TWI791399B - 光學透鏡組及頭戴式電子裝置 - Google Patents
光學透鏡組及頭戴式電子裝置 Download PDFInfo
- Publication number
- TWI791399B TWI791399B TW111115286A TW111115286A TWI791399B TW I791399 B TWI791399 B TW I791399B TW 111115286 A TW111115286 A TW 111115286A TW 111115286 A TW111115286 A TW 111115286A TW I791399 B TWI791399 B TW I791399B
- Authority
- TW
- Taiwan
- Prior art keywords
- lens
- image source
- optical
- lens group
- optical axis
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 298
- 101000760764 Homo sapiens Tyrosyl-DNA phosphodiesterase 1 Proteins 0.000 claims description 10
- 102100024579 Tyrosyl-DNA phosphodiesterase 1 Human genes 0.000 claims description 10
- 238000006073 displacement reaction Methods 0.000 claims description 6
- 238000010586 diagram Methods 0.000 description 24
- 238000003384 imaging method Methods 0.000 description 11
- 239000004973 liquid crystal related substance Substances 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 238000001579 optical reflectometry Methods 0.000 description 7
- 230000004075 alteration Effects 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 5
- 230000010287 polarization Effects 0.000 description 5
- 238000005286 illumination Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 2
- 210000001747 pupil Anatomy 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/003—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having two lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0055—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0055—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
- G02B13/0065—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B25/00—Eyepieces; Magnifying glasses
- G02B25/001—Eyepieces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/04—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only
- G02B9/06—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only two + components
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/163—Wearable computers, e.g. on a belt
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- General Engineering & Computer Science (AREA)
- Lenses (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
一光學透鏡組由目側至像源側依序包含:具有正屈折力的第一透鏡;光學元件,由目側至像源側依序包含吸收式偏光元件、反射式偏光元件和第一相位延遲元件;具有正屈折力的第二透鏡;部分反射部分透射元件;第二相位延遲元件;及像源面。該光學透鏡組中具屈折力的透鏡總數為二片。該光學透鏡組的整體焦距為f,該光學透鏡組的最大像源高度為IMH,該第一透鏡的焦距為f1,該第二透鏡的焦距為f2,且至少滿足以下條件:0.40<IMH∕f<1.26;與0.21<f2∕f1<2.35。並且,一頭戴式電子裝置具有該光學透鏡組。
Description
本發明涉及一種光學透鏡組及頭戴式電子裝置,尤其是一種可應用於頭戴式電子裝置的光學透鏡組。
隨著半導體產業的發展,各項消費性電子產品的功能日益強大,再加上軟體應用端各式服務的出現,提供了消費者更多的選擇。當市場不再滿足於手持式電子產品時,頭戴式顯示器便應運而生。然而,目前頭戴式顯示器的重量偏重且成像品質不佳。
因此,本發明的目的在於提供一種光學透鏡組及頭戴式電子裝置,當此光學透鏡組中具屈折力的透鏡滿足特定條件時,不僅可以折疊光路,以減輕裝置重量,還可以確保成像品質。
為達到上述目的,本發明提供的一種光學透鏡組由目側至像源側依序包含:一第一透鏡,具有正屈折力,該第一透鏡的目側表面於近光軸處為凸面;一光學元件,由目側至像源側依序包含一吸收式偏光元件、一反射式偏光元件和一第一相位延遲元件;一第二透鏡,具有正屈折力,該第二透鏡的像源側表面於近光軸處為凸面,該第二透鏡的
目側表面和像源側表面的至少其中之一為非球面;一部分反射部分透射元件;一第二相位延遲元件;以及一像源面。
其中,該光學透鏡組的整體焦距為f,該光學透鏡組的最大像源高度為IMH,該第一透鏡的焦距為f1,該第二透鏡的焦距為f2,並滿足以下條件:0.40<IMH/f<1.26;與0.21<f2/f1<2.35。藉此,有助於讓該光學透鏡組的屈折力分配更為合適,從而可減少像差。
可選擇的是,該光學透鏡組中具屈折力的透鏡總數為二片。
該第一透鏡於光軸上的厚度為CT1,該第二透鏡於光軸上的厚度為CT2,並滿足以下條件:0.62<CT2/CT1<6.97。藉此,有助於在滿足成像品質的前提下,確保鏡頭厚度能滿足鏡頭製造工藝的加工要求。
該第一透鏡於光軸上的厚度為CT1,該第一透鏡的目側表面於光軸上的交點至該第一透鏡的目側表面的最大有效半徑位置平行於光軸的位移量為TDP1,並滿足以下條件:0.98<CT1/TDP1<5.79。藉此,有助於達到最佳性能與第一透鏡的最佳組裝穩定性。
該光學透鏡組的整體焦距為f,該第一透鏡的焦距為f1,並滿足以下條件:0.04<f/f1<0.28。藉此,有助於加強該光學透鏡組的廣角特性、提供較大的視角及維持該光學透鏡組的照度。
該第一透鏡的目側表面的曲率半徑為R1,該第一透鏡的焦距為f1,並滿足以下條件:0.33<R1/f1<0.76。藉此,有助於有效改善
該光學透鏡組的畸變和減少該光學透鏡組的像差,並進一步縮小透鏡尺寸。
該光學透鏡組的整體焦距為f,該第二透鏡的焦距為f2,並滿足以下條件:0.07<f/f2<0.30。藉此,有助於加強該光學透鏡組的廣角特性、提供較大視角及維持該光學透鏡組的照度。
該第二透鏡的像源側表面的曲率半徑為R4,該第二透鏡的焦距為f2,並滿足以下條件:-1.20<R4/f2<-0.22。藉此,有助於有效縮小影像場曲、提升該光學透鏡組的成像品質及確保透鏡成形性。
該第一透鏡的目側表面至該像源面於光軸上的距離為TL,該第一透鏡的目側表面的曲率半徑為R1,並滿足以下條件:2.05<R1/TL<12.83。藉此,有助於維持合適的透鏡成形性。
該第一透鏡的阿貝數為vd1,該第二透鏡的阿貝數為vd2,該第一透鏡的折射率為nd1,並滿足以下條件:0.93<(vd1*nd1)/vd2<2.16。藉此,有助於讓第一透鏡和第二透鏡在材料上有更合適的搭配,以提供較佳的成像品質。
該第一透鏡的目側表面的曲率半徑為R1,該第二透鏡的像源側表面的曲率半徑為R4,並滿足以下條件:-2.74<R1/R4<-0.54。藉此,透過這兩個曲率半徑相互制約,有助於防止曲率半徑過小及降低對組裝公差的敏感度。
該第二透鏡的目側表面的曲率半徑為R3,該第二透鏡的像源側表面的曲率半徑為R4,並滿足以下條件:-0.83<R4/R3<0.49。藉
此,透過這兩個曲率半徑相互制約,有助於防止曲率半徑過小及降低對組裝公差的敏感度。
該第二透鏡的目側表面至該像源面於光軸上的距離為T2M,該第二透鏡於光軸上的厚度為CT2,並滿足以下條件:0.68<T2M/CT2<2.37。藉此,有助於讓第二透鏡的透鏡成形性和屈折力之間達成較適當的平衡。
該第一透鏡的目側表面至該像源面於光軸上的距離為TL,該光學透鏡組的最大像源高度為IMH,並滿足以下條件:0.54<TL/IMH<1.80。藉此,有助於在光學透鏡組的微型化和像源面的發光區域大小之間取得適當的平衡。
該第二透鏡的像源側表面的曲率半徑為R4,該第二透鏡的折射率為nd2,並滿足以下條件:-116.45mm<R4/nd2<-19.09mm。藉此,有助於在選用不同材料的第二透鏡時,該光學透鏡組的透鏡成形性和性能之間能達到最佳平衡。
可選擇的是,該第二透鏡的像源側表面於近光軸處為凸面。
可選擇的是,該部分反射部分透射元件在可見光範圍內具有至少30%的平均光反射率,較佳為50%的平均光反射率。
可選擇的是,該光學元件更包含一抗反射膜,該抗反射膜較該相位延遲元件靠近像源側。
可選擇的是,該光學透鏡組的整體焦距為f,並滿足以下條件:12.07mm<f<38.00mm。
可選擇的是,該光學透鏡組的最大視角為FOV,並滿足以下條件:76.5度<FOV<132.0度。
可選擇的是,該第一透鏡的目側表面至該像源面於光軸上的距離為TL,並滿足以下條件:10.39mm<TL<29.54mm。
可選擇的是,該光學透鏡組的最大像源高度為IMH,並滿足以下條件:8.08mm<IMH<29.63mm。
此外,本發明也提供一種頭戴式電子裝置,包含:一外殼;一光學透鏡組,設置於該外殼內;一影像源,設置於該外殼內,且設置於該光學透鏡組的該像源面;及一控制器,設置於該外殼內,且電性連接該影像源。該光學透鏡組由目側至像源側依序包含:一第一透鏡,具有正屈折力,該第一透鏡的目側表面於近光軸處為凸面;一光學元件,由目側至像源側依序包含一吸收式偏光元件、一反射式偏光元件和一第一相位延遲元件;一第二透鏡,具有正屈折力,該第二透鏡的像源側表面於近光軸處為凸面,該第二透鏡的目側表面和像源側表面的至少其中之一為非球面;一部分反射部分透射元件;一第二相位延遲元件;以及一像源面。
其中,該光學透鏡組的整體焦距為f,該光學透鏡組的最大像源高度為IMH,該第一透鏡的焦距為f1,該第二透鏡的焦距為f2,並滿足以下條件:0.40<IMH/f<1.26;和0.21<f2/f1<2.35。藉此,有助於讓該光學透鏡組的屈折力分配更為合適,從而可減少像差。
可選擇的是,該光學透鏡組中具屈折力的透鏡總數為二片。
該第一透鏡於光軸上的厚度為CT1,該第二透鏡於光軸上的厚度為CT2,並滿足以下條件:0.62<CT2/CT1<6.97。藉此,有助於在滿足成像品質的前提下,確保鏡頭厚度能滿足鏡頭製造工藝的加工要求。
該第一透鏡於光軸上的厚度為CT1,該第一透鏡的目側表面於光軸上的交點至該第一透鏡的目側表面的最大有效半徑位置平行於光軸的位移量為TDP1,並滿足以下條件:0.98<CT1/TDP1<5.79。藉此,有助於達到最佳性能與第一透鏡的最佳組裝穩定性。
該光學透鏡組的整體焦距為f,該第一透鏡的焦距為f1,並滿足以下條件:0.04<f/f1<0.28。藉此,有助於加強該光學透鏡組的廣角特性、提供較大的視角及維持該光學透鏡組的照度。
該第一透鏡的目側表面的曲率半徑為R1,該第一透鏡的焦距為f1,並滿足以下條件:0.33<R1/f1<0.76。藉此,有助於有效改善該光學透鏡組的畸變和減少該光學透鏡組的像差,並進一步縮小透鏡尺寸。
該光學透鏡組的整體焦距為f,該第二透鏡的焦距為f2,並滿足以下條件:0.07<f/f2<0.30。藉此,有助於加強該光學透鏡組的廣角特性、提供較大視角及維持該光學透鏡組的照度。
該第二透鏡的像源側表面的曲率半徑為R4,該第二透鏡的焦距為f2,並滿足以下條件:-1.20<R4/f2<-0.22。藉此,有助於有效縮小影像場曲、提升該光學透鏡組的成像品質及確保透鏡成形性。
該第一透鏡的目側表面至該像源面於光軸上的距離為TL,該第一透鏡的目側表面的曲率半徑為R1,並滿足以下條件:2.05<R1/TL<12.83。藉此,有助於維持合適的透鏡成形性。
該第一透鏡的阿貝數為vd1,該第二透鏡的阿貝數為vd2,該第一透鏡的折射率為nd1,並滿足以下條件:0.93<(vd1*nd1)/vd2<2.16。藉此,有助於讓第一透鏡和第二透鏡在材料上有更合適的搭配,以提供較佳的成像品質。
該第一透鏡的目側表面的曲率半徑為R1,該第二透鏡的像源側表面的曲率半徑為R4,並滿足以下條件:-2.74<R1/R4<-0.54。藉此,透過這兩個曲率半徑相互制約,有助於防止曲率半徑過小及降低對組裝公差的敏感度。
該第二透鏡的目側表面的曲率半徑為R3,該第二透鏡的像源側表面的曲率半徑為R4,並滿足以下條件:-0.83<R4/R3<0.49。藉此,透過這兩個曲率半徑相互制約,有助於防止曲率半徑過小及降低對組裝公差的敏感度。
該第二透鏡的目側表面至該像源面於光軸上的距離為T2M,該第二透鏡於光軸上的厚度為CT2,並滿足以下條件:0.68<T2M/CT2<2.37。藉此,有助於讓第二透鏡的透鏡成形性和屈折力之間達成較適當的平衡。
該第一透鏡的目側表面至該像源面於光軸上的距離為TL,該光學透鏡組的最大像源高度為IMH,並滿足以下條件:0.54<TL/IMH
<1.80。藉此,有助於在光學透鏡組的微型化和像源面的發光區域大小之間取得適當的平衡。
該第二透鏡的像源側表面的曲率半徑為R4,該第二透鏡的折射率為nd2,並滿足以下條件:-116.45mm<R4/nd2<-19.09mm。藉此,有助於在選用不同材料的第二透鏡時,該光學透鏡組的透鏡成形性和性能之間能達到最佳平衡。
可選擇的是,該第二透鏡的像源側表面於近光軸處為凸面。
可選擇的是,該部分反射部分透射元件在可見光範圍內具有至少30%的平均光反射率,較佳為50%的平均光反射率。
可選擇的是,該光學元件更包含一抗反射膜,該抗反射膜較該相位延遲元件靠近像源側。
可選擇的是,該光學透鏡組的整體焦距為f,並滿足以下條件:12.07mm<f<38.00mm。
可選擇的是,該光學透鏡組的最大視角為FOV,並滿足以下條件:76.5度<FOV<132.0度。
可選擇的是,該第一透鏡的目側表面至該像源面於光軸上的距離為TL,並滿足以下條件:10.39mm<TL<29.54mm。
可選擇的是,該光學透鏡組的最大像源高度為IMH,並滿足以下條件:8.08mm<IMH<29.63mm。
100,200,300,400,500,600,700,800,900:光圈
110,210,310,410,510,610,710,810,910:第一透鏡
111,211,311,411,511,611,711,811:目側表面
112,212,312,412,512,612,712,812:像源側表面
120,220,320,420,520,620,720,820,920:光學元件
121,221,321,421,521,621,721,821,921:吸收式偏光元件
122,222,322,422,522,622,722,822,922:反射式偏光元件
123,223,323,423,523,623,723,823,923:第一相位延遲元件
130,230,330,430,530,630,730,830,930:第二透鏡
131,231,331,431,531,631,731,831:目側表面
132,232,332,432,532,632,732,832:像源側表面
140,240,340,440,540,640,740,840,940:部分反射部分透射元件
150,250,350,450,550,650,750,850,950:第二相位延遲元件
160,260,360,460,560,660,760,860,960:像源面
170,270,370,470,570,670,770,870,970:影像源
180,280,380,480,580,680,780,880,980:光軸
924:抗反射膜
10:頭戴式電子裝置
1001:外殼
1002:光機模組
1003:影像源
1004:控制器
IMH:光學透鏡組的最大像源高度
TL:第一透鏡的目側表面至像源面於光軸上的距離
T1M:第一透鏡的像源側表面至像源面於光軸上的距離
T2M:第二透鏡的目側表面至像源面於光軸上的距離
TDP1:第一透鏡的目側表面於光軸上的交點至第一透鏡的目側表面的最大有效半徑位置平行於光軸的位移量
L1:光路
圖1A呈現根據本發明第一實施例的光學透鏡組示意圖;圖1B呈現圖1A的局部放大圖;圖2呈現根據本發明第二實施例的光學透鏡組示意圖;圖3呈現根據本發明第三實施例的光學透鏡組示意圖;圖4呈現根據本發明第四實施例的光學透鏡組示意圖;圖5呈現根據本發明第五實施例的光學透鏡組示意圖;圖6呈現根據本發明第六實施例的光學透鏡組示意圖;圖7呈現根據本發明第七實施例的光學透鏡組示意圖;圖8呈現根據本發明第八實施例的光學透鏡組示意圖;圖9呈現根據本發明第九實施例的光學透鏡組示意圖;圖10呈現依據本發明第一實施例的參數及光路的示意圖;及圖11呈現根據本發明一實施例的頭戴式電子裝置的示意圖。
<第一實施例>
請參考圖1A、圖1B和圖10,圖1A呈現根據本發明第一實施例的光學透鏡組的示意圖,圖1B呈現圖1A的局部放大圖,圖10呈現依據本發明第一實施例的參數及光路的示意圖。此光學透鏡組沿光軸180由目側至像源側依序包含一光圈100、一第一透鏡110、一光學元件120、一第二透鏡130、一部分反射部分透射元件140、一第二相位延遲元件150及一像源面160。光學透鏡組中具屈折力的透鏡總數為二片,但不以此為限。光學透鏡組可搭配一影像源170使用,像源面160可位於影像源170上,該
影像源170的種類可為一液晶顯示器、一OLED顯示器或一LED顯示器,但不限於此,而光圈100的位置可為使用者眼睛觀看影像的位置。
第一透鏡110具有正屈折力,其目側表面111於近光軸處為凸面,其像源側表面112於近光軸處為平面,且該目側表面111為非球面。
光學元件120由目側至像源側依序包含一吸收式偏光元件121、一反射式偏光元件122和一第一相位延遲元件123,這三個元件可堆疊地設置(例如但不限於是貼膜)於第一透鏡110的像源側表面112上,且該些元件的相對兩表面皆為平面。具體來說,吸收式偏光元件121附接在該像源側表面112上,反射式偏光元件122附接在吸收式偏光元件121上,第一相位延遲元件123附接在反射式偏光元件122上。第一相位延遲元件123例如但不限於是四分之一波板。
第二透鏡130具有正屈折力,其目側表面131於近光軸處為凸面,其像源側表面132於近光軸處為凸面,且該目側表面131為球面,該像源側表面132為非球面。
部分反射部分透射元件140設置(例如但不限於是鍍膜)於第二透鏡130的像源側表面132上,且在可見光範圍內具有至少30%的平均光反射率,較佳為50%的平均光反射率。這裡的平均光反射率是指部分反射部分透射元件140對於不同波長光線的反射率的平均值。
第二相位延遲元件150設置於部分反射部分透射元件140與像源面160之間,且靠近像源面160。第二相位延遲元件150例如但不限於是四分之一波板。
上述各透鏡的非球面的曲線方程式表示如下:
其中z為沿光軸180方向在高度為h的位置以表面頂點作參考的位置值;c為透鏡表面於近光軸處的曲率,並為曲率半徑(R)的倒數(c=1/R),R為透鏡表面近光軸處的曲率半徑;h為透鏡表面距離光軸180的垂直距離;k為圓錐係數(conic constant);Ai為第i階非球面係數。
第一實施例的光學透鏡組中,光學透鏡組的整體焦距為f,第一透鏡110的焦距為f1,第二透鏡130的焦距為f2,光學透鏡組的入射瞳孔徑為EPD,光學透鏡組的光圈值(f-number)為Fno,光學透鏡組的最大視角為FOV,第一透鏡110於光軸180上的厚度為CT1,第二透鏡130於光軸180上的厚度為CT2,第二透鏡130的目側表面131至像源面160於光軸180上的距離為T2M,第一透鏡110的像源側表面112至像源面160於光軸180上的距離為T1M,第一透鏡110的目側表面111的曲率半徑為R1,第一透鏡110的像源側表面112的曲率半徑為R2,第二透鏡130的目側表面131的曲率半徑為R3,第二透鏡130的像源側表面132的曲率半徑為R4,第一透鏡110的折射率為nd1,第二透鏡130的折射率為nd2,第一透鏡110的阿貝數為vd1,第二透鏡130的阿貝數為vd2,第一透鏡110的目側表面111至像源面160於光軸180上的距離為TL,光學透鏡組的最大像源高度為IMH(通常為像源面160之內切圓的半徑),第一透鏡110的目側表面111於光軸180上的交點至第一透鏡110的目側表面111的最大有效半徑位置平行於光軸180的位移量為TDP1,這些參數的數值如表1所示下。
第一實施例的光學透鏡組中,光學透鏡組的整體焦距為f,光學透鏡組的最大像源高度為IMH,並滿足下列條件IMH/f=0.78。
第一實施例的光學透鏡組中,第一透鏡110的焦距為f1,第二透鏡130的焦距為f2,並滿足下列條件f2/f1=0.55。
第一實施例的光學透鏡組中,第一透鏡110於光軸180上的厚度為CT1,第二透鏡130於光軸180上的厚度為CT2,並滿足下列條件CT2/CT1=1.23。
第一實施例的光學透鏡組中,第一透鏡110於光軸180上的厚度為CT1,第一透鏡110的目側表面111於光軸180上的交點至第一透鏡110的目側表面111的最大有效半徑位置平行於光軸180的位移量為TDP1,並滿足下列條件CT1/TDP1=4.14。
第一實施例的光學透鏡組中,光學透鏡組的整體焦距為f,第一透鏡110的焦距為f1,並滿足下列條件f/f1=0.11。
第一實施例的光學透鏡組中,第一透鏡110的目側表面111的曲率半徑為R1,第一透鏡110的焦距為f1,並滿足下列條件R1/f1=0.55。
第一實施例的光學透鏡組中,光學透鏡組的整體焦距為f,第二透鏡130的焦距為f2,並滿足下列條件f/f2=0.20。
第一實施例的光學透鏡組中,第二透鏡130的像源側表面132的曲率半徑為R4,第二透鏡130的焦距為f2,並滿足下列條件R4/f2=-0.74。
第一實施例的光學透鏡組中,第一透鏡110的目側表面111至像源面160於光軸180上的距離為TL,第一透鏡110的目側表面111的曲率半徑為R1,並滿足下列條件R1/TL=7.08。
第一實施例的光學透鏡組中,第一透鏡110的阿貝數為vd1,第二透鏡130的阿貝數為vd2,第一透鏡110的折射率為nd1,並滿足下列條件(vd1*nd1)/vd2=1.54。
第一實施例的光學透鏡組中,第一透鏡110的目側表面111的曲率半徑為R1,第二透鏡130的像源側表面132的曲率半徑為R4,並滿足下列條件R1/R4=-1.34。
第一實施例的光學透鏡組中,第二透鏡130的目側表面的曲率半徑為R3,第二透鏡130的像源側表面132的曲率半徑為R4,並滿足下列條件R4/R3=-0.36。
第一實施例的光學透鏡組中,第二透鏡130的目側表面至像源面160於光軸180上的距離為T2M,第二透鏡130於光軸180上的厚度為CT2,並滿足下列條件T2M/CT2=1.23。
第一實施例的光學透鏡組中,第一透鏡110的目側表面111至像源面160於光軸180上的距離為TL,光學透鏡組的最大像源高度為IMH,並滿足下列條件TL/IMH=0.90。
第一實施例的光學透鏡組中,第二透鏡130的像源側表面132的曲率半徑為R4,第二透鏡130的折射率為nd2,並滿足下列條件R4/nd2=-83.18mm。
並且,第一實施例的光學透鏡組藉由吸收式偏光元件、反射式偏光元件、相位延遲元件和透鏡的組合配置,在不影響成像品質的前提下,利用光的穿透與反射,將光路折疊,以壓縮成像所需的鏡組長度。請參考圖10所示,由影像源170發出之線偏振的入射光會沿光路L1行進至使用者的眼睛。具體來說,此線偏振的入射光穿過第二相位延遲元件150時從線偏振態轉成圓偏振態,圓偏振的入射光有一部分會作為透射光穿過部分反射部分透射元件140並入射第二透鏡130,而被第二透鏡130折射至第一相位延遲元件123,此透射光第一次穿過第一相位延遲元件123時從圓偏振態轉成線偏振態,而具有與反射式偏光元件122的反射軸平行的偏振方向;然後,此線偏振的透射光會被反射式偏光元件122反射,以第二次穿過第一相位延遲元件123而從線偏振態再次轉成圓偏振態;接著,再次轉成圓偏振態的透射光在穿過第二透鏡130後,有一部分會作為反射光被部分反射部分透射元件140反射回第二透鏡130,並在穿
過第二透鏡130後行進至第一相位延遲元件123;反射光在穿過第一相位延遲元件123時會從圓偏振態轉成線偏振態,而具有與反射式偏光元件122的反射軸垂直的偏振方向;最後,線偏振的反射光在穿過反射式偏光元件122和吸收式偏光元件121後會被第一透鏡110折射至使用者的眼睛。
再配合參照下列表2和表3。
表2為第一實施例詳細的結構數據,曲率半徑、厚度、間隙及焦距的單位為mm,且表面18~0分別表示光線從像源面160至光圈100所依序經過的表面,其中:表面0為使用者眼睛(或光圈100)與成像之間在光軸180上的間隙,成像位置較像源面160更遠離目側;表面1是光圈100與第一透鏡110之間在光軸180上的間隙;表面2、3和17分別是第一透鏡110、吸收式偏光元件121和第二相位延遲元件150在光軸180上的厚度;表面4、11和12是反射式偏光元件122在光軸180上的厚度;表面5、10和13是第一相位延遲元件123在光軸180上的厚度;表面6是第一相位延遲元件123與第二透鏡130之間在光軸180上的間隙;表面7和15是第二透鏡130在光軸180上的厚度;表面8是第二透鏡130在光軸180上的厚度(負號表示光線反射傳播);表面9是第一相位延遲元件123與第二透鏡130之間在光軸180上的間隙(負號表示光線反射傳播);表面14是第一相位延遲元件123與第二透鏡130之間在光軸180上的間隙;表面16是第二透鏡130與第二相位延遲元件150之間在光軸180上的間隙。表中以正值表示的各間隙和厚度是對應光線方向朝向目側的數值,而以負值表示的各間隙和厚度是對應光線方向朝向像源面160的數值。光線行進方向可參考圖10的光路L1所示。
表3為第一實施例中的非球面數據,其中:k為非球面曲線方程式中的錐面係數,A2、A4、A6、A8、A10、A12、A14、A16、A18和A20為高階非球面係數。
此外,以下各實施例表格乃對應各實施例的示意圖,表格中數據的定義皆與第一實施例的表1至表3的定義相同,將不再贅述。並
且,各實施例中,一透鏡之任一表面的最大有效半徑通常為光學透鏡組最大視角入射光通過入射瞳最邊緣的光線於該透鏡表面交會點,該交會點與光軸之間的垂直距離、又或者為該透鏡表面不具有表面處理(透鏡表面具有凹凸結構、或是塗墨等等)之部位的半徑、也可以為光線可通過該透鏡之部位的半徑(遮光片、或間隔環等等可阻擋光線通過該透鏡),但不限於此。
<第二實施例>
請參考圖2所示之根據本發明第二實施例的光學透鏡組的示意圖,此光學透鏡組沿光軸280由目側至像源側依序包含一光圈200、一第一透鏡210、一光學元件220、一第二透鏡230、一部分反射部分透射元件240、一第二相位延遲元件250及一像源面260。光學透鏡組中具屈折力的透鏡總數為二片,但不以此為限。光學透鏡組可搭配一影像源270使用,像源面260可位於影像源270上,該影像源270的種類可為一液晶顯示器、一OLED顯示器或一LED顯示器,但不限於此,而光圈200的位置可為使用者眼睛觀看影像的位置。
第一透鏡210具有正屈折力,其目側表面211於近光軸處為凸面,其像源側表面212於近光軸處為平面,且該目側表面211為非球面。
光學元件220由目側至像源側依序包含一吸收式偏光元件221、一反射式偏光元件222和一第一相位延遲元件223,這三個元件可堆疊地設置(例如但不限於是貼膜)於第一透鏡210的像源側表面212上,且該些元件的相對兩表面皆為平面。具體來說,吸收式偏光元件221附接在該像源側表面212上,反射式偏光元件222附接在吸收式偏光元件221上,
第一相位延遲元件223附接在反射式偏光元件222上。第一相位延遲元件223例如但不限於是四分之一波板。
第二透鏡230具有正屈折力,其目側表面231於近光軸處為凹面,其像源側表面232於近光軸處為凸面,且該目側表面231為球面,該像源側表面232為非球面。
部分反射部分透射元件240設置(例如但不限於是鍍膜)於第二透鏡230的像源側表面232上,且在可見光範圍內具有至少30%的平均光反射率,較佳為50%的平均光反射率。這裡的平均光反射率是指部分反射部分透射元件240對於不同波長光線的反射率的平均值。
第二相位延遲元件250設置於部分反射部分透射元件240與像源面260之間,且靠近像源面260。第二相位延遲元件250例如但不限於是四分之一波板。
請再一併配合參照下列表4至表7。
第二實施例中,非球面的曲線方程式與第一實施例之非球面的曲線方程式相同,表6中各參數的數值可由表4和表5推算出,且表7中各條件式的數值可由表6推算出。
<第三實施例>
請參考圖3所示之根據本發明第三實施例的光學透鏡組的示意圖,此光學透鏡組沿光軸380由目側至像源側依序包含一光圈300、一第一透鏡310、一光學元件320、一第二透鏡330、一部分反射部分透射元件340、一第二相位延遲元件350及一像源面360。光學透鏡組中具屈折力的透鏡總數為二片,但不以此為限。光學透鏡組可搭配一影像源370使用,像源面360可位於影像源370上,該影像源370的種類可為一液晶顯示器、一OLED顯示器或一LED顯示器,但不限於此,而光圈300的位置可為使用者眼睛觀看影像的位置。
第一透鏡310具有正屈折力,其目側表面311於近光軸處為凸面,其像源側表面312於近光軸處為平面,且該目側表面311為非球面。
光學元件320由目側至像源側依序包含一吸收式偏光元件321、一反射式偏光元件322和一第一相位延遲元件323,這三個元件可堆疊地設置(例如但不限於是貼膜)於第一透鏡310的像源側表面312上,且
該些元件的相對兩表面皆為平面。具體來說,吸收式偏光元件321附接在該像源側表面312上,反射式偏光元件322附接在吸收式偏光元件321上,第一相位延遲元件323附接在反射式偏光元件322上。第一相位延遲元件323例如但不限於是四分之一波板。
第二透鏡330具有正屈折力,其目側表面331於近光軸處為平面,其像源側表面332於近光軸處為凸面,且該像源側表面332為非球面。
部分反射部分透射元件340設置(例如但不限於是鍍膜)於第二透鏡330的像源側表面332上,且在可見光範圍內具有至少30%的平均光反射率,較佳為50%的平均光反射率。這裡的平均光反射率是指部分反射部分透射元件340對於不同波長光線的反射率的平均值。
第二相位延遲元件350設置於部分反射部分透射元件340與像源面360之間,且靠近像源面360。第二相位延遲元件350例如但不限於是四分之一波板。
請再一併配合參照下列表8至表11。
第三實施例中,非球面的曲線方程式與第一實施例之非球面的曲線方程式相同,表10中各參數的數值可由表8和表9推算出,且表11中各條件式的數值可由表10推算出。
<第四實施例>
請參考圖4所示之根據本發明第四實施例的光學透鏡組的示意圖,此光學透鏡組沿光軸480由目側至像源側依序包含一光圈400、一第一透鏡410、一光學元件420、一第二透鏡430、一部分反射部分透射元件440、一第二相位延遲元件450及一像源面460。光學透鏡組中具屈折力的透鏡總數為二片,但不以此為限。光學透鏡組可搭配一影像源470使用,像源面460可位於影像源470上,該影像源470的種類可為一液晶顯示器、一OLED顯示器或一LED顯示器,但不限於此,而光圈400的位置可為使用者眼睛觀看影像的位置。
第一透鏡410具有正屈折力,其目側表面411於近光軸處為凸面,其像源側表面412於近光軸處為平面,且該目側表面411為非球面。
光學元件420由目側至像源側依序包含一吸收式偏光元件421、一反射式偏光元件422和一第一相位延遲元件423,這三個元件可堆疊地設置(例如但不限於是貼膜)於第一透鏡410的像源側表面412上,且該些元件的相對兩表面皆為平面。具體來說,吸收式偏光元件421附接在該像源側表面412上,反射式偏光元件422附接在吸收式偏光元件421上,第一相位延遲元件423附接在反射式偏光元件422上。第一相位延遲元件423例如但不限於是四分之一波板。
第二透鏡430具有正屈折力,其目側表面431於近光軸處為凸面,其像源側表面432於近光軸處為凸面,且該目側表面431和該像源側表面432皆為非球面。
部分反射部分透射元件440設置(例如但不限於是鍍膜)於第二透鏡430的像源側表面432上,且在可見光範圍內具有至少30%的平均光反射率,較佳為50%的平均光反射率。這裡的平均光反射率是指部分反射部分透射元件440對於不同波長光線的反射率的平均值。
第二相位延遲元件450設置於部分反射部分透射元件440與像源面460之間,且靠近像源面460。第二相位延遲元件450例如但不限於是四分之一波板。
請再一併配合參照下列表12至表15。
第四實施例中,非球面的曲線方程式與第一實施例之非球面的曲線方程式相同,表14中各參數的數值可由表12和表13推算出,且表15中各條件式的數值可由表14推算出。
<第五實施例>
請參考圖5所示之根據本發明第五實施例的光學透鏡組的示意圖,此光學透鏡組沿光軸580由目側至像源側依序包含一光圈500、一第一透鏡510、一光學元件520、一第二透鏡530、一部分反射部分透射元件540、一第二相位延遲元件550及一像源面560。光學透鏡組中具屈折力的透鏡總數為二片,但不以此為限。光學透鏡組可搭配一影像源570使用,像源面560可位於影像源570上,該影像源570的種類可為一液晶顯示器、一OLED顯示器或一LED顯示器,但不限於此,而光圈500的位置可為使用者眼睛觀看影像的位置。
第一透鏡510具有正屈折力,其目側表面511於近光軸處為凸面,其像源側表面512於近光軸處為平面,且該目側表面511為非球面。
光學元件520由目側至像源側依序包含一吸收式偏光元件521、一反射式偏光元件522和一第一相位延遲元件523,這三個元件可堆疊地設置(例如但不限於是貼膜)於第一透鏡510的像源側表面512上,且該些元件的相對兩表面皆為平面。具體來說,吸收式偏光元件521附接在該像源側表面512上,反射式偏光元件522附接在吸收式偏光元件521上,第一相位延遲元件523附接在反射式偏光元件522上。第一相位延遲元件523例如但不限於是四分之一波板。
第二透鏡530具有正屈折力,其目側表面531於近光軸處為凸面,其像源側表面532於近光軸處為凸面,且該目側表面531和該像源側表面532皆為非球面。
部分反射部分透射元件540設置(例如但不限於是鍍膜)於第二透鏡530的像源側表面532上,且在可見光範圍內具有至少30%的平均光反射率,較佳為50%的平均光反射率。這裡的平均光反射率是指部分反射部分透射元件540對於不同波長光線的反射率的平均值。
第二相位延遲元件550設置於部分反射部分透射元件540與像源面560之間,且靠近像源面560。第二相位延遲元件550例如但不限於是四分之一波板。
請再一併配合參照下列表16至表19。
第五實施例中,非球面的曲線方程式與第一實施例之非球面的曲線方程式相同,表18中各參數的數值可由表16和表17推算出,且表19中各條件式的數值可由表18推算出。
<第六實施例>
請參考圖6所示之根據本發明第六實施例的光學透鏡組的示意圖,此光學透鏡組沿光軸680由目側至像源側依序包含一光圈600、一第一透鏡610、一光學元件620、一第二透鏡630、一部分反射部分透射元件640、一第二相位延遲元件650及一像源面660。光學透鏡組中具屈折力的透鏡總數為二片,但不以此為限。光學透鏡組可搭配一影像源670使用,像源面660可位於影像源670上,該影像源670的種類可為一液晶顯示
器、一OLED顯示器或一LED顯示器,但不限於此,而光圈600的位置可為使用者眼睛觀看影像的位置。
第一透鏡610具有正屈折力,其目側表面611於近光軸處為凸面,其像源側表面612於近光軸處為平面,且該目側表面611為非球面。
光學元件620由目側至像源側依序包含一吸收式偏光元件621、一反射式偏光元件622和一第一相位延遲元件623,這三個元件可堆疊地設置(例如但不限於是貼膜)於第一透鏡610的像源側表面612上,且該些元件的相對兩表面皆為平面。具體來說,吸收式偏光元件621附接在該像源側表面612上,反射式偏光元件622附接在吸收式偏光元件621上,第一相位延遲元件623附接在反射式偏光元件622上。第一相位延遲元件623例如但不限於是四分之一波板。
第二透鏡630具有正屈折力,其目側表面631於近光軸處為凸面,其像源側表面632於近光軸處為凸面,且該目側表面631和該像源側表面632皆為非球面。
部分反射部分透射元件640設置(例如但不限於是鍍膜)於第二透鏡630的像源側表面632上,且在可見光範圍內具有至少30%的平均光反射率,較佳為50%的平均光反射率。這裡的平均光反射率是指部分反射部分透射元件640對於不同波長光線的反射率的平均值。
第二相位延遲元件650設置於部分反射部分透射元件640與像源面660之間,且靠近像源面660。第二相位延遲元件650例如但不限於是四分之一波板。
請再一併配合參照下列表20至表23。
第六實施例中,非球面的曲線方程式與第一實施例之非球面的曲線方程式相同,表22中各參數的數值可由表20和表21推算出,且表23中各條件式的數值可由表22推算出。
<第七實施例>
請參考圖7所示之根據本發明第七實施例的光學透鏡組的示意圖,此光學透鏡組沿光軸780由目側至像源側依序包含一光圈700、一第一透鏡710、一光學元件720、一第二透鏡730、一部分反射部分透射元件740、一第二相位延遲元件750及一像源面760。光學透鏡組中具屈折
力的透鏡總數為二片,但不以此為限。光學透鏡組可搭配一影像源770使用,像源面760可位於影像源770上,該影像源770的種類可為一液晶顯示器、一OLED顯示器或一LED顯示器,但不限於此,而光圈700的位置可為使用者眼睛觀看影像的位置。
第一透鏡710具有正屈折力,其目側表面711於近光軸處為凸面,其像源側表面712於近光軸處為平面,且該目側表面711為非球面。
光學元件720由目側至像源側依序包含一吸收式偏光元件721、一反射式偏光元件722和一第一相位延遲元件723,這三個元件可堆疊地設置(例如但不限於是貼膜)於第一透鏡710的像源側表面712上,且該些元件的相對兩表面皆為平面。具體來說,吸收式偏光元件721附接在該像源側表面712上,反射式偏光元件722附接在吸收式偏光元件721上,第一相位延遲元件723附接在反射式偏光元件722上。第一相位延遲元件723例如但不限於是四分之一波板。
第二透鏡730具有正屈折力,其目側表面731於近光軸處為凸面,其像源側表面732於近光軸處為凸面,且該側表面731和該像源側表面732皆為非球面。
部分反射部分透射元件740設置(例如但不限於是鍍膜)於第二透鏡730的像源側表面732上,且在可見光範圍內具有至少30%的平均光反射率,較佳為50%的平均光反射率。這裡的平均光反射率是指部分反射部分透射元件740對於不同波長光線的反射率的平均值。
第二相位延遲元件750設置於部分反射部分透射元件740與像源面760之間,且靠近像源面760。第二相位延遲元件750例如但不限於是四分之一波板。
請再一併配合參照下列表24至表27。
第七實施例中,非球面的曲線方程式與第一實施例之非球面的曲線方程式相同,表26中各參數的數值可由表24和表25推算出,且表27中各條件式的數值可由表26推算出。
<第八實施例>
請參考圖8所示之根據本發明第八實施例的光學透鏡組的示意圖,此光學透鏡組沿光軸880由目側至像源側依序包含一光圈800、一第一透鏡810、一光學元件820、一第二透鏡830、一部分反射部分透射元件840、一第二相位延遲元件850及一像源面860。光學透鏡組中具屈折力的透鏡總數為二片,但不以此為限。光學透鏡組可搭配一影像源870使用,像源面860可位於影像源870上,該影像源870的種類可為一液晶顯示器、一OLED顯示器或一LED顯示器,但不限於此,而光圈800的位置可為使用者眼睛觀看影像的位置。
第一透鏡810具有正屈折力,其目側表面811於近光軸處為凸面,其像源側表面812於近光軸處為平面,且該目側表面811為非球面。
光學元件820由目側至像源側依序包含一吸收式偏光元件821、一反射式偏光元件822和一第一相位延遲元件823,這三個元件可堆疊地設置(例如但不限於是貼膜)於第一透鏡810的像源側表面812上,且該些元件的相對兩表面皆為平面。具體來說,吸收式偏光元件821附接在該像源側表面812上,反射式偏光元件822附接在吸收式偏光元件821上,第一相位延遲元件823附接在反射式偏光元件822上。第一相位延遲元件823例如但不限於是四分之一波板。
第二透鏡830具有正屈折力,其目側表面831於近光軸處為凸面,其像源側表面832於近光軸處為凸面,且該目側表面831和該像源側表面832皆為非球面。
部分反射部分透射元件840設置(例如但不限於是鍍膜)於第二透鏡830的像源側表面832上,且在可見光範圍內具有至少30%的平
均光反射率,較佳為50%的平均光反射率。這裡的平均光反射率是指部分反射部分透射元件840對於不同波長光線的反射率的平均值。
第二相位延遲元件850設置於部分反射部分透射元件840與像源面860之間,且靠近像源面860。第二相位延遲元件850例如但不限於是四分之一波板。
請再一併配合參照下列表28至表31。
第八實施例中,非球面的曲線方程式與第一實施例之非球面的曲線方程式相同,表30中各參數的數值可由表28和表29推算出,且表31中各條件式的數值可由表30推算出。
<第九實施例>
請參考圖9所示之根據本發明第九實施例的光學透鏡組的示意圖,此光學透鏡組沿光軸980由目側至像源側依序包含一光圈900、一第一透鏡910、一光學元件920、一第二透鏡930、一部分反射部分透射元件940、一第二相位延遲元件950及一像源面960。光學透鏡組中具屈折力的透鏡總數為二片,但不以此為限。光學透鏡組可搭配一影像源970使用。光學元件920由目側至像源側依序包含一吸收式偏光元件921、一反射式偏光元件922和一第一相位延遲元件923。
光圈900、第一透鏡910、吸收式偏光元件921、反射式偏光元件922、第一相位延遲元件923、第二透鏡930、部分反射部分透射元件940、第二相位延遲元件950、像源面960及影像源970的配置可相同於第一實施例至第八實施例的任一者中光圈、第一透鏡、吸收式偏光元件、反射式偏光元件、第一相位延遲元件、第二透鏡、部分反射部分透射元件、第二相位延遲元件、像源面和影像源的配置,於此不再贅述。
光學元件920更包含一抗反射膜924,抗反射膜924較第一相位延遲元件923靠近像源側,且可堆疊地設置(例如但不限於是貼膜)於第一相位延遲元件923上,且相對兩表面皆為平面。
本發明提供的光學透鏡組,透鏡的材質可為塑膠或玻璃,當透鏡材質為塑膠,可以有效降低生產成本,另當透鏡的材質為玻璃,
則可以增加光學透鏡組屈折力配置的自由度。此外,光學透鏡組中為非球面的透鏡表面可製作成球面以外的形狀,以獲得較多的控制變數,並用以消減像差,進而縮減透鏡使用的數目,因此可以有效降低本發明光學透鏡組的總長度。
本發明提供的光學透鏡組中,就以具有屈折力的透鏡而言,若透鏡表面係為凸面且未界定該凸面位置時,則表示該透鏡表面於近光軸處為凸面;若透鏡表面係為凹面且未界定該凹面位置時,則表示該透鏡表面於近光軸處為凹面。
此外,本發明提供的光學透鏡組可應用於頭戴式電子裝置。請參考圖11所示之根據本發明一實施例的頭戴式電子裝置的示意圖。此頭戴式電子裝置10例如但不限於是應用虛擬實境技術(Virtual Reality,VR)的頭戴式顯示器,包含一外殼1001以及設置於外殼1001內的一光機模組1002、一影像源1003和一控制器1004。
該光機模組1002分別對應使用者的左眼和右眼。該光機模組1002包含一光學透鏡組,且此光學透鏡組可為第一實施例至第九實施例中的任一者的光學透鏡組。
該影像源1003可為第一實施例至第九實施例的任一者的影像源。該影像源1003可分別對應左眼和右眼,該影像源1003的種類可以是液晶顯示器、LED顯示器、或OLED顯示器,但不限於此。
控制器1004電性連接影像源1003,以控制影像源1003顯示影像,藉此頭戴式電子裝置10便可投射立體影像至使用者的眼睛,而形成虛擬影像。
100:光圈
110:第一透鏡
111:目側表面
112:像源側表面
120:光學元件
121:吸收式偏光元件
122:反射式偏光元件
123:第一相位延遲元件
130:第二透鏡
131:目側表面
132:像源側表面
140:部分反射部分透射元件
150:第二相位延遲元件
160:像源面
170:影像源
180:光軸
Claims (15)
- 一種光學透鏡組,由目側至像源側依序包含:一第一透鏡,具有正屈折力,該第一透鏡的目側表面於近光軸處為凸面;一光學元件,由目側至像源側依序包含一吸收式偏光元件、一反射式偏光元件和一第一相位延遲元件;一第二透鏡,具有正屈折力,該第二透鏡的像源側表面於近光軸處為凸面,該第二透鏡的目側表面和像源側表面的至少其中之一為非球面;一部分反射部分透射元件;一第二相位延遲元件;以及一像源面;其中,該光學透鏡組中具屈折力的透鏡總數為二片,該光學透鏡組的整體焦距為f,該光學透鏡組的最大像源高度為IMH,該第一透鏡的焦距為f1,該第二透鏡的焦距為f2,並滿足以下條件:0.40<IMH/f<1.26;與0.21<f2/f1<2.35。
- 如請求項1所述的光學透鏡組,其中該第一透鏡於光軸上的厚度為CT1,該第二透鏡於光軸上的厚度為CT2,並滿足以下條件:0.62<CT2/CT1<6.97。
- 如請求項1所述的光學透鏡組,其中該第一透鏡於光軸上的厚度為CT1,該第一透鏡的目側表面於光軸上的交點至該第一透鏡的目側表面的最大有效半徑位置平行於光軸的位移量為TDP1,並滿足以下條件:0.98<CT1/TDP1<5.79。
- 如請求項1所述的光學透鏡組,其中該光學透鏡組的整體焦距為f,該第一透鏡的焦距為f1,並滿足以下條件:0.04<f/f1<0.28。
- 如請求項1所述的光學透鏡組,其中該第一透鏡的目側表面的曲率半徑為R1,該第一透鏡的焦距為f1,並滿足以下條件:0.33<R1/f1<0.76。
- 如請求項1所述的光學透鏡組,其中該光學透鏡組的整體焦距為f,該第二透鏡的焦距為f2,並滿足以下條件:0.07<f/f2<0.30。
- 如請求項1所述的光學透鏡組,其中該第二透鏡的像源側表面的曲率半徑為R4,該第二透鏡的焦距為f2,並滿足以下條件:-1.20<R4/f2<-0.22。
- 如請求項1所述的光學透鏡組,其中該第一透鏡的目側表面至該像源面於光軸上的距離為TL,該第一透鏡的目側表面的曲率半徑為R1,並滿足以下條件:2.05<R1/TL<12.83。
- 如請求項1所述的光學透鏡組,其中該第一透鏡的阿貝數為vd1,該第二透鏡的阿貝數為vd2,該第一透鏡的折射率為nd1,並滿足以下條件:0.93<(vd1*nd1)/vd2<2.16。
- 如請求項1所述的光學透鏡組,其中該第一透鏡的目側表面的曲率半徑為R1,該第二透鏡的像源側表面的曲率半徑為R4,並滿足以下條件:-2.74<R1/R4<-0.54。
- 如請求項1所述的光學透鏡組,其中該第二透鏡的目側表面的曲率半徑為R3,該第二透鏡的像源側表面的曲率半徑為R4,並滿足以下條件:-0.83<R4/R3<0.49。
- 如請求項1所述的光學透鏡組,其中該第二透鏡的目側表面至該像源面於光軸上的距離為T2M,該第二透鏡於光軸上的厚度為CT2,並滿足以下條件:0.68<T2M/CT2<2.37。
- 如請求項1所述的光學透鏡組,其中該第一透鏡的目側表面至該像源面於光軸上的距離為TL,該光學透鏡組的最大像源高度為IMH,並滿足以下條件:0.54<TL/IMH<1.80。
- 如請求項1所述的光學透鏡組,其中該第二透鏡的像源側表面的曲率半徑為R4,該第二透鏡的折射率為nd2,並滿足以下條件:-116.45mm<R4/nd2<-19.09mm。
- 一種頭戴式電子裝置,包含:一外殼;如請求項1至14的任一項所述之光學透鏡組,設置於該外殼內;一影像源,設置於該外殼內,且設置於該光學透鏡組的該像源面;及一控制器,設置於該外殼內,且電性連接該影像源。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111115286A TWI791399B (zh) | 2022-04-21 | 2022-04-21 | 光學透鏡組及頭戴式電子裝置 |
CN202221410272.5U CN217521430U (zh) | 2022-04-21 | 2022-06-07 | 光学透镜组及头戴式电子装置 |
CN202210639211.4A CN116974038A (zh) | 2022-04-21 | 2022-06-07 | 光学透镜组及头戴式电子装置 |
US17/868,797 US20230341697A1 (en) | 2022-04-21 | 2022-07-20 | Optical lens assembly and head-mounted electronic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111115286A TWI791399B (zh) | 2022-04-21 | 2022-04-21 | 光學透鏡組及頭戴式電子裝置 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI791399B true TWI791399B (zh) | 2023-02-01 |
TW202343064A TW202343064A (zh) | 2023-11-01 |
Family
ID=83391871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111115286A TWI791399B (zh) | 2022-04-21 | 2022-04-21 | 光學透鏡組及頭戴式電子裝置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230341697A1 (zh) |
CN (2) | CN116974038A (zh) |
TW (1) | TWI791399B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI838140B (zh) * | 2023-02-24 | 2024-04-01 | 新鉅科技股份有限公司 | 光學透鏡組及頭戴式電子裝置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWM591624U (zh) * | 2019-08-20 | 2020-03-01 | 雙瑩科技股份有限公司 | 短距離之光學系統 |
TWM596873U (zh) * | 2020-03-06 | 2020-06-11 | 雙瑩科技股份有限公司 | 微型頭戴式顯示器之光學系統 |
US20200241305A1 (en) * | 2015-09-03 | 2020-07-30 | 3M Innovative Properties Company | Optical system |
CN113448101A (zh) * | 2021-06-28 | 2021-09-28 | 歌尔股份有限公司 | 光学模组和头戴显示设备 |
TWI761022B (zh) * | 2021-01-04 | 2022-04-11 | 大陸商業成科技(成都)有限公司 | 光學系統 |
TWM631118U (zh) * | 2022-04-21 | 2022-08-21 | 新鉅科技股份有限公司 | 光學透鏡組及頭戴式電子裝置 |
-
2022
- 2022-04-21 TW TW111115286A patent/TWI791399B/zh active
- 2022-06-07 CN CN202210639211.4A patent/CN116974038A/zh active Pending
- 2022-06-07 CN CN202221410272.5U patent/CN217521430U/zh active Active
- 2022-07-20 US US17/868,797 patent/US20230341697A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200241305A1 (en) * | 2015-09-03 | 2020-07-30 | 3M Innovative Properties Company | Optical system |
TWM591624U (zh) * | 2019-08-20 | 2020-03-01 | 雙瑩科技股份有限公司 | 短距離之光學系統 |
TWM596873U (zh) * | 2020-03-06 | 2020-06-11 | 雙瑩科技股份有限公司 | 微型頭戴式顯示器之光學系統 |
TWI761022B (zh) * | 2021-01-04 | 2022-04-11 | 大陸商業成科技(成都)有限公司 | 光學系統 |
CN113448101A (zh) * | 2021-06-28 | 2021-09-28 | 歌尔股份有限公司 | 光学模组和头戴显示设备 |
TWM631118U (zh) * | 2022-04-21 | 2022-08-21 | 新鉅科技股份有限公司 | 光學透鏡組及頭戴式電子裝置 |
Also Published As
Publication number | Publication date |
---|---|
US20230341697A1 (en) | 2023-10-26 |
CN116974038A (zh) | 2023-10-31 |
CN217521430U (zh) | 2022-09-30 |
TW202343064A (zh) | 2023-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW202115453A (zh) | 取像用光學系統、取像裝置及電子裝置 | |
US20230143390A1 (en) | Optical system and head-mounted device | |
TWI791399B (zh) | 光學透鏡組及頭戴式電子裝置 | |
CN111123481A (zh) | 一种基于折反式光学镜片的超短焦投影镜头 | |
JP7406028B1 (ja) | 光学系 | |
TWM631118U (zh) | 光學透鏡組及頭戴式電子裝置 | |
CN217932284U (zh) | 光学透镜组及头戴式电子装置 | |
TWM633841U (zh) | 光學透鏡組和頭戴式電子裝置 | |
TWM632322U (zh) | 光學透鏡組及頭戴式電子裝置 | |
CN116400481A (zh) | 光学模组及vr设备 | |
TWI811774B (zh) | 光學透鏡組及頭戴裝置 | |
CN115469445A (zh) | 潜望式镜头模组及电子设备 | |
CN211348833U (zh) | 一种基于折反式光学镜片的投影镜头 | |
TWI838140B (zh) | 光學透鏡組及頭戴式電子裝置 | |
TWI804345B (zh) | 光學透鏡組及頭戴式電子裝置 | |
TWI823809B (zh) | 光學透鏡組和頭戴式電子裝置 | |
TWI813395B (zh) | 光學透鏡組和頭戴式電子裝置 | |
TWI830516B (zh) | 光學透鏡組及頭戴式電子裝置 | |
TWI856640B (zh) | 光學透鏡組和頭戴式電子裝置 | |
TWI852539B (zh) | 光學透鏡組和頭戴式電子裝置 | |
US20230384594A1 (en) | Optical system and head-mounted device | |
CN221326837U (zh) | 投影系统和ar投影装置 | |
US11803062B1 (en) | Optical system and head-mounted device | |
TW202434914A (zh) | 光學透鏡組及頭戴式電子裝置 | |
TWI820692B (zh) | 投射透鏡系統、投射裝置及電子裝置 |