection optical system. This exposure apparatus includes: a first temperature controller configured to control temperature distribution on an optical element of the projection optical system; and a second temperature controller configured to control temperature distribution on the optical element of the projection optical system. In the first period in which the exposure operation is performed, at least one of the first temperature controller and the second temperature controller operates to reduce a change in aberration of the projection optical system caused by performing the exposure operation, and, during the first After the period and in a second period in which the exposure operation is not performed, at least one of the first temperature controller and the second temperature controller operates to reduce a change in aberration caused by not performing the exposure operation.

本發明的第二面向提供了一種曝光方法,其執行曝光操作,以經由投影光學系統對基板進行曝光,此曝光方法包括:執行第一處理,以在執行曝光操作的第一時段中,藉由使用第一溫度控制器和第二溫度控制器中的至少一者來控制投影光學系統的光學元件上的溫度分佈,以使得由於執行曝光操作而引起的投影光學系統的像差的變化減少,以及執行第二處理,以在第一時段之後且不執行曝光操作的第二時段中,藉由使用第一溫度控制器和第二溫度控制器中的至少一者來控制投影光學系統的光學元件上的溫度分佈,以使得由於不執行曝光操作而引起的投影光學系統的像差的變化減少。A second aspect of the present invention provides an exposure method that performs an exposure operation to expose a substrate via a projection optical system, the exposure method including: performing a first process to perform an exposure operation during a first period of time by using at least one of the first temperature controller and the second temperature controller to control the temperature distribution on the optical elements of the projection optical system so that a variation in aberration of the projection optical system due to performing the exposure operation is reduced, and performing a second process to control the temperature on the optical element of the projection optical system by using at least one of the first temperature controller and the second temperature controller in a second period in which the exposure operation is not performed after the first period The temperature distribution of , so that the change in the aberration of the projection optical system caused by not performing the exposure operation is reduced.

本發明的第三面向提供了一種製造物品的方法,此方法包括:藉由被界定為本發明的第一面向或第二面向的曝光設備對基板進行曝光;顯影在曝光中被曝光的基板;以及處理在顯影中被顯影的基板;其中,從在處理中被處理的基板獲得物品。A third aspect of the present invention provides a method of manufacturing an article, the method comprising: exposing a substrate by means of an exposure apparatus defined as the first aspect or the second aspect of the present invention; developing the substrate exposed in the exposure; and processing the substrate developed in developing; wherein an article is obtained from the substrate processed in processing.

從參照所附圖式之例示性實施例的以下描述,本發明的進一步特徵將變得清楚明瞭。Further features of the invention will become apparent from the following description of exemplary embodiments with reference to the accompanying drawings.

在下文中,將參照所附圖式來詳細描述實施例。注意的是,以下的實施例並非意圖限制所請求的發明的範圍。在實施例中描述了多個特徵,但未做成要求所有這些特徵的發明的限制,且可適當地組合多個這樣的特徵。此外,在所附圖式中,對於相同或相似的配置賦予相同的標號,且省略其重複描述。Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. Note that the following examples are not intended to limit the scope of the claimed invention. A number of features have been described in the embodiments, but it is not construed as a limitation of the invention requiring all of these features, and a number of such features may be combined as appropriate. In addition, in the attached drawings, the same reference numerals are given to the same or similar configurations, and their repeated descriptions are omitted.

圖1示意性地顯示根據第一實施例的曝光設備EXP的佈置。曝光設備EXP示意性地執行經由投影光學系統107曝光基板110的曝光操作。在說明書和圖式中,基於XYZ坐標系指示方向,其中,在圖1中,將平行於其上佈置有基板110的表面之平面被設定為X-Y平面。曝光設備EXP包括光源102、照明光學系統104、投影光學系統107、以及控制器100。在曝光操作中,照明光學系統104用來自光源102的光(曝光光)照明原版106,且原版106的圖案藉由投影光學系統107被投影到基板110上,以曝光基板110。曝光設備EXP可被形成為在原版106和基板110被停止為靜止的狀態下曝光基板110的曝光設備,或者可被形成為在掃描原版106和基板110的同時曝光基板110的曝光設備。一般而言,基板110包括複數個壓射區域,且在每一個壓射區域上執行曝光操作。Fig. 1 schematically shows the arrangement of an exposure apparatus EXP according to a first embodiment. The exposure apparatus EXP schematically performs an exposure operation of exposing the substrate 110 via the projection optical system 107 . In the specification and drawings, directions are indicated based on an XYZ coordinate system, where, in FIG. 1 , a plane parallel to a surface on which the substrate 110 is disposed is set as an X-Y plane. The exposure apparatus EXP includes a light source 102 , an illumination optical system 104 , a projection optical system 107 , and a controller 100 . In the exposure operation, the illumination optical system 104 illuminates the original plate 106 with light (exposure light) from the light source 102 , and the pattern of the original plate 106 is projected onto the substrate 110 by the projection optical system 107 to expose the substrate 110 . The exposure apparatus EXP may be formed as an exposure apparatus that exposes the substrate 110 in a state where the original plate 106 and the substrate 110 are stopped to be stationary, or may be formed as an exposure apparatus that exposes the substrate 110 while scanning the original plate 106 and the substrate 110 . Generally speaking, the substrate 110 includes a plurality of shot regions, and an exposure operation is performed on each shot region.

光源102可包括,例如,準分子雷射(excimer laser),但亦可包括其他光發射裝置。準分子雷射可產生,例如,具有248nm或193nm的波長的光,但亦可產生其他波長的光。投影光學系統107可包括光學元件109、以及調整光學元件109上的溫度分佈的溫度調整單元108。溫度調整單元108可藉由向光學元件109施加熱能以改變光學元件109的折射率分佈及/或表面形狀來減少投影光學系統107的光學特性的變化。藉由溫度調整單元108施加到光學元件109的熱能可包括正能量和負能量。向光學元件109施加正能量表示光學元件109的加熱,而向光學元件109施加負能量表示光學元件109的冷卻。The light source 102 may include, for example, an excimer laser, but may also include other light emitting devices. Excimer lasers can generate light, for example, with a wavelength of 248 nm or 193 nm, but can also generate light at other wavelengths. The projection optical system 107 may include an optical element 109 , and a temperature adjustment unit 108 that adjusts the temperature distribution on the optical element 109 . The temperature adjustment unit 108 can reduce the variation of the optical characteristics of the projection optical system 107 by applying thermal energy to the optical element 109 to change the refractive index distribution and/or surface shape of the optical element 109 . The thermal energy applied to the optical element 109 by the temperature adjustment unit 108 may include positive energy and negative energy. Applying positive energy to the optical element 109 indicates heating of the optical element 109 , while applying negative energy to the optical element 109 indicates cooling of the optical element 109 .

溫度調整單元108可被佈置為緊密地黏附到光學元件109,且在此情況下,溫度調整單元108和光學元件109之間的熱能傳輸將會是有效率的。或者,溫度調整單元108可被佈置為從光學元件109間隔開來,且這種佈置在溫度調整單元108不會將機械力施加到光學元件109的這一點上是有利的,且在溫度調整單元108將不會由於刮擦等而損壞光學元件109的這一點上是有利的。The temperature adjustment unit 108 may be arranged to adhere tightly to the optical element 109, and in this case the thermal energy transfer between the temperature adjustment unit 108 and the optical element 109 will be efficient. Alternatively, the temperature adjustment unit 108 may be arranged to be spaced apart from the optical element 109, and this arrangement is advantageous in that the temperature adjustment unit 108 does not apply mechanical forces to the optical element 109, and the temperature adjustment unit 108 It is advantageous that the optical element 109 will not be damaged by the optical element 108 due to scratches or the like.

較佳的是將溫度調整單元108佈置在光學元件109的有效直徑(光路)的外側,以使得溫度調整單元108將不會阻擋對基板110的光照射。例如,溫度調整單元108可被佈置在作用為光學元件109的透鏡的外邊緣部分、透鏡的前表面、或透鏡的後表面上。或者,溫度調整單元108可在不影響投影光學系統107的光學性能的範圍內被佈置在有效直徑的內側。作為這種佈置的範例,例如,可在光學元件的有效直徑中佈置細的電熱線(heating wire),或者可在光學元件的有效直徑中佈置具有高的透光度的熱傳遞元件。It is preferable to arrange the temperature adjustment unit 108 outside the effective diameter (optical path) of the optical element 109 so that the temperature adjustment unit 108 will not block the light irradiation to the substrate 110 . For example, the temperature adjustment unit 108 may be arranged on the outer edge portion of the lens serving as the optical element 109 , the front surface of the lens, or the rear surface of the lens. Alternatively, the temperature adjustment unit 108 may be arranged inside the effective diameter within a range not affecting the optical performance of the projection optical system 107 . As an example of such an arrangement, for example, a thin heating wire may be arranged in the effective diameter of the optical element, or a heat transfer element having high light transmittance may be arranged in the effective diameter of the optical element.

雖然較佳的是在將溫度調整單元108佈置在光學元件109的外周上的情況下將光學元件109佈置在投影光學系統107的光瞳面處或其附近,但溫度調整單元108亦可被佈置為從投影光學系統107的光瞳面間隔開來。溫度調整單元108可包括複數個溫度控制器,其包括用於控制投影光學系統107的光學元件109上的溫度分佈的第一溫度控制器、以及用於控制投影光學系統107的光學元件109上的溫度分佈的第二溫度控制器。在執行曝光操作的第一時段中,第一溫度控制器可操作來減少由於執行曝光操作而引起的投影光學系統107的光學特性的變化。在第一時段之後且不執行曝光操作的第二時段中,第二溫度控制器可操作來減少由於不執行曝光操作而引起的投影光學系統107的光學特性的變化。或者,在執行曝光操作的第一時段中,第一溫度控制器和第二溫度控制器中的至少一者可操作來減少由於執行曝光操作而引起的投影光學系統107的光學特性的變化。此外,在第一時段之後且不執行曝光操作的第二時段中,第一溫度控制器和第二溫度控制器中的至少一者可操作來減少由於不執行曝光操作而引起的投影光學系統107的光學特性的變化。在複數個溫度控制器(第一溫度控制器和第二溫度控制器)中,針對每一個溫度控制器單獨地控制被施加到光學元件109的熱能的量以及施加的持續時間,且因此可控制光學元件109上的溫度分佈。控制器100可控制複數個溫度控制器(第一溫度控制器和第二溫度控制器)。由第一溫度控制器控制其溫度分佈的光學元件109可與由第二溫度控制器控制其溫度分佈的光學元件109為相同的或不同的。Although it is preferable to arrange the optical element 109 at or near the pupil plane of the projection optical system 107 with the temperature adjustment unit 108 arranged on the outer periphery of the optical element 109, the temperature adjustment unit 108 may also be arranged to be spaced apart from the pupil plane of the projection optical system 107 . The temperature adjustment unit 108 may include a plurality of temperature controllers including a first temperature controller for controlling the temperature distribution on the optical element 109 of the projection optical system 107, and a first temperature controller for controlling the temperature distribution on the optical element 109 of the projection optical system 107. Second temperature controller for temperature distribution. In the first period in which the exposure operation is performed, the first temperature controller is operable to reduce changes in the optical characteristics of the projection optical system 107 caused by performing the exposure operation. In a second period after the first period and in which the exposure operation is not performed, the second temperature controller is operable to reduce a change in optical characteristics of the projection optical system 107 caused by not performing the exposure operation. Alternatively, in the first period in which the exposure operation is performed, at least one of the first temperature controller and the second temperature controller is operable to reduce a change in optical characteristics of the projection optical system 107 due to performing the exposure operation. In addition, in a second period in which the exposure operation is not performed after the first period, at least one of the first temperature controller and the second temperature controller is operable to reduce the distortion of the projection optical system 107 caused by not performing the exposure operation. changes in optical properties. Among the plurality of temperature controllers (the first temperature controller and the second temperature controller), the amount of thermal energy applied to the optical element 109 and the duration of application are individually controlled for each temperature controller, and thus can be controlled Temperature distribution on optical element 109 . The controller 100 can control a plurality of temperature controllers (a first temperature controller and a second temperature controller). The optical element 109 whose temperature distribution is controlled by the first temperature controller may be the same or different from the optical element 109 whose temperature distribution is controlled by the second temperature controller.

溫度調整單元108可在執行曝光操作的時段中以及在不執行曝光操作的時段中使施加到光學元件109的熱能與隨時間流逝而改變的投影光學系統107的光學特性同步地改變。在此情況下,溫度調整單元108的控制操作所需的資訊可基於藉由測量在投影光學系統107的成像平面(基板110將被佈置在其上的表面)上的投影光學系統107的光學特性而獲得的結果來產生。或者,可事先藉由測量操作等確定溫度調整單元108的控制操作所需的資訊。由溫度調整單元108執行的控制向光學元件109施加熱能的操作在,例如,溫度調整單元108包括電熱線的情況下,可藉由控制被施加到電熱線的電流值來實現。或者,由溫度調整單元108執行的控制向光學元件109施加熱能的操作可藉由,例如,光學元件109與溫度調整單元108之間的物理距離或熱距離來實現。The temperature adjustment unit 108 can change the thermal energy applied to the optical element 109 in synchronization with the optical characteristics of the projection optical system 107 that change with the lapse of time in a period in which an exposure operation is performed and in a period in which an exposure operation is not performed. In this case, the information necessary for the control operation of the temperature adjustment unit 108 can be based on the optical characteristics of the projection optical system 107 by measuring the imaging plane of the projection optical system 107 (the surface on which the substrate 110 is to be arranged). And the results obtained to produce. Alternatively, information required for the control operation of the temperature adjustment unit 108 may be determined in advance through measurement operations or the like. The operation of controlling the application of heat energy to the optical element 109 performed by the temperature adjusting unit 108 can be realized by controlling the value of the current applied to the heating wire, for example, in the case that the temperature adjusting unit 108 includes a heating wire. Alternatively, the operation of controlling the application of thermal energy to the optical element 109 performed by the temperature adjustment unit 108 may be achieved by, for example, a physical distance or a thermal distance between the optical element 109 and the temperature adjustment unit 108 .

控制器100可控制光源102、照明光學系統104、投影光學系統107、和溫度調整單元108。更具體而言,控制器100不僅可被形成來控制曝光操作,且還可被形成來在第一時段和第二時段中控制溫度調整單元108。可由,例如,像是FPGA(現場可程式閘陣列的縮寫)之類的PLD(可程式邏輯裝置的縮寫)、ASIC(專用積體電路的縮寫)、嵌入有程式的通用或專用電腦、或這些部件的全部或一部分的組合來形成控制器100。The controller 100 can control the light source 102 , the illumination optical system 104 , the projection optical system 107 , and the temperature adjustment unit 108 . More specifically, the controller 100 may be formed not only to control the exposure operation but also to control the temperature adjustment unit 108 in the first period and the second period. It can be formed by, for example, a PLD (abbreviation of Programmable Logic Device) such as FPGA (abbreviation of Field Programmable Gate Array), an ASIC (abbreviation of Application Specific Integrated Circuit), a general-purpose or special-purpose computer embedded with a program, or these A combination of all or a part of the components forms the controller 100 .

圖2A和圖2B分別顯示根據第一實施例的曝光設備EXP中的光學元件109和溫度調整單元108的佈置的範例。光學元件109可包括透鏡201。溫度調整單元108可包括由加熱器元件204a和204b所形成的第一溫度控制器204、以及由加熱器元件203a和203b所形成的第二溫度控制器203。加熱器元件204a、204b、203a和203b中的每一個可具有對應到透鏡201的圓周的1/4的弧之弧形。加熱器元件204a、204b、203a和203b中的每一個可由包括電熱線的撓性線纜所形成,當向電熱線施加電流時產生熱,且在透鏡201上形成溫度分佈。2A and 2B respectively show examples of the arrangement of the optical element 109 and the temperature adjustment unit 108 in the exposure apparatus EXP according to the first embodiment. Optical element 109 may include lens 201 . The temperature adjustment unit 108 may include a first temperature controller 204 formed by heater elements 204a and 204b, and a second temperature controller 203 formed by heater elements 203a and 203b. Each of the heater elements 204 a , 204 b , 203 a , and 203 b may have an arc shape corresponding to an arc of 1/4 of the circumference of the lens 201 . Each of the heater elements 204 a , 204 b , 203 a , and 203 b may be formed of a flexible cable including a heating wire that generates heat when a current is applied to the heating wire and forms a temperature distribution on the lens 201 .

例如,加熱器元件204a、204b、203a和203b中的每一個可被佈置為從透鏡201的平面部分以10μm到100μm間隔開來。由加熱器元件204a、204b、203a和203b中的每一個所產生的熱可經由透鏡201與加熱器元件204a、204b、203a和203b之間的介質205傳遞到透鏡201。介質205可為,例如,氣體,像是空氣、氮氣等。加熱器元件204a、204b、203a和203b不需要經由介質205直接地面對透鏡201。例如,加熱器元件204a、204b、203a和203b中的每一個可具有以具有高導熱性的金屬元件將電熱線夾在中間的結構。For example, each of the heater elements 204 a , 204 b , 203 a , and 203 b may be arranged to be spaced apart from the planar portion of the lens 201 by 10 μm to 100 μm. Heat generated by each of heater elements 204a, 204b, 203a, and 203b may be transferred to lens 201 via medium 205 between lens 201 and heater elements 204a, 204b, 203a, and 203b. The medium 205 may be, for example, a gas such as air, nitrogen, or the like. The heater elements 204a, 204b, 203a and 203b need not directly face the lens 201 via the medium 205 . For example, each of the heater elements 204a, 204b, 203a, and 203b may have a structure in which a heating wire is sandwiched by a metal element having high thermal conductivity.

在圖2B的範例中,加熱器元件204a、204b、203a和203b被佈置在透鏡201的平面部分上(在照明光學系統104的側上)。然而,加熱器元件204a、204b、203a和203b可被佈置在透鏡201的下方(在基板110的側上)、或在透鏡201的外邊緣部分上。透鏡201可具有被加熱器元件204a、204b、203a和203b加熱的被加熱表面206。被加熱表面206可為平坦的或彎曲的。被加熱表面206可為,例如,粗糙化的表面(磨砂玻璃形式的表面)。In the example of FIG. 2B , the heater elements 204 a , 204 b , 203 a and 203 b are arranged on the planar portion of the lens 201 (on the side of the illumination optical system 104 ). However, the heater elements 204 a , 204 b , 203 a , and 203 b may be arranged below the lens 201 (on the side of the substrate 110 ), or on an outer edge portion of the lens 201 . Lens 201 may have a heated surface 206 that is heated by heater elements 204a, 204b, 203a, and 203b. The heated surface 206 may be flat or curved. The heated surface 206 may be, for example, a roughened surface (a surface in the form of ground glass).

圖3A例示已經藉由第一溫度控制器204加熱的透鏡201上的溫度分佈。此時,在基板110的表面上在正方向上產生像散。圖3B例示藉由第二溫度控制器203加熱的透鏡201上的溫度分佈。圖3B的溫度分佈是具有與圖3A的溫度分佈相反的相位的溫度分佈。圖3B的溫度分佈在基板110的表面上在負方向上產生像散。以此方式,藉由第一溫度控制器204和第二溫度控制器203對透鏡201的加熱,可產生正像散和負像散。相較於藉由使用像是帕耳帖(Peltier)元件之類的元件的加熱和冷卻的組合來產生正像散和負像散的佈置,此類型佈置的優點在於可簡化溫度調整單元108的佈置。FIG. 3A illustrates the temperature distribution on the lens 201 that has been heated by the first temperature controller 204 . At this time, astigmatism is generated in the positive direction on the surface of the substrate 110 . FIG. 3B illustrates the temperature distribution on the lens 201 heated by the second temperature controller 203 . The temperature distribution of FIG. 3B is a temperature distribution having an opposite phase to the temperature distribution of FIG. 3A . The temperature distribution of FIG. 3B produces astigmatism in the negative direction on the surface of the substrate 110 . In this way, positive astigmatism and negative astigmatism can be generated by heating the lens 201 by the first temperature controller 204 and the second temperature controller 203 . This type of arrangement is advantageous in that the temperature adjustment unit 108 can be simplified compared to an arrangement in which positive and negative astigmatism are generated by a combination of heating and cooling using elements such as Peltier elements. layout.

如果在此處將曝光設備EXP應用到相對於在X方向上的長狹縫狀光束(曝光光)掃描原版106和基板110的掃描曝光設備,則在曝光操作的時間點穿過投影光學系統107的光束的強度分佈可為如圖4的陰影部分401所示。在此情況下,藉由光束的吸收而在透鏡201(光學元件109)上所產生的溫度分佈在X方向和Y方向上將會有所不同。這可能造成在投影光學系統107中產生大量的像散。因此,可藉由第一溫度控制器204將溫度分佈施加到透鏡201,以減少此像散量。藉由第一溫度控制器204所產生的投影光學系統107的像散與當透鏡201吸收光束時所產生的投影光學系統107的像散具有相反的符號。因此,可藉由第一溫度控制器204所產生的投影光學系統107的像散來減少由透鏡201吸收光束而產生的投影光學系統107的像散。注意的是,除非另有特別說明,否則在下文中的術語“像散”表示投影光學系統107的像散。If the exposure apparatus EXP is applied here to a scanning exposure apparatus that scans the original plate 106 and the substrate 110 with respect to a long slit-shaped beam (exposure light) in the X direction, the light passing through the projection optical system 107 at the point of time of the exposure operation The intensity distribution of the light beam can be shown as the shaded part 401 in FIG. 4 . In this case, the temperature distribution generated on the lens 201 (optical element 109 ) by the absorption of the light beam will be different in the X direction and the Y direction. This may cause a large amount of astigmatism to be generated in the projection optical system 107 . Therefore, the astigmatism can be reduced by applying a temperature distribution to the lens 201 through the first temperature controller 204 . The astigmatism of the projection optical system 107 generated by the first temperature controller 204 has the opposite sign to the astigmatism of the projection optical system 107 generated when the lens 201 absorbs the light beam. Therefore, the astigmatism of the projection optical system 107 generated by the light beam absorbed by the lens 201 can be reduced by the astigmatism of the projection optical system 107 generated by the first temperature controller 204 . Note that the term “asttigmatism” hereinafter means the astigmatism of the projection optical system 107 unless otherwise specifically stated.

由第一溫度控制器204所產生的像散的變化(時間變化特性)可能不同於由透鏡201吸收光束而產生的像散的變化(時間變化特性)。在此情況下,藉由第一溫度控制器204來控制被供給到第一溫度控制器204的電熱線的電流以控制像散的變化,以使得能夠以較高的精度取消由透鏡201吸收光束而產生的像散。A change (time-varying characteristic) of astigmatism produced by the first temperature controller 204 may be different from a change (time-varying characteristic) of astigmatism produced by the lens 201 absorbing a light beam. In this case, the current supplied to the heating wire of the first temperature controller 204 is controlled by the first temperature controller 204 to control the variation of astigmatism so that the absorption of the light beam by the lens 201 can be canceled with high precision. resulting in astigmatism.

圖5例示了像散的變化的時間特性。在圖5中,“曝光時間”指示包括曝光操作的第一時段,且“非曝光時間”指示在第一時段之後且不執行曝光操作的時段的第二時段。在第一範例中,第一時段可為從對基板的最初曝光操作的開始直到對基板的最後曝光操作的結束的時段。第二時段可為從對基板的最後曝光操作的結束開始的時段。第二時段為,例如,從對基板的最後曝光操作的結束直到對下一個基板的最初曝光操作的開始的時段。在此處,下一個基板可為與前一個基板屬於同一批之基板,或者作為下一批的第一個基板之基板。在從最後曝光操作的執行的結束起經過了預定時間之後,可結束第二時段,且可停止溫度調整單元108的操作。第一範例適用於可忽略基板中的一個壓射區域與基板的下一個壓射區域之間的像差的變化的情況。在第二範例中,第一時段為在基板的每一個壓射區域上執行曝光操作的時段,且第二時段可包括從對基板的一個壓射區域的曝光操作的結束直到對基板的下一個壓射區域的曝光操作的開始的時段。第二範例適用於需要考慮給定基板的一個壓射區域與此給定基板的下一個壓射區域之間的像差的變化的情況。在第三範例中,第一時段可為從對第一批的第一個基板的最初曝光操作的開始直到對第一批的最後一個基板的最後曝光操作的時段。第二時段可為從對第一批的最後一個基板的最後曝光操作的結束直到對第一批之後的第二批的第一個基板的最初曝光操作的開始的時段。雖然第一、第二和第三範例在如何大致設定曝光操作上彼此不同,但可將這些範例理解為具有共同的構思。FIG. 5 illustrates temporal characteristics of changes in astigmatism. In FIG. 5 , "exposure time" indicates a first period including an exposure operation, and "non-exposure time" indicates a second period after the first period and a period in which an exposure operation is not performed. In a first example, the first period may be a period from the start of the initial exposure operation on the substrate until the end of the last exposure operation on the substrate. The second period may be a period from the end of the last exposure operation on the substrate. The second period is, for example, a period from the end of the last exposure operation on the substrate until the start of the first exposure operation on the next substrate. Here, the next substrate may be a substrate belonging to the same batch as the previous substrate, or a substrate that is the first substrate of the next batch. After a predetermined time elapses from the end of the execution of the last exposure operation, the second period may end, and the operation of the temperature adjustment unit 108 may be stopped. The first example is suitable for the case where the change in aberration between one shot region in the substrate and the next shot region of the substrate is negligible. In the second example, the first period is a period during which the exposure operation is performed on each shot area of the substrate, and the second period may include from the end of the exposure operation on one shot area of the substrate until the next exposure operation on the substrate. Period of start of the exposure operation of the shot area. The second example is suitable for cases where it is necessary to consider the change in aberration between one shot area of a given substrate and the next shot area of this given substrate. In a third example, the first period may be a period from the start of the initial exposure operation on the first substrate of the first batch until the final exposure operation on the last substrate of the first batch. The second period may be a period from the end of the last exposure operation on the last substrate of the first batch until the start of the initial exposure operation on the first substrate of the second batch following the first batch. Although the first, second, and third examples are different from each other in how to roughly set the exposure operation, these examples can be understood as having a common idea.

在圖5中,曲線501a例示了在第一時段中由透鏡201吸收光束所產生的像散的變化。作為減少或取消由透鏡201吸收光束而產生的像散的理想方法,第一溫度控制器204可被用於加熱透鏡201,以產生按照與曲線501a具有相反符號的曲線改變的像散。然而,如曲線502a所例示的,如果第一溫度控制器204以預定溫度連續地加熱透鏡201,則由此加熱操作所產生的像散趨於以較曲線501a的時間常數更慢的時間常數來改變。因此,由曲線501a所顯示的像散無法被完全的校正(取消),且會產生如曲線503a所顯示之校正殘餘誤差。In FIG. 5 , the curve 501 a illustrates the variation of the astigmatism produced by the absorption of the light beam by the lens 201 during the first time period. As a desirable method of reducing or canceling the astigmatism produced by the absorption of the light beam by the lens 201, the first temperature controller 204 may be used to heat the lens 201 to produce astigmatism which changes according to a curve having the opposite sign to curve 501a. However, as illustrated by the curve 502a, if the first temperature controller 204 continuously heats the lens 201 at a predetermined temperature, the astigmatism generated by this heating operation tends to dissipate with a time constant slower than that of the curve 501a. Change. Therefore, the astigmatism shown by curve 501a cannot be completely corrected (cancelled), and a correction residual error as shown by curve 503a will result.

類似的現象亦可發生在第二時段中。由於在第二時段中不執行曝光操作,光束不會穿過透鏡201。因此,雖然在第二時段中不會發生由於光束的吸收而引起的透鏡201的溫度變化,但透鏡201由於從透鏡201的散熱而變形,且因此像散隨時間改變。曲線501b例示了當從透鏡201輻射(消散)由於光束的吸收而產生的熱時所產生的像散的變化。曲線501b的時間常數可與曲線501a的時間常數相同。A similar phenomenon can also occur in the second period. Since the exposure operation is not performed in the second period, the light beam does not pass through the lens 201 . Therefore, although a change in temperature of the lens 201 due to absorption of light beams does not occur in the second period, the lens 201 is deformed due to heat dissipation from the lens 201, and thus the astigmatism changes with time. A curve 501b illustrates changes in astigmatism generated when heat generated due to absorption of a light beam is radiated (dissipated) from the lens 201 . The time constant of curve 501b may be the same as that of curve 501a.

當由第一溫度控制器204對透鏡201的加熱與從第一時段到第二時段的切換同時停止時,在第一時段中由第一溫度控制器204施加到透鏡201的熱在第二時段中從透鏡201輻射(消散)。據此,像散能夠以曲線502b的方式改變。如曲線501a與曲線502a之間所存在的時間變化特性差異存在於曲線501b與曲線502b之間。因此,同樣在第二時段中,可產生校正殘餘誤差,如曲線503b所示。When the heating of the lens 201 by the first temperature controller 204 is stopped simultaneously with the switching from the first period to the second period, the heat applied to the lens 201 by the first temperature controller 204 in the first period is radiates (dissipates) from the lens 201. Accordingly, the astigmatism can change in the manner of the curve 502b. The difference in time-varying characteristics as exists between the curve 501a and the curve 502a exists between the curve 501b and the curve 502b. Therefore, also in the second period, a correction residual error may be generated, as shown by the curve 503b.

一般而言,曲線501a、501b、502a和502b可以如由在時間t之產生的像差量φ(t)所表達的一階滯後系統(first-order lag system)的方式表達:

Figure 02_image001
其中,A是與從時間t起施加的熱量相關的量,G是與產生的像差量相關的係數,且K是與產生的像差量的時間常數相關的係數。或者,曲線501a、501b、502a和502b可以如由在時間t之產生的像差量φ(t)所表達的二階滯後系統的方式表達:
Figure 02_image003
其中,τ1和τ2是與表達二階滯後的時間常數相關的係數,A是與從時間t起施加的熱量相關的量,G是與產生的像差量相關的係數,且K是與產生的像差量的時間常數相關的係數。然而,這些曲線可根據其他模型來表達。In general, the curves 501a, 501b, 502a, and 502b can be expressed as a first-order lag system expressed by the amount of aberration φ(t) produced at time t:
Figure 02_image001
Here, A is an amount related to the amount of heat applied from time t, G is a coefficient related to the amount of generated aberration, and K is a coefficient related to the time constant of the generated amount of aberration. Alternatively, the curves 501a, 501b, 502a, and 502b may be expressed as a second-order hysteresis system expressed by the amount of aberration φ(t) produced at time t:
Figure 02_image003
where τ1 and τ2 are coefficients related to the time constant expressing the second-order lag, A is a quantity related to the amount of heat applied from time t, G is a coefficient related to the amount of aberration produced, and K is a quantity related to the generated image A coefficient related to the time constant of the delta. However, these curves can be expressed according to other models.

為了減少由於時間變化特性的這種差異所引起的校正殘餘誤差,控制器100可控制由第一溫度控制器204和第二溫度控制器203施加到透鏡201的熱能。將參照圖6A和圖6B描述此方法。在此方法中,第一溫度控制器204和第二溫度控制器203可分別根據對應到從第一時段的開始起所經過的時間的命令值和對應到從第二時段的開始起所經過的時間的命令值來控制被施加到透鏡201上的熱能。在圖6A中例示了要被施加到第一溫度控制器204的加熱器元件204a和204b的電流601、以及要被施加到第二溫度控制器203的加熱器元件203a和203b的電流602。控制器100可被佈置為將作為與從第一時段的開始起所經過的時間對應的命令值之對應到電流601的命令值供給到第一溫度控制器204。同樣地,控制器100可被佈置為將作為與從第二時段的開始起所經過的時間對應的命令值之對應到電流602的命令值供給到第二溫度控制器203。在圖6B中例示了由光束的吸收所產生的像散603的變化。在圖6B中還例示了由於施加到第一溫度控制器204的加熱器元件204a和204b的電流、及施加到第二溫度控制器203的加熱器元件203a和203b的電流而藉由加熱所產生的像散604的變化。此外,在圖6B中還例示了校正殘餘誤差605的變化。In order to reduce correction residual errors due to such differences in time-varying characteristics, the controller 100 may control thermal energy applied to the lens 201 by the first temperature controller 204 and the second temperature controller 203 . This method will be described with reference to FIGS. 6A and 6B . In this method, the first temperature controller 204 and the second temperature controller 203 can be respectively based on the command value corresponding to the time elapsed from the start of the first period and the time corresponding to the time elapsed from the start of the second period. The command value of the time is used to control the thermal energy applied to the lens 201 . A current 601 to be applied to the heater elements 204 a and 204 b of the first temperature controller 204 and a current 602 to be applied to the heater elements 203 a and 203 b of the second temperature controller 203 are illustrated in FIG. 6A . The controller 100 may be arranged to supply the command value corresponding to the current 601 to the first temperature controller 204 as the command value corresponding to the time elapsed from the start of the first period. Likewise, the controller 100 may be arranged to supply to the second temperature controller 203 a command value corresponding to the current 602 as a command value corresponding to the time elapsed from the start of the second period. The change in astigmatism 603 produced by the absorption of the beam is illustrated in Fig. 6B. Also illustrated in FIG. 6B is the heating generated by the current applied to the heater elements 204a and 204b of the first temperature controller 204, and the current applied to the heater elements 203a and 203b of the second temperature controller 203. 604 changes in astigmatism. In addition, the variation of the corrected residual error 605 is also illustrated in FIG. 6B .

在此範例中,在第一時段中,電流被施加到第一溫度控制器204的加熱器元件204a和204b,且電流未被施加到第二溫度控制器203的加熱器元件203a和203b。另一方面,在第二時段中,電流未被施加到第一溫度控制器204的加熱器元件204a和204b,且電流被施加到第二溫度控制器203的加熱器元件203a和203b。例如,在執行曝光操作的第一時段中,控制器100可根據從第一時段的開始起所經過的時間從預定值起逐漸地減少要被施加到第一溫度控制器204的加熱器元件204a和204b的電流。因此,可使由於被施加到第一溫度控制器204的加熱器元件204a和204b上的電流而藉由加熱所產生的像散604的變化去遵循由於光束的吸收產生的像散603的變化。In this example, current is applied to the heater elements 204 a and 204 b of the first temperature controller 204 and current is not applied to the heater elements 203 a and 203 b of the second temperature controller 203 during the first period. On the other hand, in the second period, current is not applied to the heater elements 204 a and 204 b of the first temperature controller 204 , and current is applied to the heater elements 203 a and 203 b of the second temperature controller 203 . For example, in the first period in which the exposure operation is performed, the controller 100 may gradually reduce the heater element 204a to be applied to the first temperature controller 204 from a predetermined value according to the elapsed time from the start of the first period. and 204b current. Therefore, the change of astigmatism 604 due to heating due to the current applied to the heater elements 204a and 204b of the first temperature controller 204 can be made to follow the change of astigmatism 603 due to the absorption of the light beam.

例如,在不執行曝光操作的第二時段中,控制器100可停止由第一溫度控制器204的加熱,並根據從第二時段的開始起所經過的時間從預定值起逐漸地減少被施加到第二溫度控制器203的加熱器元件203a和203b的電流。因此,可使由於被施加到第一溫度控制器204的加熱器元件204a和204b上的電流而藉由加熱所產生的像散604的變化去遵循由於光束的吸收產生的像散603的變化。因此,變得能夠在執行曝光操作的第一時段中和不執行曝光操作的第二時段中將由透鏡201上的溫度分佈所產生的像散降低到對於基板的曝光操作而言不成問題的程度。For example, in the second period in which the exposure operation is not performed, the controller 100 may stop the heating by the first temperature controller 204 and gradually reduce the applied temperature from a predetermined value according to the elapsed time from the start of the second period. Current to heater elements 203 a and 203 b of second temperature controller 203 . Therefore, the change of astigmatism 604 due to heating due to the current applied to the heater elements 204a and 204b of the first temperature controller 204 can be made to follow the change of astigmatism 603 due to the absorption of the light beam. Therefore, it becomes possible to reduce the astigmatism generated by the temperature distribution on the lens 201 to a non-problematic level for the exposure operation of the substrate in the first period in which the exposure operation is performed and in the second period in which the exposure operation is not performed.

一般而言,不需要藉由使用第一溫度控制器204和第二溫度控制器203來使透鏡201上的溫度分佈均勻。這是因為校正目標不是透鏡201的像散,而是投影光學系統107的像散(當形成投影光學系統107的所有光學元件吸收光束時所產生之投影光學系統107的整體像差)。因此,為了校正和減少投影光學系統107的整體像散,可藉由第一溫度控制器204和第二溫度控制器203在透鏡201上產生所需的溫度分佈。Generally speaking, it is not necessary to make the temperature distribution on the lens 201 uniform by using the first temperature controller 204 and the second temperature controller 203 . This is because the correction target is not the astigmatism of the lens 201 but the astigmatism of the projection optical system 107 (the overall aberration of the projection optical system 107 generated when all optical elements forming the projection optical system 107 absorb light beams). Therefore, in order to correct and reduce the overall astigmatism of the projection optical system 107 , the required temperature distribution on the lens 201 can be generated by the first temperature controller 204 and the second temperature controller 203 .

可基於實驗來確定被施加到第一溫度控制器204(204a、204b)的電流601的輪廓(profile)(時間變化)和被施加到第二溫度控制器203(203a、203b)的電流602的輪廓,此實驗是用於獲得每一個電流值與對應之測得的像散的值之間的關係。或者,可基於被加熱的透鏡201上的溫度分佈來確定電流601的輪廓和電流602的輪廓中的每一個。或者,電流601的輪廓和電流602的輪廓中的每一個可為基於事先獲得的參數。The profile (time variation) of the current 601 applied to the first temperature controller 204 (204a, 204b) and the profile (time variation) of the current 602 applied to the second temperature controller 203 (203a, 203b) can be determined based on experiments. Profile, this experiment is used to obtain the relationship between each current value and the corresponding measured astigmatism value. Alternatively, each of the profile of the current 601 and the profile of the current 602 may be determined based on the temperature distribution on the heated lens 201 . Alternatively, each of the profile of the current 601 and the profile of the current 602 may be based on parameters obtained beforehand.

作為用於事先獲得參數的方法,例如,存在一種方法,其在投影光學系統107已被組裝之後藉由溫度控制器204和203加熱透鏡201時,實際測量投影光學系統107的像差的時間變化,並基於測量結果來確定參數。根據此方法,由於可藉由包括由向透鏡201的周邊的每一個光學元件和投影光學系統107的透鏡鏡筒之熱傳遞和熱輻射所產生的像差變化來確定參數,每一個電流的輪廓被高精度地確定。因此,此方法優於僅藉由測量由第一溫度控制器204和第二溫度控制器203控制其溫度分佈的透鏡201來確定參數的方法。此外,可在將投影光學系統107結合到曝光設備EXP中之後藉由測量投影光學系統107的像差來確定參數,或者可藉由更新已經確定的參數來確定參數。As a method for obtaining parameters in advance, for example, there is a method of actually measuring a temporal change in aberration of the projection optical system 107 when the lens 201 is heated by the temperature controllers 204 and 203 after the projection optical system 107 has been assembled , and determine the parameters based on the measurement results. According to this method, since parameters can be determined by including changes in aberrations generated by heat transfer and heat radiation to each optical element on the periphery of the lens 201 and the lens barrel of the projection optical system 107, the profile of each current determined with high precision. Therefore, this method is superior to the method of determining parameters only by measuring the lens 201 whose temperature distribution is controlled by the first temperature controller 204 and the second temperature controller 203 . Furthermore, the parameters may be determined by measuring the aberration of the projection optical system 107 after incorporating the projection optical system 107 into the exposure apparatus EXP, or may be determined by updating already determined parameters.

電流值的確定時間點和施加時間點可在預定的時間間隔或隨機的時間間隔處被設定。此時間間隔較佳地被設定為,例如,0.1秒至10秒,且進一步較佳地被設定為1秒至5秒。又,可在批次的開始時事先確定電流值輪廓,且可根據此輪廓來控制批次的處理期間的電流值。取決於由溫度調整單元108對透鏡201上的溫度分佈所執行的控制,可能新產生除了像散以外的像差分量。在此情況下,可藉由使形成投影光學系統107的光學元件移動及/或傾斜、改變由光源102所產生的光的波長等的驅動操作來減少新產生的像差。The determination time point and the application time point of the current value may be set at predetermined time intervals or random time intervals. This time interval is preferably set to, for example, 0.1 second to 10 seconds, and further preferably set to 1 second to 5 seconds. Also, the current value profile can be determined in advance at the beginning of the batch, and the current value during the processing of the batch can be controlled according to this profile. Depending on the control performed by the temperature adjustment unit 108 on the temperature distribution on the lens 201 , aberration components other than astigmatism may be newly generated. In this case, newly generated aberrations can be reduced by a driving operation of moving and/or tilting the optical elements forming the projection optical system 107, changing the wavelength of light generated by the light source 102, and the like.

在下文中將參照圖7A和圖7B以及圖8A和圖8B來描述第二實施例。第二實施例中未提及的事項可遵循第一實施例中的那些事項。圖7A和圖7B是顯示作為第二實施例的比較目標的圖表。在圖7A中例示了根據第一實施例之要被施加到第一溫度控制器204的加熱器元件204a和204b的電流值701、以及要被施加到第二溫度控制器203的加熱器元件203a和203b的電流值702。在圖7B中例示了由於光束的吸收所產生的像散703的變化。此外,在圖7B中分別例示了由於將電流值701和702施加到第一溫度控制器204的加熱器元件204a和204b、以及第二溫度控制器203的加熱器元件203a和203b而引起的藉由加熱所產生的像散704的變化。此外,在圖7B中例示了校正殘餘誤差705的變化。注意的是,雖然已藉由將藉由電流值701和702的加熱所產生的實際像散乘以-1來獲得像散704,但這僅僅是為了視覺方便起見。如圖7B中所例示的,存在非常大的校正殘餘誤差705。校正殘餘誤差705的大小可取決於由光束的吸收所產生的像散(曲線501)與由第一溫度控制器204所產生的像散(曲線502)的模型(例如,一階滯後系統或二階滯後系統)之間的差、模型的時間常數的大小等。尤其是,當像散(曲線502)中存在強的二階滯後傾向時,趨於產生校正殘餘誤差705。這可取決於,例如,透鏡201的形狀以及第一溫度控制器204和第二溫度控制器203的佈置。Hereinafter, the second embodiment will be described with reference to FIGS. 7A and 7B and FIGS. 8A and 8B . Matters not mentioned in the second embodiment may follow those in the first embodiment. 7A and 7B are graphs showing comparison targets as the second embodiment. Current values 701 to be applied to the heater elements 204a and 204b of the first temperature controller 204, and the heater element 203a to be applied to the second temperature controller 203 according to the first embodiment are illustrated in FIG. 7A. and current value 702 of 203b. The change in astigmatism 703 due to the absorption of the light beam is illustrated in FIG. 7B . Furthermore, the borrowing caused by applying current values 701 and 702 to the heater elements 204a and 204b of the first temperature controller 204, and the heater elements 203a and 203b of the second temperature controller 203 are illustrated in FIG. 7B, respectively. Changes in astigmatism 704 produced by heating. Furthermore, the variation of the corrected residual error 705 is illustrated in FIG. 7B. Note that although astigmatism 704 has been obtained by multiplying the actual astigmatism produced by heating by current values 701 and 702 by -1, this is for visual convenience only. As illustrated in Figure 7B, there is a very large correction residual error 705. The magnitude of the corrected residual error 705 may depend on a model of the astigmatism produced by the absorption of the beam (curve 501 ) and the astigmatism produced by the first temperature controller 204 (curve 502 ) (e.g., a first-order hysteresis system or a second-order lag system), the size of the time constant of the model, etc. In particular, correction residual error 705 tends to occur when there is a strong second order hysteresis tendency in the astigmatism (curve 502). This may depend, for example, on the shape of the lens 201 and the arrangement of the first temperature controller 204 and the second temperature controller 203 .

在第二實施例中,第一溫度控制器204和第二溫度控制器203可操作來減少在第一時段中之投影光學系統107的光學特性的變化。此外,在第二實施例中,第一溫度控制器204和第二溫度控制器203還可操作來減少第二時段中之投影光學系統107的光學特性的變化。圖8A和圖8B例示了根據第二實施例的第一溫度控制器204和第二溫度控制器203的操作。在圖8A中例示了要被施加到第一溫度控制器204的加熱器元件204a和204b的電流值801、以及藉由將要被施加到第二溫度控制器203的加熱器元件203a和203b的電流乘以-1而獲得的電流值802。注意的是,雖然已藉由將要被施加到第二溫度控制器203的加熱器元件203a和203b的電流乘以-1來獲得電流802,但這僅僅是為了視覺方便起見。在圖8B中例示了由光束的吸收所產生的像散803的變化。此外,在圖8B中例示了藉由將由於施加到第一溫度控制器204的加熱器元件204a和204b、以及第二溫度控制器203的加熱器元件203a和203b的電流值所引起的加熱所產生的像散乘以-1而獲得的像散804的變化。此外,在圖8B中例示了校正殘餘誤差805的變化。可以看出的是,藉由在第一時段和第二時段中都操作第一溫度控制器204和第二溫度控制器203,能夠以高精度來減少像散。In the second embodiment, the first temperature controller 204 and the second temperature controller 203 are operable to reduce the variation of the optical characteristics of the projection optical system 107 during the first period. Furthermore, in the second embodiment, the first temperature controller 204 and the second temperature controller 203 are also operable to reduce the variation of the optical characteristics of the projection optical system 107 in the second period. 8A and 8B illustrate operations of the first temperature controller 204 and the second temperature controller 203 according to the second embodiment. A current value 801 to be applied to the heater elements 204a and 204b of the first temperature controller 204, and a current to be applied to the heater elements 203a and 203b of the second temperature controller 203 are illustrated in FIG. 8A The current value 802 is obtained by multiplying by -1. Note that although the current 802 has been obtained by multiplying the current to be applied to the heater elements 203a and 203b of the second temperature controller 203 by -1, this is for visual convenience only. The change in astigmatism 803 produced by the absorption of the beam is illustrated in Fig. 8B. In addition, in FIG. 8B exemplified in FIG. The change in astigmatism 804 is obtained by multiplying the resulting astigmatism by -1. Furthermore, the variation of the corrected residual error 805 is illustrated in FIG. 8B. It can be seen that astigmatism can be reduced with high precision by operating the first temperature controller 204 and the second temperature controller 203 in both the first period and the second period.

在下文中將參照圖9A和圖9B以及圖10描述第三實施例。第三實施例中未提及的事項可遵循第一實施例和第二實施例中的那些事項。在第二實施例中,第一溫度控制器204和第二溫度控制器203中的至少一者可在包括第一時段和第二時段的幾乎整個時段中操作,以加熱透鏡201。透鏡201的加熱可能產生除了像散以外的複數個像差分量。雖然能夠預測複數個分量當中的較高階分量的產生,但難以校正這樣的分量。尤其是,不同於像是像散之類的像差分量(其中,可由第一溫度控制器204和第二溫度控制器203所產生的像差具有相反的符號),難以減少可由第一溫度控制器204和第二溫度控制器203所產生的像差具有相同符號之像差分量。因此,雖然只要透鏡201被加熱就會產生如上所述的複數個像差分量,但難以校正這些像差分量。Hereinafter, a third embodiment will be described with reference to FIGS. 9A and 9B and FIG. 10 . Matters not mentioned in the third embodiment may follow those in the first and second embodiments. In the second embodiment, at least one of the first temperature controller 204 and the second temperature controller 203 is operable to heat the lens 201 during almost the entire period including the first period and the second period. Heating of the lens 201 may generate a plurality of aberration components other than astigmatism. Although it is possible to predict the generation of higher-order components among a plurality of components, it is difficult to correct such components. In particular, unlike aberration components such as astigmatism in which the aberrations producible by the first temperature controller 204 and the second temperature controller 203 have opposite signs, it is difficult to reduce the The aberrations generated by the controller 204 and the second temperature controller 203 have aberration components of the same sign. Therefore, although a plurality of aberration components as described above are generated whenever the lens 201 is heated, it is difficult to correct these aberration components.

因此,在第三實施例中,控制器100將操作第一溫度控制器204和第二溫度控制器203,以使得在第一時段和第二時段中,像差(像散)在允許像差在預定範圍內改變的同時不會超過預定值。因此,可抑制由於透鏡201的加熱而產生之難以校正的像差。Therefore, in the third embodiment, the controller 100 will operate the first temperature controller 204 and the second temperature controller 203 so that in the first period and the second period, the aberration (astigmatism) is within the allowable aberration While changing within the predetermined range, it will not exceed the predetermined value. Therefore, aberrations that are difficult to correct due to heating of the lens 201 can be suppressed.

圖9A和圖9B例示了根據第三實施例之第一溫度控制器204和第二溫度控制器203的操作。在圖9A中例示了要被施加到第一溫度控制器204的加熱器元件204a和204b的電流901、以及要被施加到第二溫度控制器203的加熱器元件203a和203b的電流902。在圖9B中例示了由光束的吸收所產生的像散903的變化。此外,在圖9B中例示了由於將被施加到第一溫度控制器204的加熱器元件204a和204b、以及第二溫度控制器203的加熱器元件203a和203b的電流值所引起的加熱所產生的像散乘以-1而獲得的像散904的變化。此外,在圖9B中例示了校正殘餘誤差905的變化。在第三實施例中,在校正殘餘誤差905將超過由上限906a和下限906b所設定的範圍的情況下,控制器100操作溫度調整單元108,以防止校正殘餘誤差905落在預定範圍907之外。因此,像散可以被包含在預定範圍907內,同時抑制了由於透鏡201的加熱而引起的其它像差分量的產生。9A and 9B illustrate operations of the first temperature controller 204 and the second temperature controller 203 according to the third embodiment. A current 901 to be applied to the heater elements 204 a and 204 b of the first temperature controller 204 and a current 902 to be applied to the heater elements 203 a and 203 b of the second temperature controller 203 are illustrated in FIG. 9A . The change in astigmatism 903 produced by the absorption of the light beam is illustrated in FIG. 9B . In addition, in FIG. 9B exemplified in FIG. 9B , the generation of heating due to the current value to be applied to the heater elements 204 a and 204 b of the first temperature controller 204 and the heater elements 203 a and 203 b of the second temperature controller 203 The change in astigmatism 904 is obtained by multiplying the astigmatism by -1. Furthermore, the variation of the corrected residual error 905 is illustrated in FIG. 9B . In the third embodiment, in the case where the correction residual error 905 would exceed the range set by the upper limit 906a and the lower limit 906b, the controller 100 operates the temperature adjustment unit 108 to prevent the correction residual error 905 from falling outside the predetermined range 907 . Therefore, astigmatism can be contained within the predetermined range 907 while suppressing the generation of other aberration components due to the heating of the lens 201 .

在此情況下,澤尼克多項式(Zernike polynomial)的項Z17的像差可被提出作為除了由透鏡201的加熱而產生的像散以外之難以校正的像差分量中的一者。在圖10中例示了在第二實施例中由透鏡201的加熱所產生的Zernike項Z17的產生量1001、以及在第三實施例中由透鏡201的加熱所產生的Zernike項Z17的產生量1002。在第三實施例中,由透鏡201的加熱所產生的Zernike項Z17的產生量被減少到第二實施例中的Zernike項Z17的產生量的1/3。以此方式,在第三實施例中,藉由允許落在預定範圍內的像散的校正殘餘誤差來減少溫度調整單元108對透鏡201的加熱。因此,可抑制難以校正的像差分量的產生。注意的是,此方法為確定在像散的校正精度與除了像散之外的像差分量的產生之間的取捨的方法。因此,可藉由考慮校正精度對成像性能的影響與除了像散之外的像差分量對成像性能的影響之間的平衡來確定允許像散的預定範圍。此外,雖然第三實施例已將Zernike項Z17描述為難以校正的像差分量,但本發明不限於此。例如,可考慮其它較高階的0θ分量,例如,Zernike項Z16等,且亦也可考慮易於校正的較低階的0θ分量。In this case, Zernike polynomials (Zernike polynomial) can be proposed as one of the aberration components that are difficult to correct other than the astigmatism generated by the heating of the lens 201. A generation amount 1001 of the Zernike term Z17 by heating of the lens 201 in the second embodiment and a generation amount 1002 of the Zernike term Z17 by heating of the lens 201 in the third embodiment are illustrated in FIG. 10 . . In the third embodiment, the generation amount of the Zernike term Z17 generated by the heating of the lens 201 is reduced to 1/3 of the generation amount of the Zernike term Z17 in the second embodiment. In this way, in the third embodiment, heating of the lens 201 by the temperature adjustment unit 108 is reduced by allowing the correction residual error of astigmatism to fall within a predetermined range. Therefore, generation of aberration components that are difficult to correct can be suppressed. Note that this method is a method of determining a trade-off between correction accuracy of astigmatism and generation of aberration components other than astigmatism. Therefore, the predetermined range of allowable astigmatism can be determined by considering the balance between the influence of correction accuracy on imaging performance and the influence of aberration components other than astigmatism on imaging performance. Furthermore, although the third embodiment has described the Zernike term Z17 as an aberration component that is difficult to correct, the present invention is not limited thereto. For example, other higher-order 0Θ components may be considered, such as Zernike term Z16, etc., and lower-order 0Θ components that are easy to correct may also be considered.

在第一至第三實施例中,溫度調整單元108由加熱器元件所形成,每一個加熱器元件具有對應到透鏡201的周長的1/4的長度,且產生負像散和正像散。然而,這僅僅為範例,且可根據要被校正的像差分量來選擇加熱器元件的形狀和數量。圖11顯示一個範例,其中,溫度調整單元108由八個加熱器元件1101至1108所形成,每一個加熱器元件具有對應到透鏡的周長的1/8的長度。第一溫度控制器可由加熱器元件1102、1104、1106和1108所形成,且第二溫度控制器可由加熱器元件1101、1103、1105和1107所形成。因此,由於可在正方向和負方向上產生4θ像差分量,可藉由根據第一至第三實施例的方法來校正4θ像差分量。此外,能夠藉由佈置六個加熱器元件而以相同的方法來校正3θ像差分量,每一個加熱器元件對應到圓周方向上的長度的1/6,且還可藉由佈置十個加熱器元件來校正5θ像差分量,每一個加熱器元件對應到圓周方向上的長度的1/10。亦即,可根據要被校正的像差分量來選擇加熱器元件的數量和佈局。因此,能夠減少,例如,澤尼克多項式的N θ(N為自然數)分量中的至少一者。In the first to third embodiments, the temperature adjusting unit 108 is formed of heater elements each having a length corresponding to 1/4 of the circumference of the lens 201 and generating negative astigmatism and positive astigmatism. However, this is only an example, and the shape and number of heater elements may be selected according to the aberration components to be corrected. Figure 11 shows an example where the temperature adjustment unit 108 is formed by eight heater elements 1101 to 1108, each having a length corresponding to 1/8 of the circumference of the lens. A first temperature controller may be formed by heater elements 1102 , 1104 , 1106 and 1108 and a second temperature controller may be formed by heater elements 1101 , 1103 , 1105 and 1107 . Therefore, since the 4θ aberration components can be generated in the positive and negative directions, the 4θ aberration components can be corrected by the methods according to the first to third embodiments. Furthermore, the 3θ aberration component can be corrected in the same way by arranging six heater elements each corresponding to 1/6 of the length in the circumferential direction, and also by arranging ten heaters elements to correct the 5θ aberration component, and each heater element corresponds to 1/10 of the length in the circumferential direction. That is, the number and layout of heater elements can be selected according to the aberration components to be corrected. Therefore, it is possible to reduce, for example, at least one of the N θ (N is a natural number) components of the Zernike polynomial.

接下來,將描述藉由使用由上述第一至第四實施例所表示的曝光設備來製造物品(半導體IC元件、液晶顯示元件、MEMS等)的物品製造方法。物品製造方法可包括藉由上述曝光設備對基板進行曝光的步驟、使在曝光中曝光的基板備顯影的步驟、以及處理在顯影步驟中被顯影的基板的步驟,且可從在處理步驟中被處理的基板製造出物品。處理可包括,例如,蝕刻、抗蝕劑去除、切割、黏合、封裝等。根據此物品製造方法,可製造出品質較現有技術更高的物品。Next, an article manufacturing method for manufacturing an article (semiconductor IC element, liquid crystal display element, MEMS, etc.) by using the exposure apparatus represented by the first to fourth embodiments described above will be described. The article manufacturing method may include a step of exposing a substrate by the above-mentioned exposure apparatus, a step of developing the substrate exposed in the exposing, and a step of processing the substrate developed in the developing step, and may be obtained from the substrate exposed in the processing step. The processed substrate produces an article. Processing may include, for example, etching, resist removal, dicing, bonding, encapsulation, and the like. According to this article manufacturing method, an article of higher quality than the prior art can be manufactured.

其它實施例 本發明的一個或多個實施例還可藉由系統或設備的電腦來實現,系統或設備的電腦讀出並執行被記錄在儲存媒體(其亦可更完整地被稱為“非暫時性電腦可讀取儲存媒體”)上的電腦可執行指令(例如,一個或多個程式),以執行一個或多個上述實施例的功能、及/或包括用於執行一個或多個上述實施例的功能的一個或多個電路(例如,專用積體電路(ASIC)),且本發明的實施例可藉由系統或設備的電腦以,例如,讀出並執行來自儲存媒體的電腦可執行指令以執行一個或多個上述實施例的功能、及/或控制一個或多個電路以執行一個或多個上述實施例的功能來執行的方法而實現。電腦可包括一個或多個處理器(例如,中央處理單元(CPU)、微處理單元(MPU)),且可包括單獨的電腦或單獨的處理器的網路,以讀出並執行電腦可執行指令。例如,可從網路或儲存媒體將電腦可執行指令提供給電腦。儲存媒體可包括,例如,硬碟、隨機存取記憶體(RAM)、唯讀記憶體(ROM)、分散式運算系統的儲存器、光學碟片(例如,光碟(CD)、多樣化數位光碟(DVD)或藍光光碟(BD)TM )、快閃記憶體裝置、記憶卡等中的一個或多個。Other Embodiments One or more embodiments of the present invention can also be implemented by a computer of a system or device, which reads and executes the data recorded on a storage medium (which can also be more completely referred to as "non- Computer-executable instructions (eg, one or more programs) on a transitory computer-readable storage medium) to perform the functions of one or more of the above-described embodiments, and/or include instructions for performing one or more of the above-mentioned One or more circuits (for example, application-specific integrated circuits (ASICs)) of the functions of the embodiments, and embodiments of the present invention may be implemented by a computer of a system or device to, for example, read and execute a computer-readable Executing instructions to perform the functions of one or more of the above-mentioned embodiments, and/or controlling one or more circuits to perform the functions of one or more of the above-mentioned embodiments to implement the method. A computer may include one or more processors (e.g., central processing unit (CPU), microprocessing unit (MPU)), and may include individual computers or networks of individual processors to read and execute computer-executable instruction. For example, computer-executable instructions may be provided to a computer from a network or storage medium. Storage media may include, for example, hard disks, random access memory (RAM), read only memory (ROM), distributed computing system storage, optical disks (e.g., compact disks (CD), multi-disc (DVD) or Blu-ray Disc (BD) ), flash memory device, memory card, etc.

雖然已參照例示性實施例描述本發明,但應當理解的是,本發明並不限於所揭露的例示性實施例。以下的申請專利範圍的範疇應被賦予最寬廣的解釋,以涵蓋所有這種修改以及等效的結構和功能。While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of claims below should be given the broadest interpretation to cover all such modifications and equivalent structures and functions.

100:控制器 102:光源 104:照明光學系統 106:原版 107:投影光學系統 108:溫度調整單元 109:光學元件 110:基板 201:透鏡 203:第二溫度控制器 203a:加熱器元件 203b:加熱器元件 204:第一溫度控制器 204a:加熱器元件 204b:加熱器元件 205:介質 206:被加熱表面 401:陰影部分 501a:曲線 501b:曲線 502a:曲線 502b:曲線 503a:曲線 503b:曲線 601:電流 602:電流 603:像散 604:像散 605:校正殘餘誤差 701:電流值 702:電流值 703:像散 704:像散 705:校正殘餘誤差 801:電流 802:電流 803:像散 804:像散 805:校正殘餘誤差 901:電流 902:電流 903:像散 904:像散 905:校正殘餘誤差 906a:上限 906b:下限 907:預定範圍 1001:產生量 1002:產生量 1101:加熱器元件 1102:加熱器元件 1103:加熱器元件 1104:加熱器元件 1105:加熱器元件 1106:加熱器元件 1107:加熱器元件 1108:加熱器元件 EXP:曝光設備100: controller 102: light source 104: Illumination optical system 106: Original 107:Projection optical system 108: Temperature adjustment unit 109: Optical components 110: Substrate 201: lens 203: Second temperature controller 203a: heater element 203b: heater element 204: The first temperature controller 204a: heater element 204b: heater element 205: medium 206: heated surface 401: shaded part 501a: curve 501b: curve 502a: curve 502b: curve 503a: curve 503b: curve 601: Current 602: current 603: Astigmatism 604: Astigmatism 605: Correct residual error 701: current value 702: current value 703: Astigmatism 704: Astigmatism 705: Correct residual error 801: Current 802: Current 803: Astigmatism 804: Astigmatism 805: Correct residual error 901: current 902: current 903: Astigmatism 904: Astigmatism 905: Correct residual error 906a: upper limit 906b: lower limit 907: Scheduled range 1001: production volume 1002: production volume 1101: heater element 1102: heater element 1103: heater element 1104: heater element 1105: heater element 1106: heater element 1107: heater element 1108: heater element EXP: exposure equipment

[圖1]是示意性地顯示根據第一實施例的曝光設備的佈置的視圖;[ Fig. 1 ] is a view schematically showing the arrangement of an exposure apparatus according to a first embodiment;

[圖2A和圖2B]是顯示根據第一實施例的曝光設備的光學元件和溫度調整單元的佈置的範例的視圖;[FIG. 2A and FIG. 2B] are views showing an example of the arrangement of the optical elements and the temperature adjustment unit of the exposure apparatus according to the first embodiment;

[圖3A和圖3B]是例示藉由溫度調整單元加熱的透鏡上的溫度分佈的視圖;[FIG. 3A and FIG. 3B] are views illustrating temperature distribution on the lens heated by the temperature adjustment unit;

[圖4]是例示穿過掃描曝光設備的投影光學系統的透鏡之光束的分佈的視圖;[ Fig. 4 ] is a view illustrating distribution of light beams passing through lenses of a projection optical system of a scanning exposure apparatus;

[圖5]是例示像散的變化的時間特性的圖表;[ FIG. 5 ] is a graph illustrating the temporal characteristics of changes in astigmatism;

[圖6A和圖6B]是例示根據第一實施例的曝光設備的投影光學系統中的像差的校正的圖表;[ FIGS. 6A and 6B ] are graphs illustrating correction of aberrations in the projection optical system of the exposure apparatus according to the first embodiment;

[圖7A和圖7B]是顯示根據第一實施例的曝光設備的投影光學系統中的像差的校正的範例的視圖;[FIG. 7A and FIG. 7B] are views showing an example of correction of aberration in the projection optical system of the exposure apparatus according to the first embodiment;

[圖8A和圖8B]是顯示根據第二實施例的曝光設備的投影光學系統中的像差的校正的圖表;[ FIGS. 8A and 8B ] are graphs showing correction of aberrations in the projection optical system of the exposure apparatus according to the second embodiment;

[圖9A和圖9B]是顯示根據第三實施例的曝光設備的投影光學系統中的像差的校正的圖表;[ FIGS. 9A and 9B ] are graphs showing correction of aberrations in the projection optical system of the exposure apparatus according to the third embodiment;

[圖10]是例示根據第三實施例的曝光設備中的像散以外的像差分量的圖表;以及[ Fig. 10 ] is a graph illustrating aberration components other than astigmatism in the exposure apparatus according to the third embodiment; and

[圖11]是例示根據第四實施例的加熱器元件的佈置和佈局的視圖。 [ Fig. 11 ] is a view illustrating the arrangement and layout of heater elements according to the fourth embodiment.

601:電流 601: Current

602:電流 602: current

Claims (32)

一種曝光設備,其執行曝光操作,以經由投影光學系統對基板進行曝光,該曝光設備包括:溫度調整單元,被配置成藉由向該投影光學系統的光學元件施加熱能來控制該光學元件上的溫度分佈,其中,在執行該曝光操作的第一時段中,該溫度調整單元操作來減少由於執行該曝光操作而引起的該投影光學系統的像差的變化,並且在該第一時段之後且不執行該曝光操作的第二時段中,該溫度調整單元操作來減少由於不執行該曝光操作而引起的像差的變化,使得向該光學元件所施加的該熱能根據從該第二時段的開始起所經過的時間而逐漸地減少。 An exposure apparatus that performs an exposure operation to expose a substrate via a projection optical system, the exposure apparatus includes: a temperature adjustment unit configured to control the temperature on the optical element of the projection optical system by applying thermal energy to the optical element. a temperature distribution, wherein, during a first period in which the exposure operation is performed, the temperature adjustment unit operates to reduce a change in aberration of the projection optical system caused by performing the exposure operation, and after the first period and without During the second period during which the exposure operation is performed, the temperature adjustment unit operates to reduce a variation in aberration caused by not performing the exposure operation such that the thermal energy applied to the optical element is gradually decreases over time. 如請求項1所述的曝光設備,其中,在該第一時段中其上的該溫度分佈藉由該溫度調整單元來控制的該光學元件與在該第二時段中其上的該溫度分佈藉由該溫度調整單元來控制的該光學元件是相同的。 The exposure apparatus as described in claim 1, wherein the optical element on which the temperature distribution in the first period is controlled by the temperature adjusting unit and the temperature distribution thereon in the second period are by The optical elements controlled by the temperature adjustment unit are identical. 如請求項2所述的曝光設備,其中,在該第一時段中藉由該溫度調整單元施加到該光學元件的該溫度分佈與在該第二時段中藉由該溫度調整單元施加到該光學元件的該溫度分佈具有相反的相位。 The exposure apparatus according to claim 2, wherein the temperature distribution applied to the optical element by the temperature adjustment unit during the first period is the same as that applied to the optical element by the temperature adjustment unit during the second period. This temperature distribution of the element has an opposite phase. 如請求項1所述的曝光設備,其中,該溫度調整單元包括第一溫度控制器以及第二溫度控制器,並且其中,在該第一時段中,該第一溫度控制器根據對應 到從該第一時段的開始起所經過的時間的命令值來控制該光學元件上的該溫度分佈,並且在該第二時段中,該第二溫度控制器根據對應到從該第二時段的該開始起所經過的時間的命令值來控制該光學元件上的該溫度分佈。 The exposure equipment according to claim 1, wherein the temperature adjustment unit includes a first temperature controller and a second temperature controller, and wherein, in the first period, the first temperature controller according to the corresponding to control the temperature distribution on the optical element according to the command value of the elapsed time from the start of the first period, and in the second period, the second temperature controller according to the The command value of the elapsed time from start controls the temperature distribution on the optical element. 如請求項1所述的曝光設備,其中,在該第一時段中,該溫度調整單元產生熱,以便減少由於執行該曝光操作而引起的該像差的該變化,並且在該第二時段中,該溫度調整單元產生熱,以便減少由於不執行該曝光操作而引起的該像差的該變化。 The exposure apparatus as claimed in claim 1, wherein, during the first period, the temperature adjustment unit generates heat so as to reduce the variation of the aberration caused by performing the exposure operation, and during the second period , the temperature adjustment unit generates heat in order to reduce the variation of the aberration caused by not performing the exposure operation. 如請求項1所述的曝光設備,其中,該溫度調整單元包括第一溫度控制器以及第二溫度控制器,並且其中,在該第一時段中,該第一溫度控制器和該第二溫度控制器操作以便減少該投影光學系統的該像差的該變化,並且在該第二時段中,該第一溫度控制器和該第二溫度控制器操作以便減少該投影光學系統的該像差的該變化。 The exposure equipment according to claim 1, wherein the temperature adjustment unit includes a first temperature controller and a second temperature controller, and wherein, during the first period, the first temperature controller and the second temperature the controller operates so as to reduce the variation of the aberration of the projection optical system, and during the second period, the first temperature controller and the second temperature controller operate so as to reduce the variation of the aberration of the projection optical system The change. 如請求項6所述的曝光設備,其中,在該第一時段和該第二時段中,該第一溫度控制器和該第二溫度控制器操作以使得在允許該像差在預定範圍內改變的同時,該像差不會落在該預定範圍之外。 The exposure apparatus as described in claim 6, wherein, in the first period and the second period, the first temperature controller and the second temperature controller operate so that the aberration is allowed to change within a predetermined range At the same time, the aberration will not fall outside the predetermined range. 如請求項1所述的曝光設備,其中,該溫度調整單元包括第一溫度控制器以及第二溫度控制器,並 且其中,該第一溫度控制器被佈置在其上的該溫度分佈藉由該第一溫度控制器來控制的該光學元件的有效直徑的外側,且該第二溫度控制器被佈置在其上的該溫度分佈藉由該第二溫度控制器來控制的該光學元件的有效直徑的外側。 The exposure equipment according to claim 1, wherein the temperature adjustment unit includes a first temperature controller and a second temperature controller, and And wherein, the first temperature controller is arranged outside the effective diameter of the optical element on which the temperature distribution is controlled by the first temperature controller, and the second temperature controller is arranged thereon The temperature distribution is controlled by the second temperature controller outside the effective diameter of the optical element. 如請求項1所述的曝光設備,其中,該溫度調整單元減少作為該像差的澤尼克多項式(Zernike polynomial)的Nθ個分量中的至少一個,其中,N為自然數。 The exposure apparatus according to claim 1, wherein the temperature adjusting unit reduces at least one of Nθ components of a Zernike polynomial (Zernike polynomial) of the aberration, where N is a natural number. 如請求項1所述的曝光設備,其中,該溫度調整單元減少作為該像差的像散。 The exposure apparatus according to claim 1, wherein the temperature adjusting unit reduces astigmatism as the aberration. 如請求項1所述的曝光設備,其中,該第一時段是從對基板的最初曝光操作的開始到對該基板的最後曝光操作的結束的時段。 The exposure apparatus according to claim 1, wherein the first period is a period from a start of an initial exposure operation on the substrate to an end of a final exposure operation on the substrate. 如請求項11所述的曝光設備,其中,該第二時段是從對該基板的該最後曝光操作的該結束開始的時段。 The exposure apparatus as claimed in claim 11, wherein the second period is a period from the end of the last exposure operation to the substrate. 如請求項1所述的曝光設備,其中,該第一時段是從對第一批的第一個基板的最初曝光操作的開始到對該第一批的最後一個基板的最後曝光操作的結束的時段。 The exposure apparatus as claimed in claim 1, wherein the first time period is from the beginning of the initial exposure operation on the first substrate of the first batch to the end of the last exposure operation on the last substrate of the first batch time period. 如請求項13所述的曝光設備,其中,該第二時段是從對該第一批的該最後一個基板的該最後曝光 操作的該結束到對該第一批之後的第二批的該第一個基板的該最初曝光操作的該開始的時段。 The exposure apparatus as claimed in claim 13, wherein the second period is from the last exposure of the last substrate of the first batch The period from the end of operation to the start of the initial exposure operation of the first substrate of the second batch following the first batch. 一種曝光方法,其執行曝光操作,以經由投影光學系統對基板進行曝光,該曝光方法包括:執行第一處理,以在執行該曝光操作的第一時段中,藉由使用溫度調整單元來控制該投影光學系統的光學元件上的溫度分佈,使得由於執行該曝光操作而引起的該投影光學系統的像差的變化將藉由向該光學元件施加熱能而被減少,以及執行第二處理,以在該第一時段之後且不執行該曝光操作的第二時段中,藉由使用該溫度調整單元來控制該光學元件上的溫度分佈,使得由於不執行該曝光操作而引起的該投影光學系統的像差的變化將會被減少,使得向該光學元件所施加的該熱能根據從該第二時段的開始起所經過的時間而逐漸地減少。 An exposure method that performs an exposure operation to expose a substrate through a projection optical system, the exposure method includes: performing a first process to control the a temperature distribution on the optical elements of the projection optical system such that variations in aberrations of the projection optical system due to performing the exposure operation will be reduced by applying thermal energy to the optical elements, and performing a second process to After the first period and during the second period when the exposure operation is not performed, by using the temperature adjustment unit to control the temperature distribution on the optical element, the image of the projection optical system caused by not performing the exposure operation Poor variations will be reduced such that the thermal energy applied to the optical element is gradually reduced according to the time elapsed from the start of the second period. 如請求項15所述的曝光方法,其中,在執行該第一處理時之其上的該溫度分佈被控制的該光學元件與在執行該第二處理時之其上的該溫度分佈被控制的該光學元件是相同的。 The exposure method according to claim 15, wherein the optical element on which the temperature distribution is controlled when the first process is performed and the optical element on which the temperature distribution is controlled when the second process is performed The optics are identical. 如請求項16所述的曝光方法,其中,在執行該第一處理時被施加到該光學元件的該溫度分佈與在執行該第二處理時被施加到該光學元件的該溫度分佈具有相反的相位。 The exposure method as set forth in claim 16, wherein the temperature distribution applied to the optical element when the first process is performed has an opposite direction to the temperature distribution applied to the optical element when the second process is performed. phase. 如請求項15所述的曝光方法,其中,該 溫度調整單元包括第一溫度控制器以及第二溫度控制器,並且其中,在執行該第一處理時,根據對應到從該第一時段的開始起所經過的時間的命令值來控制該第一溫度控制器,並且在執行該第二處理時,根據對應到從該第二時段的開始起所經過的時間的命令值來控制該第二溫度控制器。 The exposure method according to claim 15, wherein the The temperature adjusting unit includes a first temperature controller and a second temperature controller, and wherein, when performing the first process, the first temperature controller is controlled according to a command value corresponding to an elapsed time from the start of the first period a temperature controller, and when the second process is performed, the second temperature controller is controlled according to a command value corresponding to an elapsed time from the start of the second period. 如請求項15所述的曝光方法,其中,該溫度調整單元包括第一溫度控制器以及第二溫度控制器,並且其中,在執行該第一處理時,該第一溫度控制器產生熱,以便減少由於執行該曝光操作而引起的該像差的該變化,並且在執行該第二處理時,該第二溫度控制器產生熱,以便減少由於不執行該曝光操作而引起的該像差的該變化。 The exposure method according to claim 15, wherein the temperature adjustment unit includes a first temperature controller and a second temperature controller, and wherein, when performing the first process, the first temperature controller generates heat so that reducing the variation of the aberration caused by performing the exposure operation, and when performing the second process, the second temperature controller generates heat so as to reduce the variation of the aberration caused by not performing the exposure operation Variety. 如請求項15所述的曝光方法,其中,該溫度調整單元包括第一溫度控制器以及第二溫度控制器,並且其中,在執行該第一處理時,該第一溫度控制器和該第二溫度控制器被控制,以便減少該投影光學系統的該像差的該變化,並且在執行該第二處理時,該第一溫度控制器和該第二溫度控制器被控制,以便減少該投影光學系統的該像差的該變化。 The exposure method according to claim 15, wherein the temperature adjusting unit includes a first temperature controller and a second temperature controller, and wherein, when performing the first process, the first temperature controller and the second A temperature controller is controlled so as to reduce the variation of the aberration of the projection optical system, and while performing the second process, the first temperature controller and the second temperature controller are controlled so as to reduce the variation of the projection optical system This change in the aberration of the system. 如請求項20所述的曝光方法,其中,在執行該第一處理和執行該第二處理時,該第一溫度控制器和該第二溫度控制器被控制,以使得在允許該像差在預定範圍內改變的同時,該像差不會落在該預定範圍之外。 The exposure method according to claim 20, wherein, when performing the first process and performing the second process, the first temperature controller and the second temperature controller are controlled so that the aberration is allowed to be While changing within a predetermined range, the aberration will not fall outside the predetermined range. 如請求項15所述的曝光方法,其中,該溫度調整單元包括第一溫度控制器以及第二溫度控制器,並且其中,該第一溫度控制器被佈置在其上的該溫度分佈藉由該第一溫度控制器來控制的該光學元件的有效直徑的外側,且該第二溫度控制器被佈置在其上的該溫度分佈藉由該第二溫度控制器來控制的該光學元件的有效直徑的外側。 The exposure method as claimed in claim 15, wherein the temperature adjustment unit includes a first temperature controller and a second temperature controller, and wherein the temperature distribution on which the first temperature controller is arranged is controlled by the The outer side of the effective diameter of the optical element controlled by the first temperature controller, and the temperature distribution on which the second temperature controller is arranged is controlled by the effective diameter of the optical element by the second temperature controller outside. 如請求項15所述的曝光方法,其中,在執行該第一處理和執行該第二處理時,作為該像差的澤尼克多項式的Nθ個分量中的至少一個被減少,其中,N為自然數。 The exposure method according to claim 15, wherein at least one of the Nθ components of the Zernike polynomial as the aberration is reduced when performing the first process and performing the second process, where N is a natural number. 如請求項15所述的曝光方法,其中,在執行該第一處理和執行該第二處理時,作為該像差的像散被減少。 The exposure method according to claim 15, wherein astigmatism which is the aberration is reduced when the first process is performed and the second process is performed. 如請求項15所述的曝光方法,其中,該第一時段是從對基板的最初曝光操作的開始到對該基板的最後曝光操作的結束的時段。 The exposure method as claimed in claim 15, wherein the first period is a period from the start of an initial exposure operation on the substrate to the end of a final exposure operation on the substrate. 如請求項25所述的曝光方法,其中,該第二時段是從對該基板的該最後曝光操作的該結束開始的 時段。 The exposure method as claimed in claim 25, wherein the second period starts from the end of the last exposure operation to the substrate time period. 如請求項15所述的曝光方法,其中,該第一時段是從對第一批的第一個基板的最初曝光操作的開始到對該第一批的最後一個基板的最後曝光操作的結束的時段。 The exposure method as claimed in claim 15, wherein the first time period is from the beginning of the initial exposure operation on the first substrate of the first batch to the end of the last exposure operation on the last substrate of the first batch time period. 如請求項27所述的曝光方法,其中,該第二時段是從對該第一批的該最後一個基板的該最後曝光操作的該結束到對該第一批之後的第二批的該第一個基板的該最初曝光操作的該開始的時段。 The exposure method as claimed in claim 27, wherein the second period is from the end of the last exposure operation of the last substrate of the first batch to the second of the second batch following the first batch. The start period of the initial exposure operation of a substrate. 一種製造物品的方法,該方法包括:藉由根據請求項1至28中的任一項所界定的曝光設備對基板進行曝光;顯影在該曝光中被曝光的該基板;以及處理在該顯影中被顯影的該基板,其中,從在該處理中被處理的該基板獲得該物品。 A method of manufacturing an article, the method comprising: exposing a substrate by means of an exposure apparatus as defined in any one of claims 1 to 28; developing the substrate exposed in the exposing; and processing the substrate exposed in the developing The substrate being developed, wherein the article is obtained from the substrate processed in the process. 一種曝光設備,其執行曝光操作,以經由投影光學系統對基板進行曝光,該曝光設備包括:溫度調整器,其包括被佈置在彼此不同的位置處的第一溫度控制器以及第二溫度控制器,該溫度調整器被配置來控制該投影光學系統的光學元件上的溫度分佈,其中,該溫度調整器控制該第一溫度控制器去控制該光學元件的第一區域的加熱,並控制該第二溫度控制器去控制該光學元件的第二區域的加熱,該第二區域不同於該第一區域,使得: 在執行該曝光操作的第一時段中,該光學元件具有第一非均勻溫度分佈,以減少由於執行該曝光操作而引起的該投影光學系統的像差的變化;並且在該第一時段之後且不執行該曝光操作的第二時段中,該光學元件具有第二非均勻溫度分佈,以減少由於不執行該曝光操作而引起的該投影光學系統的像差的變化。 An exposure apparatus that performs an exposure operation to expose a substrate via a projection optical system, the exposure apparatus includes: a temperature adjuster including a first temperature controller and a second temperature controller arranged at positions different from each other , the temperature regulator is configured to control the temperature distribution on the optical element of the projection optical system, wherein the temperature regulator controls the first temperature controller to control the heating of the first region of the optical element, and controls the second two temperature controllers to control the heating of a second region of the optical element, the second region being different from the first region such that: During a first period of performing the exposure operation, the optical element has a first non-uniform temperature distribution to reduce variations in aberrations of the projection optical system caused by performing the exposure operation; and after the first period and During the second period when the exposure operation is not performed, the optical element has a second non-uniform temperature distribution to reduce the variation of the aberration of the projection optical system caused by not performing the exposure operation. 一種曝光方法,其執行曝光操作,以經由投影光學系統對基板進行曝光,該投影光學系統包括溫度調整器,該溫度調整器包括被佈置在彼此不同的位置處的第一溫度控制器以及第二溫度控制器,該溫度調整器被配置來控制該投影光學系統的光學元件上的溫度分佈,該曝光方法包括:控制該溫度調整器,在執行該曝光操作的第一時段中,使得該光學元件具有第一非均勻溫度分佈,以減少由於執行該曝光操作而引起的該投影光學系統的像差的變化;以及控制該溫度調整器,在該第一時段之後且不執行該曝光操作的第二時段中,使得該光學元件具有第二非均勻溫度分佈,以減少由於不執行該曝光操作而引起的該投影光學系統的像差的變化,其中,藉由控制該第一溫度控制器來控制該光學元件的第一區域的加熱以及控制該第二溫度控制器來控制該光學元件的第二區域的加熱,該光學元件具有該第一非均勻溫度分佈及該第二非均勻溫度分佈,該第二區域不同於該 第一區域。 An exposure method that performs an exposure operation to expose a substrate via a projection optical system including a temperature adjuster including a first temperature controller and a second temperature controller arranged at positions different from each other. a temperature controller configured to control a temperature distribution on an optical element of the projection optical system, and the exposure method includes: controlling the temperature adjuster so that the optical element having a first non-uniform temperature distribution to reduce variation in aberration of the projection optical system due to performing the exposure operation; and controlling the temperature adjuster so that after the first period of time and the second During the period, the optical element has a second non-uniform temperature distribution to reduce the variation of the aberration of the projection optical system caused by not performing the exposure operation, wherein the first temperature controller is controlled to control the heating of a first region of an optical element and controlling the second temperature controller to control heating of a second region of the optical element having the first non-uniform temperature distribution and the second non-uniform temperature distribution, the first The second area is different from the first area. 一種製造物品的方法,該方法包括:經由投影光學系統對基板進行曝光,該投影光學系統包括溫度調整器,該溫度調整器包括被佈置在彼此不同的位置處的第一溫度控制器以及第二溫度控制器,該溫度調整器被配置來控制該投影光學系統的光學元件上的溫度分佈;從被曝光的該基板獲得該物品;控制該溫度調整器,在執行該基板的該曝光的第一時段中,使得該光學元件具有第一非均勻溫度分佈,以減少由於執行該曝光操作而引起的該投影光學系統的像差的變化;以及控制該溫度調整器,在該第一時段之後且不執行該曝光操作的第二時段中,使得該光學元件具有第二非均勻溫度分佈,以減少由於不執行該曝光操作而引起的該投影光學系統的像差的變化,其中,藉由控制該第一溫度控制器來控制該光學元件的第一區域的加熱以及控制該第二溫度控制器來控制該光學元件的第二區域的加熱,該光學元件具有該第一非均勻溫度分佈及該第二非均勻溫度分佈,該第二區域不同於該第一區域。A method of manufacturing an article, the method comprising: exposing a substrate via a projection optical system including a temperature adjuster including a first temperature controller and a second temperature controller arranged at positions different from each other. a temperature controller, the temperature regulator configured to control a temperature distribution on the optical elements of the projection optical system; obtaining the article from the substrate being exposed; controlling the temperature regulator, in performing the first exposure of the substrate during a period so that the optical element has a first non-uniform temperature distribution to reduce variations in the aberration of the projection optical system caused by performing the exposure operation; and controlling the temperature adjuster after the first period and without During the second period during which the exposure operation is performed, the optical element has a second non-uniform temperature distribution to reduce the variation of the aberration of the projection optical system caused by not performing the exposure operation, wherein, by controlling the first a temperature controller to control the heating of the first region of the optical element and the second temperature controller to control the heating of the second region of the optical element having the first non-uniform temperature distribution and the second Non-uniform temperature distribution, the second zone being different from the first zone.
TW109119830A 2019-06-25 2020-06-12 Exposure apparatus, exposure method, and method of manufacturing article TWI795646B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019117714 2019-06-25
JP2019-117714 2019-06-25
JP2020068731A JP6951498B2 (en) 2019-06-25 2020-04-07 Exposure equipment, exposure method and article manufacturing method
JP2020-068731 2020-04-07

Publications (2)

Publication Number Publication Date
TW202109202A TW202109202A (en) 2021-03-01
TWI795646B true TWI795646B (en) 2023-03-11

Family

ID=74099408

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109119830A TWI795646B (en) 2019-06-25 2020-06-12 Exposure apparatus, exposure method, and method of manufacturing article

Country Status (3)

Country Link
JP (2) JP6951498B2 (en)
KR (1) KR20210000667A (en)
TW (1) TWI795646B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5805273A (en) * 1994-04-22 1998-09-08 Canon Kabushiki Kaisha Projection exposure apparatus and microdevice manufacturing method
US20050140947A1 (en) * 2003-12-12 2005-06-30 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method
TW200923594A (en) * 2007-10-09 2009-06-01 Zeiss Carl Smt Ag Device for controlling temperature of an optical element

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19807094A1 (en) * 1998-02-20 1999-08-26 Zeiss Carl Fa Optical arrangement and projection exposure system of microlithography with passive thermal compensation
JP2002373848A (en) * 2001-06-15 2002-12-26 Canon Inc Method and device for measuring surface state of substrate holder
JP2003234276A (en) 2002-02-07 2003-08-22 Nikon Corp Exposure device and optical device, manufacturing method of device
JP2005051147A (en) 2003-07-31 2005-02-24 Nikon Corp Exposure method and exposure device
KR101328356B1 (en) * 2004-02-13 2013-11-11 가부시키가이샤 니콘 Exposure method and system, and device production method
JP2005311020A (en) 2004-04-21 2005-11-04 Nikon Corp Exposure method and method of manufacturing device
JP2006073584A (en) * 2004-08-31 2006-03-16 Nikon Corp Exposure apparatus and exposure method, and device manufacturing method
JP5266641B2 (en) * 2004-08-31 2013-08-21 株式会社ニコン Exposure apparatus and device manufacturing method
US20080204682A1 (en) * 2005-06-28 2008-08-28 Nikon Corporation Exposure method and exposure apparatus, and device manufacturing method
JP2007317847A (en) * 2006-05-25 2007-12-06 Nikon Corp Aligner, and manufacturing method of device
US20080049202A1 (en) 2006-08-22 2008-02-28 Carl Zeiss Smt Ag Projection exposure apparatus for semiconductor lithography
JP2008130827A (en) * 2006-11-21 2008-06-05 Matsushita Electric Ind Co Ltd Method and device for exposure
DE102008040218A1 (en) * 2007-07-11 2009-01-15 Carl Zeiss Smt Ag Optical device e.g. illumination system, operating method for use in projection exposure system, involves storing element such that no parasitic adjustments or changes of element develop during or after rotation in imaging characteristics
NL2005449A (en) 2009-11-16 2012-04-05 Asml Netherlands Bv Lithographic method and apparatus.
JP5861973B2 (en) 2012-02-04 2016-02-16 カール・ツァイス・エスエムティー・ゲーエムベーハー Method of operating a microlithographic projection exposure apparatus and projection objective of such an apparatus
WO2016087388A1 (en) 2014-12-02 2016-06-09 Asml Netherlands B.V. Lithographic method and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5805273A (en) * 1994-04-22 1998-09-08 Canon Kabushiki Kaisha Projection exposure apparatus and microdevice manufacturing method
US20050140947A1 (en) * 2003-12-12 2005-06-30 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method
TW200923594A (en) * 2007-10-09 2009-06-01 Zeiss Carl Smt Ag Device for controlling temperature of an optical element

Also Published As

Publication number Publication date
JP6951498B2 (en) 2021-10-20
JP2021185442A (en) 2021-12-09
JP2021005073A (en) 2021-01-14
JP7457678B2 (en) 2024-03-28
TW202109202A (en) 2021-03-01
KR20210000667A (en) 2021-01-05

Similar Documents

Publication Publication Date Title
US9348235B2 (en) Exposure apparatus and method of manufacturing device
US9383660B2 (en) Exposure apparatus and method of manufacturing device
US9513564B2 (en) Exposure method, exposure apparatus, and device manufacturing method
JPH09232213A (en) Projection aligner
JP6039932B2 (en) Exposure apparatus, exposure method, and article manufacturing method
CN112130421B (en) Exposure apparatus, exposure method, and method of manufacturing article
JP5094517B2 (en) Exposure apparatus, measurement method, stabilization method, and device manufacturing method
TWI795646B (en) Exposure apparatus, exposure method, and method of manufacturing article
US11640119B2 (en) Exposure method, exposure apparatus, article manufacturing method, and method of manufacturing semiconductor device
US20220373899A1 (en) Projection exposure apparatus with a thermal manipulator
JP3632264B2 (en) X-ray projection exposure apparatus
JPH05347239A (en) Projection aligner and manufacture of semiconductor element using same
JP7022531B2 (en) Exposure method, exposure equipment, and manufacturing method of goods
JPWO2004034447A1 (en) Reflective mirror for ultrashort ultraviolet optical system, ultrashort ultraviolet optical system, method of using ultrashort ultraviolet optical system, method of manufacturing ultrashort ultraviolet optical system, ultrashort ultraviolet exposure device, and method of using ultrashort ultraviolet exposure device
JP2023073020A (en) Exposure device and method for producing article
JP2022089012A (en) Exposure device, exposure method and method for manufacturing article
TWI772756B (en) Exposure apparatus and article manufacturing method
JP2014157892A (en) Exposure apparatus and process of manufacturing device using the same
TW202343157A (en) Exposure apparatus, exposure method, and article manufacturing method
KR20230031885A (en) Methods for thermo-mechanical control of heat-sensitive elements and devices for use in lithographic production processes
JP2020148865A5 (en)