TWI795220B - Optical sensor - Google Patents

Optical sensor Download PDF

Info

Publication number
TWI795220B
TWI795220B TW111106554A TW111106554A TWI795220B TW I795220 B TWI795220 B TW I795220B TW 111106554 A TW111106554 A TW 111106554A TW 111106554 A TW111106554 A TW 111106554A TW I795220 B TWI795220 B TW I795220B
Authority
TW
Taiwan
Prior art keywords
optical sensor
pixels
light source
distance
edge
Prior art date
Application number
TW111106554A
Other languages
Chinese (zh)
Other versions
TW202301718A (en
Inventor
鄧仲豪
黃保順
吳高彬
張鴻德
Original Assignee
義明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 義明科技股份有限公司 filed Critical 義明科技股份有限公司
Priority to CN202210233871.2A priority Critical patent/CN114755736A/en
Publication of TW202301718A publication Critical patent/TW202301718A/en
Application granted granted Critical
Publication of TWI795220B publication Critical patent/TWI795220B/en

Links

Images

Abstract

An optical sensor has a first edge extending in a first direction and a second edge extending in a second direction, wherein the length of the first edge is greater than the length of the second edge. The optical sensor includes a plurality of pixels and a main control unit. The plurality of pixels is used to sense ambient light, wherein the plurality of pixels are arranged along the second direction and each of the plurality of pixels extends along the first direction. The main control unit couples the plurality of pixels and closes at least one of the plurality of pixels according to a setting parameter.

Description

光學感測器optical sensor

本發明是有關一種光學感測器,特別是關於一種應用在極窄細縫的光學感測器。 The present invention relates to an optical sensor, in particular to an optical sensor applied to extremely narrow slits.

圖1顯示傳統的智慧型手機10,其包括一螢幕12、一殼體14及一光學感測器16,光學感測器16位在螢幕12及殼體14之間的細縫18中。圖2顯示一傳統的光學感測器16,其包括一環境光感測器(Ambient Light Sensor;ALS)162以及一近接感測器(Proximity Sensor;PS)164。智慧型手機10周遭的環境光可以通過細縫18到達環境光感測器162。環境光感測器162具有多個像素1622用以感測環境光的強度。環境光感測器162根據環境光的強度產生一亮度資料,供智慧型手機10調節螢幕12的亮度。近接感測器164具有多個像素1642及一光源1644。光源1644從光學感測器16的發射孔166發送一光線經由細縫18到智慧型手機10的外部。當該光線被一物體反射並通過細縫18回到近接感測器164時,近接感測器164的像素1642會感測物體所反射的光線強度,進而產生一距離資料供智慧型手機10判斷是否有物體靠近。 FIG. 1 shows a conventional smart phone 10 , which includes a screen 12 , a housing 14 and an optical sensor 16 . The optical sensor 16 is located in a slit 18 between the screen 12 and the housing 14 . FIG. 2 shows a conventional optical sensor 16 , which includes an ambient light sensor (Ambient Light Sensor; ALS) 162 and a proximity sensor (Proximity Sensor; PS) 164 . The ambient light around the smartphone 10 can reach the ambient light sensor 162 through the slit 18 . The ambient light sensor 162 has a plurality of pixels 1622 for sensing the intensity of ambient light. The ambient light sensor 162 generates brightness data according to the intensity of ambient light for the smart phone 10 to adjust the brightness of the screen 12 . The proximity sensor 164 has a plurality of pixels 1642 and a light source 1644 . The light source 1644 sends a light from the emission hole 166 of the optical sensor 16 to the outside of the smart phone 10 through the slit 18 . When the light is reflected by an object and returns to the proximity sensor 164 through the slit 18, the pixel 1642 of the proximity sensor 164 will sense the light intensity reflected by the object, and then generate a distance data for the smart phone 10 to judge. Whether there is an object approaching.

在細縫18的寬度W1非常小(例如小於0.8mm)時,目前的光學感測器16便有可能因公差產生不正確的感測結果。請參照圖3及圖4,假設細縫18的寬度W1為0.4mm時,一旦細縫18的位置因公差出現偏移,光學感測器16的一部分可能會被螢幕12或殼體14遮擋。在圖4中,由於環境光感測器162的每一個像 素1622以及近接感測器164的每一個像素1642的延伸方向(Y)是垂直細縫18的長邊的延伸方向(X),因此在細縫18偏移時,所有的像素1622及1642都有一部分被殼體14遮擋因而無法感測光線,導致環境光感測器162以及近接感測器164的敏感度下降,無法獲得正確的感測結果。此外,發射孔166也可能部分或完全被遮擋,導致發出的光線部分或完全被殼體14擋住,進一步降低近接感測器164的敏感度,甚至可能造成智慧型手機10的製造良率下降。 When the width W1 of the slit 18 is very small (for example, less than 0.8 mm), the current optical sensor 16 may produce incorrect sensing results due to tolerances. Referring to FIG. 3 and FIG. 4 , assuming that the width W1 of the slit 18 is 0.4 mm, once the position of the slit 18 deviates due to tolerance, a part of the optical sensor 16 may be blocked by the screen 12 or the casing 14 . In FIG. 4, since each image of the ambient light sensor 162 The extension direction (Y) of each pixel 1642 of the pixel 1622 and the proximity sensor 164 is the extension direction (X) of the long side perpendicular to the slit 18, so when the slit 18 is offset, all the pixels 1622 and 1642 are A part is blocked by the casing 14 and thus cannot sense light, which reduces the sensitivity of the ambient light sensor 162 and the proximity sensor 164 , and cannot obtain correct sensing results. In addition, the emission hole 166 may be partially or completely blocked, resulting in the emitted light being partially or completely blocked by the housing 14 , further reducing the sensitivity of the proximity sensor 164 , and even causing a decrease in the manufacturing yield of the smart phone 10 .

因此,在現有的製造工藝下,要讓光學感測器在極窄細縫(0.4mm)中仍具有良好的敏感度,是一項極大的挑戰。 Therefore, under the existing manufacturing process, it is a great challenge to make the optical sensor have good sensitivity in an extremely narrow slit (0.4mm).

本發明的目的之一,在於提出一種應用在極窄細縫的光學感測器。 One of the objectives of the present invention is to provide an optical sensor applied to extremely narrow slits.

根據本發明,一種光學感測器,具有沿一第一方向延伸的一第一邊緣以及沿一第二方向延伸的一第二邊緣,其中該第一邊緣的長度大於該第二邊緣的長度。該光學感測器包括多個像素以及一主控單元。該多個像素是用以感測環境光,其中該多個像素沿著該第二方向排列,並且每一該像素沿該第一方向延伸。該主控單元耦接該多個像素並且根據一設定參數關閉該多個像素的至少一個。 According to the present invention, an optical sensor has a first edge extending along a first direction and a second edge extending along a second direction, wherein the length of the first edge is greater than the length of the second edge. The optical sensor includes a plurality of pixels and a main control unit. The plurality of pixels are used for sensing ambient light, wherein the plurality of pixels are arranged along the second direction, and each of the pixels extends along the first direction. The main control unit is coupled to the plurality of pixels and turns off at least one of the plurality of pixels according to a set parameter.

根據本發明,一種光學感測器,具有沿一第一方向延伸的一第一邊緣以及沿一第二方向延伸的一第二邊緣。該光學感測器包括一第一光源、一第二光源、多個第一像素以及一主控單元。該多個像素是用於感測該第一光源及/或該第二光源的反射光,其中該多個第一像素沿著該第二方向排列,並且每一該第一像素沿該第一方向延伸。該主控單元耦接該多個第一像素,並且根據一設定參數關閉該多個第一像素的至少一個以及控制該第一光源及該第二光源的亮度。 According to the present invention, an optical sensor has a first edge extending along a first direction and a second edge extending along a second direction. The optical sensor includes a first light source, a second light source, a plurality of first pixels and a main control unit. The plurality of pixels are used to sense the reflected light of the first light source and/or the second light source, wherein the plurality of first pixels are arranged along the second direction, and each of the first pixels is arranged along the first direction extension. The main control unit is coupled to the plurality of first pixels, and turns off at least one of the plurality of first pixels and controls brightness of the first light source and the second light source according to a set parameter.

本發明的光學感測器可以關閉被遮擋的第一像素及第一光源和第二光源,因此在極窄細縫中仍具有良好的敏感度。 The optical sensor of the present invention can turn off the blocked first pixel and the first light source and the second light source, so it still has good sensitivity in extremely narrow slits.

10:智慧型手機 10: Smartphone

12:螢幕 12: screen

14:殼體 14: Shell

16:光學感測器 16: Optical sensor

162:環境光感測器 162: Ambient light sensor

1622:像素 1622: pixels

164:近接感測器 164:Proximity sensor

1642:像素 1642: pixels

1644:光源 1644: light source

166:發射孔 166: launch hole

18:細縫 18: slit

20:基板 20: Substrate

22:中心線 22: Centerline

30:光學感測器 30: Optical sensor

32:環境光感測器 32: Ambient light sensor

322:像素 322: pixels

33:發射孔 33: launch hole

34:近接感測器 34:Proximity sensor

342:像素 342: pixels

344:光源 344: light source

346:光源 346: light source

35:發射孔 35: launch hole

36:晶片 36: Wafer

38:中心線 38: Centerline

40:控制系統 40: Control system

41:切換電路 41: Switching circuit

42:可編程增益放大器 42: Programmable gain amplifier

43:類比數位轉換器 43:Analog to digital converter

44:主控單元 44: Main control unit

45:電流控制器 45: Current controller

46:電流控制器 46: Current controller

47:傳輸介面 47: Transmission interface

50:處理器 50: Processor

60:細縫 60: slit

62:殼體 62: Shell

64:螢幕 64: screen

圖1顯示傳統的智慧型手機。 Figure 1 shows a conventional smartphone.

圖2顯示傳統的光學感測器在較寬細縫且細縫未偏移的示意圖。 FIG. 2 shows a schematic diagram of a conventional optical sensor in a wider slit without the slit being shifted.

圖3顯示傳統的光學感測器在極窄細縫且細縫未偏移的示意圖。 FIG. 3 shows a schematic diagram of a conventional optical sensor in a very narrow slit without the slit being shifted.

圖4顯示傳統的光學感測器在極窄細縫且細縫出現偏移的示意圖。 FIG. 4 shows a schematic diagram of a traditional optical sensor in a very narrow slit and the slit is shifted.

圖5顯示本發明光學感測器的實施例。 FIG. 5 shows an embodiment of the optical sensor of the present invention.

圖6用來說明本發明之光學感測器如何進行校正程序。 FIG. 6 is used to illustrate how the optical sensor of the present invention performs a calibration procedure.

圖7顯示本發明光學感測器應用在極窄細縫的實施例。 FIG. 7 shows an embodiment of the application of the optical sensor of the present invention in a very narrow slit.

圖5顯示本發明光學感測器的實施例。在圖5中,光學感測器30可以是一個封裝體,安裝於一基板20上,光學感測器30具有沿一第一方向X延伸的第一邊緣以及沿一第二方向Y延伸的第二邊緣,其中該第一邊緣的長度大於該第二邊緣的長度。基板20的長邊是沿第一方向X延伸,短邊沿第二方向Y方向延伸。光學感測器30包括一環境光感測器32以及一近接感測器34。環境光感測器32具有多個像素322。多個像素322位於晶片36上,用以感測環境光,其中多個像素322沿著第二方向Y排列,並且每一個像素322是沿第一方向X延伸。像素322可以是但不限於光二極體(photo diode)。近接感測器34具有多個像素342,以及二個光源344及346。多個像素342位於晶片36上,用以感測光源344及/或346所發出並經物體(圖中未示)反射的光線,其中多個像素342是沿著第二方向Y排列,並且每一個像素342是沿第一方向X延伸。像素342可以是但不限於光二極體。多個像素322可視為一感測單元,多個像素342可視為一感測單元。多個像素322與324 係沿著第一方向X相鄰設置。圖號38代表多個像素342與322在第二方向Y上的中心線,光源344及346分別位在中心線38的上方及下方。在一實施例中,光源344與中心線38在第二方向Y上的距離等於光源346與中心線38在第二方向Y上的距離。光學感測器30包括有封裝結構(圖中未示出)覆蓋多個像素322、342以及光源344與346。該封裝結構形成有發射孔33及35分別位在光源344及346上方,光源344發出的光線會通過發射孔33,光源346發出的光線會通過發射孔35。發射孔33在第二方向Y上靠近該中心線38,發射孔35在第二方向Y上靠近中心線38。光源344及346可以是但不限於垂直腔面射型雷射器(Vertical-Cavity Surface-Emitting Laser;VCSEL)。 FIG. 5 shows an embodiment of the optical sensor of the present invention. In FIG. 5, the optical sensor 30 may be a package mounted on a substrate 20, the optical sensor 30 has a first edge extending along a first direction X and a second edge extending along a second direction Y. Two edges, wherein the length of the first edge is greater than the length of the second edge. The long side of the substrate 20 extends along the first direction X, and the short side extends along the second direction Y. The optical sensor 30 includes an ambient light sensor 32 and a proximity sensor 34 . The ambient light sensor 32 has a plurality of pixels 322 . A plurality of pixels 322 are located on the chip 36 for sensing ambient light, wherein the plurality of pixels 322 are arranged along the second direction Y, and each pixel 322 extends along the first direction X. Pixel 322 may be, but is not limited to, a photo diode. The proximity sensor 34 has a plurality of pixels 342 and two light sources 344 and 346 . A plurality of pixels 342 are located on the chip 36 for sensing light emitted by the light source 344 and/or 346 and reflected by an object (not shown in the figure), wherein the plurality of pixels 342 are arranged along the second direction Y, and each A pixel 342 extends along the first direction X. Pixels 342 may be, but are not limited to, photodiodes. The plurality of pixels 322 can be regarded as a sensing unit, and the plurality of pixels 342 can be regarded as a sensing unit. multiple pixels 322 and 324 The systems are arranged adjacent to each other along the first direction X. The figure number 38 represents the centerline of the plurality of pixels 342 and 322 in the second direction Y, and the light sources 344 and 346 are respectively located above and below the centerline 38 . In one embodiment, the distance between the light source 344 and the centerline 38 in the second direction Y is equal to the distance between the light source 346 and the centerline 38 in the second direction Y. The optical sensor 30 includes a packaging structure (not shown) covering a plurality of pixels 322 , 342 and light sources 344 and 346 . The packaging structure is formed with emission holes 33 and 35 respectively located above the light sources 344 and 346 , the light emitted by the light source 344 passes through the emission hole 33 , and the light emitted by the light source 346 passes through the emission hole 35 . The emission hole 33 is close to the center line 38 in the second direction Y, and the emission hole 35 is close to the center line 38 in the second direction Y. The light sources 344 and 346 may be, but not limited to, vertical-cavity surface-emitting lasers (Vertical-Cavity Surface-Emitting Lasers; VCSELs).

在圖5中,基板20在第二方向Y上的中心線22與感測單元的中心線38不重疊,但本發明不限於此。圖5中的像素322及342為長條狀,但本發明不限於此,像素322及342也可以是各種規則或不規則形狀。 In FIG. 5 , the centerline 22 of the substrate 20 in the second direction Y does not overlap with the centerline 38 of the sensing unit, but the invention is not limited thereto. The pixels 322 and 342 in FIG. 5 are strip-shaped, but the present invention is not limited thereto, and the pixels 322 and 342 may also be in various regular or irregular shapes.

在圖5的結構中,光學感測器30的上邊緣(即第一邊緣)與基板20的上邊緣在第二方向Y上具有距離G1。多個像素322及342在第二方向Y上具有一寬度G3,而且與光學感測器30的上邊緣及下邊緣(即第三邊緣)分別具有距離G2及G4,其中距離G4大於或等於距離G2。光源344及346在第一方向X上具有距離G5,在第二方向Y上有距離G6。發射孔33及35在第二方向Y上具有距離G7。在一實施例中,距離G1為75um~125um,距離G2大於或等於40um,距離G3為320um~400um,距離G5為300um~500um,距離G6為75um~150um,距離G7為200um。 In the structure of FIG. 5 , there is a distance G1 between the upper edge (ie, the first edge) of the optical sensor 30 and the upper edge of the substrate 20 in the second direction Y. The plurality of pixels 322 and 342 have a width G3 in the second direction Y, and have distances G2 and G4 from the upper edge and the lower edge (ie, the third edge) of the optical sensor 30, respectively, wherein the distance G4 is greater than or equal to the distance G2. The light sources 344 and 346 have a distance G5 in the first direction X and a distance G6 in the second direction Y. The emission holes 33 and 35 have a distance G7 in the second direction Y. In one embodiment, the distance G1 is 75um-125um, the distance G2 is greater than or equal to 40um, the distance G3 is 320um-400um, the distance G5 is 300um-500um, the distance G6 is 75um-150um, and the distance G7 is 200um.

在圖5中,光源344配置在光源346的左上方,但本發明不限於此,在其他實施例中,光源344可以配置在光源346的右上方,或者光源344及346可以對稱於中心線38配置。當光學感測器30安裝到智慧型手機(如圖7所示)的細縫中時,由於光學感測器30具有一上一下的二個光源344及346,因此就算細縫出 現最大公差的偏移(例如0.2mm),光學感測器30仍可確保其中一個光源的光線不被遮擋。圖5的光學感測器30只有二個光源344及346,但本發明的光學感測器30也可以具有超過二個的光源。 In FIG. 5 , the light source 344 is arranged on the upper left of the light source 346, but the present invention is not limited thereto. In other embodiments, the light source 344 can be arranged on the upper right of the light source 346, or the light sources 344 and 346 can be symmetrical to the central line 38 configuration. When the optical sensor 30 is installed in the slit of the smart phone (as shown in FIG. 7 ), since the optical sensor 30 has two light sources 344 and 346 one above the other, even if the slit appears Even with a deviation of the maximum tolerance (for example, 0.2mm), the optical sensor 30 can still ensure that the light of one of the light sources is not blocked. The optical sensor 30 in FIG. 5 has only two light sources 344 and 346 , but the optical sensor 30 of the present invention can also have more than two light sources.

圖6用來說明本發明之光學感測器30如何進行校正程序。在圖6中,光學感測器30更包括一切換電路41、多個可編程增益放大器(Programmable Gain Amplifier;PGA)42、多個類比數位轉換器43、一主控單元44、電流控制器45及46以及傳輸介面47。在一實施例中,切換電路41、多個可編程增益放大器42、多個類比數位轉換器43、主控單元44、電流控制器45及46以及傳輸介面47可以是與多個像素322與342整合在同一個晶片36中。光學感測器30的校正程序可以在智慧型手機組裝完成後只執行一次,也可以在智慧型手機每次開機時執行一次。校正程序的目的主要是要知道多個像素322與342中的哪些像素被遮擋。在校正的過程中,所有像素322與342的感測值經切換電路41、可編程增益放大器42、類比數位轉換器43、主控單元44及傳輸介面47傳送至外部的處理器50,處理器50根據該多個像素322與342的感測值判斷哪些像素的感測值異常,並產生一設定參數。在一實施例中,處理器50可以是智慧型手機的微控制器。經過校正程序之後,在安裝此光學感測器30的電子裝置(例如智慧型手機)運作時,處理器50經由傳輸介面47將該設定參數提供給主控單元47,主控單元47根據該設定參數將產出異常感測值或不需要的像素322及/或342關閉(disable)。更簡單的說,主控單元47根據該設定參數控制切換電路41連接哪些像素以讀出其感測值。 FIG. 6 is used to illustrate how the optical sensor 30 of the present invention performs a calibration procedure. In FIG. 6 , the optical sensor 30 further includes a switching circuit 41, a plurality of programmable gain amplifiers (Programmable Gain Amplifier; PGA) 42, a plurality of analog-to-digital converters 43, a main control unit 44, and a current controller 45 And 46 and transmission interface 47. In one embodiment, the switching circuit 41, the plurality of programmable gain amplifiers 42, the plurality of analog-to-digital converters 43, the main control unit 44, the current controllers 45 and 46, and the transmission interface 47 can be connected with the plurality of pixels 322 and 342 integrated in the same chip 36. The calibration procedure of the optical sensor 30 can be executed only once after the smart phone is assembled, or it can be executed once every time the smart phone is turned on. The purpose of the correction procedure is mainly to know which pixels among the plurality of pixels 322 and 342 are blocked. During the calibration process, the sensing values of all the pixels 322 and 342 are transmitted to the external processor 50 through the switching circuit 41, the programmable gain amplifier 42, the analog-to-digital converter 43, the main control unit 44 and the transmission interface 47, and the processor The 50 determines which pixels have abnormal sensing values according to the sensing values of the plurality of pixels 322 and 342 , and generates a setting parameter. In one embodiment, the processor 50 may be a microcontroller of a smartphone. After the calibration procedure, when the electronic device (such as a smart phone) on which the optical sensor 30 is installed operates, the processor 50 provides the setting parameters to the main control unit 47 through the transmission interface 47, and the main control unit 47 according to the setting The parameter will disable pixels 322 and/or 342 that produce abnormal sensed values or are not needed. To put it more simply, the main control unit 47 controls which pixels the switching circuit 41 is connected to read out their sensed values according to the set parameters.

在一實施例中,校正的過程還包括根據近接感測器34的每一個像素342的感測值,判斷發射孔33或35是否被遮檔。當處理器50判斷發射孔33或35被遮擋時,處理器50進一步控制主控單元44調整光源344或346的亮度,以產生光源344與346的設定值。舉例來說,當發射孔33被阻擋時,提供給光源346的電 流被加大以提高光源346的亮度。經過校正程序之後,在安裝此光學感測器30的電子裝置(例如智慧型手機)運作時,處理器50將光源344與346的設定值提供給主控單元44。主控單元44根據該設定值控制電流控制器45及46提供給光源344與346的電流,進而控制光源344與346的亮度。 In one embodiment, the calibration process further includes determining whether the emission hole 33 or 35 is blocked according to the sensing value of each pixel 342 of the proximity sensor 34 . When the processor 50 determines that the emission hole 33 or 35 is blocked, the processor 50 further controls the main control unit 44 to adjust the brightness of the light source 344 or 346 to generate the set value of the light source 344 and 346 . For example, when the emission hole 33 is blocked, the power supplied to the light source 346 The flow is increased to increase the brightness of the light source 346 . After the calibration procedure, the processor 50 provides the setting values of the light sources 344 and 346 to the main control unit 44 when the electronic device (such as a smart phone) on which the optical sensor 30 is installed operates. The main control unit 44 controls the currents provided by the current controllers 45 and 46 to the light sources 344 and 346 according to the set value, thereby controlling the brightness of the light sources 344 and 346 .

圖7顯示本發明光學感測器30應用在0.4mm的極窄細縫60的實施例,其中光學感測器30的每一個像素322和342的延伸方向(X)與細縫60長邊的延伸方向(X)相同。假設極窄細縫60是在殼體62及螢幕64之間,當細縫60向下偏移0.2mm時,如圖7所示,光學感測器30的像素322和342上方的四個以及光源344被殼體62遮擋。經過前述校正程序,處理器50能夠判斷多個像素342的上方四個像素以及光源344的發射孔33被遮擋。在此情況下,處理器50可以產生設定參數使得多個像素322的上方四個像素、多個像素342的上方四個像素以及光源344關閉。 FIG. 7 shows an embodiment in which the optical sensor 30 of the present invention is applied to a very narrow slit 60 of 0.4 mm, wherein the extension direction (X) of each pixel 322 and 342 of the optical sensor 30 is the same as that of the long side of the slit 60. The direction of extension (X) is the same. Assuming that the extremely narrow slit 60 is between the casing 62 and the screen 64, when the slit 60 is shifted downward by 0.2mm, as shown in FIG. The light source 344 is shielded by the housing 62 . After the aforementioned correction procedure, the processor 50 can determine that the upper four pixels of the plurality of pixels 342 and the emission hole 33 of the light source 344 are blocked. In this case, the processor 50 may generate setting parameters such that the upper four pixels of the plurality of pixels 322 , the upper four pixels of the plurality of pixels 342 and the light source 344 are turned off.

在圖7中,極窄細縫60的寬度W1為0.4mm,但隨著製造工藝的提升,極窄細縫60的寬度W1可以進一步縮小。 In FIG. 7 , the width W1 of the ultra-narrow slit 60 is 0.4 mm, but as the manufacturing process improves, the width W1 of the ultra-narrow slit 60 can be further reduced.

以上說明是以一包括近接感測器與環境光感測器的光學感測器30為例進行說明,但本發明並不以此為限。由以上描述可知,本發明與習知技藝的差異包括像素的延伸方向與細縫的延伸方向相同,並且因應多個像素被遮擋的情況,關閉該多個像素中的至少一個。 The above description takes an optical sensor 30 including a proximity sensor and an ambient light sensor as an example, but the present invention is not limited thereto. It can be seen from the above description that the difference between the present invention and the prior art includes that the extending direction of the pixels is the same as that of the slits, and at least one of the pixels is turned off in response to the blocking of multiple pixels.

本發明的光學感測器30可以在極窄細縫下仍具有良好的敏感度,換言之,使用本發明光學感測器30的電子裝置(例如智慧型手機)可以適應細縫寬度愈來愈小的趨勢。 The optical sensor 30 of the present invention can still have good sensitivity under extremely narrow slits. In other words, electronic devices (such as smart phones) using the optical sensor 30 of the present invention can adapt to the increasingly smaller slit width the trend of.

以上所述僅是本發明的實施例而已,並非對本發明做任何形式上的限制,雖然本發明已以實施例揭露如上,然而並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明技術方案的範圍內,當可利用 上述揭示的技術內容作出些許更動或修飾為等同變化的等效實施例,但凡是未脫離本發明技術方案的內容,依據本發明的技術實質對以上實施例所作的任何簡單修改、等同變化與修飾,均仍屬於本發明技術方案的範圍內。 The above description is only an embodiment of the present invention, and does not limit the present invention in any form. Although the present invention has been disclosed as above with the embodiment, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field, Without departing from the scope of the technical solution of the present invention, when available The technical contents disclosed above are slightly changed or modified into equivalent embodiments with equivalent changes, but any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention without departing from the content of the technical solution of the present invention , all still belong to the scope of the technical solution of the present invention.

20:基板 20: Substrate

22:中心線 22: Centerline

30:光學感測器 30: Optical sensor

32:環境光感測器 32: Ambient light sensor

322:像素 322: pixels

33:發射孔 33: launch hole

34:近接感測器 34:Proximity sensor

342:像素 342: pixels

344:光源 344: light source

346:光源 346: light source

35:發射孔 35: launch hole

36:晶片 36: Wafer

38:中心線 38: Centerline

Claims (19)

一種光學感測器,具有沿一第一方向延伸的第一邊緣以及沿一第二方向延伸的第二邊緣,該第一邊緣的長度大於該第二邊緣的長度,該光學感測器包括:一多個像素,用以感測環境光,該多個像素沿著該第二方向排列,並且每一該像素沿該第一方向延伸;以及一主控單元,耦接該多個像素,根據一設定參數關閉該多個像素的至少一個。 An optical sensor has a first edge extending along a first direction and a second edge extending along a second direction, the length of the first edge is greater than the length of the second edge, the optical sensor includes: a plurality of pixels for sensing ambient light, the plurality of pixels are arranged along the second direction, and each pixel extends along the first direction; and a main control unit is coupled to the plurality of pixels, according to A setting parameter turns off at least one of the plurality of pixels. 如請求項1的光學感測器,其中在該第二方向上,該多個像素相對於該光學感測器的該第一邊緣及一第三邊緣分別具有一第一距離及一第二距離,其中該第三邊緣沿該第一方向延伸並且與該第一邊緣相對,且該第二距離大於或等於該第一距離。 The optical sensor of claim 1, wherein in the second direction, the plurality of pixels have a first distance and a second distance with respect to the first edge and a third edge of the optical sensor, respectively , wherein the third edge extends along the first direction and is opposite to the first edge, and the second distance is greater than or equal to the first distance. 如請求項2的光學感測器,其中該第一距離大於或等於40um。 The optical sensor according to claim 2, wherein the first distance is greater than or equal to 40um. 如請求項2的光學感測器,其中該感測單元在該第二方向上的寬度為320um~400um。 The optical sensor according to claim 2, wherein the width of the sensing unit in the second direction is 320um˜400um. 如請求項1的光學感測器,其中每一該像素包括一光二極體。 The optical sensor according to claim 1, wherein each pixel includes a photodiode. 一種光學感測器,具有沿一第一方向延伸的第一邊緣以及沿一第二方向延伸的第二邊緣,該第一邊緣的長度大於該第二邊緣的長度,該光學感測器包括:一第一光源;一第二光源;多個第一像素,用於感測該第一光源及/或該第二光源的反射光,該多個第一像素沿著該第二方向排列,並且每一該第一像素沿該第一方向延伸;以及 一主控單元,耦接該多個第一像素,根據一設定參數關閉該多個第一像素的至少一個以及控制該第一光源及該第二光源的亮度。 An optical sensor has a first edge extending along a first direction and a second edge extending along a second direction, the length of the first edge is greater than the length of the second edge, the optical sensor includes: a first light source; a second light source; a plurality of first pixels for sensing reflected light of the first light source and/or the second light source, the plurality of first pixels are arranged along the second direction, and each of the first pixels extends along the first direction; and A master control unit, coupled to the plurality of first pixels, turns off at least one of the plurality of first pixels and controls brightness of the first light source and the second light source according to a set parameter. 如請求項6的光學感測器,其中在該第二方向上,該多個第一像素相對於該光學感測器的該第一邊緣及一第三邊緣分別具有一第一距離及一第二距離,其中該第三邊緣沿該第一方向延伸並且與該第一邊緣相對,且該第二距離大於或等於該第一距離。 The optical sensor according to claim 6, wherein in the second direction, the plurality of first pixels have a first distance and a first distance with respect to the first edge and a third edge of the optical sensor, respectively Two distances, wherein the third edge extends along the first direction and is opposite to the first edge, and the second distance is greater than or equal to the first distance. 如請求項7的光學感測器,其中該第一距離大於或等於40um。 The optical sensor according to claim 7, wherein the first distance is greater than or equal to 40um. 如請求項7的光學感測器,其中該多個第一像素在該第二方向上的寬度為320um~400um。 The optical sensor according to claim 7, wherein the width of the plurality of first pixels in the second direction is 320um˜400um. 如請求項6的光學感測器,其中每一該第一像素包括一光二極體。 The optical sensor as claimed in claim 6, wherein each of the first pixels includes a photodiode. 如請求項6的光學感測器,其中該第一光源位於該多個第一像素在該第二方向上的中心線的上方,該第二光源位於該中心線的下方。 The optical sensor according to claim 6, wherein the first light source is located above the centerline of the plurality of first pixels along the second direction, and the second light source is located below the centerline. 如請求項11的光學感測器,其中該中心線與該第一光源在該第二方向上的距離等於該中心線與該第二光源在該第二方向的距離。 The optical sensor according to claim 11, wherein the distance between the centerline and the first light source in the second direction is equal to the distance between the centerline and the second light source in the second direction. 如請求項6的光學感測器,其中該第一光源及該第二光源在該第一方向上的間距為300um~500um。 The optical sensor according to claim 6, wherein the distance between the first light source and the second light source in the first direction is 300um˜500um. 如請求項6的光學感測器,其中該第一光源及該第二光源在該第二方向上的間距為75um~150um。 The optical sensor according to claim 6, wherein the distance between the first light source and the second light source in the second direction is 75um˜150um. 如請求項11的光學感測器,更包括一第一發射孔與第二發射孔,該第一發射孔在該第一光源上方,供該第一光源的光線通過,該第二發射孔位於該第二光源上方,供該第二光源的光線通過,該第一發射孔在該第二方向上靠近該中心線,該第二發射孔在第二方向上靠近該中心線。 The optical sensor according to claim 11 further includes a first emission hole and a second emission hole, the first emission hole is above the first light source for the light of the first light source to pass through, and the second emission hole is located at Above the second light source for the light of the second light source to pass through, the first emission hole is close to the center line in the second direction, and the second emission hole is close to the center line in the second direction. 如請求項15的光學感測器,其中該第一發射孔與該第二發射孔在 該第二方向上的距離為200um。 The optical sensor according to claim 15, wherein the first emission hole and the second emission hole are in The distance in the second direction is 200um. 如請求項6的光學感測器,其中該第一光源或該第二光源包括一垂直腔面射型雷射器。 The optical sensor according to claim 6, wherein the first light source or the second light source comprises a vertical cavity surface-emitting laser. 如請求項6的光學感測器,更包括多個第二像素用以感測環境光,且該主控單元根據該設定參數關閉該多個第二像素的其中至少一個,其中該多個第二像素沿著該第二方向排列,並且每一該第二像素沿該第一方向延伸。 The optical sensor according to claim 6 further includes a plurality of second pixels for sensing ambient light, and the main control unit turns off at least one of the plurality of second pixels according to the set parameter, wherein the plurality of second pixels Two pixels are arranged along the second direction, and each second pixel extends along the first direction. 如請求項18的光學感測器,其中每一該第二像素包括一光二極體。 The optical sensor as claimed in claim 18, wherein each of the second pixels includes a photodiode.
TW111106554A 2021-06-23 2022-02-23 Optical sensor TWI795220B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210233871.2A CN114755736A (en) 2021-06-23 2022-03-10 Optical sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163213745P 2021-06-23 2021-06-23
US63/213,745 2021-06-23

Publications (2)

Publication Number Publication Date
TW202301718A TW202301718A (en) 2023-01-01
TWI795220B true TWI795220B (en) 2023-03-01

Family

ID=86658194

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111106554A TWI795220B (en) 2021-06-23 2022-02-23 Optical sensor

Country Status (1)

Country Link
TW (1) TWI795220B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105308670A (en) * 2014-01-22 2016-02-03 堺显示器制品株式会社 Display device
TW201909381A (en) * 2017-07-13 2019-03-01 億光電子工業股份有限公司 Light emitting sensing device and manufacturing method thereof
WO2019128250A1 (en) * 2017-12-29 2019-07-04 华为技术有限公司 Ambient light detection method, proximity detection method, photographing method, and terminal
CN112908938A (en) * 2019-12-03 2021-06-04 原相科技股份有限公司 Optical sensing package module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105308670A (en) * 2014-01-22 2016-02-03 堺显示器制品株式会社 Display device
TW201909381A (en) * 2017-07-13 2019-03-01 億光電子工業股份有限公司 Light emitting sensing device and manufacturing method thereof
WO2019128250A1 (en) * 2017-12-29 2019-07-04 华为技术有限公司 Ambient light detection method, proximity detection method, photographing method, and terminal
CN112908938A (en) * 2019-12-03 2021-06-04 原相科技股份有限公司 Optical sensing package module

Also Published As

Publication number Publication date
TW202301718A (en) 2023-01-01

Similar Documents

Publication Publication Date Title
US7982226B2 (en) Reflection type optical sensor device
JP6205088B1 (en) Vertical cavity surface emitting laser
US20060274796A1 (en) Real-time sensors for lasers
US4674093A (en) Circuit arrangement for actuating semiconductor lasers
WO2001015348A1 (en) Optical receiver and method of support and arrangement thereof
US11448387B2 (en) Light module and mobile terminal
TWI795220B (en) Optical sensor
JP2023155460A (en) Light receiving-emitting device
JP4058633B2 (en) Surface-emitting light emitting device, optical module, optical transmission device
CN114755736A (en) Optical sensor
US10879418B2 (en) Light-sensing apparatus and electronic device
US20230216277A1 (en) Light source device, and ranging device
JP7343278B2 (en) Control circuit for light receiving/emitting device, position detection device, imaging device
EP3652520A1 (en) Optoelectronic modules with temperature-independent characteristics
US20030116695A1 (en) Optical semiconductor module for detecting wavelength and light intensity
JP2531070B2 (en) Photo coupler
KR102548859B1 (en) Beam projector module providing eye protection
US7965277B2 (en) Optical navigation system and method of controlling the light output power of the system
JPH1065280A (en) Mode detecting and controlling method for semiconductor laser
JP2007311394A (en) Semiconductor laser device
KR102369794B1 (en) Illumination Sensing System and Surveillance camera employing the same
KR100197611B1 (en) Laser diode device and manufacturing method thereof
WO2021199918A1 (en) Drive device, light-emitting device, and drive method
JP2022027049A (en) Reflective optical sensor and proximity sensor
JP2001169394A (en) Optical microphone element and optical microphone system