TWI790780B - Timing control method using pulse frequency modulation, timing controller and display device - Google Patents

Timing control method using pulse frequency modulation, timing controller and display device Download PDF

Info

Publication number
TWI790780B
TWI790780B TW110138725A TW110138725A TWI790780B TW I790780 B TWI790780 B TW I790780B TW 110138725 A TW110138725 A TW 110138725A TW 110138725 A TW110138725 A TW 110138725A TW I790780 B TWI790780 B TW I790780B
Authority
TW
Taiwan
Prior art keywords
charging
time
voltage
target voltage
control signal
Prior art date
Application number
TW110138725A
Other languages
Chinese (zh)
Other versions
TW202318390A (en
Inventor
蔡水河
林柏成
Original Assignee
大陸商常州欣盛半導體技術股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商常州欣盛半導體技術股份有限公司 filed Critical 大陸商常州欣盛半導體技術股份有限公司
Priority to TW110138725A priority Critical patent/TWI790780B/en
Application granted granted Critical
Publication of TWI790780B publication Critical patent/TWI790780B/en
Publication of TW202318390A publication Critical patent/TW202318390A/en

Links

Images

Abstract

A timing control method is disclosed. The timing control method includes calculating a plurality of charging/discharging times corresponding to a plurality of display pixels according to a target voltage and a plurality of RC time constants, and generating a control signal according to a processing time and the plurality of RC time constants.

Description

使用脈衝頻率調變的時序控制方法、時序控制器及顯示器Timing control method using pulse frequency modulation, timing controller and display

本發明係指一種使用脈衝頻率調變的時序控制方法、時序控制器及顯示器,尤指一種使用具有多個充放電時間的控制訊號的時序控制方法、時序控制器及顯示器。The present invention refers to a timing control method, a timing controller and a display using pulse frequency modulation, especially a timing controlling method, a timing controller and a display using control signals with multiple charging and discharging times.

隨著液晶顯示(Liquid Crystal Display,LCD)面板技術的進步,消費市場對高階LCD面板的需求也隨之增加。目前的高階LCD面板指的是可支援高幀率(Frame Rate)、高色彩深度及具備高解析度的大尺寸面板;例如,幀率(Frame Rate)為120Hz、色彩深度為10位元(即可顯示1024種灰階的色彩)及解析度為8K(即7680*4320平方像素)的超高畫質電視(Ultra High Definition Television, UHDTV)。With the advancement of liquid crystal display (Liquid Crystal Display, LCD) panel technology, the demand for high-end LCD panels in the consumer market is also increasing. The current high-end LCD panel refers to a large-size panel that can support high frame rate (Frame Rate), high color depth, and high resolution; for example, the frame rate (Frame Rate) is 120Hz, and the color depth is 10 bits (ie It can display 1024 grayscale colors) and Ultra High Definition Television (UHDTV) with a resolution of 8K (7680*4320 square pixels).

然而,當LCD面板的尺寸增加時,驅動器與顯示像素之間的訊號路徑增加,驅動器看到的負載阻抗也會增加,導致遠端負載需要較高的充電量才可達到目標電壓。在實際應用中,位於訊號路徑近端的顯示像素的亮度較高,而位於訊號路徑末端的顯示像素的亮度較低,導致了LCD面板的畫面亮度不均勻,故視覺表現不佳。因此,如何改善LCD面板的畫面亮度不均勻的問題,已成為本領域的重要課題之一。However, when the size of the LCD panel increases, the signal path between the driver and the display pixels increases, and the load impedance seen by the driver also increases, causing the remote load to require a higher charge to reach the target voltage. In practical applications, the brightness of the display pixels located near the end of the signal path is higher, while the brightness of the display pixels located at the end of the signal path is lower, resulting in uneven brightness of the LCD panel, resulting in poor visual performance. Therefore, how to improve the uneven brightness of the LCD panel has become one of the important issues in this field.

本發明之一目的在於提供一種時序控制方法,包含根據一目標電壓以及多個RC時間常數,計算多個充放電時間;以及根據一處理時間以及該多個充放電時間,產生一控制訊號。An object of the present invention is to provide a timing control method, including calculating multiple charging and discharging times according to a target voltage and multiple RC time constants; and generating a control signal according to a processing time and the multiple charging and discharging times.

本發明之另一目的在於提供一種時序控制器,用於一顯示裝置,包含一處理器;以及一記憶體,耦接於該處理器,用來儲存一程式碼,該程式碼用來指示該處理器執行如上所述的控制方法。其中該時序控制器執行如上述的時序控制方法以產生該控制訊號到該顯示裝置的一源極驅動器。Another object of the present invention is to provide a timing controller for a display device, including a processor; and a memory, coupled to the processor, for storing a program code, the program code is used to instruct the The processor executes the control method as described above. Wherein the timing controller executes the above timing control method to generate the control signal to a source driver of the display device.

本發明之另一目的在於提供一種顯示裝置,包含一顯示面板、一源極驅動器、一閘極驅動器以及如上所述的時序控制器。該顯示面板包含如上所述的多個顯示像素。該源極驅動器耦接於該顯示面板,用來產生多個源極驅動訊號到該顯示面板。該閘極驅動器耦接於該顯示面板,用來產生多個閘極驅動訊號到該顯示面板。該時序控制器耦接於該源極驅動器和該閘極驅動器;其中該時序控制器產生如上所述的該控制訊號到該源極驅動器,使該源極驅動器根據該控制訊號產生多個源極驅動訊號到該顯示面板。Another object of the present invention is to provide a display device, which includes a display panel, a source driver, a gate driver, and the above-mentioned timing controller. The display panel includes a plurality of display pixels as described above. The source driver is coupled to the display panel for generating a plurality of source driving signals to the display panel. The gate driver is coupled to the display panel and used for generating a plurality of gate driving signals to the display panel. The timing controller is coupled to the source driver and the gate driver; wherein the timing controller generates the above-mentioned control signal to the source driver, so that the source driver generates a plurality of source electrodes according to the control signal drive signals to the display panel.

有別於傳統的控制訊號只有單一充放電時間,本發明的時序控制方法及其時序控制器使用具有多個充放電時間或多個脈衝頻率的控制訊號,以適應位於訊號路徑不同位置的負載所需的充放電量。如此一來,由於多個顯示像素在多個充放電時間內可被充放電到目標電壓,故本發明的時序控制方法及其時序控制器可改善LCD面板的畫面亮度不均勻的問題。Different from the traditional control signal with only a single charge and discharge time, the timing control method and its timing controller of the present invention use control signals with multiple charge and discharge times or multiple pulse frequencies to adapt to the loads located at different positions in the signal path. The required charge and discharge capacity. In this way, since a plurality of display pixels can be charged and discharged to a target voltage within a plurality of charge and discharge times, the timing control method and timing controller of the present invention can improve the uneven brightness of the LCD panel.

圖1為根據本發明實施例的顯示裝置(顯示器)1的局部示意圖。顯示裝置1包含一時序控制器(Timing Controller)10、一源極驅動器(Source Driver)11、一閘極驅動器(Gate Driver)12以及一顯示面板13。時序控制器10耦接於源極驅動器11和閘極驅動器12,用來產生一控制訊號SC到源極驅動器11,以及產生一控制訊號GC到閘極驅動器12。源極驅動器11耦接於顯示面板13,用來根據控制訊號SC,產生多個源極驅動訊號S1…S5到顯示面板13。閘極驅動器12耦接於顯示面板13,用來根據控制訊號GC,產生多個閘極驅動訊號G1…G4到顯示面板13。顯示面板13的局部電路架構如圖1所示,並包含多個顯示像素PX、多條源極線以及多條閘極線,多個顯示像素PX沿著X、Y方向以矩陣排列。每個顯示像素PX包含一開關(例如電晶體)以及一發光單元CLC;發光單元CLC耦接於開關與一系統電壓VCOM之間。於其他實施例中,顯示面板13可以是解析度為m*n平方像素的面板,包含m*n個顯示像素PX、m條閘極線以及n條源極線,於此m、n是大於零的正整數。FIG. 1 is a partial schematic diagram of a display device (display) 1 according to an embodiment of the present invention. The display device 1 includes a timing controller (Timing Controller) 10 , a source driver (Source Driver) 11 , a gate driver (Gate Driver) 12 and a display panel 13 . The timing controller 10 is coupled to the source driver 11 and the gate driver 12 for generating a control signal SC to the source driver 11 and a control signal GC to the gate driver 12 . The source driver 11 is coupled to the display panel 13 for generating a plurality of source driving signals S1 . . . S5 to the display panel 13 according to the control signal SC. The gate driver 12 is coupled to the display panel 13 for generating a plurality of gate driving signals G1 . . . G4 to the display panel 13 according to the control signal GC. The partial circuit structure of the display panel 13 is shown in FIG. 1 , and includes a plurality of display pixels PX, a plurality of source lines and a plurality of gate lines. The plurality of display pixels PX are arranged in a matrix along the X and Y directions. Each display pixel PX includes a switch (such as a transistor) and a light emitting unit CLC; the light emitting unit CLC is coupled between the switch and a system voltage VCOM. In other embodiments, the display panel 13 may be a panel with a resolution of m*n square pixels, including m*n display pixels PX, m gate lines and n source lines, where m and n are greater than A positive integer of zero.

多條源極線連接多個顯示像素PX的開關的源極,用來分別傳遞多個源極驅動訊號S1…S5。多條閘極線連接多個顯示像素PX的開關的閘極,用來分別傳遞多個閘極驅動訊號G1…G4,以分別導通多個顯示像素PX。舉例來說,如圖1所示,當閘極驅動訊號G1導通連接同一條閘極線的五個顯示像素PX時,源極驅動器11可依序輸入源極驅動訊號S1…S5到連接同一條閘極線的五個顯示像素PX,依序對五個發光單元CLC充放電。用來傳遞源極驅動訊號S3的源極線與四個顯示像素PX的連接處為四個節點N1、N2、N3及N4。A plurality of source lines are connected to sources of switches of a plurality of display pixels PX, and are used to transmit a plurality of source driving signals S1 . . . S5 . A plurality of gate lines are connected to gates of switches of a plurality of display pixels PX, and are used to respectively transmit a plurality of gate driving signals G1 . . . G4 to turn on a plurality of display pixels PX respectively. For example, as shown in FIG. 1, when the gate drive signal G1 turns on five display pixels PX connected to the same gate line, the source driver 11 can sequentially input source drive signals S1...S5 to the same gate line. The five display pixels PX on the gate line charge and discharge the five light emitting cells CLC in sequence. There are four nodes N1 , N2 , N3 and N4 connecting the source line for transmitting the source driving signal S3 and the four display pixels PX.

圖2為控制訊號SC2、目標電壓VH、VL、近端節點電壓N12、遠端節點電壓N42的電壓對時間的示意圖。圖1的時序控制器10可產生控制訊號SC2到源極驅動器11,使得源極驅動器11產生源極驅動訊號S3。假設近端節點電壓N12是源極驅動訊號S3輸入到節點N1的電壓,而遠端節點電壓N42是源極驅動訊號S3輸入到節點N4的電壓。於控制訊號SC2中,每個顯示像素PX的更新時間為T,其中TA是源極驅動器11的處理時間,TB是顯示像素PX的充放電時間。在操作上,於處理時間TA內,當源極驅動器11偵測到控制訊號SC2的上升邊緣(Rising Edge)時,源極驅動器11進行數位-類比轉換來產生源極驅動訊號S3。接著,於充放電時間TB內,源極驅動訊號S3對顯示像素PX進行充放電,例如由目標電壓VL充電至目標電壓VH,或是由目標電壓VH放電至目標電壓VL。2 is a schematic diagram of the control signal SC2, the target voltages VH, VL, the near-end node voltage N12, and the far-end node voltage N42 versus time. The timing controller 10 in FIG. 1 can generate the control signal SC2 to the source driver 11 so that the source driver 11 generates the source driving signal S3. Assume that the near-end node voltage N12 is the voltage of the source driving signal S3 input to the node N1, and the far-end node voltage N42 is the voltage of the source driving signal S3 input to the node N4. In the control signal SC2 , the update time of each display pixel PX is T, where TA is the processing time of the source driver 11 , and TB is the charge and discharge time of the display pixel PX. In operation, during the processing time TA, when the source driver 11 detects a rising edge (Rising Edge) of the control signal SC2 , the source driver 11 performs digital-analog conversion to generate the source driving signal S3 . Then, within the charging and discharging time TB, the source driving signal S3 charges and discharges the display pixel PX, for example, charging from the target voltage VL to the target voltage VH, or discharging from the target voltage VH to the target voltage VL.

由圖2可看出,近端節點電壓N12從目標電壓VL充電到目標電壓VH時間較短,而遠端節點電壓N42從目標電壓VL充電到目標電壓VH時間較長;放電時間也有類似的結果。由於負載阻抗會隨著訊號路徑的長度而增加,相較於近端顯示像素PX而言,故遠端顯示像素PX所需的充電量較大。為了解決訊號路徑末端的顯示像素PX的亮度較低的問題,傳統的作法是延長充放電時間TB,但是申請人注意到,此作法不僅會使得源極驅動器11 的工作時間延長而導致本身的功耗及溫度上升,也無法確切地解決近端及遠端充放電大小不一的問題。It can be seen from Figure 2 that the near-end node voltage N12 takes a short time to charge from the target voltage VL to the target voltage VH, while the far-end node voltage N42 takes a long time to charge from the target voltage VL to the target voltage VH; the discharge time also has similar results . Since the load impedance will increase with the length of the signal path, compared with the near-end display pixels PX, the far-end display pixels PX need a larger charging amount. In order to solve the problem of low brightness of the display pixel PX at the end of the signal path, the traditional method is to prolong the charging and discharging time TB, but the applicant noticed that this method will not only prolong the working time of the source driver 11 but also cause its own power failure. power consumption and temperature rise, and it is impossible to exactly solve the problem of the difference between the near-end and far-end charging and discharging.

圖3為另一控制訊號SC3、目標電壓VH、VL、另一近端節點電壓N13、另一遠端節點電壓N43的電壓對時間的示意圖。圖3的控制訊號SC3的更新時間為1/2*T,處理時間為TA,充放電時間為TC,其中1/2*T=TA+TC。比較圖3與圖2可看出,在處理時間TA不變的前提下,縮短充放電時間為TC,近端節點電壓N13雖然可以在充放電時間TC內被充電到目標電壓VH(或是被放電到目標電壓VL),但是遠端節點電壓N43卻無法在充放電時間TC內被充電到目標電壓VH(或是被放電到目標電壓VL),如此導致了LCD面板的畫面亮度不均勻的現象。在實際應用中,當更新率提高時,顯示像素進行充放電的時間縮短;例如更新率從60赫茲提高到120赫茲,使得更新時間縮短一半,讓LCD面板的畫面亮度不均勻的現象變得顯著。3 is a schematic diagram of another control signal SC3, target voltages VH, VL, another near-end node voltage N13, and another far-end node voltage N43 versus time. The updating time of the control signal SC3 in FIG. 3 is 1/2*T, the processing time is TA, and the charging and discharging time is TC, wherein 1/2*T=TA+TC. Comparing Figure 3 with Figure 2, it can be seen that under the premise that the processing time TA remains unchanged, the charging and discharging time is shortened to TC, although the near-end node voltage N13 can be charged to the target voltage VH within the charging and discharging time TC (or by discharge to the target voltage VL), but the remote node voltage N43 cannot be charged to the target voltage VH (or discharged to the target voltage VL) within the charging and discharging time TC, which leads to uneven brightness of the LCD panel . In practical applications, when the update rate is increased, the time for display pixels to charge and discharge is shortened; for example, the update rate is increased from 60 Hz to 120 Hz, which reduces the update time by half and makes the uneven brightness of the LCD panel become obvious. .

圖4為另一控制訊號SC4、目標電壓VH、VL、另一近端節點電壓N14、另一遠端節點電壓N44的電壓對時間的示意圖。圖4的控制訊號SC4的更新時間為1/2*T,處理時間為1/2*TA,充放電時間為TD,其中1/2*T=1/2*TA+TD。比較圖4與圖3可看出,在更新時間為1/2*T不變的前提下,縮短處理時間為1/2*TA,雖然遠端節點電壓N44較接近目標電壓VH,卻依舊無法在充放電時間TD內被充電到目標電壓VH(或是被放電到目標電壓VL)。4 is a schematic diagram of another control signal SC4, target voltages VH, VL, another near-end node voltage N14, and another far-end node voltage N44 versus time. The updating time of the control signal SC4 in FIG. 4 is 1/2*T, the processing time is 1/2*TA, and the charging and discharging time is TD, wherein 1/2*T=1/2*TA+TD. Comparing Figure 4 and Figure 3, it can be seen that under the premise that the update time is 1/2*T, the processing time is shortened to 1/2*TA. Although the remote node voltage N44 is closer to the target voltage VH, it still cannot It is charged to the target voltage VH (or discharged to the target voltage VL) within the charge and discharge time TD.

圖5為根據本發明實施例的控制訊號、目標電壓VH、VL、多個節點電壓D1、D2、D3、D4的電壓對時間的示意圖。於本發明實施例中,控制訊號具有多個更新時間T1、T2、T3、T4,處理時間為Ta,多個充放電時間為Tb1、Tb2、Tb3、Tb4。於本發明實施例中,第i個更新時間可表示為如下函數(1): Ti=Ta+Tbi              (1); 其中,1≦i≦m,m為連接到同一條源極線的顯示像素PX的數量(等於閘極線的數量)。於一實施例中,第i個顯示像素PX與源極驅動器11之間的距離正比於i的大小,i的大小正比於充放電時間;也就是說,距離源極驅動器11越遠的第i個顯示像素PX,其充電時間越長,故Tbi<Tb(i+1)。 5 is a schematic diagram of voltage versus time of control signals, target voltages VH, VL, and multiple node voltages D1 , D2 , D3 , D4 according to an embodiment of the present invention. In the embodiment of the present invention, the control signal has multiple updating times T1, T2, T3, T4, the processing time is Ta, and the multiple charging and discharging times are Tb1, Tb2, Tb3, Tb4. In the embodiment of the present invention, the i-th update time can be expressed as the following function (1): Ti=Ta+Tbi (1); Wherein, 1≦i≦m, m is the number of display pixels PX connected to the same source line (equal to the number of gate lines). In one embodiment, the distance between the i-th display pixel PX and the source driver 11 is proportional to the size of i, and the size of i is proportional to the charging and discharging time; that is, the farther the i-th display pixel PX is from the source driver 11 Display pixels PX, the longer the charging time, so Tbi<Tb(i+1).

進一步地,如下函數(2)描述了電阻電容(RC)電路的充電電容隨著時間充電的關係:

Figure 02_image001
(2); 其中,VC(t)是對應於多個顯示像素PX(或發光單元CLC)的多個即時充電電壓,t是充電時間,τ是RC時間常數,Vo是充電電壓的絕對值∣VH-VL∣。 Further, the following function (2) describes the relationship between the charging capacitance of the resistance-capacitance (RC) circuit over time:
Figure 02_image001
(2); Among them, VC(t) is a plurality of instantaneous charging voltages corresponding to a plurality of display pixels PX (or light-emitting unit CLC), t is the charging time, τ is the RC time constant, and Vo is the absolute value of the charging voltage∣ VH-VL∣.

如下函數(3)描述了RC電路的電阻負載隨著時間放電的關係:

Figure 02_image003
(3); 其中,VR(t)是對應於多條源極線的訊號路徑(即,電阻負載)的即時放電電壓,t是充電時間,τ是RC時間常數,Vo是放電電壓的絕對值∣VH-VL∣。 The following function (3) describes the relationship between the discharge of the resistive load of the RC circuit over time:
Figure 02_image003
(3); where VR(t) is the instantaneous discharge voltage corresponding to the signal path of multiple source lines (i.e., resistive load), t is the charging time, τ is the RC time constant, and Vo is the absolute value of the discharge voltage ∣VH-VL∣.

經由實驗量測或模擬估算,可得到源極線的訊號路徑(即,電阻負載)中任意位置的RC時間常數,並且充電電壓Vo為已知的∣VH-VL∣,故可根據函數(2)或(3)推導出電容充電時間t或電阻負載放電時間t。舉例來說,假設一條源極線連接到m個顯示像素PX1…PXm,經由實驗量測或模擬估算可得到對應於m個顯示像素PX1…PXm的m個RC時間常數τ1…τm,並且充電電壓Vo為已知的∣VH-VL∣,故可根據函數(2)推導出m個充放電時間Tb1…Tbm。須注意的是,對於解析度為m*n的顯示畫面而言,m個充放電時間Tb1…Tbm的總和不得大於整個畫面的一條源極線的更新時間,以符合畫面顯示的更新率(Refresh Rate)。Through experimental measurement or simulation estimation, the RC time constant at any position in the signal path of the source line (that is, the resistive load) can be obtained, and the charging voltage Vo is a known |VH-VL|, so it can be calculated according to the function (2 ) or (3) deduce the capacitive charge time t or the resistive load discharge time t. For example, assuming that one source line is connected to m display pixels PX1...PXm, m RC time constants τ1...τm corresponding to m display pixels PX1...PXm can be obtained through experimental measurement or simulation estimation, and the charging voltage Vo is the known |VH-VL|, so m charging and discharging times Tb1...Tbm can be deduced according to the function (2). It should be noted that for a display screen with a resolution of m*n, the sum of the m charging and discharging times Tb1...Tbm shall not be greater than the update time of one source line of the entire screen, so as to meet the refresh rate of the screen display (Refresh Rate).

如圖5所示,位於節點N1的節點電壓D1在充放電時間Tb1內被充電到目標電壓VH,位於節點N2的節點電壓D2在充放電時間Tb2內被放電到目標電壓VL,位於節點N3的節點電壓D3在充放電時間Tb3內被充電到目標電壓VH,且位於節點N4的節點電壓D4在充放電時間Tb4內被放電到目標電壓VL。因此,位於訊號路徑不同位置的顯示像素PX皆可被充放電到目標電壓VH或VL,使得LCD面板的畫面亮度均勻,視覺表現佳。As shown in Fig. 5, the node voltage D1 at node N1 is charged to the target voltage VH within the charging and discharging time Tb1, the node voltage D2 at the node N2 is discharged to the target voltage VL within the charging and discharging time Tb2, and the node N3 at the node N3 The node voltage D3 is charged to the target voltage VH within the charging and discharging time Tb3, and the node voltage D4 at the node N4 is discharged to the target voltage VL within the charging and discharging time Tb4. Therefore, the display pixels PX located at different positions of the signal path can be charged and discharged to the target voltage VH or VL, so that the image brightness of the LCD panel is uniform and the visual performance is good.

簡言之,有別於傳統的控制訊號只有單一充放電時間,本發明的控制訊號具有多個充放電時間,以適應位於訊號路徑不同位置的負載(即m個顯示像素PX1…PXm)所需的充放電量。換一角度而言,傳統的控制訊號只有單一工作週期(Duty Cycle)或單一脈衝頻率;反觀本發明的控制訊號具有多個工作週期或多個脈衝頻率。如此一來,由於m個顯示像素PX1…PXm在m個充放電時間Tb1…Tbm內可被充放電到目標電壓VH或VL,故本發明可改善LCD面板的畫面亮度不均勻的問題。In short, unlike the traditional control signal which only has a single charging and discharging time, the control signal of the present invention has multiple charging and discharging times to meet the needs of loads located in different positions of the signal path (ie, m display pixels PX1...PXm) charge and discharge capacity. From another perspective, the traditional control signal only has a single duty cycle or a single pulse frequency; in contrast, the control signal of the present invention has multiple duty cycles or multiple pulse frequencies. In this way, since the m display pixels PX1 . . . PXm can be charged and discharged to the target voltage VH or VL within m charging and discharging times Tb1 .

圖6為根據本發明實施例的目標電壓VH、VL、多個節點電壓D1、D2、D3、D4的電壓對時間的示意圖。在低功率驅動器的應用中,由圖6可看出,多個充電時間Tb1、Tb2、Tb3、Tb4對應的節點電壓D1、D2、D3、D4與目標電壓VH或VL的電壓差皆為dV。當節點電壓D1、D2、D3、D4的充電量皆相同時,對應的顯示像素PX即可得到相同的電荷量,雖然節點電壓D1、D2、D3、D4並未達到預定的目標電壓,但只要適度地調整LCD面板的背光亮度,即可彌補此顯示亮度的差異,亦可使得LCD面板的畫面亮度均勻,視覺表現佳。據此,函數(2)的充電電壓Vo可表示為(∣VH-VL∣-dV)。FIG. 6 is a schematic diagram of voltage versus time of target voltages VH, VL, multiple node voltages D1 , D2 , D3 , D4 according to an embodiment of the present invention. In the application of low-power drivers, it can be seen from FIG. 6 that the voltage difference between the node voltages D1, D2, D3, D4 corresponding to multiple charging times Tb1, Tb2, Tb3, Tb4 and the target voltage VH or VL is dV. When the charging amounts of the node voltages D1, D2, D3, and D4 are the same, the corresponding display pixels PX can obtain the same charge amount. Although the node voltages D1, D2, D3, and D4 have not reached the predetermined target voltages, as long as Moderately adjusting the brightness of the backlight of the LCD panel can make up for the difference in display brightness, and can also make the brightness of the picture of the LCD panel uniform, and the visual performance is good. Accordingly, the charging voltage Vo of the function (2) can be expressed as (∣VH-VL|-dV).

圖7為根據本發明實施例的時序控制流程的流程圖。時序控制器10包含一處理器;以及一記憶體,耦接於該處理器,用來儲存一程式碼。圖7的時序控制流程可編譯為該程式碼,用來指示時序控制器10的該處理器執行相關步驟,以產生控制訊號SC到源極驅動器11。時序控制流程包含以下步驟。FIG. 7 is a flowchart of a timing control process according to an embodiment of the present invention. The timing controller 10 includes a processor; and a memory coupled to the processor for storing a program code. The timing control flow in FIG. 7 can be compiled into the program code, which is used to instruct the processor of the timing controller 10 to execute related steps to generate the control signal SC to the source driver 11 . The timing control flow includes the following steps.

步驟71:根據一目標電壓以及多個RC時間常數,計算多個充放電時間。Step 71 : Calculate a plurality of charging and discharging times according to a target voltage and a plurality of RC time constants.

步驟72:根據一處理時間以及對應於多個顯示像素的多個充放電時間,產生控制訊號。Step 72: Generate a control signal according to a processing time and a plurality of charging and discharging times corresponding to a plurality of display pixels.

於步驟71中,時序控制器10根據目標電壓VH、VL以及多個RC時間常數τ1…τm,計算多個充放電時間Tb1…Tbm。舉例來說,時序控制器10根據目標電壓VH、VL計算充電電壓Vo為∣VH-VL∣,再根據函數(2)推導出多個充放電時間Tb1…Tbm。於步驟72中,時序控制器10根據處理時間Ta以及多個充放電時間Tb1…Tbm,產生控制訊號SC。因此,透過本發明圖7的時序控制流程,時序控制器10可產生具有多個工作週期或多個脈衝頻率的控制訊號SC,以使得LCD面板的畫面亮度均勻,視覺表現佳。In step 71 , the timing controller 10 calculates a plurality of charging and discharging times Tb1 . . . Tbm according to the target voltages VH, VL and a plurality of RC time constants τ1 . . . τm. For example, the timing controller 10 calculates the charging voltage Vo as |VH-VL| according to the target voltages VH and VL, and then deduces a plurality of charging and discharging times Tb1 . . . Tbm according to the function (2). In step 72 , the timing controller 10 generates a control signal SC according to the processing time Ta and a plurality of charging and discharging times Tb1 . . . Tbm. Therefore, through the timing control flow shown in FIG. 7 of the present invention, the timing controller 10 can generate the control signal SC with multiple duty cycles or multiple pulse frequencies, so that the brightness of the screen of the LCD panel is uniform and the visual performance is good.

須注意的是,用於閘極驅動器12的控制訊號GC也應當具有多個工作週期或多個脈衝頻率,以配合源極驅動器11的控制訊號SC,讓多個顯示像素PX可在適當的時序下被導通或關閉。具體而言,由於m個顯示像素PX的更新時間T1…Tm不同,故用於閘極驅動器12的控制訊號GC須在對應的時序來導通m個閘極通道。此外,閘極驅動器12也面臨了訊號路徑增加而負載阻抗增加的類似問題,遠端開關(電晶體)需要較高的導通電壓才可被導通,故應考量開關特性來調整用於閘極驅動器12的控制訊號GC。It should be noted that the control signal GC for the gate driver 12 should also have multiple duty cycles or multiple pulse frequencies to cooperate with the control signal SC of the source driver 11, so that multiple display pixels PX can operate at an appropriate timing. is turned on or off. Specifically, since the refresh times T1 . . . Tm of the m display pixels PX are different, the control signal GC used for the gate driver 12 must turn on the m gate channels at a corresponding timing. In addition, the gate driver 12 also faces the similar problem that the signal path increases and the load impedance increases. The remote switch (transistor) needs a higher conduction voltage to be turned on, so the switch characteristics should be considered to adjust the gate driver. 12 control signal GC.

綜上所述,有別於傳統的控制訊號只有單一充放電時間,本發明的時序控制方法及其時序控制器使用具有多個充放電時間或多個脈衝頻率的控制訊號,以適應位於訊號路徑不同位置的負載所需的充放電量。如此一來,由於多個顯示像素在多個充放電時間內可被充放電到目標電壓,故本發明的時序控制方法及其時序控制器可改善LCD面板的畫面亮度不均勻的問題。To sum up, unlike the traditional control signal which only has a single charging and discharging time, the timing control method and timing controller of the present invention use control signals with multiple charging and discharging times or multiple pulse frequencies to adapt to the signal path The charge and discharge capacity required by the load at different locations. In this way, since a plurality of display pixels can be charged and discharged to a target voltage within a plurality of charge and discharge times, the timing control method and timing controller of the present invention can improve the uneven brightness of the LCD panel.

本發明已由上述相關實施例加以描述,然而上述實施例僅為實施本發明之範例。必需指出的是,已揭露之實施例並未限制本發明之範圍。相反地,包含於申請專利範圍之精神及範圍之修改及均等設置均包含於本發明之範圍內。The present invention has been described by the above-mentioned related embodiments, but the above-mentioned embodiments are only examples for implementing the present invention. It must be pointed out that the disclosed embodiments do not limit the scope of the present invention. On the contrary, modifications and equivalent arrangements included in the spirit and scope of the patent claims are included in the scope of the present invention.

1:顯示裝置 10:時序控制器 11:源極驅動器 12:閘極驅動器 13:顯示面板 71、72:步驟 CLC:發光單元 D1、D2、D3、D4:節點電壓 dV:電壓差 GC、SC、SC2、SC3、SC4:控制訊號 G1…G4:閘極驅動訊號 N1、N2、N3、N4:節點 N12、N13、N14:近端節點電壓 N42、N43、N44:遠端節點電壓 PX:顯示像素 S1…S5:源極驅動訊號 T、T1、T2、T3、T4:更新時間 TA、Ta:處理時間 TB、TC、TD、Tb1、Tb2、Tb3、Tb4:充放電時間 VCOM:系統電壓 VH、VL:目標電壓 X、Y:方向 1: Display device 10: Timing controller 11: Source driver 12: Gate driver 13: Display panel 71, 72: Steps CLC: light emitting unit D1, D2, D3, D4: Node voltage dV: voltage difference GC, SC, SC2, SC3, SC4: control signal G1...G4: gate drive signal N1, N2, N3, N4: nodes N12, N13, N14: near-end node voltage N42, N43, N44: remote node voltage PX: display pixels S1...S5: Source drive signal T, T1, T2, T3, T4: update time TA, Ta: processing time TB, TC, TD, Tb1, Tb2, Tb3, Tb4: charge and discharge time VCOM: system voltage VH, VL: target voltage X, Y: direction

圖1為根據本發明實施例的顯示裝置(顯示器)的局部示意圖。 圖2為控制訊號、目標電壓、近端節點電壓、遠端節點電壓的電壓對時間的示意圖。 圖3為另一控制訊號、目標電壓、另一近端節點電壓、另一遠端節點電壓的電壓對時間的示意圖。 圖4為另一控制訊號、目標電壓、另一近端節點電壓、另一遠端節點電壓的電壓對時間的示意圖。 圖5為根據本發明實施例的控制訊號、目標電壓、多個節點電壓的電壓對時間的示意圖。 圖6為根據本發明實施例的目標電壓、多個節點電壓的電壓對時間的示意圖。 圖7為根據本發明實施例的時序控制流程的流程圖。 FIG. 1 is a partial schematic diagram of a display device (display) according to an embodiment of the present invention. FIG. 2 is a schematic diagram of voltage versus time of a control signal, a target voltage, a near-end node voltage, and a far-end node voltage. 3 is a schematic diagram of another control signal, a target voltage, another near-end node voltage, and another far-end node voltage versus time. 4 is a schematic diagram of another control signal, a target voltage, another near-end node voltage, and another far-end node voltage versus time. FIG. 5 is a schematic diagram of a control signal, a target voltage, and a plurality of node voltages versus time according to an embodiment of the present invention. FIG. 6 is a schematic diagram of a target voltage and a plurality of node voltages versus time according to an embodiment of the present invention. FIG. 7 is a flowchart of a timing control process according to an embodiment of the present invention.

71、72:步驟 71, 72: Steps

Claims (6)

一種時序控制方法,包含:根據一目標電壓以及多個RC時間常數,計算對應於多個顯示像素的多個充放電時間;以及根據一處理時間以及該多個充放電時間,產生一控制訊號;其中根據該目標電壓以及該多個RC時間常數,計算該多個充放電時間的步驟包含:根據一函數、對應於該多個顯示像素的多個即時充電電壓、該多個RC時間常數、一充電電壓,計算該多個充放電時間,其中該函數表示如下:VC(t)=V 0(1-e -t/τ );其中VC(t)是對應於該多個顯示像素的該多個即時充電電壓中的一者,t是該多個充放電時間中的一者,τ是該多個RC時間常數中的一者,Vo是該充電電壓。 A timing control method, comprising: calculating a plurality of charging and discharging times corresponding to a plurality of display pixels according to a target voltage and a plurality of RC time constants; and generating a control signal according to a processing time and the plurality of charging and discharging times; Wherein according to the target voltage and the plurality of RC time constants, the step of calculating the plurality of charging and discharging times includes: according to a function, a plurality of instantaneous charging voltages corresponding to the plurality of display pixels, the plurality of RC time constants, a charging voltage, calculating the multiple charging and discharging times, wherein the function is expressed as follows: VC ( t )= V 0 (1- e -t/τ ); wherein VC(t) is the multiple corresponding to the multiple display pixels One of the instant charging voltages, t is one of the multiple charging and discharging times, τ is one of the multiple RC time constants, Vo is the charging voltage. 如請求項1所述的時序控制方法,其中該控制訊號具有多個更新時間,該多個更新時間中的第i個更新時間表示如下:Ti=Ta+Tbi;其中,1≦i≦m,Tbi<Tb(i+1),Ta是該處理時間,且Tbi是該多個充放電時間中的第i個充放電時間。 The timing control method as described in Claim 1, wherein the control signal has a plurality of update times, and the i-th update time in the plurality of update times is expressed as follows: Ti=Ta+Tbi; wherein, 1≦i≦m, Tbi<Tb(i+1), Ta is the processing time, and Tbi is the ith charging and discharging time among the plurality of charging and discharging times. 如請求項1所述的時序控制方法,其中根據該目標電壓以及該多個RC時間常數,計算該多個充放電時間的步驟包含:計算一第一目標電壓與一第二目標電壓之間的一絕對值,以計算該充電電壓。 The timing control method as described in claim 1, wherein according to the target voltage and the multiple RC time constants, the step of calculating the multiple charging and discharging times includes: calculating the time between a first target voltage and a second target voltage an absolute value to calculate the charging voltage. 如請求項1所述的時序控制方法,其中根據該目標電壓以及該多個RC時間常數,計算該多個充放電時間的步驟包含:計算一第一目標電壓與一第二目標電壓之間的一絕對值,計算該絕對值與一電壓差的差值,以計算該充電電壓。 The timing control method as described in claim 1, wherein according to the target voltage and the multiple RC time constants, the step of calculating the multiple charging and discharging times includes: calculating the time between a first target voltage and a second target voltage An absolute value, calculating the difference between the absolute value and a voltage difference to calculate the charging voltage. 一種時序控制器,用於一顯示裝置,包含:一處理器;以及一記憶體,耦接於該處理器,用來儲存一程式碼,該程式碼用來指示該處理器執行如請求項1至請求項4中任一項所述的時序控制方法。 A timing controller for a display device, comprising: a processor; and a memory, coupled to the processor, for storing a program code, and the program code is used to instruct the processor to execute the request item 1 To the timing control method described in any one of Claim 4. 一種顯示裝置,包含:一顯示面板,包含如請求項1所述的多個顯示像素;一源極驅動器,耦接於該顯示面板,用來產生多個源極驅動訊號到該顯示面板;一閘極驅動器,耦接於該顯示面板,用來產生多個閘極驅動訊號到該顯示面板;以及如請求項5所述的時序控制器,耦接於該源極驅動器和該閘極驅動器;其中該時序控制器產生如請求項1所述的該控制訊號到該源極驅動器,使該源極驅動器根據該控制訊號產生該多個源極驅動訊號到該顯示面板。 A display device, comprising: a display panel, including a plurality of display pixels as described in Claim 1; a source driver, coupled to the display panel, for generating a plurality of source driving signals to the display panel; a gate driver, coupled to the display panel, for generating a plurality of gate drive signals to the display panel; and a timing controller as described in claim 5, coupled to the source driver and the gate driver; Wherein the timing controller generates the control signal as described in claim 1 to the source driver, so that the source driver generates the plurality of source drive signals to the display panel according to the control signal.
TW110138725A 2021-10-19 2021-10-19 Timing control method using pulse frequency modulation, timing controller and display device TWI790780B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110138725A TWI790780B (en) 2021-10-19 2021-10-19 Timing control method using pulse frequency modulation, timing controller and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110138725A TWI790780B (en) 2021-10-19 2021-10-19 Timing control method using pulse frequency modulation, timing controller and display device

Publications (2)

Publication Number Publication Date
TWI790780B true TWI790780B (en) 2023-01-21
TW202318390A TW202318390A (en) 2023-05-01

Family

ID=86670157

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110138725A TWI790780B (en) 2021-10-19 2021-10-19 Timing control method using pulse frequency modulation, timing controller and display device

Country Status (1)

Country Link
TW (1) TWI790780B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100350443C (en) * 2003-07-18 2007-11-21 精工爱普生株式会社 Electric power circuit, display driver and voltage supply method
TW200809754A (en) * 2006-06-27 2008-02-16 Mitsubishi Electric Corp Liquid crystal display device and method of driving the same
CN107507594A (en) * 2017-09-21 2017-12-22 深圳市华星光电技术有限公司 The driving method and device of liquid crystal panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100350443C (en) * 2003-07-18 2007-11-21 精工爱普生株式会社 Electric power circuit, display driver and voltage supply method
TW200809754A (en) * 2006-06-27 2008-02-16 Mitsubishi Electric Corp Liquid crystal display device and method of driving the same
CN107507594A (en) * 2017-09-21 2017-12-22 深圳市华星光电技术有限公司 The driving method and device of liquid crystal panel

Also Published As

Publication number Publication date
TW202318390A (en) 2023-05-01

Similar Documents

Publication Publication Date Title
JP5738824B2 (en) Display device and driving method thereof
WO2016078188A1 (en) Liquid crystal display panel and driving method thereof
TWI569252B (en) Pixel driving circuit and driving method thereof
CN107481659B (en) Gate drive circuit, shift register and drive control method thereof
TWI596595B (en) Display apparatus and driving method of display panel thereof
TWI521498B (en) Pixel circuit and driving method thereof
CN102956185B (en) Pixel circuit and display device
CN104167168A (en) Pixel circuit and driving method thereof and display device
TWI411989B (en) Display driving circuit and method
CN104575418A (en) Panel driving circuit, liquid crystal pixel data boosting circuit and method for driving same
KR20150007809A (en) Display driving circuit and display device
TWI434254B (en) Gate pulse modulation circuit and angle modulating method thereof
KR101464076B1 (en) Driving circuit for display panel
CN104167170B (en) Image element circuit and driving method thereof and display device
KR102280939B1 (en) Display apparatus and luminance controlling method thereof
CN109147687A (en) Display driving method and display device
TWI790780B (en) Timing control method using pulse frequency modulation, timing controller and display device
TWI781796B (en) Timing control method using pulse width modulation, timing controller and display device
TW201435843A (en) Display apparatus and common voltage generator thereof
WO2019061730A1 (en) Display device and drive method therefor
CN113870809B (en) Pulse frequency modulation time sequence control method, time sequence controller and display device
WO2019061729A1 (en) Display device and drive method therefor
CN113643672B (en) Multi-pulse frequency modulation timing sequence control method, timing sequence controller and display device thereof
CN107564455B (en) Display device and driving method thereof
KR101100879B1 (en) Display device and driving method for the same