JPH0690398A - Image blur correction device - Google Patents

Image blur correction device

Info

Publication number
JPH0690398A
JPH0690398A JP4239596A JP23959692A JPH0690398A JP H0690398 A JPH0690398 A JP H0690398A JP 4239596 A JP4239596 A JP 4239596A JP 23959692 A JP23959692 A JP 23959692A JP H0690398 A JPH0690398 A JP H0690398A
Authority
JP
Japan
Prior art keywords
image
prism
blur
variable apex
apex angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4239596A
Other languages
Japanese (ja)
Other versions
JP3135379B2 (en
Inventor
Kenichi Kimura
研一 木村
Katsumi Azusazawa
勝美 梓澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP04239596A priority Critical patent/JP3135379B2/en
Publication of JPH0690398A publication Critical patent/JPH0690398A/en
Application granted granted Critical
Publication of JP3135379B2 publication Critical patent/JP3135379B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To solve effectively aberration of distortion caused by eccentricity being a defect of a prism by forming the device with a means converting an optical image into an electric signal and a processing circuit correcting the aberration of distortion caused in the image when a blur of an image caused in an objective lens is corrected optically. CONSTITUTION:The vibration preventing system employing a variable apex angle prism is made up of a variable apex prism 1 as an image blur correction means, an image pickup lens system 2, an image pickup element 3 such as a CCD converting an optical image into an electric signal, a circuit 4 processing the signal from the element, a sensor 5 detecting a blur of a video camera including the optical system, and a sensor 6 detecting a turning angle in each direction of a yoke and pitch of the prism. In such a constitution, a vibration prevention on/off switch (not shown) is used after turning on of power source to discriminate whether or not the mode is in the vibration prevention mode, the usual operation is performed as it is when the mode is not the vibration prevention mode, a current prism turning angle is calculated from the sensors 5, 6 when it is in the vibration prevention mode and the aberration of distortion is calculated from the zoom position and the turning angle is obtained from an encoder 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、通過光束の進行方向を
任意に変えることができる可変頂角プリズム装置を用い
た防振レンズを有するビデオカメラ等のカメラ装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a camera device such as a video camera having an anti-vibration lens using a variable apex angle prism device capable of arbitrarily changing the traveling direction of a passing light beam.

【0002】[0002]

【従来の技術】近年、ビデオカメラ等のカメラ装置の自
動化が進み、自動露出調節手段や自動焦点調節手段な
ど、様々な機能が実用化されている。
2. Description of the Related Art In recent years, automation of camera devices such as video cameras has progressed, and various functions such as automatic exposure adjusting means and automatic focus adjusting means have been put to practical use.

【0003】これらの自動化機能を一つとして、様々な
原因によって発生する画面の有害なぶれを軽減するぶれ
補正手段が考案され、また、実用化されつつある。
With these automation functions as one, a blur correction means for reducing harmful blur of the screen caused by various causes has been devised and put into practical use.

【0004】特にビデオカメラ等のカメラ装置において
は、使用される撮影レンズとしてズームレンズを用いる
のが一般的であり、そのズーム比も年々大きくなる傾向
が強い。一方カメラ装置の小型化も顕著であり、撮像画
面サイズの小型化、高密度実装技術の発展、小型レコー
ダーメカシャーシの開発などを背景に、片手で撮影が可
能な小型機種まで現われてきている。
Particularly in a camera device such as a video camera, it is general to use a zoom lens as a photographing lens used, and the zoom ratio thereof tends to increase year by year. On the other hand, the downsizing of camera devices is also remarkable, and due to the downsizing of the image pickup screen, the development of high-density mounting technology, and the development of a small recorder mechanical chassis, small models capable of shooting with one hand have appeared.

【0005】しかしながら、このようなズームレンズを
備えた小型のビデオカメラを用いる場合、撮影者の手ぶ
れに起因する画面の有害なぶれが発生し、このぶれを除
去し、安定した画面を得るために、様々なぶれ防止手段
が提案されている。これらのぶれ防止手段を用いれば、
このような手ぶれによる画面の有害なぶれだけでなく、
船舶や自動車などからの撮影に際して、三脚を用いても
有害な手ぶれが除去しえないような状況においても大き
な効果を有することは言うまでもない。
However, when using a small video camera equipped with such a zoom lens, harmful blurring of the screen occurs due to camera shake of the photographer, and in order to eliminate this blurring and obtain a stable screen. , Various blurring prevention means have been proposed. If you use these shake prevention measures,
Not only the harmful blurring of the screen due to such camera shake,
It is needless to say that it has a great effect even in a situation in which harmful camera shake cannot be removed by using a tripod when photographing from a ship or an automobile.

【0006】このぶれ防止手段は、ぶれを検出するぶれ
検出手段と、検出されたぶれの情報に応じて画面として
ぶれが発生しないように、なんらかの補正を行なうぶれ
補正手段を、少なくとも含んで構成されている。
[0006] The blur prevention means includes at least blur detection means for detecting blur and blur correction means for performing some correction so that blur does not occur on the screen according to the detected blur information. ing.

【0007】ぶれ検出手段としては例えば、角加速度
計、角速度計、角変位計などが知られている。
As the shake detecting means, for example, an angular accelerometer, an angular velocity meter, an angular displacement meter, etc. are known.

【0008】又、ぶれ補正手段としては、本件同一出願
人による可変頂角プリズムを用いるものや、得られた撮
像画面情報の中から実際に画面として用いる領域を切り
出すように構成したビデオカメラにて、その切り出し位
置をぶれが補正される位置に順次変更していく方法など
が知られている。
As the blur correction means, a variable apex angle prism by the same applicant of the present application is used, or a video camera configured to cut out an area to be actually used as a screen from the obtained imaging screen information. A method is known in which the cutout position is sequentially changed to a position where blurring is corrected.

【0009】補正手段として、前者のように可変頂角プ
リズムや、その他のなんらかの光学的手段を用いて撮像
素子上に結像する像の段階でぶれを除去するような方法
をここでは光学的補正手段と称し、後者のようにぶれを
含んだ画像情報を電子的に加工してぶれを除去する方法
を電子的な補正手段と称する。
As the correction means, a method of removing blurring at the stage of an image formed on an image pickup element by using a variable apex angle prism or some other optical means as the correction means is used here. A method of electronically processing image information including a blur and removing the blur is called electronic correction means.

【0010】一般的に、光学的補正手段はレンズの焦点
距離にかかわりなく、カメラのぶれ角度として定められ
た角度以内のぶれに対しての補正が可能であり、従っ
て、ズームレンズのテレ側の焦点距離が長い場合でも、
実用上問題のないぶれ除去性能を有することが出来る。
しかし、大きくなるという欠点を有している。
In general, the optical correction means is capable of correcting a blur within an angle defined as a blur angle of a camera regardless of the focal length of the lens, and therefore, the telephoto side of the zoom lens can be corrected. Even if the focal length is long,
It is possible to have a blur removal performance that poses no practical problem.
However, it has the drawback of becoming large.

【0011】これに対して、電子的な補正手段は画面上
での例えば画面の縦寸法に対する補正率といったものが
一定である。従って、テレ側の焦点距離が長くなるにし
たがって、ぶれ除去の性能は劣化する。電子式の場合一
般に小型化に対しては有利となることが多い。
On the other hand, the electronic correction means has a constant correction rate for the vertical dimension of the screen, for example. Therefore, the blur removal performance deteriorates as the focal length on the telephoto side becomes longer. In general, the electronic type is often advantageous for miniaturization.

【0012】図8は焦点距離とカメラのぶれ角度との関
係を画面上の被写体位置で説明した図である。図におい
て、カメラが22で示した位置にある時のレンズの光軸
は23であり被写体である人物21の顔をほぼ中心にと
らえていることになる。この状態からa度、手ぶれによ
りカメラが回転したとする。この時のカメラ位置を24
で、光軸を25で示す。
FIG. 8 is a diagram for explaining the relationship between the focal length and the camera shake angle by the subject position on the screen. In the figure, when the camera is at the position indicated by 22, the optical axis of the lens is 23, which means that the face of the person 21, who is the subject, is almost centered. It is assumed that the camera rotates by a degree from this state due to camera shake. The camera position at this time is 24
, The optical axis is indicated by 25.

【0013】図8における(B)と(C)はこの図8の
22と24で示すカメラ位置での画面位置を示してお
り、(B)はズームレンズのテレ端での状態を、(C)
はワイド端での状態を示す。26は画面内の被写体を示
しており、27及び29は22の位置での、28および
20は24の位置での画面を示している。
8B and 8C show the screen positions at the camera positions indicated by 22 and 24 in FIG. 8, and FIG. 8B shows the state at the telephoto end of the zoom lens. )
Indicates the state at the wide end. Reference numeral 26 denotes a subject within the screen, 27 and 29 denote the screen at the 22 position, and 28 and 20 denote the screen at the 24 position.

【0014】図9から明らかなように、同じa度のカメ
ラぶれであっても、当然、レンズの焦点距離が長い方
が、画面上のぶれとしては害が大きい。したがって、特
にテレ端の焦点距離の長いレンズと組み合わせるような
ぶれ除去手段においては、可変頂角プリズムを用いるよ
うな光学的手段は有効なぶれ補正手段といえる。
As is clear from FIG. 9, even with camera shake of the same a degree, the longer the focal length of the lens is, of course, more harmful as the shake on the screen. Therefore, it can be said that an optical means using a variable apex angle prism is an effective blur correction means particularly in the blur removal means combined with a lens having a long focal length at the telephoto end.

【0015】図9に可変頂角プリズムの構成を示す。図
において31と33はガラス板であり、37は例えばポ
リエチレン等の材料で作られた蛇腹部分である。これら
のガラス板と蛇腹で囲まれた内部に、例えばシリコンオ
イル等による透明な液体32が封入されている。
FIG. 9 shows the structure of the variable apex angle prism. In the figure, 31 and 33 are glass plates, and 37 is a bellows portion made of a material such as polyethylene. A transparent liquid 32 made of, for example, silicon oil is enclosed inside the glass plate and the bellows.

【0016】図9(B)では2枚のガラス板31と33
は平行な状態であり、この場合、可変頂角プリズムの光
線の入射角度と出射角度は等しい。一方図9(A)、
(C)のように角度を持つ場合にはそれぞれ光線34、
36で示した如く光線は或角度をもって曲げられる。従
って、カメラが手ぶれ等の原因により傾いた場合にその
角度に相当する分光線が曲がるように、レンズの前に設
けた可変頂角プリズムの角度を制御することによって、
ぶれが除去できるものである。
In FIG. 9B, two glass plates 31 and 33 are provided.
Are parallel to each other, and in this case, the incident angle and the outgoing angle of the light beam of the variable apex angle prism are equal. On the other hand, FIG.
When there is an angle as in (C), the light rays 34,
The rays are bent at an angle, as indicated at 36. Therefore, when the camera is tilted due to camera shake or the like, the angle of the variable apex prism provided in front of the lens is controlled so that the spectral line corresponding to that angle bends,
Blur can be removed.

【0017】図10はこの状態を示しており、図10
(A)にて可変頂角プリズムは平行状態にあり、光軸は
被写体の頭をとらえているとすると、(B)のようにa
度のぶれに対して図の様に可変頂角プリズムを駆動して
光線を曲げることにより撮影光軸は相変わらず、被写体
の頭をとらえ続けられる。
FIG. 10 shows this state.
Assuming that the variable apex angle prism is in a parallel state in (A) and the optical axis captures the head of the subject, as in (B),
By driving the variable apex angle prism as shown in the figure to bend the light beam against the fluctuation of the degree, the photographing optical axis remains unchanged and the subject's head can be continuously captured.

【0018】図12はこの可変頂角プリズムとそれを駆
動するアクチュエーター部および、角度状態を検出する
頂角センサーを含む、可変頂角プリズムユニット等の分
解斜視図である。実際のぶれはあらゆる方向で出現する
がこれに対処するよう可変頂角プリズムの前側のガラス
面と後ろ側のガラス面はそれぞれ90度ずれた方向を回
転軸として回転可能なように構成されている。ここでは
同一機能を果たす構成部品については同一番号を符す
が、添え字a,bは90度ずれた部品を示す。尚b側の
部品の一部不図示となっている。
FIG. 12 is an exploded perspective view of a variable apex angle prism unit and the like including the variable apex angle prism, an actuator section for driving the variable apex angle prism, and an apex angle sensor for detecting an angular state. Actual blurring appears in all directions, but in order to deal with this, the front glass surface and the rear glass surface of the variable apex angle prism are configured to be rotatable about axes that are offset by 90 degrees. . Here, components having the same function are denoted by the same reference numerals, but subscripts a and b indicate components that are offset by 90 degrees. Note that some of the parts on the b side are not shown.

【0019】51は可変頂角プリズムの本体で、ガラス
板31、33、蛇腹部37および内部にシリコンオイル
等の液体からなる。ガラス板は保持枠38に一体的に接
着剤等を用いて取り付けられる。保持枠38は不図示の
固定部品との間で回転軸43を中心にして回動可能とな
っている。先にも説明した通り軸43aと軸43bは、
90度方向が異なっている。保持枠38上にはコイル4
5が一体的に設けられており、一方、不図示の固定部分
には、マグネット46、ヨーク47、48が設けられて
いる。したがって、コイルに電流を流すことにより可変
頂角プリズムは軸43回りに回動する。保持枠38から
一体的に伸びた腕部分40の先端にはスリット39があ
り、固定部分に設けられたiRED素子等の発光素子4
1と、PSD等の受光素子があり頂角センサーを構成し
プリズムの偏移状態を検出する。
Reference numeral 51 denotes a main body of the variable apex angle prism, which is made of a glass plate 31, 33, a bellows portion 37 and a liquid such as silicon oil inside. The glass plate is integrally attached to the holding frame 38 using an adhesive or the like. The holding frame 38 is rotatable around a rotation shaft 43 with a fixed component (not shown). As described above, the shaft 43a and the shaft 43b are
90 degree direction is different. The coil 4 is placed on the holding frame 38.
5 is integrally provided, and a magnet 46 and yokes 47 and 48 are provided on a fixed portion (not shown). Therefore, the variable apex angle prism is rotated around the axis 43 by passing a current through the coil. There is a slit 39 at the tip of an arm portion 40 that extends integrally from the holding frame 38, and a light emitting element 4 such as an iRED element provided in the fixed portion.
1 and a light receiving element such as PSD, which constitutes a vertical angle sensor, detects the deviation state of the prism.

【0020】図11にはこの可変頂角プリズムを補正手
段として有するぶれ防止手段を、撮影レンズと組み合わ
せた防振制御システムのブロック構成図を示す。
FIG. 11 shows a block diagram of an image stabilization control system in which the shake prevention means having the variable apex angle prism as a correction means is combined with a photographing lens.

【0021】図において51は可変頂角プリズム、5
3、54は前述した構成の頂角センサー63、64は頂
角センサーの出力を増幅する検出回路部、55はマイク
ロコンピューター、56、57はぶれ検出手段である。
マイクロコンピューター55では頂角センサーにより検
出された角度状態と、ぶれ検出手段56、57の検出結
果に応じてぶれを除去するのに最適な角度状態に可変頂
角プリズムの角度状態を制御するために、アクチュエー
ター58、59に通電する電流を決定する。
In the figure, 51 is a variable apex angle prism, 5
Reference numerals 3 and 54 denote apex angle sensors 63 and 64 having the above-described configuration, detection circuit units for amplifying the outputs of the apex angle sensors, 55 a microcomputer, and 56 and 57 blurring detecting means.
In the microcomputer 55, in order to control the angle state of the variable apex angle prism to the angle state detected by the apex angle sensor and the optimal angle state for removing the blur according to the detection result of the blur detecting means 56, 57. , Determine the current to be applied to the actuators 58 and 59.

【0022】尚、主だった要素が二つのブロックより成
り立っているのは、90度ずれた2方向の制御をそれぞ
れ単独に行なうと仮定したためである。
The main element is made up of two blocks because it is assumed that control in two directions 90 degrees apart is performed independently.

【0023】可変頂角プリズムの屈折率をn、プリズム
頂角をσ、入射光線と出射光線の間の角度をδとする
と、頂角の小さい範囲では以下の式があてはまる。
If the refractive index of the variable apex prism is n, the apex angle of the prism is σ, and the angle between the incident light beam and the outgoing light beam is δ, the following equations apply in the range of small apex angles.

【0024】δ=(n−1)σ 例えばn=1.4の場合、可変頂角プリズムを5度傾け
ると光線は2度曲がることとなる。
Δ = (n−1) σ For example, in the case of n = 1.4, when the variable apex angle prism is tilted by 5 degrees, the light beam is bent by 2 degrees.

【0025】以上、可変頂角プリズムを用いた、ぶれ防
止手段に関して説明した。
The blur prevention means using the variable apex angle prism has been described above.

【0026】[0026]

【発明が解決しようとする課題】しかしながら、光学的
に像ブレを補正する補正光学部、特に可変頂角プリズム
を用いた防振光学系においては、像が偏向された時、つ
まり頂角を変化させた時に偏心歪曲収差が発生するとい
う欠点がある。以下にその説明をおこなう。
However, in the correction optical unit for optically correcting the image blur, particularly in the image stabilization optical system using the variable apex angle prism, when the image is deflected, that is, the apex angle is changed. There is a drawback in that eccentric distortion aberration occurs when it is caused. The explanation will be given below.

【0027】図3、図4は可変頂角プリズムの偏心歪曲
収差発生の様子を示す図である。図3は可変頂角プリズ
ム14の2枚の透明部材の内の物体側が光軸及び紙面の
双方に垂直な回転に依りσ傾いた時の軸上主光線16及
び軸外主光線17、18の様子を示すものである。いま
紙面内の回転方向をピッチ方向とし、ピッチ方向の手ブ
レに応じて(従来技術の項で述べた式に従って)軸上主
光線16がδ偏向されるように可変頂角プリズムを制御
したとすると、撮影レンズ系での画角ωの軸外主光線は
可変頂角プリズムにそれぞれφ1、φ2の角度で入射す
ることになる。もし偏向角(φ−ω)が全画面内で一定
でδに等しければ像面上では像は元の形を保ったまま偏
向されるが、実際には撮影レンズ系の画角に依ってφ
が、その結果各主光線の偏向角が異なり、同じ物体を撮
影したときの像面上の大きさが一様で無くなってくる。
これが偏心による歪曲収差である。
FIGS. 3 and 4 are views showing how decentering distortion occurs in the variable apex angle prism. FIG. 3 shows the axial chief ray 16 and the off-axis chief rays 17, 18 when the object side of the two transparent members of the variable apex angle prism 14 is inclined by σ due to the rotation perpendicular to both the optical axis and the paper surface. It shows the situation. Now, assume that the rotation direction in the plane of the drawing is the pitch direction, and the variable apex angle prism is controlled so that the axial chief ray 16 is δ-deflected according to the camera shake in the pitch direction (according to the formula described in the section of the prior art). Then, the off-axis chief rays with the angle of view ω in the taking lens system are incident on the variable apex angle prism at angles of φ1 and φ2, respectively. If the deflection angle (φ-ω) is constant within the entire screen and is equal to δ, the image is deflected while maintaining its original shape on the image plane, but in reality, φ depends on the angle of view of the taking lens system.
However, as a result, the deflection angles of the principal rays are different, and when the same object is photographed, the size on the image plane is not uniform.
This is distortion due to decentering.

【0028】図3の場合(φ2′−ω)が(φ1′−
ω)より大きくなるため、例えば図7(A)に示す様な
被写体の像は、図7(B)の様な形に歪む。尚、点線は
歪曲収差のない場合の理想像である。
In the case of FIG. 3, (φ2'-ω) is (φ1'-
ω), the image of the subject as shown in FIG. 7A is distorted into the shape as shown in FIG. 7B. The dotted line is an ideal image when there is no distortion.

【0029】従って、手ぶれで生じる像ぶれを可変頂角
プリズムで像を逆方向に偏向して補正する防振光学系に
おいては、上述した通りの偏心歪曲収差があると、画面
中心の点と軸外の点で移動量が異なることになるので画
面中心で像ぶれを、補正したとしても周辺では、像の流
れを生じてしまう。図7(C)は(A)の様な被写体を
この様な偏心収差係数のある防振光学系で像ぶれ補正し
た結果である。
Therefore, in the image stabilizing optical system for correcting the image blur caused by the camera shake by deflecting the image in the opposite direction by the variable apex angle prism, when the eccentric distortion aberration as described above is present, the point at the center of the screen and the axis are corrected. Since the amount of movement differs at outside points, image blurring occurs at the periphery even if the image blurring at the center of the screen is corrected. FIG. 7C shows the result of image blur correction of the subject as shown in FIG. 7A by the image stabilization optical system having such an eccentric aberration coefficient.

【0030】本発明の目的は、この問題点に鑑みて、光
学的性能の高い特に防振光学系で発生した歪曲収差を良
好に補正したビデオカメラを提供することにある。
In view of this problem, it is an object of the present invention to provide a video camera having a high optical performance, in which distortion aberration generated particularly in a vibration-proof optical system is properly corrected.

【0031】そして本発明の特徴とする処は、対物レン
ズが形成する像のブレを光学的に補正する補正手段を具
備する補正装置において、前記光学像を電気信号に変換
する変換手段、前記補正手段によって生じる歪曲収差を
補正するために前記電気信号を信号処理する処理回路を
具備することにある。
A feature of the present invention is that, in a correction device having a correction means for optically correcting a blur of an image formed by an objective lens, a conversion means for converting the optical image into an electric signal, and the correction means. And a processing circuit for processing the electric signal in order to correct the distortion aberration caused by the means.

【0032】[0032]

【実施例】(実施例1)図1は本発明に係る可変頂角プ
リズムを用いた防振システムの第1実施例を表す図であ
る。1は像ブレ補正手段としての可変頂角プリズム、2
は撮影レンズ系、3は光学像を電気信号に変換するCC
D等の撮像素子、4は撮像素子からの信号を処理する信
号処理回路、5は光学系をふくむビデオカメラのぶれを
検出するぶれ検出センサ、6は可変頂角プリズムのヨー
ク、ピッチそれぞれの方向の回動角を検知するセンサ、
7は可変頂角プリズム1を5と6のセンサの情報によ
り、8の制御回路によって計算される振れ角だけ可変頂
角プリズム1を駆動する装置、9は撮影レンズ系のズー
ム位置(焦点距離)を検出するズームエンコーダ、10
は回動角センサ6の出力とエンコーダ9の出力をもとに
発生するであろう歪曲収差を算出する歪曲収差算出回
路、11は歪曲収差算出回路10の結果をもとに信号処
理回路4の出力に対して歪曲収差を補正させるように信
号処理する処理回路である。
(Embodiment 1) FIG. 1 is a diagram showing a first embodiment of a vibration isolation system using a variable apex angle prism according to the present invention. 1 is a variable apex angle prism as image blur correction means, 2
Is a taking lens system, 3 is a CC for converting an optical image into an electric signal
Image pickup device such as D, 4 is a signal processing circuit for processing a signal from the image pickup device, 5 is a shake detection sensor for detecting shake of a video camera including an optical system, 6 is a yoke of a variable apex angle prism, and directions of respective pitches Sensor that detects the rotation angle of
7 is a device for driving the variable apex prism 1 by the deflection angle calculated by the control circuit 8 according to the information of the sensors 5 and 6, and 9 is a zoom position (focal length) of the taking lens system. Encoder for detecting
Is a distortion aberration calculation circuit that calculates the distortion aberration that will be generated based on the output of the rotation angle sensor 6 and the output of the encoder 9, and 11 is the signal processing circuit 4 based on the result of the distortion aberration calculation circuit 10. It is a processing circuit that performs signal processing so as to correct distortion for output.

【0033】次に図2に示すフローに従って、動作の説
明を行なう。まず、電源on(#001)の後、防振モ
ードか否かの判定が不図示の防振オン/オフ・スイッチ
の検知等によって行なわれる(#002)。防振モード
ではない時は、そのまま通常動作を行ない最初に戻る。
防振モードの時は、振れ検知センサーからのぶれ量情報
および回動角センサー6からの現在の可変頂角プリズム
回動情報を得た後、(#003)防振に必要な可変頂角
プリズム回動角の算出を行なう(#004)。次に、9
のエンコーダから得た撮影レンズのズーム位置(#00
5)と計算された必要とする可変頂角プリズム回動角と
から、撮像面で発生するであろう歪曲収差の値を後述す
る式に従って算出する(#006)。ここで、算出され
た歪曲収差の値が許容出来る範囲にあるかどうかで歪曲
収差補正を行なうかどうかの判断をし(#007)、行
なわないと判断した場合は通常のぶれ補正動作を行ない
(#012)、最初に戻る。算出された歪曲収差が大き
く、許容範囲を越えている場合には歪曲補正を行うが、
その際はまず通常のぶれ補正を、先に算出した必要可変
頂角プリズム回動角の情報に基づいて行う。そしてその
時の可変頂角プリズムの実際の回動角を回動角センサー
6から読みとり(#009)、ズーム位置エンコンダー
9の情報と合わせて、歪曲収差量(歪曲補正量)を算出
し(#010)、12の歪曲収差補正回路で信号処理回
路4の信号を更に処理して歪曲の収差補正を行う。
Next, the operation will be described according to the flow shown in FIG. First, after the power is turned on (# 001), it is determined whether or not the image stabilization mode is set by detecting an image stabilization on / off switch (not shown) or the like (# 002). When not in the image stabilization mode, the normal operation is performed and the operation returns to the beginning.
In the image stabilization mode, after obtaining the shake amount information from the shake detection sensor and the current variable apex angle prism rotation information from the rotation angle sensor 6, (# 003) the variable apex angle prism required for image stabilization. The rotation angle is calculated (# 004). Next, 9
Zoom position (# 00
From 5) and the calculated required variable apex angle prism rotation angle, the value of the distortion aberration that may occur on the imaging surface is calculated according to the formula described later (# 006). Here, it is determined whether or not the distortion aberration correction is performed depending on whether the calculated value of the distortion aberration is within the allowable range (# 007). If it is determined that the distortion aberration correction is not performed, the normal blur correction operation is performed ( # 012), return to the beginning. If the calculated distortion is large and exceeds the allowable range, distortion correction is performed,
In that case, first, normal blur correction is performed based on the information of the necessary variable apex angle prism rotation angle calculated previously. Then, the actual rotation angle of the variable apex angle prism at that time is read from the rotation angle sensor 6 (# 009), and the distortion aberration amount (distortion correction amount) is calculated together with the information of the zoom position encoder 9 (# 010). ) And 12, the distortion aberration correction circuit further processes the signal of the signal processing circuit 4 to correct the distortion aberration.

【0034】次に、可変頂角プリズムの回動角と撮像面
上で発生する歪曲収差の関係について、図3、図4を用
いて説明する。従来技術の項で図3を用いてピッチ方向
のみ可変頂角プリズムを傾けた場合を述べたが、実際に
は光軸周りの各断面ではヨーク、ピッチ両方向が合わさ
って図4の様に成っている。尚σ1、σ2はヨーク軸
(ピッチ軸)からどれだけ傾いているかによって画面縦
横比との関係で求められる。図4において14は簡略化
した頂角が物体側σ1、像面側σ2の可変頂角プリズ
ム、15は撮影レンズ系、16は軸上主光線、17、1
8は撮影レンズ系での画角がωの軸外主光線である。い
まδ偏向した軸上主光線を中心とした可変頂角プリズム
を通しての画角を定義すれば、それは画面上下で異なり
それぞれω1′、ω2′となる。ω1′、ω2′は撮影
レンズ系の画角ω、可変頂角プリズムの頂角σ1、σ
2、可変頂角プリズム内部液体の屈折率nを用いて以下
のように表わされる。補正角δを δ=(n−1)・(σ1+σ2) として ω1′=φ1+δ そして、φ1は以下の2つの式を解いて得られる sin(ω+σ1)=n・sin(θ1+σ1) n・sin(θ1−σ2)= sin(φ1−σ2) ω2′=φ2+δ そして、φ2は以下の2つの式を解いて得られる。
Next, the relationship between the rotation angle of the variable apex angle prism and the distortion aberration generated on the image pickup surface will be described with reference to FIGS. Although the case of tilting the variable apex angle prism only in the pitch direction was described in the section of the prior art with reference to FIG. 3, in actuality, in each cross section around the optical axis, both the yoke and pitch directions are combined to form as shown in FIG. There is. It should be noted that σ1 and σ2 are determined in relation to the screen aspect ratio depending on how much the yoke axis (pitch axis) is inclined. In FIG. 4, 14 is a variable apex prism having a simplified apex angle of object side σ1 and image plane side σ2, 15 is a taking lens system, 16 is an axial chief ray, and 17 and 1 are shown.
Denoted at 8 is an off-axis chief ray having an angle of view of ω in the taking lens system. If we define the angle of view through the variable apex angle prism centering on the axial principal ray that has been δ-deflected, it will differ at the top and bottom of the screen and will be ω1 'and ω2', respectively. ω1 ′ and ω2 ′ are the angle of view ω of the taking lens system and the apex angles σ1 and σ of the variable apex angle prism.
2. It is expressed as follows using the refractive index n of the liquid inside the variable apex angle prism. Letting the correction angle δ be δ = (n−1) · (σ1 + σ2), ω1 ′ = φ1 + δ, and φ1 is obtained by solving the following two equations: sin (ω + σ1) = n · sin (θ1 + σ1) n · sin (θ1 -[Sigma] 2) = sin ([phi] 1- [sigma] 2) [omega] 2 '= [phi] 2+ [delta] Then, [phi] 2 is obtained by solving the following two equations.

【0035】 sin(ω−σ1)=n・sin(θ2−σ1) n・sin(θ2+σ2)= sin(φ2+σ2) さらに、画角と像高の関係 y′=f・tanω の関係を用いてSin (ω−σ1) = n · sin (θ2−σ1) n · sin (θ2 + σ2) = sin (φ2 + σ2) Furthermore, the relationship between the angle of view and the image height y ′ = f · tan ω is used.

【0036】[0036]

【外1】 などと表わすことができる。[Outer 1] Can be expressed as

【0037】よって歪曲収差補正量は、画角つまり像高
と撮影レンズ系の全系焦点距離そして、頂角可変プリズ
ムの回動角をパラメータとしてその量が決定されること
になる。よって、各像高でそれぞれ計算を行って補正量
を決めることになる。
Therefore, the amount of distortion aberration correction is determined with the angle of view, that is, the image height, the total focal length of the taking lens system, and the rotation angle of the variable apex angle prism as parameters. Therefore, the correction amount is determined by performing the calculation for each image height.

【0038】実施例1の場合、歪曲収差の補正は歪曲収
差が許容範囲を越えていれば、いつでも行われていた
が、公知のオートフォーカス装置を搭載したカメラで
は、合焦動作時に画面にボケが生じている場合には合焦
状態に至るまでの間は歪曲補正を行わない方が望まし
い。そこで図5に示す様にオートフォーカス回路等から
撮影レンズが合焦動作中であるかどうかの情報を得て、
合焦動作中は、合焦点に至までの間歪曲収差補正を行わ
ないようにする。図5のフローチャートは、図2のフロ
ーチャートにステップ#020を追加した点にある。こ
うすることで、歪曲収差補正にかかる時間を省略できる
ためその分オートフォーカスの精度、速度を高めること
ができる。
In the case of the first embodiment, the correction of the distortion aberration is always performed if the distortion aberration exceeds the allowable range. However, in the camera equipped with the known autofocus device, the screen is blurred when the focusing operation is performed. In the case of occurrence of distortion, it is desirable not to perform distortion correction until the in-focus state is reached. Therefore, as shown in FIG. 5, information about whether or not the taking lens is in focus operation is obtained from an autofocus circuit or the like,
During the focusing operation, the distortion aberration correction is not performed until the focal point is reached. The flowchart of FIG. 5 is that step # 020 is added to the flowchart of FIG. By doing so, the time required to correct the distortion aberration can be omitted, and the accuracy and speed of autofocus can be increased accordingly.

【0039】又、実施例1の歪曲収差算出を行うに当っ
て、可変頂角プリズム回動角、ズーム位置から演算を行
って求めたが、通常図2に示すフローチャートのループ
は1同期(1/60)秒ごとに行うため、演算に要する
時間がかかりすぎたり、また演算を行う演算装置(マイ
クロコンピュータ等)が複雑になる場合がある。そこで
本実施例では、図6に示す通り、可変頂角プリズム回動
角、ズーム位置による像面上の位置に応じた歪曲収差量
を予め記憶装置13にテーブルとして記憶しておく様に
する。実際の動作では図2のフローで歪曲収差量算出の
やり方が演算から記憶されたテーブルとの照合にかわる
ことになる。
Further, in calculating the distortion aberration of the first embodiment, the calculation is carried out from the variable apex angle prism rotation angle and the zoom position. Normally, the loop of the flowchart shown in FIG. Since it is performed every / 60) seconds, there is a case where it takes too much time for calculation, and a calculation device (microcomputer or the like) for performing calculation becomes complicated. Therefore, in this embodiment, as shown in FIG. 6, the variable apex prism rotation angle and the amount of distortion aberration corresponding to the position on the image plane due to the zoom position are stored in advance in the storage device 13 as a table. In the actual operation, the method of calculating the amount of distortion aberration in the flow of FIG. 2 is replaced with the comparison with the stored table from the calculation.

【0040】[0040]

【発明の効果】以上述べた様に本発明によれば、可変頂
角プリズムを用いた画像ぶれ補正装置において、可変頂
角プリズムで発生する歪曲収差を撮像素子からの映像信
号を加工することで行うことにより可変頂角プリズムの
欠点である偏心による歪曲収差の問題を効果的に解決す
ることができる。
As described above, according to the present invention, in the image blur correcting apparatus using the variable apex angle prism, the image signal from the image sensor is processed for the distortion aberration generated in the variable apex angle prism. By doing so, it is possible to effectively solve the problem of distortion aberration due to decentering, which is a drawback of the variable apex angle prism.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例を表すブロック図FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】本発明実施例1の動作フローチャートを示す図FIG. 2 is a diagram showing an operation flowchart of the first embodiment of the present invention.

【図3】歪曲収差算出の原理図FIG. 3 Principle diagram of calculation of distortion aberration

【図4】歪曲収差算出の原理図FIG. 4 Principle diagram of calculation of distortion aberration

【図5】本発明実施例2の動作フロー図FIG. 5 is an operation flow chart of the second embodiment of the present invention.

【図6】本発明実施例3のブロック図FIG. 6 is a block diagram of a third embodiment of the present invention.

【図7】可変頂角プリズムによって発生する歪曲収差を
表わす図
FIG. 7 is a diagram showing distortion aberration generated by a variable apex angle prism.

【図8】像ブレが発生する様子を示す図FIG. 8 is a diagram showing how image blurring occurs.

【図9】像ブレを軽減させる頂角可変プリズムの動作を
示す図
FIG. 9 is a diagram showing an operation of a variable apex angle prism for reducing image blur.

【図10】像ブレを軽減させる頂角可変プリズムの動作
を示す図
FIG. 10 is a diagram showing an operation of a variable apex angle prism for reducing image blur.

【図11】像ブレを補正する制御回路のブロック図を示
す図
FIG. 11 is a diagram showing a block diagram of a control circuit for correcting image blur.

【図12】頂角可変プリズムの分解斜視図FIG. 12 is an exploded perspective view of a variable apex angle prism.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 対物レンズが形成する光学像のブレを光
学的に補正する補正手段を具備する像ブレ補正装置であ
って、前記光学像を電気信号に変換する変換手段、前記
補正手段によって生じる歪曲収差を補正するために前記
電気信号を信号処理する処理手段を具備することを特徴
とする像ブレ補正装置。
1. An image blur correction device comprising correction means for optically correcting blur of an optical image formed by an objective lens, the conversion means converting the optical image into an electric signal, and the correction means. An image blur correction device comprising a processing means for processing the electric signal in order to correct distortion.
【請求項2】 前記対物レンズの焦点距離と前記補正手
段の補正量に応じて前記処理手段は、歪曲収差の補正量
を変化させるように前記電気信号を信号処理する。
2. The processing means signal-processes the electric signal so as to change the correction amount of the distortion aberration in accordance with the focal length of the objective lens and the correction amount of the correction means.
JP04239596A 1992-09-08 1992-09-08 Image stabilization device Expired - Fee Related JP3135379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04239596A JP3135379B2 (en) 1992-09-08 1992-09-08 Image stabilization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04239596A JP3135379B2 (en) 1992-09-08 1992-09-08 Image stabilization device

Publications (2)

Publication Number Publication Date
JPH0690398A true JPH0690398A (en) 1994-03-29
JP3135379B2 JP3135379B2 (en) 2001-02-13

Family

ID=17047121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04239596A Expired - Fee Related JP3135379B2 (en) 1992-09-08 1992-09-08 Image stabilization device

Country Status (1)

Country Link
JP (1) JP3135379B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116636A1 (en) * 2006-03-22 2007-10-18 Victor Company Of Japan, Limited Still image acquisition device, still image acquisition method, and image fluctuation correction device
JP2010258570A (en) * 2009-04-22 2010-11-11 Canon Inc Image pickup apparatus, and image conversion method
JP2015015587A (en) * 2013-07-04 2015-01-22 キヤノン株式会社 Imaging device, and method of controlling the same
JP2015114438A (en) * 2013-12-10 2015-06-22 キヤノン株式会社 Image processor, imaging device provided with the same, and image processing method
US9467622B2 (en) 2012-09-20 2016-10-11 Canon Kabushiki Kaisha Image capturing apparatus, image processing apparatus, and method of controlling image capturing apparatus to correct distortion

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116636A1 (en) * 2006-03-22 2007-10-18 Victor Company Of Japan, Limited Still image acquisition device, still image acquisition method, and image fluctuation correction device
US8139149B2 (en) 2006-03-22 2012-03-20 Victor Company Of Japan, Limited Still image acquisition device, still image acquisition method, and image fluctuation correction device
JP2010258570A (en) * 2009-04-22 2010-11-11 Canon Inc Image pickup apparatus, and image conversion method
US9467622B2 (en) 2012-09-20 2016-10-11 Canon Kabushiki Kaisha Image capturing apparatus, image processing apparatus, and method of controlling image capturing apparatus to correct distortion
JP2015015587A (en) * 2013-07-04 2015-01-22 キヤノン株式会社 Imaging device, and method of controlling the same
JP2015114438A (en) * 2013-12-10 2015-06-22 キヤノン株式会社 Image processor, imaging device provided with the same, and image processing method

Also Published As

Publication number Publication date
JP3135379B2 (en) 2001-02-13

Similar Documents

Publication Publication Date Title
JP4717382B2 (en) Optical equipment
JP4307056B2 (en) Imaging apparatus, shake correction method, and program
WO2009093635A1 (en) Lens tube, method of adjusting lens tube, method of manufacturing lens tube and imaging device
US6486910B1 (en) Photographing apparatus having the image blur preventing function
JPH05257062A (en) Automatic focusing device
US7454130B2 (en) Anti-vibration apparatus for image pickup system and image pickup system having the same
JP4536855B2 (en) Anti-vibration device, imaging device, and control method of anti-vibration device
JP3135379B2 (en) Image stabilization device
JP4314176B2 (en) Imaging device
JP2002027305A (en) Image pickup system and its control method
JP5458521B2 (en) Lens barrel, lens barrel adjustment method, optical device, and optical device adjustment method
JPH0682888A (en) Vibration proof device with variable apex angle prism
JP3548328B2 (en) Imaging device
JP3543999B2 (en) Optical equipment having image blur prevention device
JPH06202199A (en) Parallax correction device
JPH07287268A (en) Image pickup device
JP2511822B2 (en) Photographic lens with movable lens group
JP2000081646A (en) Camera with camera-shake correction function
JPH05181094A (en) Variable vertical angle prism device and photography system having the same
JPH0682889A (en) Camera
JPH05134285A (en) Variable apex angle prism device
JP2009175241A (en) Optical apparatus and adjusting method thereof
JP2006091279A (en) Optical instrument
JPH10301157A (en) Photographic device equipped with camera shake correcting function
JPH05142500A (en) Deflection prevention device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees