TWI792582B - Lens focusing system, lens focusing method and chart display structure - Google Patents

Lens focusing system, lens focusing method and chart display structure Download PDF

Info

Publication number
TWI792582B
TWI792582B TW110135719A TW110135719A TWI792582B TW I792582 B TWI792582 B TW I792582B TW 110135719 A TW110135719 A TW 110135719A TW 110135719 A TW110135719 A TW 110135719A TW I792582 B TWI792582 B TW I792582B
Authority
TW
Taiwan
Prior art keywords
image
entity
lens
lens structure
graph
Prior art date
Application number
TW110135719A
Other languages
Chinese (zh)
Other versions
TW202314354A (en
Inventor
江宗岳
田兆元
郭溫良
王偉杰
Original Assignee
海華科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海華科技股份有限公司 filed Critical 海華科技股份有限公司
Priority to TW110135719A priority Critical patent/TWI792582B/en
Priority to CN202111186285.9A priority patent/CN115883950A/en
Application granted granted Critical
Publication of TWI792582B publication Critical patent/TWI792582B/en
Publication of TW202314354A publication Critical patent/TW202314354A/en

Links

Images

Abstract

The present invention provides a lens focusing system, a lens focusing method and a chart display structure. The lens focusing system includes a measured object carrying device, a lens position prejudging device, and a lens position adjusting device. The measured object carrying device is configured for carrying an image capturing module. The image capturing module includes a lens structure and an image sensing chip. The lens position prejudging device includes a chart display structure. The chart display structure is configured for providing a physical measurement distance and an image measurement distance. Therefore, the lens structure can be gradually moved along a direction toward or away from the image sensing chip according to the comparison between the physical measurement distance and the image measurement distance until an actual distance from an optical central point of the lens structure to the image sensing chip is equal to a lens focal distance of the lens structure.

Description

鏡頭對焦系統、鏡頭對焦方法以及圖表顯示結構Lens focusing system, lens focusing method and diagram display structure

本發明涉及一種對焦系統、對焦方法以及顯示結構,特別是涉及一種鏡頭對焦系統、鏡頭對焦方法以及圖表顯示結構。The invention relates to a focusing system, a focusing method and a display structure, in particular to a lens focusing system, a lens focusing method and a chart display structure.

現有技術中,影像擷取模組包括一鏡頭支架以及一鏡頭組件,並且鏡頭組件需要預先進行對焦後才能被固定在鏡頭支架上。然而,現有技術的鏡頭組件的對焦系統與對焦方法仍然具有可改善空間。In the prior art, the image capture module includes a lens bracket and a lens assembly, and the lens assembly needs to be focused before being fixed on the lens bracket. However, the focusing system and focusing method of the lens assembly in the prior art still have room for improvement.

本發明所要解決的技術問題在於,針對現有技術的不足提供一種鏡頭對焦系統、鏡頭對焦方法以及圖表顯示結構。The technical problem to be solved by the present invention is to provide a lens focusing system, a lens focusing method, and a graph display structure in view of the deficiencies in the prior art.

為了解決上述的技術問題,本發明所採用的其中一技術方案是提供一種鏡頭對焦系統,其包括:一待測物件承載裝置、一鏡頭位置預判裝置以及一鏡頭位置調整裝置。待測物件承載裝置用於承載一影像擷取模組,且影像擷取模組包括一鏡頭支架、可活動地設置在鏡頭支架上的一鏡頭結構以及對應於鏡頭結構的一影像感測晶片。鏡頭位置預判裝置包括一圖表顯示結構。鏡頭位置調整裝置用於可旋轉地調整鏡頭結構相距於影像感測晶片的距離。其中,圖表顯示結構包括彼此分離的一第一實體圖表以及一第二實體圖表,且第一實體圖表的一第一實體參考點與第二實體圖表的一第二實體參考點兩者相距一實體量測距離。其中,當影像感測晶片配合鏡頭結構以擷取圖表顯示結構的第一實體圖表與第二實體圖表兩者後而取得一圖表影像資訊時,圖表影像資訊用於提供對應於第一實體圖表的一第一影像圖表以及對應於第二實體圖表的一第二影像圖表,且第一影像圖表的一第一影像參考點與第二影像圖表的一第二影像參考點兩者相距一影像量測距離。其中,當影像感測晶片配合鏡頭結構所取得的影像量測距離大於實體量測距離時,由於鏡頭結構的一光學中心點相距於影像感測晶片的一實際距離大於鏡頭結構的一鏡頭焦距,所以鏡頭結構透過鏡頭位置調整裝置的旋轉調整,以使得鏡頭結構漸漸朝向接近影像感測晶片的方向移動,直到鏡頭結構的光學中心點相距於影像感測晶片的實際距離等於鏡頭結構的鏡頭焦距。其中,當影像感測晶片配合鏡頭結構所取得的影像量測距離小於實體量測距離時,由於鏡頭結構的光學中心點相距於影像感測晶片的實際距離小於鏡頭結構的鏡頭焦距,所以鏡頭結構透過鏡頭位置調整裝置的旋轉調整,以使得鏡頭結構漸漸朝向遠離影像感測晶片的方向移動,直到鏡頭結構的光學中心點相距於影像感測晶片的實際距離等於鏡頭結構的鏡頭焦距。In order to solve the above-mentioned technical problems, one of the technical solutions adopted by the present invention is to provide a lens focusing system, which includes: an object-under-test carrying device, a lens position predicting device, and a lens position adjusting device. The object carrying device to be tested is used to carry an image capture module, and the image capture module includes a lens bracket, a lens structure movably arranged on the lens bracket, and an image sensing chip corresponding to the lens structure. The lens position prediction device includes a graph display structure. The lens position adjusting device is used for rotatably adjusting the distance between the lens structure and the image sensing chip. Wherein, the diagram display structure includes a first entity diagram and a second entity diagram separated from each other, and a first entity reference point of the first entity diagram and a second entity reference point of the second entity diagram are separated by an entity Measure distance. Wherein, when the image sensing chip cooperates with the lens structure to capture both the first entity graph and the second entity graph of the graph display structure to obtain a graph image information, the graph image information is used to provide information corresponding to the first entity graph A first image graph and a second image graph corresponding to the second entity graph, and a first image reference point of the first image graph and a second image reference point of the second image graph are separated by an image measure distance. Wherein, when the image measurement distance obtained by the image sensor chip with the lens structure is greater than the physical measurement distance, since an actual distance between an optical center point of the lens structure and the image sensor chip is greater than a lens focal length of the lens structure, Therefore, the lens structure is adjusted through the rotation of the lens position adjustment device, so that the lens structure gradually moves towards the direction of the image sensor chip until the actual distance between the optical center point of the lens structure and the image sensor chip is equal to the lens focal length of the lens structure. Wherein, when the image measurement distance obtained by the image sensing chip with the lens structure is smaller than the physical measurement distance, since the actual distance between the optical center point of the lens structure and the image sensing chip is smaller than the lens focal length of the lens structure, the lens structure Through the rotation adjustment of the lens position adjustment device, the lens structure gradually moves away from the image sensor chip until the actual distance between the optical center of the lens structure and the image sensor chip is equal to the lens focal length of the lens structure.

為了解決上述的技術問題,本發明所採用的另外一技術方案是提供一種鏡頭對焦方法,其包括:提供一圖表顯示結構,圖表顯示結構包括彼此分離的一第一實體圖表以及一第二實體圖表,第一實體圖表的一第一實體參考點與第二實體圖表的一第二實體參考點兩者相距一實體量測距離;透過一影像感測晶片配合一鏡頭結構以擷取圖表顯示結構的第一實體圖表與第二實體圖表兩者後而取得一圖表影像資訊,圖表影像資訊用於提供對應於第一實體圖表的一第一影像圖表以及對應於第二實體圖表的一第二影像圖表,且第一影像圖表的一第一影像參考點與第二影像圖表的一第二影像參考點兩者相距一影像量測距離;以及,依據實體量測距離與影像量測距離的比較,將鏡頭結構漸漸朝向接近或者遠離影像感測晶片的方向移動,直到鏡頭結構的一光學中心點相距於影像感測晶片的一實際距離等於鏡頭結構的一鏡頭焦距。其中,當影像感測晶片配合鏡頭結構所取得的影像量測距離大於實體量測距離時,由於鏡頭結構的光學中心點相距於影像感測晶片的實際距離大於鏡頭結構的鏡頭焦距,所以鏡頭結構透過旋轉調整,以使得鏡頭結構漸漸朝向接近影像感測晶片的方向移動,直到鏡頭結構的光學中心點相距於影像感測晶片的實際距離等於鏡頭結構的鏡頭焦距。其中,當影像感測晶片配合鏡頭結構所取得的影像量測距離小於實體量測距離時,由於鏡頭結構的光學中心點相距於影像感測晶片的實際距離小於鏡頭結構的鏡頭焦距,所以鏡頭結構透過旋轉調整,以使得鏡頭結構漸漸朝向遠離影像感測晶片的方向移動,直到鏡頭結構的光學中心點相距於影像感測晶片的實際距離等於鏡頭結構的鏡頭焦距。In order to solve the above technical problems, another technical solution adopted by the present invention is to provide a lens focusing method, which includes: providing a graph display structure, the graph display structure includes a first entity graph and a second entity graph that are separated from each other , a physical measurement distance between a first physical reference point of the first physical graph and a second physical reference point of the second physical graph; through an image sensing chip and a lens structure to capture the graph display structure A chart image information is obtained after both the first entity chart and the second entity chart, and the chart image information is used to provide a first image chart corresponding to the first entity chart and a second image chart corresponding to the second entity chart , and a first image reference point of the first image graph and a second image reference point of the second image graph are separated by an image measurement distance; and, according to the comparison of the physical measurement distance and the image measurement distance, the The lens structure gradually moves toward or away from the image sensing chip until an actual distance between an optical center of the lens structure and the image sensing chip is equal to a lens focal length of the lens structure. Wherein, when the image measurement distance obtained by the image sensor chip with the lens structure is greater than the physical measurement distance, since the actual distance between the optical center point of the lens structure and the image sensor chip is greater than the lens focal length of the lens structure, the lens structure Through the rotation adjustment, the lens structure gradually moves toward the image sensing chip until the actual distance between the optical center of the lens structure and the image sensing chip is equal to the lens focal length of the lens structure. Wherein, when the image measurement distance obtained by the image sensing chip with the lens structure is smaller than the physical measurement distance, since the actual distance between the optical center point of the lens structure and the image sensing chip is smaller than the lens focal length of the lens structure, the lens structure Through rotation adjustment, the lens structure gradually moves away from the image sensor chip until the actual distance between the optical center of the lens structure and the image sensor chip is equal to the lens focal length of the lens structure.

為了解決上述的技術問題,本發明所採用的另外再一技術方案是提供一種圖表顯示結構,其包括一無圖表底層、一第一實體圖表以及一第二實體圖表,且第一實體圖表與第二實體圖表設置在無圖表底層上,以使得第一實體圖表的周圍、第二實體圖表的周圍以及第一實體圖表與第二實體圖表兩者之間沒有任何的圖表。In order to solve the above-mentioned technical problems, another technical solution adopted by the present invention is to provide a graph display structure, which includes a bottom layer without graph, a first entity graph and a second entity graph, and the first entity graph and the second entity graph The second entity graph is disposed on the graph-free bottom layer such that there are no graphs around the first entity graph, around the second entity graph, and between the first entity graph and the second entity graph.

本發明的其中一有益效果在於,本發明所提供的一種鏡頭對焦系統,其能通過“待測物件承載裝置用於承載一影像擷取模組,且影像擷取模組包括一鏡頭支架、可活動地設置在鏡頭支架上的一鏡頭結構以及對應於鏡頭結構的一影像感測晶片”、“鏡頭位置預判裝置包括一圖表顯示結構,且圖表顯示結構包括彼此分離的一第一實體圖表以及一第二實體圖表,且第一實體圖表的一第一實體參考點與第二實體圖表的一第二實體參考點兩者相距一實體量測距離”以及“鏡頭位置調整裝置用於可旋轉地調整鏡頭結構相距於影像感測晶片的距離”的技術方案,以使得當影像感測晶片配合鏡頭結構所取得的影像量測距離大於實體量測距離時,鏡頭結構可以透過鏡頭位置調整裝置的旋轉調整,以使得鏡頭結構漸漸朝向接近影像感測晶片的方向移動,並且當影像感測晶片配合鏡頭結構所取得的影像量測距離小於實體量測距離時,鏡頭結構可以透過鏡頭位置調整裝置的旋轉調整,以使得鏡頭結構漸漸朝向遠離影像感測晶片的方向移動。One of the beneficial effects of the present invention is that a lens focusing system provided by the present invention can be used to carry an image capture module through the "object-under-test carrying device, and the image capture module includes a lens bracket, which can A lens structure that is movably arranged on the lens holder and an image sensing chip corresponding to the lens structure", "the lens position prediction device includes a graph display structure, and the graph display structure includes a first entity graph separated from each other and a second physical graph, and a first physical reference point of the first physical graph and a second physical reference point of the second physical graph are separated by a physical measurement distance" and "the lens position adjustment device is used to rotatably Adjusting the distance between the lens structure and the image sensor chip” so that when the image measurement distance obtained by the image sensor chip with the lens structure is greater than the physical measurement distance, the lens structure can be adjusted through the rotation of the lens position adjustment device Adjust so that the lens structure gradually moves towards the direction of the image sensor chip, and when the image measurement distance obtained by the image sensor chip with the lens structure is smaller than the physical measurement distance, the lens structure can be adjusted through the rotation of the lens position adjustment device Adjust, so that the lens structure gradually moves away from the image sensing chip.

本發明的另外一有益效果在於,本發明所提供的一種鏡頭對焦方法,其能通過“提供一圖表顯示結構,圖表顯示結構包括彼此分離的一第一實體圖表以及一第二實體圖表,第一實體圖表的一第一實體參考點與第二實體圖表的一第二實體參考點兩者相距一實體量測距離”、“透過一影像感測晶片配合一鏡頭結構以擷取圖表顯示結構的第一實體圖表與第二實體圖表兩者後而取得一圖表影像資訊,圖表影像資訊用於提供對應於第一實體圖表的一第一影像圖表以及對應於第二實體圖表的一第二影像圖表,且第一影像圖表的一第一影像參考點與第二影像圖表的一第二影像參考點兩者相距一影像量測距離”以及“依據實體量測距離與影像量測距離的比較,將鏡頭結構漸漸朝向接近或者遠離影像感測晶片的方向移動,直到鏡頭結構的一光學中心點相距於影像感測晶片的一實際距離等於鏡頭結構的一鏡頭焦距”的技術方案,以使得當影像感測晶片配合鏡頭結構所取得的影像量測距離大於實體量測距離時,鏡頭結構可以透過鏡頭位置調整裝置的旋轉調整,以使得鏡頭結構漸漸朝向接近影像感測晶片的方向移動,並且當影像感測晶片配合鏡頭結構所取得的影像量測距離小於實體量測距離時,鏡頭結構可以透過鏡頭位置調整裝置的旋轉調整,以使得鏡頭結構漸漸朝向遠離影像感測晶片的方向移動。Another beneficial effect of the present invention is that a lens focusing method provided by the present invention can pass through "providing a graph display structure, the graph display structure includes a first entity graph and a second entity graph separated from each other, the first A physical measurement distance between a first physical reference point of the physical chart and a second physical reference point of the second physical chart”, “capturing the second physical chart display structure through an image sensing chip and a lens structure After a physical graph and a second physical graph, a graph image information is obtained, and the graph image information is used to provide a first image graph corresponding to the first entity graph and a second image graph corresponding to the second entity graph, And a first image reference point of the first image chart and a second image reference point of the second image chart are separated by an image measurement distance" and "according to the comparison between the physical measurement distance and the image measurement distance, the lens The structure gradually moves toward or away from the image sensor chip until the actual distance between an optical center point of the lens structure and the image sensor chip is equal to a lens focal length of the lens structure", so that when the image sensor When the image measurement distance obtained by the chip with the lens structure is greater than the physical measurement distance, the lens structure can be adjusted through the rotation of the lens position adjustment device, so that the lens structure gradually moves towards the direction close to the image sensing chip, and when the image sensing When the image measurement distance acquired by the chip with the lens structure is smaller than the physical measurement distance, the lens structure can be adjusted through the rotation of the lens position adjustment device, so that the lens structure gradually moves away from the image sensing chip.

本發明的另外再一有益效果在於,本發明所提供的一種圖表顯示結構,其能通過“第一實體圖表與第二實體圖表設置在無圖表底層上,以使得第一實體圖表的周圍、第二實體圖表的周圍以及第一實體圖表與第二實體圖表兩者之間沒有任何的圖表”的技術方案,以使得圖表顯示結構可以被應用於本發明所提供的鏡頭對焦系統以及鏡頭對焦方法。Another beneficial effect of the present invention is that a graph display structure provided by the present invention can be set on the bottom layer without graphs by "the first entity graph and the second entity graph, so that the surroundings of the first entity graph, the second entity graph There is no chart around the second entity chart and between the first entity chart and the second entity chart, so that the chart display structure can be applied to the lens focusing system and lens focusing method provided by the present invention.

為使能進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本發明加以限制。In order to further understand the features and technical content of the present invention, please refer to the following detailed description and drawings related to the present invention. However, the provided drawings are only for reference and description, and are not intended to limit the present invention.

以下是通過特定的具體實施例來說明本發明所公開有關“鏡頭對焦系統、鏡頭對焦方法以及圖表顯示結構”的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以實行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不背離本發明的構思下進行各種修改與變更。另外,需事先聲明的是,本發明的圖式僅為簡單示意說明,並非依實際尺寸的描繪。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的保護範圍。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。The following is a description of the implementation of the "lens focusing system, lens focusing method, and chart display structure" disclosed by the present invention through specific specific examples. Those skilled in the art can understand the advantages and effects of the present invention from the content disclosed in this specification . The present invention can be implemented or applied through other different specific embodiments, and various modifications and changes can be made to the details in this specification based on different viewpoints and applications without departing from the concept of the present invention. In addition, it should be stated in advance that the drawings of the present invention are only schematic illustrations, and are not drawn according to actual dimensions. The following embodiments will further describe the relevant technical content of the present invention in detail, but the disclosed content is not intended to limit the protection scope of the present invention. In addition, the term "or" used herein may include any one or a combination of more of the associated listed items depending on the actual situation.

[第一實施例][first embodiment]

參閱圖1至圖14所示,本發明第一實施例提供一種鏡頭對焦系統S,其包括:一待測物件承載裝置1、一鏡頭位置預判裝置2以及一鏡頭位置調整裝置3。Referring to FIGS. 1 to 14 , the first embodiment of the present invention provides a lens focusing system S, which includes: an object-under-test carrying device 1 , a lens position predicting device 2 and a lens position adjusting device 3 .

首先,配合圖1與圖2所示,待測物件承載裝置1可以用於承載一影像擷取模組M,並且影像擷取模組M至少可以包括一鏡頭支架M1、可活動地設置在鏡頭支架M1上的一鏡頭結構M2(或是鏡頭組件)以及對應於鏡頭結構M2的一影像感測晶片M3。另外,鏡頭位置預判裝置2包括一圖表顯示結構20,並且鏡頭位置調整裝置3可以用於可旋轉地調整鏡頭結構M2相距於影像感測晶片M3的距離。舉例來說,待測物件承載裝置1可以是任何可用於定位或者固定影像擷取模組M的固定裝置或者夾持裝置,鏡頭結構M2可以包括可活動地設置在鏡頭支架M1內部的一保護殼體以及設置在保護殼體內的至少一鏡片(或者由多個鏡片所組成的一鏡片組),並且影像感測晶片M3可以是電荷耦合器件(Charge-coupled Device,CCD)或者互補式金屬氧化物半導體(Complementary Metal-Oxide-Semiconductor,CMOS)感測器。另外,鏡頭位置預判裝置2可以包括電性連接於影像感測晶片M3的一訊號控制模組以及用於承載圖表顯示結構20的一圖表承載模組。此外,鏡頭位置調整裝置3可以包括用於夾持鏡頭結構M2的一夾持機構以及用於帶動夾持機構旋轉的一驅動馬達,並且鏡頭位置調整裝置3可以透過夾持機構以及驅動馬達的相互配合,以夾持鏡頭結構M2且帶動鏡頭結構M2相對於影像感測晶片M3進行順時針或者逆時針旋轉。然而,上述所舉的例子只是其中一可行的實施例而並非用以限定本發明。First, as shown in FIG. 1 and FIG. 2 , the object-under-test carrying device 1 can be used to carry an image capture module M, and the image capture module M can at least include a lens bracket M1, which can be movably arranged on the lens A lens structure M2 (or lens assembly) on the bracket M1 and an image sensor chip M3 corresponding to the lens structure M2. In addition, the lens position predicting device 2 includes a graph display structure 20, and the lens position adjusting device 3 can be used to rotatably adjust the distance between the lens structure M2 and the image sensing chip M3. For example, the object-under-test carrying device 1 can be any fixing device or clamping device that can be used to position or fix the image capture module M, and the lens structure M2 can include a protective shell movably arranged inside the lens bracket M1 Body and at least one lens (or a lens group composed of multiple lenses) arranged in the protective shell, and the image sensing chip M3 can be a charge-coupled device (Charge-coupled Device, CCD) or a complementary metal oxide Semiconductor (Complementary Metal-Oxide-Semiconductor, CMOS) sensor. In addition, the lens position predicting device 2 may include a signal control module electrically connected to the image sensing chip M3 and a graph carrying module for carrying the graph display structure 20 . In addition, the lens position adjustment device 3 may include a clamping mechanism for clamping the lens structure M2 and a driving motor for driving the clamping mechanism to rotate, and the lens position adjustment device 3 may pass through the interaction between the clamping mechanism and the driving motor cooperate to clamp the lens structure M2 and drive the lens structure M2 to rotate clockwise or counterclockwise relative to the image sensing chip M3. However, the above-mentioned example is only one possible embodiment and is not intended to limit the present invention.

更進一步來說,配合圖3、圖4與圖5所示,圖表顯示結構20包括彼此分離的一第一實體圖表201(或是第一實體圖案)以及一第二實體圖表202(或是第二實體圖案),並且第一實體圖表201的一第一實體參考點201P與第二實體圖表202的一第二實體參考點202P兩者相距一實體量測距離D1。舉例來說,如圖3所示,圖表顯示結構20包括一無圖表底層200(也就是空白而沒有任何圖案的區域),並且第一實體圖表201與第二實體圖表202設置在無圖表底層200上,以使得第一實體圖表201的周圍、第二實體圖表202的周圍以及第一實體圖表201與第二實體圖表202兩者之間沒有任何的圖表(也就是說,圖表顯示結構20所提供的圖表只有第一實體圖表201與第二實體圖表201,而除了第一實體圖表201與第二實體圖表201之外的其餘區域都是空白而無圖案)。再者,配合圖4與圖5所示,第一實體圖表201具有多個第一黑色區域201B以及多個第一白色區域201W,並且第二實體圖表202具有多個第二黑色區域202B以及多個第二白色區域202W。另外,第一實體圖表201的第一黑色區域201B與第二實體圖表202的第二黑色區域202B的面積大小(或者形狀大小)可以是相同或者相異,並且第一實體圖表201的第一白色區域201W與第二實體圖表202的第二白色區域202W的面積大小(或者形狀大小)可以是相同或者相異。然而,上述所舉的例子只是其中一可行的實施例而並非用以限定本發明。Furthermore, as shown in FIG. 3 , FIG. 4 and FIG. 5 , the graph display structure 20 includes a first entity graph 201 (or a first entity pattern) and a second entity graph 202 (or a second entity pattern) separated from each other. two physical patterns), and a physical measurement distance D1 between a first physical reference point 201P of the first physical graph 201 and a second physical reference point 202P of the second physical graph 202 . For example, as shown in FIG. 3 , the chart display structure 20 includes a chart-less bottom layer 200 (that is, a blank area without any pattern), and the first entity chart 201 and the second entity chart 202 are arranged on the chart-free bottom layer 200 , so that there is no chart around the first entity chart 201, around the second entity chart 202, and between the first entity chart 201 and the second entity chart 202 (that is, the chart display structure 20 provided There are only the first entity chart 201 and the second entity chart 201 in the chart, and the rest of the area except the first entity chart 201 and the second entity chart 201 are blank without patterns). Furthermore, as shown in FIG. 4 and FIG. 5 , the first entity chart 201 has multiple first black areas 201B and multiple first white areas 201W, and the second entity chart 202 has multiple second black areas 202B and multiple a second white area 202W. In addition, the area size (or shape size) of the first black area 201B of the first entity chart 201 and the second black area 202B of the second entity chart 202 may be the same or different, and the first white area of the first entity chart 201 The area size (or shape size) of the area 201W and the second white area 202W of the second entity graph 202 may be the same or different. However, the above-mentioned example is only one possible embodiment and is not intended to limit the present invention.

值得注意的是,舉例來說,配合圖3、圖4與圖5所示,第一實體圖表201的第一實體參考點201P可以是一第一實體中心點2011、一第一實體最左點2012、一第一實體最右點2013或者其它任意的點,並且第二實體圖表202的第二實體參考點202P可以是一第二實體中心點2021、一第二實體最左點2022、一第二實體最右點2023或者其它任意的點。再者,第一實體圖表201的第一實體參考點201P與第二實體圖表202的第二實體參考點202P兩者之間的實體量測距離D1可以是“第一實體圖表201的第一實體中心點2011、第一實體最左點2012以及第一實體最右點2013三者其中之一”相距“第二實體圖表202的第二實體中心點2021、第二實體最左點2022或者第二實體最右點2023三者其中之一”的距離(例如,圖3所顯示的實體量測距離D1為:第一實體圖表201的第一實體中心點2011與第二實體圖表202的第二實體中心點2021兩者之間的距離)。然而,上述所舉的例子只是其中一可行的實施例而並非用以限定本發明。It should be noted that, for example, as shown in FIG. 3 , FIG. 4 and FIG. 5 , the first entity reference point 201P of the first entity graph 201 may be a first entity center point 2011, a first entity leftmost point 2012, a first entity rightmost point 2013 or any other point, and the second entity reference point 202P of the second entity chart 202 may be a second entity center point 2021, a second entity leftmost point 2022, a first entity Two entity rightmost point 2023 or other arbitrary points. Furthermore, the entity measurement distance D1 between the first entity reference point 201P of the first entity graph 201 and the second entity reference point 202P of the second entity graph 202 may be "the first entity of the first entity graph 201 One of the center point 2011, the first entity leftmost point 2012 and the first entity rightmost point 2013 is "distance" from the second entity center point 2021, the second entity leftmost point 2022 or the second entity graph 202. The distance between one of the rightmost point 2023 of the entity” (for example, the entity measurement distance D1 shown in FIG. Center point 2021 distance between the two). However, the above-mentioned example is only one possible embodiment and is not intended to limit the present invention.

再者,配合圖1、圖3、圖6與圖7所示,當影像感測晶片M3配合鏡頭結構M2以擷取圖表顯示結構20的第一實體圖表201與第二實體圖表202兩者後而取得一圖表影像資訊21時,圖表影像資訊21可以用於提供對應於第一實體圖表201的一第一影像圖表211(或是第一虛擬圖表)以及對應於第二實體圖表202的一第二影像圖表212(或是第二虛擬圖表),並且第一影像圖表211的一第一影像參考點211P與第二影像圖表212的一第二影像參考點212P兩者相距一影像量測距離D2。另外,第一影像圖表211與第二影像圖表212會形成在無圖表底層210上,以使得第一影像圖表211的周圍、第二影像圖表212的周圍以及第一影像圖表211與第二影像圖表212兩者之間沒有任何的圖表。舉例來說,第一影像圖表211的第一影像參考點211P可以是一第一影像中心點2111、一第一影像最左點2112、一第一影像最右點2113或者其它任意的點,並且第二影像圖表212的第二影像參考點212P可以是一第二影像中心點2121、一第二影像最左點2122、一第二影像最右點2123或者其它任意的點。再者,第一影像圖表211的第一影像參考點211P與第二影像圖表212的第二影像參考點212P兩者之間的影像量測距離D2可以是“第一影像圖表211的第一影像中心點2111、第一影像最左點2112以及第一影像最右點2113三者其中之一”相距“第二影像圖表212的第二影像中心點2121、第二影像最左點2122或者第二影像最右點2123三者其中之一”的距離(例如,圖6或者圖7所顯示的影像量測距離D2為:第一影像圖表211的第一影像中心點2111與第二影像圖表212的第二影像中心點2121兩者之間的距離)。然而,上述所舉的例子只是其中一可行的實施例而並非用以限定本發明。Furthermore, as shown in FIG. 1 , FIG. 3 , FIG. 6 and FIG. 7 , when the image sensing chip M3 cooperates with the lens structure M2 to capture both the first entity graph 201 and the second entity graph 202 of the graph display structure 20 When obtaining a chart image information 21, the chart image information 21 can be used to provide a first image chart 211 (or a first virtual chart) corresponding to the first physical chart 201 and a first image chart 211 corresponding to the second physical chart 202. Two image charts 212 (or second virtual charts), and a first image reference point 211P of the first image chart 211 and a second image reference point 212P of the second image chart 212 are separated by an image measurement distance D2 . In addition, the first image table 211 and the second image table 212 will be formed on the non-graph bottom layer 210, so that the surroundings of the first image table 211, the surroundings of the second image table 212 and the first image table 211 and the second image table 212 There are no diagrams in between. For example, the first image reference point 211P of the first image chart 211 may be a first image center point 2111, a first image leftmost point 2112, a first image rightmost point 2113 or other arbitrary points, and The second image reference point 212P of the second image chart 212 may be a second image center point 2121 , a second image leftmost point 2122 , a second image rightmost point 2123 or any other point. Moreover, the image measurement distance D2 between the first image reference point 211P of the first image chart 211 and the second image reference point 212P of the second image chart 212 may be "the first image of the first image chart 211 One of the center point 2111, the leftmost point 2112 of the first image and the rightmost point 2113 of the first image is "distance" from the second image center point 2121, the second leftmost point 2122 or the second image chart 212 of the second image chart 212. The distance between one of the rightmost point 2123 of the image (for example, the image measurement distance D2 shown in Figure 6 or Figure 7 is: the first image center point 2111 of the first image chart 211 and the second image chart 212 distance between the second image center point 2121). However, the above-mentioned example is only one possible embodiment and is not intended to limit the present invention.

更進一步來說,配合圖3、圖6、圖8、圖9與圖10所示,當影像感測晶片M3配合鏡頭結構M2所取得的影像量測距離D2(如圖6所示)大於實體量測距離D1(如圖3所示)時,由於鏡頭結構M2的一光學中心點P(例如鏡頭結構M2的鏡片的光心)相距於影像感測晶片M3的一實際距離L(垂直距離)大於鏡頭結構M2的一鏡頭焦距F(也就是鏡頭結構M2的鏡片相距於影像感測晶片M3的鏡頭焦距F),所以鏡頭結構M2可以透過鏡頭位置調整裝置3的旋轉調整,以使得鏡頭結構M2漸漸朝向接近影像感測晶片M3的方向移動,直到鏡頭結構M2的光學中心點P相距於影像感測晶片M3的實際距離等於鏡頭結構M2的鏡頭焦距F(也就是說,鏡頭結構M2的焦點會完全落在影像感測晶片M3上)(如圖10所示)。Furthermore, as shown in FIG. 3, FIG. 6, FIG. 8, FIG. 9 and FIG. When measuring the distance D1 (as shown in FIG. 3 ), since an optical center point P of the lens structure M2 (such as the optical center of the lens of the lens structure M2) is separated from an actual distance L (vertical distance) of the image sensor chip M3 greater than a lens focal length F of the lens structure M2 (that is, the lens of the lens structure M2 is separated from the lens focal length F of the image sensing chip M3), so the lens structure M2 can be adjusted through the rotation of the lens position adjustment device 3, so that the lens structure M2 Gradually move toward the direction approaching the image sensing chip M3 until the actual distance between the optical center point P of the lens structure M2 and the image sensing chip M3 is equal to the lens focal length F of the lens structure M2 (that is, the focal point of the lens structure M2 will be falls completely on the image sensing chip M3) (as shown in FIG. 10 ).

舉例來說,配合圖3、圖6、圖8與圖10所示,鏡頭支架M1具有一右旋內螺紋M11,並且鏡頭結構M2具有與右旋內螺紋M11相互配合的一右旋外螺紋M21。藉此,當影像感測晶片M3配合鏡頭結構M2所取得的影像量測距離D2(如圖6所示)大於實體量測距離D1(如圖3所示)時,鏡頭位置調整裝置3可以順時針旋轉調整鏡頭結構M2(如圖8的順時針箭頭所示),以使得鏡頭結構M2以順時針旋轉的方式漸漸接近影像感測晶片M3,直到鏡頭結構M2的光學中心點P相距於影像感測晶片M3的實際距離L等於鏡頭結構M2的鏡頭焦距F,以使得鏡頭結構M2的鏡頭焦點會完全落在影像感測晶片M3上(如圖10所示),接著鏡頭結構M2就可以透過點膠的方式固定在鏡頭支架M1的內部。然而,上述所舉的例子只是其中一可行的實施例而並非用以限定本發明。For example, as shown in FIG. 3, FIG. 6, FIG. 8 and FIG. 10, the lens holder M1 has a right-handed internal thread M11, and the lens structure M2 has a right-handed external thread M21 that cooperates with the right-handed internal thread M11 . In this way, when the image measurement distance D2 (as shown in FIG. 6 ) obtained by the image sensor chip M3 in cooperation with the lens structure M2 is greater than the physical measurement distance D1 (as shown in FIG. 3 ), the lens position adjustment device 3 can smoothly Clockwise rotation adjusts the lens structure M2 (as shown by the clockwise arrow in FIG. 8 ), so that the lens structure M2 gradually approaches the image sensor chip M3 in a clockwise rotation until the optical center point P of the lens structure M2 is at a distance from the image sensor chip. The actual distance L of the measuring chip M3 is equal to the focal length F of the lens of the lens structure M2, so that the focal point of the lens of the lens structure M2 will completely fall on the image sensing chip M3 (as shown in FIG. 10 ), and then the lens structure M2 can pass through the point Fix it inside the lens holder M1 by means of glue. However, the above-mentioned example is only one possible embodiment and is not intended to limit the present invention.

舉例來說,配合圖3、圖6、圖9與圖10所示,鏡頭支架M1具有一左旋內螺紋M12,並且鏡頭結構M2具有與左旋內螺紋M12相互配合的一左旋外螺紋M22。藉此,當影像感測晶片M3配合鏡頭結構M2所取得的影像量測距離D2(如圖6所示)大於實體量測距離D1(如圖3所示)時,鏡頭位置調整裝置3可以逆時針旋轉調整鏡頭結構M2(如圖9的逆時針箭頭所示),以使得鏡頭結構M2以逆時針旋轉的方式漸漸接近影像感測晶片M3,直到鏡頭結構M2的光學中心點P相距於影像感測晶片M3的實際距離L等於鏡頭結構M2的鏡頭焦距F,以使得鏡頭結構M2的鏡頭焦點會完全落在影像感測晶片M3上(如圖10所示),接著鏡頭結構M2就可以透過點膠的方式固定在鏡頭支架M1的內部。然而,上述所舉的例子只是其中一可行的實施例而並非用以限定本發明。For example, as shown in FIG. 3 , FIG. 6 , FIG. 9 and FIG. 10 , the lens holder M1 has a left-handed internal thread M12, and the lens structure M2 has a left-handed external thread M22 cooperating with the left-handed internal thread M12. In this way, when the image measurement distance D2 (as shown in FIG. 6 ) obtained by the image sensor chip M3 in cooperation with the lens structure M2 is greater than the physical measurement distance D1 (as shown in FIG. 3 ), the lens position adjustment device 3 can be reversed. Adjust the lens structure M2 by clockwise rotation (as shown by the counterclockwise arrow in FIG. 9 ), so that the lens structure M2 gradually approaches the image sensor chip M3 in a counterclockwise rotation until the optical center point P of the lens structure M2 is at a distance from the image sensor chip. The actual distance L of the measuring chip M3 is equal to the focal length F of the lens of the lens structure M2, so that the focal point of the lens of the lens structure M2 will completely fall on the image sensing chip M3 (as shown in FIG. 10 ), and then the lens structure M2 can pass through the point Fix it inside the lens holder M1 by means of glue. However, the above-mentioned example is only one possible embodiment and is not intended to limit the present invention.

更進一步來說,配合圖3、圖7、圖11、圖12與圖13所示,當影像感測晶片M3配合鏡頭結構M2所取得的影像量測距離D2(如圖7所示)小於實體量測距離D1(如圖3所示)時,由於鏡頭結構M2的光學中心點P(例如鏡頭結構M2的鏡片的光心)相距於影像感測晶片M3的實際距離L(垂直距離)小於鏡頭結構M2的鏡頭焦距F(也就是鏡頭結構M2的鏡片相距於影像感測晶片M3的鏡頭焦距F),所以鏡頭結構M2可以透過鏡頭位置調整裝置3的旋轉調整,以使得鏡頭結構M2漸漸朝向遠離影像感測晶片M3的方向移動,直到鏡頭結構M2的光學中心點P相距於影像感測晶片M3的實際距離L等於鏡頭結構M2的鏡頭焦距F(也就是說,鏡頭結構M2的焦點會完全落在影像感測晶片M3上)(如圖13所示)。Further speaking, as shown in FIG. 3, FIG. 7, FIG. 11, FIG. 12 and FIG. When measuring the distance D1 (as shown in Figure 3), the actual distance L (vertical distance) between the optical center point P of the lens structure M2 (such as the optical center of the lens of the lens structure M2) and the image sensor chip M3 is smaller than the lens The lens focal length F of the structure M2 (that is, the lens of the lens structure M2 is far away from the focal length F of the lens of the image sensor chip M3), so the lens structure M2 can be adjusted through the rotation of the lens position adjustment device 3, so that the lens structure M2 gradually moves away from The direction of the image sensing chip M3 moves until the optical center point P of the lens structure M2 is apart from the actual distance L of the image sensing chip M3 equal to the lens focal length F of the lens structure M2 (that is to say, the focal point of the lens structure M2 will fall completely on the image sensing chip M3) (as shown in FIG. 13 ).

舉例來說,配合圖3、圖7、圖11與圖13所示,鏡頭支架M1具有一右旋內螺紋M11,並且鏡頭結構M2具有與右旋內螺紋M11相互配合的一右旋外螺紋M21。藉此,當影像感測晶片M3配合鏡頭結構M2所取得的影像量測距離D2(如圖7所示)小於實體量測距離D1(如圖3所示)時,鏡頭位置調整裝置3可以逆時針旋轉調整鏡頭結構M2(如圖11的逆時針箭頭所示),以使得鏡頭結構M2以逆時針旋轉的方式漸漸遠離影像感測晶片M3,直到鏡頭結構M2的光學中心點P相距於影像感測晶片M3的實際距離L等於鏡頭結構M2的鏡頭焦距F,以使得鏡頭結構M2的鏡頭焦點會完全落在影像感測晶片M3上(如圖13所示),接著鏡頭結構M2就可以透過點膠的方式固定在鏡頭支架M1的內部。然而,上述所舉的例子只是其中一可行的實施例而並非用以限定本發明。For example, as shown in FIG. 3, FIG. 7, FIG. 11 and FIG. 13, the lens holder M1 has a right-handed internal thread M11, and the lens structure M2 has a right-handed external thread M21 that cooperates with the right-handed internal thread M11 . In this way, when the image measurement distance D2 (as shown in FIG. 7 ) obtained by the image sensor chip M3 in cooperation with the lens structure M2 is smaller than the physical measurement distance D1 (as shown in FIG. 3 ), the lens position adjustment device 3 can be reversed. Adjust the lens structure M2 by clockwise rotation (as shown by the counterclockwise arrow in FIG. 11 ), so that the lens structure M2 gradually moves away from the image sensor chip M3 in a counterclockwise rotation until the optical center point P of the lens structure M2 is far away from the image sensor chip. The actual distance L of the measuring chip M3 is equal to the lens focal length F of the lens structure M2, so that the focal point of the lens of the lens structure M2 will completely fall on the image sensor chip M3 (as shown in FIG. 13 ), and then the lens structure M2 can pass through the point Fix it inside the lens holder M1 by means of glue. However, the above-mentioned example is only one possible embodiment and is not intended to limit the present invention.

舉例來說,配合圖3、圖7、圖12與圖13所示,鏡頭支架M1具有一左旋內螺紋M12,並且鏡頭結構M2具有與左旋內螺紋M12相互配合的一左旋外螺紋M22。藉此,當影像感測晶片M3配合鏡頭結構M2所取得的影像量測距離D2(如圖7所示)小於實體量測距離D1(如圖3所示)時,鏡頭位置調整裝置3可以順時針旋轉調整鏡頭結構M2(如圖12的順時針箭頭所示),以使得鏡頭結構M2以順時針旋轉的方式漸漸遠離影像感測晶片M3,直到鏡頭結構M2的光學中心點P相距於影像感測晶片M3的實際距離L等於鏡頭結構M2的鏡頭焦距F,以使得鏡頭結構M2的鏡頭焦點會完全落在影像感測晶片M3上(如圖13所示),接著鏡頭結構M2就可以透過點膠的方式固定在鏡頭支架M1的內部。然而,上述所舉的例子只是其中一可行的實施例而並非用以限定本發明。For example, as shown in FIG. 3 , FIG. 7 , FIG. 12 and FIG. 13 , the lens holder M1 has a left-handed internal thread M12, and the lens structure M2 has a left-handed external thread M22 cooperating with the left-handed internal thread M12. In this way, when the image measurement distance D2 (as shown in FIG. 7 ) obtained by the image sensor chip M3 with the lens structure M2 is smaller than the physical measurement distance D1 (as shown in FIG. 3 ), the lens position adjustment device 3 can smoothly Clockwise rotation adjusts the lens structure M2 (as shown by the clockwise arrow in FIG. 12 ), so that the lens structure M2 gradually moves away from the image sensor chip M3 in a clockwise rotation until the optical center point P of the lens structure M2 is far away from the image sensor chip. The actual distance L of the measuring chip M3 is equal to the lens focal length F of the lens structure M2, so that the focal point of the lens of the lens structure M2 will completely fall on the image sensor chip M3 (as shown in FIG. 13 ), and then the lens structure M2 can pass through the point Fix it inside the lens holder M1 by means of glue. However, the above-mentioned example is only one possible embodiment and is not intended to limit the present invention.

[第二實施例][Second embodiment]

參閱圖1至圖14所示,本發明第二實施例提供一種鏡頭對焦方法,其至少包括下列幾個步驟:首先,如圖3所示,提供一圖表顯示結構20,圖表顯示結構20包括彼此分離的一第一實體圖表201以及一第二實體圖表202,第一實體圖表201的一第一實體參考點201P與第二實體圖表202的一第二實體參考點202P兩者相距一實體量測距離D1(步驟S100);接著,配合圖1、圖3、圖6與圖7所示,透過一影像感測晶片M3配合一鏡頭結構M2以擷取圖表顯示結構20的第一實體圖表201與第二實體圖表202兩者後而取得一圖表影像資訊21,圖表影像資訊21用於提供對應於第一實體圖表201的一第一影像圖表211以及對應於第二實體圖表202的一第二影像圖表212,且第一影像圖表211的一第一影像參考點211P與第二影像圖表212的一第二影像參考點212P兩者相距一影像量測距離D2(步驟S102);然後,配合圖6至圖13所示,依據實體量測距離D1與影像量測距離D2的比較,將鏡頭結構M2漸漸朝向接近或者遠離影像感測晶片M3的方向移動,直到鏡頭結構M2的一光學中心點P相距於影像感測晶片M3的一實際距離L等於鏡頭結構M2的一鏡頭焦距F(步驟S104)。1 to 14, the second embodiment of the present invention provides a lens focusing method, which at least includes the following steps: first, as shown in FIG. 3, a chart display structure 20 is provided, and the chart display structure 20 includes each other A first physical graph 201 and a second physical graph 202 are separated, a first physical reference point 201P of the first physical graph 201 and a second physical reference point 202P of the second physical graph 202 are separated by a physical measurement Distance D1 (step S100); then, as shown in FIG. 1, FIG. 3, FIG. 6 and FIG. The second entity chart 202 obtains a chart image information 21 afterwards, and the chart image information 21 is used to provide a first image chart 211 corresponding to the first entity chart 201 and a second image corresponding to the second entity chart 202 chart 212, and a first image reference point 211P of the first image chart 211 and a second image reference point 212P of the second image chart 212 are separated by an image measurement distance D2 (step S102); then, with FIG. 6 As shown in FIG. 13 , according to the comparison between the physical measurement distance D1 and the image measurement distance D2, the lens structure M2 is gradually moved towards or away from the image sensing chip M3 until an optical center point P of the lens structure M2 is separated from An actual distance L on the image sensor chip M3 is equal to a lens focal length F of the lens structure M2 (step S104 ).

更進一步來說,配合圖3、圖6、圖8、圖9與圖10所示,當影像感測晶片M3配合鏡頭結構M2所取得的影像量測距離D2大於實體量測距離D1時,由於鏡頭結構M2的光學中心點P相距於影像感測晶片M3的實際距離L大於鏡頭結構M2的鏡頭焦距F,所以鏡頭結構M2可以透過旋轉調整,以使得鏡頭結構M2漸漸朝向接近影像感測晶片M3的方向移動,直到鏡頭結構M2的光學中心點P相距於影像感測晶片M3的實際距離L等於鏡頭結構M2的鏡頭焦距F。Furthermore, as shown in FIG. 3, FIG. 6, FIG. 8, FIG. 9 and FIG. The actual distance L between the optical center point P of the lens structure M2 and the image sensor chip M3 is greater than the lens focal length F of the lens structure M2, so the lens structure M2 can be adjusted through rotation so that the lens structure M2 gradually approaches the image sensor chip M3 until the actual distance L between the optical center point P of the lens structure M2 and the image sensor chip M3 is equal to the lens focal length F of the lens structure M2.

更進一步來說,配合圖3、圖7、圖11、圖12與圖13所示,當影像感測晶片M3配合鏡頭結構M2所取得的影像量測距離D2小於實體量測距離D1時,由於鏡頭結構M2的光學中心點P相距於影像感測晶片M3的實際距離L小於鏡頭結構M2的鏡頭焦距,所以鏡頭結構M2可以透過旋轉調整,以使得鏡頭結構M2漸漸朝向遠離影像感測晶片M3的方向移動,直到鏡頭結構M2的光學中心點P相距於影像感測晶片M3的實際距離L等於鏡頭結構M2的鏡頭焦距F。Furthermore, as shown in FIG. 3 , FIG. 7 , FIG. 11 , FIG. 12 and FIG. 13 , when the image measurement distance D2 obtained by the image sensor chip M3 and the lens structure M2 is smaller than the physical measurement distance D1, due to The actual distance L between the optical center point P of the lens structure M2 and the image sensing chip M3 is smaller than the focal length of the lens of the lens structure M2, so the lens structure M2 can be adjusted through rotation, so that the lens structure M2 gradually moves away from the image sensing chip M3 direction until the actual distance L between the optical center point P of the lens structure M2 and the image sensor chip M3 is equal to the lens focal length F of the lens structure M2.

[實施例的有益效果][Advantageous Effects of Embodiment]

本發明的其中一有益效果在於,本發明所提供的一種鏡頭對焦系統S,其能通過“待測物件承載裝置1用於承載一影像擷取模組M,且影像擷取模組M包括一鏡頭支架M1、可活動地設置在鏡頭支架M1上的一鏡頭結構M2以及對應於鏡頭結構M2的一影像感測晶片M3”、“鏡頭位置預判裝置2包括一圖表顯示結構20,且圖表顯示結構20包括彼此分離的一第一實體圖表201以及一第二實體圖表202,且第一實體圖表201的一第一實體參考點201P與第二實體圖表202的一第二實體參考點202P兩者相距一實體量測距離D1”以及“鏡頭位置調整裝置3用於可旋轉地調整鏡頭結構M2相距於影像感測晶片M3的距離”的技術方案,以使得當影像感測晶片M3配合鏡頭結構M2所取得的影像量測距離D2大於實體量測距離D1時,鏡頭結構M2可以透過鏡頭位置調整裝置3的旋轉調整,以使得鏡頭結構M2漸漸朝向接近影像感測晶片M3的方向移動,並且當影像感測晶片M3配合鏡頭結構M2所取得的影像量測距離D2小於實體量測距離D1時,鏡頭結構M2可以透過鏡頭位置調整裝置3的旋轉調整,以使得鏡頭結構M2漸漸朝向遠離影像感測晶片M3的方向移動。One of the beneficial effects of the present invention is that a lens focusing system S provided by the present invention can be used to carry an image capture module M through "the object carrying device 1 to be tested, and the image capture module M includes a Lens bracket M1, a lens structure M2 movably arranged on the lens bracket M1, and an image sensor chip M3 corresponding to the lens structure M2", "The lens position prediction device 2 includes a graph display structure 20, and the graph display The structure 20 includes a first entity graph 201 and a second entity graph 202 separated from each other, and both a first entity reference point 201P of the first entity graph 201 and a second entity reference point 202P of the second entity graph 202 A distance from a physical measurement distance D1" and "the lens position adjustment device 3 is used to rotatably adjust the distance between the lens structure M2 and the image sensing chip M3", so that when the image sensing chip M3 cooperates with the lens structure M2 When the obtained image measurement distance D2 is greater than the physical measurement distance D1, the lens structure M2 can be adjusted through the rotation of the lens position adjustment device 3, so that the lens structure M2 gradually moves toward the direction close to the image sensor chip M3, and when the image When the image measurement distance D2 obtained by the sensing chip M3 and the lens structure M2 is smaller than the physical measurement distance D1, the lens structure M2 can be adjusted through the rotation of the lens position adjustment device 3, so that the lens structure M2 gradually moves away from the image sensing chip Move in the direction of M3.

本發明的另外一有益效果在於,本發明所提供的一種鏡頭對焦方法,其能通過“提供一圖表顯示結構20,圖表顯示結構20包括彼此分離的一第一實體圖表201以及一第二實體圖表202,第一實體圖表201的一第一實體參考點201P與第二實體圖表202的一第二實體參考點202P兩者相距一實體量測距離D1”、“透過一影像感測晶片M3配合一鏡頭結構M2以擷取圖表顯示結構20的第一實體圖表201與第二實體圖表202兩者後而取得一圖表影像資訊21,圖表影像資訊21用於提供對應於第一實體圖表201的一第一影像圖表211以及對應於第二實體圖表202的一第二影像圖表212,且第一影像圖表211的一第一影像參考點211P與第二影像圖表212的一第二影像參考點212P兩者相距一影像量測距離D2”以及“依據實體量測距離D1與影像量測距離D2的比較,將鏡頭結構M2漸漸朝向接近或者遠離影像感測晶片M3的方向移動,直到鏡頭結構M2的一光學中心點相距於影像感測晶片M3的一實際距離L等於鏡頭結構M2的一鏡頭焦距F”的技術方案,以使得當影像感測晶片M3配合鏡頭結構M2所取得的影像量測距離D2大於實體量測距離D1時,鏡頭結構M2可以透過鏡頭位置調整裝置3的旋轉調整,以使得鏡頭結構M2漸漸朝向接近影像感測晶片M3的方向移動,並且當影像感測晶片M3配合鏡頭結構M2所取得的影像量測距離D2小於實體量測距離D1時,鏡頭結構M2可以透過鏡頭位置調整裝置3的旋轉調整,以使得鏡頭結構M2漸漸朝向遠離影像感測晶片M3的方向移動。Another beneficial effect of the present invention is that a lens focusing method provided by the present invention can be achieved by "providing a graph display structure 20, and the graph display structure 20 includes a first entity graph 201 and a second entity graph that are separated from each other. 202, a first physical reference point 201P of the first physical chart 201 and a second physical reference point 202P of the second physical chart 202 are separated by a physical measurement distance D1", "through an image sensor chip M3 to cooperate with a The lens structure M2 obtains a graph image information 21 after capturing both the first entity graph 201 and the second entity graph 202 of the graph display structure 20, and the graph image information 21 is used to provide a first entity graph 201 corresponding to An image graph 211 and a second image graph 212 corresponding to the second entity graph 202, and a first image reference point 211P of the first image graph 211 and a second image reference point 212P of the second image graph 212 are both A distance from an image measurement distance D2" and "according to the comparison between the physical measurement distance D1 and the image measurement distance D2, the lens structure M2 is gradually moved towards or away from the image sensing chip M3 until an optical distance of the lens structure M2 The actual distance L between the center point and the image sensor chip M3 is equal to the lens focal length F" of the lens structure M2, so that when the image sensor chip M3 cooperates with the lens structure M2, the image measurement distance D2 obtained is greater than the physical When measuring the distance D1, the lens structure M2 can be adjusted through the rotation of the lens position adjustment device 3, so that the lens structure M2 gradually moves toward the direction close to the image sensing chip M3, and when the image sensing chip M3 cooperates with the lens structure M2 to obtain When the image measurement distance D2 is smaller than the physical measurement distance D1, the lens structure M2 can be adjusted through the rotation of the lens position adjustment device 3, so that the lens structure M2 gradually moves away from the image sensor chip M3.

本發明的另外再一有益效果在於,本發明所提供的一種圖表顯示結構20,其能通過“第一實體圖表201與第二實體圖表202設置在無圖表底層200上,以使得第一實體圖表201的周圍、第二實體圖表202的周圍以及第一實體圖表201與第二實體圖表202兩者之間沒有任何的圖表”的技術方案,以使得圖表顯示結構20可以被應用於本發明所提供的鏡頭對焦系統S以及鏡頭對焦方法。Another beneficial effect of the present invention is that a graph display structure 20 provided by the present invention can be set on the bottom layer 200 without a graph through "the first entity graph 201 and the second entity graph 202, so that the first entity graph 201, around the second entity graph 202, and without any graphs between the first entity graph 201 and the second entity graph 202", so that the graph display structure 20 can be applied to the present invention The lens focusing system S and the lens focusing method.

以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的申請專利範圍內。The content disclosed above is only a preferred feasible embodiment of the present invention, and does not therefore limit the scope of the patent application of the present invention. Therefore, all equivalent technical changes made by using the description and drawings of the present invention are included in the application of the present invention. within the scope of the patent.

S:鏡頭對焦系統S: lens focusing system

1:待測物件承載裝置1: Object carrying device to be tested

2:鏡頭位置預判裝置2: Lens position prediction device

20:圖表顯示結構20: Diagram showing structure

200:無圖表底層200: No chart bottom layer

201:第一實體圖表201: First Entity Chart

202:第二實體圖表202: Second Entity Chart

201P:第一實體參考點201P: First Entity Reference Point

202P:第二實體參考點202P: Second entity reference point

201B:第一黑色區域201B: The first black area

201W:第一白色區域201W: The first white area

202B:第二黑色區域202B: Second black area

202W:第二白色區域202W: Second white area

2011:第一實體中心點2011: First Entity Center Point

2012:第一實體最左點2012: The first entity leftmost point

2013:第一實體最右點2013: First Entity Rightmost Point

2021:第二實體中心點2021: Second entity center point

2022:第二實體最左點2022: The leftmost point of the second entity

2023:第二實體最右點2023: Second Entity Rightmost Point

21:圖表影像資訊21: Chart image information

210:無圖表底層210: No chart bottom layer

211:第一影像圖表211: First Image Chart

211P:第一影像參考點211P: first image reference point

212P:第二影像參考點212P: Second image reference point

2111:第一影像中心點2111: Center point of the first image

2112:第一影像最左點2112: The leftmost point of the first image

2113:第一影像最右點2113: The rightmost point of the first image

2121:第二影像中心點2121: Center point of the second image

2122:第二影像最左點2122: The leftmost point of the second image

2123:第二影像最右點2123: The rightmost point of the second image

3:鏡頭位置調整裝置3: Lens position adjustment device

D1:實體量測距離D1: Entity measurement distance

D2:影像量測距離D2: Image measurement distance

L:實際距離L: actual distance

M:影像擷取模組M: Image capture module

M1:鏡頭支架M1: lens holder

M2:鏡頭結構M2: lens structure

M3:影像感測晶片M3: Image sensor chip

M11:右旋內螺紋M11: Right hand internal thread

M12:左旋內螺紋M12: Left-handed internal thread

M21:右旋外螺紋M21: right hand external thread

M22:左旋外螺紋M22: left-handed external thread

P:光學中心點P: optical center point

F:鏡頭焦距F: lens focal length

圖1為本發明第一實施例所提供的鏡頭對焦系統的其中一示意圖。FIG. 1 is a schematic diagram of a lens focusing system provided by a first embodiment of the present invention.

圖2為本發明第一實施例所提供的鏡頭對焦系統的另外一示意圖。FIG. 2 is another schematic diagram of the lens focusing system provided by the first embodiment of the present invention.

圖3為本發明第一實施例的圖表顯示結構所提供的一實體量測距離的示意圖。FIG. 3 is a schematic diagram of an entity measuring distance provided by the graph display structure of the first embodiment of the present invention.

圖4為本發明第一實施例的第一實體圖表具有多個第一黑色區域以及多個第一白色區域的示意圖。FIG. 4 is a schematic diagram of a first entity graph having a plurality of first black regions and a plurality of first white regions according to the first embodiment of the present invention.

圖5為本發明第一實施例的第二實體圖表具有多個第二黑色區域以及多個第二白色區域。FIG. 5 is a second entity chart according to the first embodiment of the present invention, which has a plurality of second black regions and a plurality of second white regions.

圖6為本發明第一實施例的圖表影像資訊所提供的一影像量測距離的示意圖。FIG. 6 is a schematic diagram of an image measuring distance provided by the chart image information according to the first embodiment of the present invention.

圖7為本發明第一實施例的圖表影像資訊所提供的另一影像量測距離的示意圖。FIG. 7 is a schematic diagram of another image distance measurement provided by the chart image information according to the first embodiment of the present invention.

圖8為本發明第一實施例的鏡頭位置調整裝置順時針旋轉調整鏡頭結構,以使得鏡頭結構以順時針旋轉的方式漸漸接近影像感測晶片的示意圖。FIG. 8 is a schematic diagram of the lens position adjusting device clockwise rotating and adjusting the lens structure according to the first embodiment of the present invention, so that the lens structure gradually approaches the image sensor chip in a clockwise manner.

圖9為本發明第一實施例的鏡頭位置調整裝置逆時針旋轉調整鏡頭結構,以使得鏡頭結構以逆時針旋轉的方式漸漸接近影像感測晶片的示意圖。FIG. 9 is a schematic diagram of the lens position adjustment device rotating counterclockwise to adjust the lens structure so that the lens structure gradually approaches the image sensor chip in a counterclockwise manner according to the first embodiment of the present invention.

圖10為圖8與圖9的鏡頭結構透過旋轉調整後,鏡頭結構的光學中心點相距於影像感測晶片的實際距離等於鏡頭結構的鏡頭焦距的示意圖。FIG. 10 is a schematic diagram showing that the actual distance between the optical center of the lens structure and the image sensing chip is equal to the lens focal length of the lens structure after the lens structure of FIG. 8 and FIG. 9 is adjusted through rotation.

圖11為本發明第一實施例的鏡頭位置調整裝置逆時針旋轉調整鏡頭結構,以使得鏡頭結構以逆時針旋轉的方式漸漸遠離影像感測晶片的示意圖。FIG. 11 is a schematic diagram of the lens position adjustment device rotating counterclockwise to adjust the lens structure according to the first embodiment of the present invention, so that the lens structure gradually moves away from the image sensor chip in a counterclockwise manner.

圖12為本發明第一實施例的鏡頭位置調整裝置順時針旋轉調整鏡頭結構,以使得鏡頭結構以順時針旋轉的方式漸漸遠離影像感測晶片的示意圖。FIG. 12 is a schematic diagram of the lens position adjusting device clockwise rotating and adjusting the lens structure according to the first embodiment of the present invention, so that the lens structure gradually moves away from the image sensor chip in a clockwise manner.

圖13為圖11與圖12的鏡頭結構透過旋轉調整後,鏡頭結構的光學中心點相距於影像感測晶片的實際距離等於鏡頭結構的鏡頭焦距的示意圖。FIG. 13 is a schematic diagram showing that the actual distance between the optical center of the lens structure and the image sensing chip is equal to the lens focal length of the lens structure after the lens structure of FIG. 11 and FIG. 12 is adjusted through rotation.

圖14為本發明第二實施例所提供的鏡頭對焦方法的流程圖。FIG. 14 is a flow chart of the lens focusing method provided by the second embodiment of the present invention.

20:圖表顯示結構 20: Diagram showing structure

200:無圖表底層 200: No chart bottom layer

201:第一實體圖表 201: First Entity Chart

202:第二實體圖表 202: Second Entity Chart

201P:第一實體參考點 201P: First Entity Reference Point

202P:第二實體參考點 202P: Second entity reference point

2011:第一實體中心點 2011: First Entity Center Point

2012:第一實體最左點 2012: The first entity leftmost point

2013:第一實體最右點 2013: First Entity Rightmost Point

2021:第二實體中心點 2021: Second entity center point

2022:第二實體最左點 2022: The leftmost point of the second entity

2023:第二實體最右點 2023: Second Entity Rightmost Point

D1:實體量測距離 D1: Entity measurement distance

Claims (10)

一種鏡頭對焦系統,其包括:一待測物件承載裝置,所述待測物件承載裝置用於承載一影像擷取模組,所述影像擷取模組包括一鏡頭支架、可活動地設置在所述鏡頭支架上的一鏡頭結構以及對應於所述鏡頭結構的一影像感測晶片;一鏡頭位置預判裝置,所述鏡頭位置預判裝置包括一圖表顯示結構;以及一鏡頭位置調整裝置,所述鏡頭位置調整裝置用於可旋轉地調整所述鏡頭結構相距於所述影像感測晶片的距離;其中,所述圖表顯示結構包括彼此分離的一第一實體圖表以及一第二實體圖表,且所述第一實體圖表的一第一實體參考點與所述第二實體圖表的一第二實體參考點兩者相距一實體量測距離;其中,當所述影像感測晶片配合所述鏡頭結構以擷取所述圖表顯示結構的所述第一實體圖表與所述第二實體圖表兩者後而取得一圖表影像資訊時,所述圖表影像資訊用於提供對應於所述第一實體圖表的一第一影像圖表以及對應於所述第二實體圖表的一第二影像圖表,且所述第一影像圖表的一第一影像參考點與所述第二影像圖表的一第二影像參考點兩者相距一影像量測距離;其中,當所述影像感測晶片配合所述鏡頭結構所取得的所述影像量測距離大於所述實體量測距離時,由於所述鏡頭結構的一光學中心點相距於所述影像感測晶片的一實際距離大於所述鏡頭結構的一鏡頭焦距,所以所述鏡頭結構透過所述鏡頭位置調整裝置的旋轉調整,以使得所述鏡頭結構漸漸朝向接近所述影像感測晶片的方向移動,直到所述鏡 頭結構的所述光學中心點相距於所述影像感測晶片的所述實際距離等於所述鏡頭結構的所述鏡頭焦距;其中,當所述影像感測晶片配合所述鏡頭結構所取得的所述影像量測距離小於所述實體量測距離時,由於所述鏡頭結構的所述光學中心點相距於所述影像感測晶片的所述實際距離小於所述鏡頭結構的所述鏡頭焦距,所以所述鏡頭結構透過所述鏡頭位置調整裝置的旋轉調整,以使得所述鏡頭結構漸漸朝向遠離所述影像感測晶片的方向移動,直到所述鏡頭結構的所述光學中心點相距於所述影像感測晶片的所述實際距離等於所述鏡頭結構的所述鏡頭焦距。 A lens focusing system, which includes: an object-to-be-measured carrying device, the object-to-be-tested carrying device is used to carry an image capture module, the image capture module includes a lens bracket, which is movably arranged on the A lens structure on the lens bracket and an image sensing chip corresponding to the lens structure; a lens position prediction device, the lens position prediction device includes a graph display structure; and a lens position adjustment device, the The lens position adjustment device is used to rotatably adjust the distance between the lens structure and the image sensing chip; wherein, the graphic display structure includes a first entity graphic and a second entity graphic separated from each other, and A first physical reference point of the first physical chart and a second physical reference point of the second physical chart are separated by a physical measurement distance; wherein, when the image sensor chip cooperates with the lens structure When obtaining a graph image information after retrieving both the first entity graph and the second entity graph of the graph display structure, the graph image information is used to provide an image corresponding to the first entity graph A first image graph and a second image graph corresponding to the second entity graph, and a first image reference point of the first image graph and a second image reference point of the second image graph are separated by an image measurement distance; wherein, when the image measurement distance obtained by the image sensor chip in cooperation with the lens structure is greater than the physical measurement distance, due to an optical center point of the lens structure An actual distance away from the image sensor chip is greater than a lens focal length of the lens structure, so the lens structure is adjusted through the rotation of the lens position adjustment device, so that the lens structure gradually approaches the image Sensing the orientation of the wafer moves until the mirror The actual distance between the optical center point of the head structure and the image sensor chip is equal to the lens focal length of the lens structure; wherein, when the image sensor chip matches the lens structure, the obtained When the image measurement distance is smaller than the physical measurement distance, since the actual distance between the optical center point of the lens structure and the image sensing chip is smaller than the lens focal length of the lens structure, The lens structure is adjusted through the rotation of the lens position adjustment device, so that the lens structure gradually moves away from the image sensor chip until the optical center point of the lens structure is far away from the image The actual distance of the sensing wafer is equal to the lens focal length of the lens structure. 如請求項1所述的鏡頭對焦系統,其中,所述鏡頭支架具有一右旋內螺紋,且所述鏡頭結構具有與所述右旋內螺紋相互配合的一右旋外螺紋;其中,當所述影像感測晶片配合所述鏡頭結構所取得的所述影像量測距離大於所述實體量測距離時,所述鏡頭位置調整裝置順時針旋轉調整所述鏡頭結構,以使得所述鏡頭結構以順時針旋轉的方式漸漸接近所述影像感測晶片,直到所述鏡頭結構的所述光學中心點相距於所述影像感測晶片的所述實際距離等於所述鏡頭結構的所述鏡頭焦距;其中,當所述影像感測晶片配合所述鏡頭結構所取得的所述影像量測距離小於所述實體量測距離時,所述鏡頭位置調整裝置逆時針旋轉調整所述鏡頭結構,以使得所述鏡頭結構以逆時針旋轉的方式漸漸遠離所述影像感測晶片,直到所述鏡頭結構的所述光學中心點相距於所述影像感測晶片的所述實際距離等於所述鏡頭結構的所述鏡頭焦距。 The lens focusing system according to claim 1, wherein the lens holder has a right-handed internal thread, and the lens structure has a right-handed external thread that cooperates with the right-handed internal thread; wherein, when the When the image measurement distance acquired by the image sensing chip in cooperation with the lens structure is greater than the physical measurement distance, the lens position adjustment device rotates clockwise to adjust the lens structure, so that the lens structure is gradually approaching the image sensing wafer in a clockwise rotation until the actual distance between the optical center point of the lens structure and the image sensing wafer is equal to the focal length of the lens of the lens structure; wherein , when the image measurement distance acquired by the image sensing chip with the lens structure is smaller than the physical measurement distance, the lens position adjustment device rotates and adjusts the lens structure counterclockwise, so that the The lens structure rotates counterclockwise gradually away from the image sensing chip until the actual distance between the optical center point of the lens structure and the image sensing chip is equal to the lens of the lens structure focal length. 如請求項1所述的鏡頭對焦系統,其中,所述鏡頭支架具有一左旋內螺紋,且所述鏡頭結構具有與所述左旋內螺紋相互配合的一左旋外螺紋;其中,當所述影像感測晶片配合所述鏡頭結構所取得的所述影像量測距離大於所述實體量測距離時,所述鏡頭位置調整裝置逆時針旋轉調整所述鏡頭結構,以使得所述鏡頭結構以逆時針旋轉的方式漸漸接近所述影像感測晶片,直到所述鏡頭結構的所述光學中心點相距於所述影像感測晶片的所述實際距離等於所述鏡頭結構的所述鏡頭焦距;其中,當所述影像感測晶片配合所述鏡頭結構所取得的所述影像量測距離小於所述實體量測距離時,所述鏡頭位置調整裝置順時針旋轉調整所述鏡頭結構,以使得所述鏡頭結構以順時針旋轉的方式漸漸遠離所述影像感測晶片,直到所述鏡頭結構的所述光學中心點相距於所述影像感測晶片的所述實際距離等於所述鏡頭結構的所述鏡頭焦距。 The lens focusing system according to claim 1, wherein the lens holder has a left-handed internal thread, and the lens structure has a left-handed external thread that cooperates with the left-handed internal thread; wherein, when the image sensor When the measurement distance of the image obtained by measuring the wafer with the lens structure is greater than the physical measurement distance, the lens position adjustment device rotates the lens structure counterclockwise so that the lens structure rotates counterclockwise gradually approaching the image sensing wafer in a manner until the actual distance between the optical center point of the lens structure and the image sensing wafer is equal to the focal length of the lens of the lens structure; wherein, when the When the image measurement distance acquired by the image sensing chip in cooperation with the lens structure is smaller than the physical measurement distance, the lens position adjustment device rotates clockwise to adjust the lens structure, so that the lens structure is Rotate clockwise gradually away from the image sensing wafer until the actual distance between the optical center of the lens structure and the image sensing wafer is equal to the lens focal length of the lens structure. 如請求項1所述的鏡頭對焦系統,其中,所述圖表顯示結構包括一無圖表底層,且所述第一實體圖表與所述第二實體圖表設置在所述無圖表底層上,以使得所述第一實體圖表的周圍、所述第二實體圖表的周圍以及所述第一實體圖表與所述第二實體圖表兩者之間沒有任何的圖表;其中,所述第一實體圖表具有多個第一黑色區域以及多個第一白色區域,且所述第二實體圖表具有多個第二黑色區域以及多個第二白色區域;其中,所述第一實體圖表的所述第一黑色區域與所述第二實體圖表的所述第二黑色區域的面積大小相同或者相異,且 所述第一實體圖表的所述第一白色區域與所述第二實體圖表的所述第二白色區域的面積大小相同或者相異;其中,所述第一實體圖表的所述第一實體參考點為一第一實體中心點、一第一實體最左點或者一第一實體最右點,且所述第二實體圖表的所述第二實體參考點為一第二實體中心點、一第二實體最左點或者一第二實體最右點;其中,所述第一實體圖表的所述第一實體參考點與所述第二實體圖表的所述第二實體參考點兩者之間的所述實體量測距離為所述第一實體圖表的所述第一實體中心點、所述第一實體最左點以及所述第一實體最右點三者其中之一相距所述第二實體圖表的所述第二實體中心點、所述第二實體最左點或者所述第二實體最右點三者其中之一的距離;其中,所述第一影像圖表的所述第一影像參考點為一第一影像中心點、一第一影像最左點或者一第一影像最右點,且所述第二影像圖表的所述第二影像參考點為一第二影像中心點、一第二影像最左點或者一第二影像最右點;其中,所述第一影像圖表的所述第一影像參考點與所述第二影像圖表的所述第二影像參考點兩者之間的所述影像量測距離為所述第一影像圖表的所述第一影像中心點、所述第一影像最左點以及所述第一影像最右點三者其中之一相距所述第二影像圖表的所述第二影像中心點、所述第二影像最左點或者所述第二影像最右點三者其中之一的距離。 The lens focusing system according to claim 1, wherein the graph display structure includes a graph-free bottom layer, and the first entity graph and the second entity graph are arranged on the graph-free bottom layer, so that all There are no graphs around the first entity graph, around the second entity graph, or between the first entity graph and the second entity graph; wherein, the first entity graph has multiple A first black area and a plurality of first white areas, and the second entity chart has a plurality of second black areas and a plurality of second white areas; wherein, the first black area of the first entity chart is the same as The area sizes of the second black regions of the second entity charts are the same or different, and The first white area of the first entity chart is the same or different from the second white area of the second entity chart; wherein, the first entity of the first entity chart refers to The point is a center point of a first entity, a leftmost point of a first entity, or a rightmost point of a first entity, and the second entity reference point of the second entity graph is a center point of a second entity, a first entity Two entity leftmost points or a second entity rightmost point; wherein, the distance between the first entity reference point of the first entity graph and the second entity reference point of the second entity graph The entity measurement distance is the distance between one of the first entity center point, the first entity leftmost point and the first entity rightmost point of the first entity graph from the second entity The distance of one of the center point of the second entity, the leftmost point of the second entity, or the rightmost point of the second entity in the chart; wherein, the first image reference of the first image chart point is a first image center point, a first image leftmost point or a first image rightmost point, and the second image reference point of the second image chart is a second image center point, a first image The leftmost point of two images or the rightmost point of a second image; wherein, the distance between the first image reference point of the first image chart and the second image reference point of the second image chart The image measurement distance is the distance between one of the center point of the first image, the leftmost point of the first image, and the rightmost point of the first image of the first image chart from the second image The distance of one of the center point of the second image, the leftmost point of the second image, or the rightmost point of the second image in the chart. 一種鏡頭對焦方法,其包括:提供一圖表顯示結構,所述圖表顯示結構包括彼此分離的一第一實體圖表以及一第二實體圖表,所述第一實體圖表的一第一實體參考點與所述第二實體圖表的一第二實體參考 點兩者相距一實體量測距離;透過一影像感測晶片配合一鏡頭結構以擷取所述圖表顯示結構的所述第一實體圖表與所述第二實體圖表兩者後而取得一圖表影像資訊,所述圖表影像資訊用於提供對應於所述第一實體圖表的一第一影像圖表以及對應於所述第二實體圖表的一第二影像圖表,且所述第一影像圖表的一第一影像參考點與所述第二影像圖表的一第二影像參考點兩者相距一影像量測距離;以及依據所述實體量測距離與所述影像量測距離的比較,將所述鏡頭結構漸漸朝向接近或者遠離所述影像感測晶片的方向移動,直到所述鏡頭結構的一光學中心點相距於所述影像感測晶片的一實際距離等於所述鏡頭結構的一鏡頭焦距;其中,當所述影像感測晶片配合所述鏡頭結構所取得的所述影像量測距離大於所述實體量測距離時,由於所述鏡頭結構的所述光學中心點相距於所述影像感測晶片的所述實際距離大於所述鏡頭結構的所述鏡頭焦距,所以所述鏡頭結構透過旋轉調整,以使得所述鏡頭結構漸漸朝向接近所述影像感測晶片的方向移動,直到所述鏡頭結構的所述光學中心點相距於所述影像感測晶片的所述實際距離等於所述鏡頭結構的所述鏡頭焦距;其中,當所述影像感測晶片配合所述鏡頭結構所取得的所述影像量測距離小於所述實體量測距離時,由於所述鏡頭結構的所述光學中心點相距於所述影像感測晶片的所述實際距離小於所述鏡頭結構的所述鏡頭焦距,所以所述鏡頭結構透過旋轉調整,以使得所述鏡頭結構漸漸朝向遠離所述影像感測晶片的方向移動,直到所述鏡頭結構的所述光學中心點相距於所述影像感測晶片的所述實際距離等於所述 鏡頭結構的所述鏡頭焦距。 A lens focusing method, which includes: providing a graph display structure, the graph display structure includes a first entity graph and a second entity graph separated from each other, a first entity reference point of the first entity graph and the A second entity reference to the second entity graph The two points are separated by a physical measurement distance; through an image sensing chip and a lens structure to capture both the first physical graph and the second physical graph of the graph display structure to obtain a graph image Information, the chart image information is used to provide a first image chart corresponding to the first entity chart and a second image chart corresponding to the second entity chart, and a first image chart of the first image chart An image reference point is separated from a second image reference point of the second image chart by an image measurement distance; and according to a comparison between the physical measurement distance and the image measurement distance, the lens structure is Gradually moving toward or away from the image sensing chip until an actual distance between an optical center point of the lens structure and the image sensing chip is equal to a lens focal length of the lens structure; wherein, when When the image measurement distance obtained by the image sensing chip with the lens structure is greater than the physical measurement distance, since the optical center point of the lens structure is far from the image sensing chip The actual distance is greater than the focal length of the lens of the lens structure, so the lens structure is adjusted through rotation, so that the lens structure gradually moves towards the direction close to the image sensing chip until the lens structure of the lens structure The actual distance between the optical center point and the image sensor chip is equal to the lens focal length of the lens structure; wherein, when the image sensor chip cooperates with the lens structure to obtain the image measurement distance When it is less than the physical measurement distance, since the actual distance between the optical center point of the lens structure and the image sensing chip is smaller than the lens focal length of the lens structure, the lens structure passes through rotating and adjusting, so that the lens structure gradually moves away from the image sensing chip until the actual distance between the optical center point of the lens structure and the image sensing chip is equal to the The lens focal length of the lens structure. 如請求項5所述的鏡頭對焦方法,其中,所述鏡頭支架具有一右旋內螺紋,且所述鏡頭結構具有與所述右旋內螺紋相互配合的一右旋外螺紋;其中,當所述影像感測晶片配合所述鏡頭結構所取得的所述影像量測距離大於所述實體量測距離時,順時針旋轉調整所述鏡頭結構,以使得所述鏡頭結構以順時針旋轉的方式漸漸接近所述影像感測晶片,直到所述鏡頭結構的所述光學中心點相距於所述影像感測晶片的所述實際距離等於所述鏡頭結構的所述鏡頭焦距;其中,當所述影像感測晶片配合所述鏡頭結構所取得的所述影像量測距離小於所述實體量測距離時,逆時針旋轉調整所述鏡頭結構,以使得所述鏡頭結構以逆時針旋轉的方式漸漸遠離所述影像感測晶片,直到所述鏡頭結構的所述光學中心點相距於所述影像感測晶片的所述實際距離等於所述鏡頭結構的所述鏡頭焦距。 The lens focusing method according to claim 5, wherein the lens holder has a right-handed internal thread, and the lens structure has a right-handed external thread that cooperates with the right-handed internal thread; wherein, when the When the image measurement distance obtained by the image sensing chip in cooperation with the lens structure is greater than the physical measurement distance, the lens structure is adjusted clockwise so that the lens structure gradually rotates clockwise. approaching the image sensing wafer until the actual distance between the optical center point of the lens structure and the image sensing wafer is equal to the focal length of the lens of the lens structure; wherein, when the image sensing When the measurement distance of the image acquired by the measuring wafer with the lens structure is smaller than the physical measurement distance, the lens structure is rotated counterclockwise to adjust the lens structure so that the lens structure gradually moves away from the The image sensing chip, until the actual distance between the optical center point of the lens structure and the image sensing chip is equal to the lens focal length of the lens structure. 如請求項5所述的鏡頭對焦方法,其中,所述鏡頭支架具有一左旋內螺紋,且所述鏡頭結構具有與所述左旋內螺紋相互配合的一左旋外螺紋;其中,當所述影像感測晶片配合所述鏡頭結構所取得的所述影像量測距離大於所述實體量測距離時,逆時針旋轉調整所述鏡頭結構,以使得所述鏡頭結構以逆時針旋轉的方式漸漸接近所述影像感測晶片,直到所述鏡頭結構的所述光學中心點相距於所述影像感測晶片的所述實際距離等於所述鏡頭結構的所述鏡頭焦距; 其中,當所述影像感測晶片配合所述鏡頭結構所取得的所述影像量測距離小於所述實體量測距離時,順時針旋轉調整所述鏡頭結構,以使得所述鏡頭結構以順時針旋轉的方式漸漸遠離所述影像感測晶片,直到所述鏡頭結構的所述光學中心點相距於所述影像感測晶片的所述實際距離等於所述鏡頭結構的所述鏡頭焦距。 The lens focusing method according to claim 5, wherein the lens holder has a left-handed internal thread, and the lens structure has a left-handed external thread that cooperates with the left-handed internal thread; wherein, when the image sensor When the measurement distance of the image acquired by the measuring wafer with the lens structure is greater than the physical measurement distance, the lens structure is rotated counterclockwise to adjust the lens structure so that the lens structure gradually approaches the an image sensing wafer, until the actual distance between the optical center point of the lens structure and the image sensing wafer is equal to the lens focal length of the lens structure; Wherein, when the image measurement distance acquired by the image sensing chip with the lens structure is smaller than the physical measurement distance, the lens structure is adjusted clockwise so that the lens structure moves clockwise The method of rotating gradually moves away from the image sensing chip until the actual distance between the optical center point of the lens structure and the image sensing chip is equal to the lens focal length of the lens structure. 如請求項5所述的鏡頭對焦方法,其中,所述圖表顯示結構包括一無圖表底層,且所述第一實體圖表與所述第二實體圖表設置在所述無圖表底層上,以使得所述第一實體圖表的周圍、所述第二實體圖表的周圍以及所述第一實體圖表與所述第二實體圖表兩者之間沒有任何的圖表;其中,所述第一實體圖表具有多個第一黑色區域以及多個第一白色區域,且所述第二實體圖表具有多個第二黑色區域以及多個第二白色區域;其中,所述第一實體圖表的所述第一黑色區域與所述第二實體圖表的所述第二黑色區域的面積大小相同或者相異,且所述第一實體圖表的所述第一白色區域與所述第二實體圖表的所述第二白色區域的面積大小相同或者相異;其中,所述第一實體圖表的所述第一實體參考點為一第一實體中心點、一第一實體最左點或者一第一實體最右點,且所述第二實體圖表的所述第二實體參考點為一第二實體中心點、一第二實體最左點或者一第二實體最右點;其中,所述第一實體圖表的所述第一實體參考點與所述第二實體圖表的所述第二實體參考點兩者之間的所述實體量測距離為所述第一實體圖表的所述第一實體中心點、所述第 一實體最左點以及所述第一實體最右點三者其中之一相距所述第二實體圖表的所述第二實體中心點、所述第二實體最左點或者所述第二實體最右點三者其中之一的距離;其中,所述第一影像圖表的所述第一影像參考點為一第一影像中心點、一第一影像最左點或者一第一影像最右點,且所述第二影像圖表的所述第二影像參考點為一第二影像中心點、一第二影像最左點或者一第二影像最右點;其中,所述第一影像圖表的所述第一影像參考點與所述第二影像圖表的所述第二影像參考點兩者之間的所述影像量測距離為所述第一影像圖表的所述第一影像中心點、所述第一影像最左點以及所述第一影像最右點三者其中之一相距所述第二影像圖表的所述第二影像中心點、所述第二影像最左點或者所述第二影像最右點三者其中之一的距離。 The lens focusing method according to claim 5, wherein the graph display structure includes a graph-free bottom layer, and the first entity graph and the second entity graph are arranged on the graph-free bottom layer, so that all There are no graphs around the first entity graph, around the second entity graph, or between the first entity graph and the second entity graph; wherein, the first entity graph has multiple A first black area and a plurality of first white areas, and the second entity chart has a plurality of second black areas and a plurality of second white areas; wherein, the first black area of the first entity chart is the same as The second black area of the second entity chart has the same or different area size, and the first white area of the first entity chart is the same as the second white area of the second entity chart The area sizes are the same or different; wherein, the first entity reference point of the first entity chart is a first entity center point, a first entity leftmost point or a first entity rightmost point, and the The second entity reference point of the second entity graph is a second entity center point, a second entity leftmost point or a second entity rightmost point; wherein, the first entity graph of the first entity The entity measurement distance between the reference point and the second entity reference point of the second entity graph is the first entity center point of the first entity graph, the second entity graph One of the leftmost point of an entity and the rightmost point of the first entity is far from the center point of the second entity, the leftmost point of the second entity, or the most The distance between one of the three right points; wherein, the first image reference point of the first image chart is a center point of the first image, a leftmost point of the first image or a rightmost point of the first image, And the second image reference point of the second image chart is a center point of a second image, a leftmost point of a second image or a rightmost point of a second image; wherein, the The image measurement distance between the first image reference point and the second image reference point of the second image chart is the first image center point of the first image chart, the second image chart One of the leftmost point of an image and the rightmost point of the first image is far from the center point of the second image, the leftmost point of the second image, or the most Right-click the distance to one of the three. 一種圖表顯示結構,其包括一無圖表底層、一第一實體圖表以及一第二實體圖表,且所述第一實體圖表與所述第二實體圖表設置在所述無圖表底層上,以使得所述第一實體圖表的周圍、所述第二實體圖表的周圍以及所述第一實體圖表與所述第二實體圖表兩者之間沒有任何的圖表;其中,所述第一實體圖表具有多個第一黑色區域以及多個第一白色區域,且所述第二實體圖表具有多個第二黑色區域以及多個第二白色區域。 A graph display structure, which includes a bottom layer without graph, a first entity graph and a second entity graph, and the first entity graph and the second entity graph are arranged on the graph-free bottom layer, so that all There are no graphs around the first entity graph, around the second entity graph, or between the first entity graph and the second entity graph; wherein, the first entity graph has multiple A first black area and a plurality of first white areas, and the second entity chart has a plurality of second black areas and a plurality of second white areas. 如請求項9所述的圖表顯示結構,其中,所述圖表顯示結構所提供的圖表只有所述第一實體圖表與所述第二實體圖表;其中,所述第一實體圖表的所述第一黑色區域與所述第二實 體圖表的所述第二黑色區域的面積大小相同或者相異,且所述第一實體圖表的所述第一白色區域與所述第二實體圖表的所述第二白色區域的面積大小相同或者相異;其中,所述第一實體圖表的一第一實體參考點與所述第二實體圖表的一第二實體參考點兩者相距一實體量測距離;其中,當一影像感測晶片配合一鏡頭結構以擷取所述圖表顯示結構的所述第一實體圖表與所述第二實體圖表兩者後而取得一圖表影像資訊時,所述圖表影像資訊用於提供對應於所述第一實體圖表的一第一影像圖表以及對應於所述第二實體圖表的一第二影像圖表,且所述第一影像圖表的一第一影像參考點與所述第二影像圖表的一第二影像參考點兩者相距一影像量測距離;其中,當所述影像感測晶片配合所述鏡頭結構所取得的所述影像量測距離大於所述實體量測距離時,由於所述鏡頭結構的一光學中心點相距於所述影像感測晶片的一實際距離大於所述鏡頭結構的一鏡頭焦距,所以所述鏡頭結構透過旋轉調整,以使得所述鏡頭結構漸漸朝向接近所述影像感測晶片的方向移動,直到所述鏡頭結構的所述光學中心點相距於所述影像感測晶片的所述實際距離等於所述鏡頭結構的所述鏡頭焦距;其中,當所述影像感測晶片配合所述鏡頭結構所取得的所述影像量測距離小於所述實體量測距離時,由於所述鏡頭結構的所述光學中心點相距於所述影像感測晶片的所述實際距離小於所述鏡頭結構的所述鏡頭焦距,所以所述鏡頭結構透過旋轉調整,以使得所述鏡頭結構漸漸朝向遠離所述影像感測晶片的方向移動,直到所述鏡頭結構的所述光學中心點相距於所述影像感測晶片的所述實際距離等於所述 鏡頭結構的所述鏡頭焦距。 The graph display structure according to claim 9, wherein, the graphs provided by the graph display structure only have the first entity graph and the second entity graph; wherein, the first entity graph of the first entity graph black area with the second solid The area size of the second black area of the volume chart is the same or different, and the area size of the first white area of the first entity chart is the same as or the area size of the second white area of the second entity chart different; wherein, a first physical reference point of the first physical chart and a second physical reference point of the second physical chart are separated by a physical measurement distance; wherein, when an image sensor chip cooperates When a camera structure captures both the first entity graph and the second entity graph of the graph display structure to obtain a graph image information, the graph image information is used to provide information corresponding to the first a first image graph of the entity graph and a second image graph corresponding to the second entity graph, and a first image reference point of the first image graph and a second image of the second image graph The distance between the two reference points is an image measurement distance; wherein, when the image measurement distance obtained by the image sensor chip in cooperation with the lens structure is greater than the physical measurement distance, due to an image measurement distance of the lens structure An actual distance between the optical center point and the image sensor chip is greater than a lens focal length of the lens structure, so the lens structure is adjusted by rotation, so that the lens structure gradually approaches the image sensor chip moving in a direction until the actual distance between the optical center point of the lens structure and the image sensor chip is equal to the focal length of the lens of the lens structure; wherein, when the image sensor chip cooperates with the When the image measurement distance obtained by the lens structure is smaller than the physical measurement distance, since the actual distance between the optical center point of the lens structure and the image sensing chip is smaller than the actual distance of the lens structure The focal length of the lens, so the lens structure is adjusted by rotation, so that the lens structure gradually moves away from the image sensor chip until the optical center point of the lens structure is far away from the image sensor chip. The actual distance of the measured wafer is equal to the The lens focal length of the lens structure.
TW110135719A 2021-09-27 2021-09-27 Lens focusing system, lens focusing method and chart display structure TWI792582B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110135719A TWI792582B (en) 2021-09-27 2021-09-27 Lens focusing system, lens focusing method and chart display structure
CN202111186285.9A CN115883950A (en) 2021-09-27 2021-10-12 Lens focusing system, lens focusing method and chart display structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110135719A TWI792582B (en) 2021-09-27 2021-09-27 Lens focusing system, lens focusing method and chart display structure

Publications (2)

Publication Number Publication Date
TWI792582B true TWI792582B (en) 2023-02-11
TW202314354A TW202314354A (en) 2023-04-01

Family

ID=85756817

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110135719A TWI792582B (en) 2021-09-27 2021-09-27 Lens focusing system, lens focusing method and chart display structure

Country Status (2)

Country Link
CN (1) CN115883950A (en)
TW (1) TWI792582B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8229292B2 (en) * 2010-01-05 2012-07-24 Samsung Electronics Co., Ltd. Auto focus adjusting apparatus and camera system
JP2013182176A (en) * 2012-03-02 2013-09-12 Nikon Corp Focus detector
CN103516976A (en) * 2012-06-25 2014-01-15 佳能株式会社 Image pickup apparatus and method of controlling the same
US8917347B2 (en) * 2009-05-08 2014-12-23 Nikon Corporation Focus control method and culture observation apparatus
US9088708B2 (en) * 2013-07-19 2015-07-21 Htc Corporation Image processing device and method for controlling the same
TW201535007A (en) * 2013-12-11 2015-09-16 Asahi Kasei Microdevices Corp Camera shake correction device and adjustment method therefor, camera shake correction circuit, camera shake correction method, camera module and position control method for optical element of camera module
US9606415B2 (en) * 2012-02-03 2017-03-28 University Of Southampton Super-oscillatory lens device
CN107329233A (en) * 2017-08-25 2017-11-07 西南大学 A kind of droplet type PCR instrument Atomatic focusing method based on neutral net
TWM626231U (en) * 2021-09-27 2022-05-01 海華科技股份有限公司 Lens focusing system and chart display structure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8917347B2 (en) * 2009-05-08 2014-12-23 Nikon Corporation Focus control method and culture observation apparatus
US8229292B2 (en) * 2010-01-05 2012-07-24 Samsung Electronics Co., Ltd. Auto focus adjusting apparatus and camera system
US9606415B2 (en) * 2012-02-03 2017-03-28 University Of Southampton Super-oscillatory lens device
JP2013182176A (en) * 2012-03-02 2013-09-12 Nikon Corp Focus detector
CN103516976A (en) * 2012-06-25 2014-01-15 佳能株式会社 Image pickup apparatus and method of controlling the same
US9088708B2 (en) * 2013-07-19 2015-07-21 Htc Corporation Image processing device and method for controlling the same
TW201535007A (en) * 2013-12-11 2015-09-16 Asahi Kasei Microdevices Corp Camera shake correction device and adjustment method therefor, camera shake correction circuit, camera shake correction method, camera module and position control method for optical element of camera module
CN107329233A (en) * 2017-08-25 2017-11-07 西南大学 A kind of droplet type PCR instrument Atomatic focusing method based on neutral net
TWM626231U (en) * 2021-09-27 2022-05-01 海華科技股份有限公司 Lens focusing system and chart display structure

Also Published As

Publication number Publication date
CN115883950A (en) 2023-03-31
TW202314354A (en) 2023-04-01

Similar Documents

Publication Publication Date Title
JP4981124B2 (en) Improved plenoptic camera
US10467469B2 (en) Optical system for an image acquisition device
JP2010226157A (en) Camera, and image correction method
JP2002325199A (en) Electronic imaging device
EP3992671A1 (en) Phased metalens for adjusting a focus of an image
JP2006235479A (en) Optical element, optical unit, and imaging apparatus
WO2020088518A1 (en) Image outputting method and camera
TW201817217A (en) Camera module
JP2002202452A (en) Device realizing micro mode for digital still camera using focus driving motor
TWM626231U (en) Lens focusing system and chart display structure
TWI792582B (en) Lens focusing system, lens focusing method and chart display structure
KR101641711B1 (en) Distance adaptive 3d camera
JP2010048724A (en) Infrared camera adjustment method and infrared camera adjusting tool
JP2022541026A (en) Imaging equipment and methods, and adjustment elements
JP2008256796A (en) Imaging pick-up device
JP4162842B2 (en) Image capturing apparatus and image capturing method
KR101493928B1 (en) Image capturing lens system
JP5250575B2 (en) Camera device
JP2021182019A (en) Imaging apparatus and imaging system
CN109597191A (en) Check device
TWI328137B (en) Apparatus and method for extracting all-view image
JPH0690398A (en) Image blur correction device
JP2008275542A (en) Three-dimensional shape restoration processing apparatus, and method and program therefor
US20030113112A1 (en) Mask for preventing undesired light from entering lens of a camera
KR101957357B1 (en) Multiscale Imaging system using one mirror