TWI790639B - 一種圖像採集晶片、物體成像識別設備及物體成像識別方法 - Google Patents

一種圖像採集晶片、物體成像識別設備及物體成像識別方法 Download PDF

Info

Publication number
TWI790639B
TWI790639B TW110121266A TW110121266A TWI790639B TW I790639 B TWI790639 B TW I790639B TW 110121266 A TW110121266 A TW 110121266A TW 110121266 A TW110121266 A TW 110121266A TW I790639 B TWI790639 B TW I790639B
Authority
TW
Taiwan
Prior art keywords
modulation
unit
layer
image
sensing
Prior art date
Application number
TW110121266A
Other languages
English (en)
Other versions
TW202136751A (zh
Inventor
崔開宇
蔡旭升
朱鴻博
黃翊東
張巍
馮雪
劉仿
Original Assignee
清華大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清華大學 filed Critical 清華大學
Publication of TW202136751A publication Critical patent/TW202136751A/zh
Application granted granted Critical
Publication of TWI790639B publication Critical patent/TWI790639B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • G01J3/0259Monolithic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/36Investigating two or more bands of a spectrum by separate detectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Die Bonding (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Abstract

本發明涉及成像及物體識別設備技術領域,尤其涉及一種圖像採集晶片、物體成像識別設備及物體成像識別方法。該晶片的各組像素確認模組中,每個調變單元和每個感應單元分別上下對應的設置在光學調變層和圖像傳感層上,每個調變單元內分別設有至少一個調變子單元,每個調變子單元內分別設有複數個穿於光學調變層內的調變孔,同一調變子單元內的各個調變孔排布成一具有特定排布規律的二維圖形結構。該晶片基於光電子學中的調變單元陣列對不同波長光的調變作用,且能同時採集多個光譜的圖像資訊,克服了現有物體成像識別設備價格昂貴且無法小型化的問題。

Description

一種圖像採集晶片、物體成像識別設備及物體成像識別方法
本發明涉及成像及物體識別設備技術領域,尤其涉及一種圖像採集晶片、物體成像識別設備及物體成像識別方法。
成像光譜學
成像光譜學是一種將光譜探測和成像有機結合的技術,能夠對某一物體進行不同光譜下的成像,同時獲得被探測物體的幾何形狀資訊和光譜特徵,在電磁波的紫外、可見光、近紅外和中紅外區域,獲取許多非常窄且光譜連續的圖像資料的技術。經過三十多年的發展,成像光譜技術已經成為對地觀測和深空探測的重要手段,被廣泛應用於農牧林生產、礦產資源勘查、文物檢測、海洋遙感、環境監測、防災減災、軍事偵察等領域。
隨著搭載平台的逐步小型化,如小衛星、無人機等小型平台,以及野外應用的續航需求,對圖像採集設備小型化、輕量化的需求越來越突出。傳統的圖像採集設備通常為成像光譜儀,成像光譜儀有三種成像方式,其中光機掃描式具有運動部件,重量重體積大;推掃成像式光學系統複雜;凝視成像式空間解析度及光譜通道數受限。這三者都無法滿足小型化、輕量化的需求。
本發明實施例提供了一種圖像採集晶片、物體成像識別設備及物體成像識別方法,用以解決現有的圖像採集設備中的成像光譜儀不能滿足小型化、輕量化需求的缺陷。
為了解決上述技術問題,本發明提供了一種圖像採集晶片,包括光學調變層、圖像傳感層以及至少兩組像素確認模組,所述光學調變層位於圖像傳感層的上面,每組所述像素確認模組均包括調變單元和感應單元,每個所述調變單元和每個所述感應單元分別上下對應的設置在所述光學調變層和圖像傳感層上;其中,每個所述調變單元內分別設有至少一個調變子單元,每個所述調變子單元內分別設有複數個穿於所述光學調變層內的調變孔,同一所述調變子單元內的各個所述調變孔排布成一具有特定排布規律的二維圖形結構。
在部分實施例中,所述二維圖形結構的特定排布規律包括:同一所述二維圖形結構內的所有所述調變孔同時具有相同的特定截面形狀,各個所述調變孔按照結構參數大小漸變順序成陣列排布;和/或同一所述二維圖形結構內的各個所述調變孔分別具有特定截面形狀,各個所述調變孔按照特定截面形狀進行組合排列。
在部分實施例中,各個所述調變孔按照特定截面形狀進行組合排列時,所述排列的順序為按照預設週期順序逐行或逐列排布。
在部分實施例中,每個所述調變單元中的同一位置的所述調變子單元內不設有調變孔。
在部分實施例中,所述調變孔的底部穿透所述光學調變層或是不穿透所述光學調變層。
在部分實施例中,還包括信號處理電路層,連接在所述圖像感應層的下面,並將各個所述感應單元之間電連接。
在部分實施例中,所述感應單元包括至少一個感應子單元,各個所述感應子單元成矩陣排列,每個所述感應子單元內分別設有至少一個圖像感測器,所有的所述感應子單元之間分別通過所述信號處理電路層電連接。
在部分實施例中,還包括透光介質層,所述透光介質層位於所述光學調變微納結構與圖像傳感層之間。
本發明還提供了一種物體成像識別設備,包括:光源,用於向待成像物體發射光譜,以使所述光譜經過所述待成像物體後,作為入射光射入圖像採集晶片上;以及如上所述的圖像採集晶片,與所述光源同時設置在所述待成像物體的同一側,所述圖像採集晶片用於利用各組像素確認模組分別對所述入射光進行光學調變以得到至少兩個調變後的光譜,並對各個所述調變後的光譜的光強分別進行感應探測,從而分別確定各個像素點。
本發明還提供了一種待成像物體識別方法,是基於如上所述的物體成像識別設備提出的;該待成像物體識別方法包括:利用光源向待成像物體發射光譜,以使所述光譜經過所述待成像物體後,作為入射光射入圖像採集晶片上;利用所述圖像採集晶片的各組像素確認模組分別對所述入射光進行光學調變以得到複數個調變後的光譜,並對各個所述調變後的光譜的光強分別進行感應探測,從而分別確定各組像素資料;將所有的所述像素資料整合,以構成輸出圖像。
本發明的上述技術方案具有以下有益效果:
1、本發明所述的圖像採集晶片包括光學調變層、圖像傳感層以及至少兩組像素確認模組,光學調變層位於圖像傳感層的上面,每組像素確認模組均包括調變單元和感應單元,每個調變單元和每個感應單元分別上下對應的 設置在光學調變層和圖像傳感層上,利用各組像素確認模組分別對光譜進行光強感應探測,從而分別確定各像素點的像素資料,進而整合所有像素資料以構成最終的輸出圖像。該圖像採集晶片能取代現有的物體成像識別設備中的複雜精密的分光元件和過多的圖像感測器,利用調變單元和感應單元分別對光譜進行調變並感應光強,從而實現了精確的圖像重構過程,使得圖像採集晶片能在不需要光柵、棱鏡、反射鏡或其他類似空間分光元件的情況下進行光強感應工作,進而大大縮小了物體成像識別設備的體積,同時提高了光強感應的精密性,使得物體成像識別設備具有測量精度高、便攜性好、可即時線上檢測、操作簡單、性能穩定、製造成本低等優點。該晶片在小型平台如小衛星、無人機等上的應用有廣闊的前景。
2、該圖像採集晶片中每個調變單元內分別設有至少一個調變子單元,每個調變子單元內分別設有複數個穿於光學調變層內的調變孔,同一調變子單元內的各個調變孔排布成一具有特定排布規律的二維圖形結構。該晶片基於光電子學中的調變單元陣列對不同波長光的調變作用,且每個調變單元中對應嵌套有多個調變子單元,從而能同時採集多個光譜的待成像物體圖像資訊,極大提高了光譜識別率、降低誤識率。該晶片可用於虹膜識別,通過同時獲得多個波長下的虹膜圖像資訊,提高識別率,並且能有利於活體檢測用於防偽,增大破解、偽造難度,同時還可以減小隱形眼鏡、美瞳和不同光照條件下造成的干擾。該晶片克服了現有物體成像識別設備價格昂貴且無法小型化的問題。
100:光源
200:待成像物體
300:圖像採集晶片
1’:襯底
1:光學調變層
2:圖像傳感層
3:信號處理電路層
4:透光介質層
5:調變單元
6:調變孔
7:感應單元
8:間隙
9:感應子單元
11:第一調變單元
12:第二調變單元
13:第三調變單元
14:第四調變單元
15:第五調變單元
16:第六調變單元
110:第一子單元
111:第二子單元
112:第三子單元
113:第四子單元
為了更清楚地說明本發明實施例或現有技術中的技術方案,下面將對實施例或現有技術描述中所需要使用的附圖作簡單地介紹,顯而易見地,下面描述中的附圖是本發明的一些實施例,對於本領域普通技術人員來講,在不付出創造性勞動的前提下,還可以根據這些附圖獲得其他的附圖。
圖1為本發明實施例的物體成像識別設備的成像原理圖;圖2為本發明實施例的物體成像識別設備對虹膜進行成像的工作原理圖;圖3為本發明實施例一的圖像採集晶片的結構示意圖;圖4為本發明實施例一的圖像採集晶片的剖視圖;圖5為本發明實施例一的光學調變層示意圖;圖6為本發明實施例一的圖像感應層的結構示意圖;圖7為本發明實施例二的光學調變層的結構示意圖;圖8為本發明實施例三的光學調變層的結構示意圖;圖9為本發明實施例四的光學調變層的結構示意圖;圖10為本發明實施例五的圖像採集晶片的剖視圖;圖11為本發明實施例六的圖像採集晶片的剖視圖;圖12為本發明實施例七的圖像採集晶片的結構示意圖;圖13為本發明實施例七的光學調變層的結構示意圖;圖14和圖15分別為本發明實施例一至實施例七的圖像採集晶片調變孔加工製備方法的過程示意圖。
下面結合附圖和實施例對本發明的實施方式作進一步詳細描述。以下實施例用於說明本發明,但不能用來限制本發明的範圍。除非另有說明,否則本發明中所提及的晶片均為圖像採集晶片的簡稱。
本發明各實施例提供了一種圖像採集晶片,該晶片能取代現有的物體成像識別設備中的複雜精密的分光元件和過多的圖像感測器,利用調變單元和感應單元分別對多個光譜進行同時調變並感應光強,從而實現了精確的圖像重構過程,使得圖像採集晶片能在不需要光柵、棱鏡、反射鏡或其他類似空間分光元件的情況下進行光強感應工作,進而大大縮小了物體成像識別設備的體積,同時提高了光強感應的精密性,使得物體成像識別設備具有測量精度高、便攜性好、可即時線上檢測、操作簡單、性能穩定、製造成本低等優點。
具體的,如圖1~圖13所示,該晶片300包括光學調變層1、圖像傳感層2以及至少兩組像素確認模組。光學調變層1位於圖像傳感層2的上面,光學調變層1用於接收入射光並對該入射光進行調變,而圖像傳感層2用於感應調變後的光譜的光強,從而針對不同波長的光譜的光強確定對應的圖像像素點數據。每組的像素確認模組均包括調變單元5和感應單元7,對應的,每組的調變單元5和感應單元7分別上下對應設置在光學調變層1和圖像傳感層2上,從而使得每個調變單元5和每個感應單元7都能對應的確定至少一組圖像像素點數據。將所有的圖像像素點數據整合,即可重構出原輸出圖像。
本實施例中,每個調變單元5內分別設有至少一個調變子單元,每個調變子單元內分別設有複數個穿於光學調變層1內的調變孔6,同一調變子單元內的各個調變孔6排布成一具有特定排布規律的二維圖形結構。本實施例的圖像採集晶片300能夠取代現有的物體成像識別設備中的精密光學部件,以實現對入射光的精密調變和像素重構;並且利用該圖像採集晶片300可以靈活地實現對不同波長光的調變作用,該調變作用包括但不限於光的散射、吸收、投射、反射、干涉、表面等離子激元以及諧振等作用,提高不同區域間光譜回應的差異性,從而提高圖像採集晶片300的分析精度;此外,該晶片300利用每個調變單元5上的一個或多個二維圖形結構實現對不同波長的光的調變作用,利用二維圖形結構的區別還可以提高不同區域間光譜回應的差異性,從而提高圖像採集晶片300的分析精度。
本實施例的晶片300還包括信號處理電路層3,信號處理電路層3連接在圖像感應層2的下面,並將各個感應單元7之間電連接,從而能夠根據各組像素確認模組感應到的光強測算差分回應,由於每個感應單元7內的感測器都能根據感應到的光強而構成一個像素點,則通過演算法可得到一個像素點上各個波長的強度分佈。該差分回應是指經過光學調變層調變後得到的回應光譜的信號與原光譜的信號之間求差值,或是對各個調變單元5調變後得到的回應 光譜的信號之間求差值,或是對各個調變子單元調變後得到的回應光譜的信號之間求差值。原光譜是指射入光學調變層1的入射光光譜。
進一步的,每個感應單元7包括至少一個感應子單元9,各個感應子單元9成矩陣排列,每個感應子單元9內分別設有至少一個圖像感測器,所有的感應子單元9之間分別通過信號處理電路層3電連接,以便於更細緻的區分不同組的調變單元5和感應單元7上構成的像素點,從而利用各組相同位置的調變子單元和對應的感應子單元9生成的多個像素點構成一幅包含多個頻譜資訊的圖像。
如圖1所示,基於本發明各實施例提出了一種物體成像識別設備,該設備包括光源100和圖像採集晶片。光源100用於向待成像物體200發射光譜,以使光譜經過待成像物體200後,作為入射光射入圖像採集晶片300上。圖像採集晶片300與光源100同時設置在待成像物體200的同一側。該圖像採集晶片300用於利用各組像素確認模組分別對入射光進行光學調變以得到至少兩個調變後的光譜,並對各個調變後的光譜的光強分別進行感應探測,從而分別確定各個像素點,以便最終將所有像素點進行整合,進而構成圖像。
為了便於使光源100的光譜穿過待成像物體200從而使形成的反射光作為晶片300的入射光,優選將光源100與圖像採集晶片300同時設置在待成像物體200的同一側。以圖2所示為例,將光源100與圖像採集晶片300同時設置在待成像物體200的下側,利用光的反射原理,光源100產生的可見-近紅外光的光譜能穿入待測體200內,並在反射作用下全部光譜形成射入圖像採集晶片300中的入射光。該結構設置能夠擴大檢測空間,提高物體成像和識別的使用便利性。
圖2所示即為本發明所述的物體成像識別設備應用在對虹膜210進行成像的成像原理圖。可理解的是,本發明所述的圖像採集晶片300和物體成像識別設備既可對虹膜210進行成像識別,也可對其他任一待成像物體200 進行成像識別,只需根據成像需要,對圖像採集晶片300的各個調變單元5的體積以及入射光的對應波長等參數進行調整即可。
以下以虹膜210作為成像對象為例,具體通過複數個實施例對本發明的圖像採集晶片300及物體成像識別設備進行詳細說明。下述各個實施例所述的晶片300均適用於上述的物體成像識別設備。
實施例一
如圖3和圖4所示,本實施例一提供的圖像採集晶片300中,光學調變層1包括多個調變單元5。該調變單元5內的所有調變孔6均貫穿光學調變層1。每個調變單元5內由多個調變孔6組成的二維圖像結構都具備相同的特定截面形狀,本實施例一以圖2所示的六個由橢圓形調變孔6陣列組成的調變單元5為例進行說明。每個調變單元5內的所有調變孔6都是按照同樣規律的結構參數大小漸變順序成陣列排布形成二維圖形結構。該二維圖形結構中,所有調變孔6成陣列排布,並且所有調變孔6按照長軸長度、短軸長度和旋轉角度由小到大逐行逐列排布。
可理解的是,如圖5所示,由於本實施例的所有調變孔6都是按照同一排布規律進行排列的,即按照長軸長度、短軸長度和旋轉角度的結構參數由小到大逐行逐列的漸變排布,故而該光學調變層1上的所有調變孔6既可以視為一整體調變單元5,也可以進一步將其任意分割成複數個調變單元5,任意劃分出的調變單元5對於光譜都有不同的調變作用,理論上可獲得無窮多組調變後的光譜樣本,從而急劇增大了用以重構原光譜的資料量,有助於對於寬頻光譜的譜型的恢復。則根據每個調變單元5內的調變孔6結構參數特性確定該調變單元5對不同波長的光的調變作用的效果即可。該重構過程通過資料處理模組實施,資料處理模組包括光譜資料預處理以及資料預測模型。其中,光譜資料預處理是指對上述求得的差分回應資料中存在的雜訊進行預處理,該光譜資料預處理所採用的處理方法包括但不限於傅立葉變換、微分和小波變換等。資 料預測模型中包括由光譜資料資訊得到對待成像物體200的圖形參數的預測,其使用的演算法包括但不限於最小二乘法、主成分分析以及人工神經網路。
可理解的是,本實施例將每個調變單元5與一個感應單元7相對應的上下設置,以便利用感應單元7內的圖像感測器將該調變單元5接收的光譜構成一個像素點,通過演算法可得到一個像素點上的強度分佈。而不同組的像素確認模組對應構成的多個像素點整合可構成一幅包含多個頻譜資訊的圖像。
進一步的,由於每個調變單元5內劃分的不同區域(調變子單元)的結構參數不同,則每個調變子單元對於不同波長的光的調變作用不同,調變作用包括但不限於散射、吸收、透射、反射、干涉、激元等作用,調變作用的最終效果是確定不同波長的光透過每個調變單元5的不同調變子單元區域時的透射譜不同,則針對同一輸入光譜在經過同一二維圖像結構中不同區域的透射譜不同。
本實施例中,每個調變單元5的下方分別對應有一個感應單元7,每個感應單元7內分別設有多個感測器,如圖6所示,同一感應單元7內的每個感測器分別對應著同一調變單元5內的不同區域,則每個感測器及其對應的區域分別構成一個像素點,故而每組像素確認模組內分別能夠構成超過一個像素點,通過演算法可得到一個像素點上各個波長的強度分佈。而不同組的像素確認模組中相同位置所對應構成的多個像素點整合可構成一幅包含多個頻譜資訊的圖像。
可理解的是,上述的調變孔6的特定截面形狀包括圓形、橢圓形、十字形、正多邊形、星形或矩形等,也可以為上述各形狀的任意組合。則對應的,上述的調變孔6的結構參數包括內徑、長軸長度、短軸長度、旋轉角度、角數或邊長等。
本實施例一所述的物體成像識別設備中適用的光源100為可見光到近紅外波段的光源,光源100的波長範圍為400nm~1100nm。光學調變層1 的厚度為60nm~1200nm,光學調變層1與圖像感應層2之間直接連接或者通過透光介質層4連接。圖像感應層2與信號處理電路層3之間為電連接。其中,如圖5所示,光探測層上共設有六個調變單元5,所有的調變單元5成陣列排布,每個調變單元5中的所有調變孔6均為橢圓形,所有橢圓形調變孔6的短軸長度分別逐行逐列增大,並且以圖5中水準向為橫軸,豎向為縱軸,則每個調變單元5中的所有橢圓形調變孔6逐行逐列的自縱軸向橫軸旋轉,其旋轉角度逐漸增大。每個調變單元5中的所有調變孔6各自組成了相同的二維圖形結構,該二維圖形結構整體為一矩陣結構,該矩陣結構的面積範圍為200μm2~40000μm2
本實施例的圖像採集晶片300在製造時,選用矽基材料同時作為光學調變層1和圖像感應層2的材料,以便在製備工藝的加工上具有很好的相容性。在製備光學調變層1時,可直接在圖像感應層2上生成光學調變層1,也可以先將已製備好的光學調變層1轉移至圖像感應層2上。
具體的,光學調變層1的直接生成方式具體包括:直接在圖像感應層2上沉積生成按照圖5所示的結構排布的光學調變層1;或是先在圖像感應層2上裝有矽基材料製成的襯底,然後在襯底上按照圖5所示的結構進行微納加工開孔,以得到光學調變層1。
上述的直接沉積生長的過程為:第一步、在圖像感應層2上通過濺射、化學氣相沉積等方法沉積矽平板。第二步、用光刻、電子束曝光等圖形轉移方法在上面繪製出所需的二維圖形結構,結構如圖6所示。該二維圖形結構具體為:僅對橢圓形調變孔6的短軸和旋轉角度進行漸變調整,橢圓長軸選取200nm~1000nm中的定值,例如500nm;短軸長度在120nm~500nm範圍內變化,橢圓的旋轉角度在0°~90°範圍內變化,橢圓的排列週期為200nm~1000nm中的定值,例如500nm。調變單元5的圖形整體面積範圍為200μm2~40000μm2的矩形陣列結構。第三步、通過反應離子刻蝕、感應耦合等離子體刻蝕以及離 子束刻蝕等方法對矽平板進行刻蝕即可得到所需光學調變層1。最後將光學調變層1和圖像感應層2整體通過電連接到信號處理電路層3上即可。
上述的光學調變層1的轉移製備方式具體為:先在襯底上按照圖5所示的結構通過微納加工開孔,以得到製備好的光學調變層1,然後將該已製備好的光學調變層1轉移到圖像感應層2上。具體的,光學調變層1的轉移方法的過程為:先根據以上參數在矽片或SOI(指矽-絕緣體-矽片結構)上製備得到光學調變層1,然後通過轉移的方法轉移到圖像感應層2上,最後將光學調變層1和圖像感應層2整體通過電連接到信號處理電路層3上即可。
如圖14和圖15所示,本實施例還給出了另一種圖像採集晶片300的製備過程,具體為:圖像感應層2內裝有III-V族探測器,具體為GaAs/InGaAs的量子阱探測器。如圖14所示,將探測器倒扣鍵合在CMOS電路上,探測器包括GaAs襯底1’和InGaAs量子阱圖像感應層2。如圖15所示,直接將襯底1’進行減薄後,再在襯底1’上進行微納加工,使之具有二維圖形結構,從而形成光學調變層1即可。該製備過程與上述的微納加工開孔的區別僅在於將由探測器組成的圖像感應層2的上表面直接作為微納加工的襯底1’,從而保證了加工製備好的光學調變層1與圖像感應層2之間的緊密連接,避免出現縫隙影響光的調變作用效果。
本實施例的物體成像識別設備對於圖像的採集重構的完整流程為:如圖2所示,首先,令可見光到近紅外的寬譜光源100照射人眼虹膜210,以使虹膜210對射入光吸收並反射到晶片300上,虹膜210射向晶片300上的反射光即為晶片300的入射光。然後,該入射光射入光學調變層1並通過各個調變單元5的光學調變作用,在此過程中,各個調變單元5上的不同區域的調變作用不同,則透射譜也不同,且每個調變單元下方分別對應有圖像感應層2上的多個感應單元7,並且如圖4和圖5所示可知,在多組像素確認模組的對應作用下,圖4中的每個調變單元5中的各個區域分別與圖5中的每個感應單元7中的各個 感應子單元9相對應,則每個感應子單元9獲得的透射譜不同,故而每個調變子單元與每個感應子單元9分別能構成一組像素確認子模組,每個子模組能分別識別一個像素點內的一部分頻譜資訊,故而將各個區域的子模組整合即可得到一個像素點的多個頻譜資訊。進一步整合各個像素點即可獲得該圖像所有像素點並據此重構得到虹膜圖像。可理解的是,由於各個感應子單元9對應的調變單元上的二維圖形結構相同,則獲得圖像不同空間位置的光經過相同調變作用之後的回應,可獲得同一頻率下的虹膜圖像。
實施例二
本實施例二的圖像採集晶片300及物體成像識別設備的結構、原理、物體成像識別方法和晶片製備方法均與實施例一基本相同,相同之處不再贅述,不同之處在於:如圖7所示,本實施例的圖像採集晶片300中,光學調變層1上設有的各個調變單元5中,各個二維圖形結構內的所有調變孔6分別具有各自的特定截面形狀,各個調變孔6按照特定截面形狀進行自由組合排列(即無規律的任意排列)。具體的,在該二維圖形結構內,部分調變孔6的特定截面形狀相同,具有相同特定截面形狀的各個調變孔6構成了多個調變孔6組,各個調變孔6組的特定截面形狀互不相同,且所有的調變孔6均自由組合。
可理解的是,該調變單元5整體可視為針對一種特定波長的光譜進行調變,也可以將其自由分割成複數個微納調變子單元,從而能針對多種不同波長的光譜進行調變,以增加光學調變的靈活性和多樣性。
實施例三
本實施例三的圖像採集晶片300及物體成像識別設備的結構、原理、物體成像識別方法和晶片製備方法均與實施例二基本相同,相同之處不再贅述。不同之處在於: 本實施例的圖像採集晶片300的光學調變層1上排列有兩個或兩個以上的調變單元5,每個調變單元5中進一步分割為至少兩個調變子單元。每個調變子單元內的所有調變孔6分別按照特定截面形狀進行組合排列,且其排列的順序為按照預設的週期順序逐行或逐列排布;每個調變單元5內的同樣區域的調變子單元內的調變孔6的截面形狀和排布週期相同。從而使得每個調變單元5的不同位置的調變子單元對同一入射光都具有不同的調變作用。根據調變需要改變調變單元5內的調變孔6結構參數的漸變順序和/或調變孔6的特定截面形狀,即可改變當前調變單元5的調變作用和/或調變物件。
具體如圖8所示,光學調變層1的光學調變層上分佈有六個調變單元5,每三個調變單元5為一行,共計兩行,具體分別為第一行的第一調變單元11、第二調變單元12、第三調變單元13以及對應排列在第二行的第四調變單元14、第五調變單元15、第六調變單元16。每個調變單元分別按照同樣結構比例進一步劃分為四個調變子單元,具體分別為位於單元矩陣左上角的第一子單元110、位於單元矩陣右上角的第二子單元111、位於單元矩陣左下角的第一子單元112和位於單元矩陣右下角的第一子單元113。
其中,每個調變單元5上相同區域的調變子單元的調變孔結構參數和排列週期均相同。具體的,第一調變子單元110和第二調變子單元111內的調變孔6均為圓形,但調變孔6的內徑不同,則第一調變子單元110對於輸入光譜有第一種調變方式,第二調變子單元111對於輸入光譜有第二種調變方式。第三調變子單元112內的調變孔6均為橢圓形,該第三調變子單元112對於輸入光譜有第三種調變方式;第四調變單元113內的調變孔6均為三角形,該第四調變單元113內的各個調變孔6按照結構參數大小成週期式逐行逐列排列,則該第四調變單元113對於輸入光譜有第四種調變方式。則不同調變單元5中相同位置的調變子單元結構相同,但不同位置的調變子單元相互不同,故而每個調變子 單元對同一入射光的調變作用不同。每個調變子單元分別對應於圖像感應層2上的一個感應子單元。
可以理解的是,本實施例的「對不同波長的光有某種調變方式」可包括但不限於散射、吸收、透射、反射、干涉、表面等離子激元、諧振等作用。第一、第二和第三種光學調變方式彼此區別。通過對於調變單元5內的調變孔6結構的設置,可以提高不同單元間光譜回應的差異,通過增加單元數量就可以提高對不同譜之間差異的靈敏度。
可理解的是,針對不同入射光譜測量時,可通過改變各調變單元5內的調變孔6結構參數來改變調變作用,結構參數的改變包括但不限於二維圖形結構的調變孔排布週期、調變孔半徑以及調變單元的邊長、占空比和厚度等各參數中的一種以及它們的任意組合。其中,占空比是指調變孔6的面積和調變單元5整體總面積之比。
本實施例中,光學調變層1為厚度200nm~500nm的氮化矽平板製成。光學調變層1上共設有1000~250000個調變單元5,每個調變單元5的面積範圍為200μm2~40000μm2。每個調變單元5內部選取各種幾何形狀作為調變孔6的特定截面形狀,每個調變單元5內為同一形狀的週期排布,其占空比為10%~90%。其餘結構均與實施例1或實施例2相同。
每個調變單元5分別與其下方的感應單元構成一個像素點。通過演算法可以得到一個像素點上各個波長的強度分佈。通過整合不同單元的相同位置的子模組構成像素點的同一調變方式下的圖像,多個像素點構成一幅包含多個頻譜資訊的圖像。
實施例四
本實施例四的圖像採集晶片300及物體成像識別設備的結構、原理、物體成像識別方法和晶片製備方法均與實施例三基本相同,相同之處不再贅述。不同之處在於:每個調變單元5上分別有一相同區域上的調變子單元內 不設有任何調變孔6。以圖9所示為例,第一調變子單元110、第二調變子單元111和第三調變子單元112分別對應某一個特定波長的光有窄帶濾波作用,而第四調變子單元113中不設有調變孔6,則入射光直接通過該第四調變子單元113的區域。
對應的,每個調變子單元的下方分別設有對應的感應子單元,則光通過第一調變子單元110、第二調變子單元111和第三調變子單元112各自的窄帶濾波後,分別由對應的感應子單元內的光感測器探測到光強,而通過第四調變子單元113的光由於沒有存在窄帶濾波作用,則其對應的感應子單元9探測到的光強可作為對比項。將前三組光強分別與第四組光強進行差分處理,從而可以得到每一個波長的經過窄帶濾波後的光強。此外,設置第四調變子單元113還可以用於對物體的邊界進行定位。
可理解的是,本實施例的微集成圖像採集晶片300中可使用如實施例一的調變單元5或實施例二的調變單元5或實施例三的調變單元5或是實施例一、實施例二和實施例三所述的調變單元5的任意組合。
實施例五
基於上述任一實施例的圖像採集晶片300及物體成像識別設備的結構、原理、物體成像識別方法和晶片製備方法,本實施例五提出了一種圖像採集晶片300、物體成像識別設備以及物體成像識別方法。本實施例五與前述各實施例之間的相同之處不再贅述,不同之處在於:如圖10所示,本實施例五的圖像採集晶片300還包括透光介質層4,該透光介質層4位於光學調變層1與圖像感應層2之間。具體的,該透光介質層4的厚度為50nm~1μm,材料可為二氧化矽。
本實施例的微集成圖像採集晶片300中,若在製備光學調變層1時採用直接沉積生長的工藝方案,可在圖像感應層2上通過化學氣相沉積、濺射以及旋塗等方式覆蓋該透光介質層4,然後在其上方進行光學調變層1部分的 沉積、刻蝕即可。若採用轉移的工藝方案,則可將二氧化矽作為光學調變層1的製備襯底,並在襯底上半部分直接通過微納鑽孔加工製備光學調變層1,然後以二氧化矽襯底的下半部分直接作為透光介質層4,將製備好的光學調變層1與透光介質層4這兩部分整體轉移到圖像感應層2上即可。
可理解的是,本實施例的透光介質層4還可以設置為:將圖像感應層2上方的光學調變層1整體通過外部支撐結構支撐以使之相對於圖像感應層2懸空,則光學調變層1與圖像感應層2之間的空氣部分即為透光介質層4。
實施例六
基於上述任一實施例所述的圖像採集晶片300及物體成像識別設備的結構、原理、物體成像識別方法和晶片製備方法,本實施例六進一步提出了一種圖像採集晶片300、物體成像識別設備以及物體成像識別方法。本實施例六與上述各實施例的相同之處不再贅述,不同之處在於:如圖11所示,本實施例六的圖像採集晶片300中,各個調變孔6均不穿透光學調變層。可理解的是,不論調變孔6是否穿透光學調變層均不會對光學調變層1的調變作用造成不利影響,這是因為光學調變層1選用的矽基材料或其他材料均為透光材料,光譜入射光學調變層1時,受到各個調變單元5的結構影響而發生調變作用,但調變孔6底部對於光譜調變不產生不利影響。
本實施例的圖像採集晶片300中,光學調變層1的調變孔6底部至光學調變層底部的厚度為60nm~1200nm,整個光學調變層厚度為120nm~2000nm。
實施例七
基於上述任一實施例所述的圖像採集晶片300及物體成像識別設備的結構、原理、物體成像識別方法和晶片製備方法,本實施例七進一步提出了一種圖像採集晶片300、物體成像識別設備以及物體成像識別方法。本實施例七與上述各實施例的相同之處不再贅述,不同之處在於: 如圖12和圖13所示,本實施例七的圖像採集晶片300中,光學調變層1的光學調變層上分佈有六個調變單元5,分別為第一調變單元11、第二調變單元12、第三調變單元13、第四調變單元14、第五調變單元15和第六調變單元16,其中。第一調變單元11、第三調變單元13和第四調變單元14採用實施例三所述的調變單元5的週期結構設置,而第二調變單元12、第五調變單元15和第六調變單元16採用實施例一所述的調變單元5的漸變結構設置。
可理解的是,也可以根據光譜調變需要,在對應位置的調變單元5選擇實施例一至實施例四中任一合適的調變單元5的結構設置即可。由此可見,本實施例七的光學調變層1利用不同單元間的不同調變孔6特定截面形狀的區別、以及同一單元內特定的調變孔6排列方式,實現利用改變調變孔6特定截面形狀、調變孔6的結構參數以及調變孔6排列週期實現對不同波長的光譜進行不同的調變作用。
可理解的是,對於實施例一和實施例二的漸變式陣列調變單元5的結構,其任意劃分出的調變單元5對於光譜都有不同的調變作用,理論上可獲得無窮多組調變後的光譜樣本,從而急劇增大了用以重構原光譜的資料量,有助於對於寬頻光譜的譜型的恢復。
對於實施例三和實施例四的週期式調變單元5的結構,其週期結構可產生二維週期的色散、諧振作用,諧振作用包括但不限於光子晶體的能帶控制以及二維光柵的諧振等原理。通過諧振作用可增強對於特定波長的探測精度。
如果將上述的實施例一、實施例二、實施例三和實施例四中的調變單元5同時應用在晶片300上時,能夠綜合上述兩種優勢。並且在切頂光學調變層的尺寸範圍時,上述三個實施例的圖像採集晶片300都可以製備成微米量級甚至更小的結構,這對於微集成圖像採集晶片300的小型化微型化生產和使用具有重大意義,晶片300整體尺寸與相機模組相當,可做到小於 1cm×1cm×0.4cm的規格,該晶片300可集成在手機、手環等可擕式移動設備上。另外,上述的光學調變層1配合由不同的圖像感應器構成的圖像感應層2,在原則上可以實現對於全波段的光譜探測,從而使得圖像採集晶片300的寬譜探測性能更加出色。
實施例八
基於上述任一實施例所述的圖像採集晶片300及物體成像識別設備的結構、原理、物體成像識別方法和晶片製備方法,本實施例八進一步提出了一種微型光譜成像晶片300、光譜成像設備以及光譜成像方法。目標物體2可拓展為任意物體。如圖1所示,首先,令可見光到近紅外的寬譜光源100照射到目標物體200上,然後反射光由圖像採集晶片300採集。或省略光源100由目標物體200直接發光照射到圖像採集晶片300採集。然後,如圖3和圖4,該入射光射入光學調變層1並通過各個調變單元5的光學調變作用,在此過程中,各個調變單元5上的不同區域的調變作用不同,則透射譜也不同,且每個調變單元下方分別對應有圖像感應層2上的多個感應單元7,並且如圖4和圖5所示可知,在多組像素確認模組的對應作用下,圖4中的每個調變單元5中的各個區域分別與圖5中的每個感應單元7中的各個感應子單元9相對應,則每個感應子單元9獲得的透射譜不同,故而每個調變子單元與每個感應子單元9分別能構成一組像素確認子模組,每個子模組能分別識別一個像素點內的一部分頻譜資訊,故而將各個區域的子模組整合即可得到一個像素點的多個頻譜資訊。進一步整合各個像素點即可獲得該圖像所有像素點並據此重構得到目標物體圖像。可理解的是,由於各個感應子單元9對應的調變單元上的二維圖形結構相同,則獲得圖像不同空間位置的光經過相同調變作用之後的響應,可獲得同一頻率下的目標物體圖像。
綜上所述,本發明各實施例所述的圖像採集晶片300包括光學調變層1、圖像傳感層2以及至少兩組像素確認模組,光學調變層1位於圖像傳感 層2的上面,每組像素確認模組均包括調變單元5和感應單元7,每個調變單元5和每個感應單元7分別上下對應的設置在光學調變層1和圖像傳感層2上,利用各組像素確認模組分別對光譜進行光強感應探測,從而分別確定各像素點的像素資料,進而整合所有像素資料以構成最終的輸出圖像。該圖像採集晶片300能取代現有的物體成像識別設備中的複雜精密的分光元件和過多的圖像感測器,利用調變單元5和感應單元7分別對光譜進行調變並感應光強,從而實現了精確的圖像重構過程,使得圖像採集晶片300能在不需要光柵、棱鏡、反射鏡或其他類似空間分光元件的情況下進行光強感應工作,進而大大縮小了物體成像識別設備的體積,同時提高了光強感應的精密性,使得物體成像識別設備具有測量精度高、便攜性好、可即時線上檢測、操作簡單、性能穩定、製造成本低等優點。
該圖像採集晶片300中每個調變單元內分別設有至少一個調變子單元,每個調變子單元內分別設有複數個穿於光學調變層1內的調變孔6,同一調變子單元內的各個調變孔6排布成一具有特定排布規律的二維圖形結構。該晶片300基於光電子學中的調變單元5陣列對不同波長光的調變作用,且每個調變單元5中對應嵌套有多個調變子單元,從而能同時採集多個光譜的物體圖像資訊,極大提高了光譜識別率、降低誤識率,用於生物虹膜識別能有利於活體檢測用於防偽,增大破解、偽造難度,同時還可以減小隱形眼鏡、美瞳和不同光照條件下造成的干擾,克服了現有物體成像識別設備價格昂貴且無法小型化的問題。
本發明的實施例是為了示例和描述起見而給出的,而並不是無遺漏的或者將本發明限於所公開的形式。很多修改和變化對於本領域的普通技術人員而言是顯而易見的。選擇和描述實施例是為了更好說明本發明的原理和實際應用,並且使本領域的普通技術人員能夠理解本發明從而設計適於特定用途的帶有各種修改的各種實施例。
在本發明的描述中,除非另有說明,「多個」和「複數個」的含義都是指兩個或兩個以上;除非另有說明,「缺口狀」的含義為除截面平齊外的形狀。術語「上」、「下」、「左」、「右」、「內」、「外」、「前端」、「後端」、「頭部」、「尾部」等指示的方位或位置關係為基於附圖所示的方位或位置關係,僅是為了便於描述本發明和簡化描述,而不是指示或暗示所指的裝置或元件必須具有特定的方位、以特定的方位構造和操作,因此不能理解為對本發明的限制。此外,術語「第一」、「第二」、「第三」等僅用於描述目的,而不能理解為指示或暗示相對重要性。
在本發明的描述中,需要說明的是,除非另有明確的規定和限定,術語「安裝」、「相連」、「連接」應做廣義理解,例如,可以是固定連接,也可以是可拆卸連接,或一體地連接;可以是機械連接,也可以是電連接;可以是直接相連,也可以通過中間媒介間接相連。對於本領域的普通技術人員而言,可以具體情況理解上述術語在本發明中的具體含義。
100:光源
200:待成像物體
300:採集晶片

Claims (9)

  1. 一種圖像採集晶片,包括光調變層、圖像傳感層以及至少兩組像素確認模組,所述光調變層位於所述圖像傳感層的上面,每組所述像素確認模組均包括調變單元和感應單元,所述調變單元和所述感應單元分別上下對應的設置在所述光調變層和所述圖像傳感層上;其中,每個所述調變單元內分別設有至少一個調變子單元,所述調變子單元內設有若干個調變孔,其中,存在至少二所述調變單元的圖形結構不同;其中不同的所述調變單元對於光譜都有不同的調變作用,至少二組調變後的光譜樣本,有助於對於寬頻光譜的譜型的恢復;其中所述光調變層由矽基材料構成。
  2. 根據請求項1所述的圖像採集晶片,其中同一所述調變子單元內的各個所述調變孔排布成一具有特定排布規律的二維圖形結構,其中至少二所述調變單元由具有不同的二維圖形結構的調變子單元構成。
  3. 根據請求項1所述的圖像採集晶片,其中同一所述調變子單元內的各個所述調變孔排布成一具有特定排布規律的二維圖形結構,所述二維圖形結構的特定排布規律包括:同一所述二維圖形結構內的所有所述調變孔同時具有相同的特定截面形狀,各個所述調變孔按照結構參數大小漸變順序成陣列排布;和/或同一所述二維圖形結構內的各個所述調變孔分別具有特定截面形狀,各個所述調變孔按照特定截面形狀進行組合排列。
  4. 根據請求項1所述的圖像採集晶片,其中至少一所述調變單元中的所述調變子單元內不設有調變孔。
  5. 根據請求項1所述的圖像採集晶片,其中所述調變孔的底部穿透所述光調變層或是不穿透所述光調變層。
  6. 根據請求項1-5任一項所述的圖像採集晶片,其中還包括信 號處理電路層,連接在所述圖像感應層的下面,並將各個所述感應單元之間電連接。
  7. 根據請求項6所述的圖像採集晶片,其中所述感應單元包括至少一個感應子單元,各個所述感應子單元成矩陣排列,每個所述感應子單元內分別設有至少一個圖像感測器,所有的所述感應子單元之間分別通過所述信號處理電路層電連接。
  8. 根據請求項1-5任一項所述的圖像採集晶片,其中還包括透光介質層,所述透光介質層位於所述光調變微納結構與圖像傳感層之間。
  9. 根據請求項8所述的圖像採集晶片,其中所述透光介質層的厚度為50nm~1μm,所述透光介質層為二氧化矽。
TW110121266A 2019-07-31 2019-12-10 一種圖像採集晶片、物體成像識別設備及物體成像識別方法 TWI790639B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910700328.7A CN110381243B (zh) 2019-07-31 2019-07-31 一种图像采集芯片、物体成像识别设备及物体成像识别方法
CN201910700328.7 2019-07-31

Publications (2)

Publication Number Publication Date
TW202136751A TW202136751A (zh) 2021-10-01
TWI790639B true TWI790639B (zh) 2023-01-21

Family

ID=68257341

Family Applications (2)

Application Number Title Priority Date Filing Date
TW110121266A TWI790639B (zh) 2019-07-31 2019-12-10 一種圖像採集晶片、物體成像識別設備及物體成像識別方法
TW108145190A TWI731505B (zh) 2019-07-31 2019-12-10 一種圖像採集晶片、物體成像識別設備及物體成像識別方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW108145190A TWI731505B (zh) 2019-07-31 2019-12-10 一種圖像採集晶片、物體成像識別設備及物體成像識別方法

Country Status (7)

Country Link
US (2) US11489596B2 (zh)
EP (1) EP4007253A4 (zh)
JP (1) JP7232534B2 (zh)
KR (1) KR102358804B1 (zh)
CN (2) CN110381243B (zh)
TW (2) TWI790639B (zh)
WO (1) WO2021017051A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110381243B (zh) * 2019-07-31 2024-03-12 清华大学 一种图像采集芯片、物体成像识别设备及物体成像识别方法
CN111811651B (zh) * 2020-07-23 2024-06-18 清华大学 光谱芯片、光谱仪及光谱芯片制备方法
CN112018141B (zh) * 2020-08-14 2023-11-28 清华大学 基于不同形状单元的微型光谱芯片
CN112018140A (zh) * 2020-08-14 2020-12-01 清华大学 基于随机形状单元的微型光谱芯片
CN114519872B (zh) * 2020-11-18 2024-09-06 北京与光科技有限公司 指纹活体识别装置以及指纹模组
WO2022105506A1 (zh) * 2020-11-18 2022-05-27 北京与光科技有限公司 光谱成像芯片和设备及信息处理方法、以及指纹活体识别装置和指纹模组

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7426040B2 (en) * 2004-08-19 2008-09-16 University Of Pittsburgh Chip-scale optical spectrum analyzers with enhanced resolution
CN106847849A (zh) * 2016-12-30 2017-06-13 中国科学院西安光学精密机械研究所 一种基于超表面窄带滤光的多光谱芯片及其制备方法
CN206584063U (zh) * 2016-11-25 2017-10-24 湖南宏动光电有限公司 一种基于表面等离激元的光谱成像微滤光片
CN107894625A (zh) * 2017-09-29 2018-04-10 扬中市恒海电子科技有限公司 一种集成式红外带通滤波器及其制造方法和光谱仪

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7145124B2 (en) * 2004-09-15 2006-12-05 Raytheon Company Multispectral imaging chip using photonic crystals
JP5760811B2 (ja) * 2011-07-28 2015-08-12 ソニー株式会社 固体撮像素子および撮像システム
CN102564586B (zh) * 2012-01-09 2013-08-07 南京邮电大学 衍射孔阵列结构微型光谱仪及其高分辨率光谱复原方法
KR101974576B1 (ko) 2012-04-12 2019-05-02 삼성전자주식회사 대면적을 갖는 투과형 광 이미지 변조기 및 그 제조 방법과 투과형 광 이미지 변조기를 포함하는 광학장치
WO2014199720A1 (ja) * 2013-06-14 2014-12-18 シャープ株式会社 固体撮像装置
JP2015232599A (ja) * 2014-06-09 2015-12-24 ソニー株式会社 光学フィルタ、固体撮像装置、および電子機器
CN106052865A (zh) * 2016-05-09 2016-10-26 中国科学院微电子研究所 光学分光器及其制备方法、图像传感器以及图像成像系统
US10161975B2 (en) * 2016-12-05 2018-12-25 Harris Corporation Method and system for radio frequency (RF) spectral imager on an integrated circuit
CN108007568A (zh) * 2017-12-19 2018-05-08 湖南宏动光电有限公司 一种光谱成像型微滤光片及其制备方法
CN109029726B (zh) * 2018-05-25 2021-02-02 西北工业大学 一种窗口集成式光谱/偏振成像系统
GB2580298B (en) * 2018-11-12 2021-08-11 Dualitas Ltd A spatial light modulator for holographic projection
CN109764964B (zh) * 2019-02-26 2024-05-31 中国科学院西安光学精密机械研究所 一种推扫式偏振光谱成像微系统、成像方法及制备方法
CN210112118U (zh) * 2019-07-31 2020-02-21 清华大学 一种图像采集芯片及物体成像识别设备
CN110381243B (zh) * 2019-07-31 2024-03-12 清华大学 一种图像采集芯片、物体成像识别设备及物体成像识别方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7426040B2 (en) * 2004-08-19 2008-09-16 University Of Pittsburgh Chip-scale optical spectrum analyzers with enhanced resolution
CN206584063U (zh) * 2016-11-25 2017-10-24 湖南宏动光电有限公司 一种基于表面等离激元的光谱成像微滤光片
CN106847849A (zh) * 2016-12-30 2017-06-13 中国科学院西安光学精密机械研究所 一种基于超表面窄带滤光的多光谱芯片及其制备方法
CN107894625A (zh) * 2017-09-29 2018-04-10 扬中市恒海电子科技有限公司 一种集成式红外带通滤波器及其制造方法和光谱仪

Also Published As

Publication number Publication date
KR20210015738A (ko) 2021-02-10
JP7232534B2 (ja) 2023-03-03
WO2021017051A1 (zh) 2021-02-04
EP4007253A1 (en) 2022-06-01
JP2022503280A (ja) 2022-01-12
CN110381243A (zh) 2019-10-25
US20230025329A1 (en) 2023-01-26
TW202107068A (zh) 2021-02-16
KR102358804B1 (ko) 2022-02-08
EP4007253A4 (en) 2023-04-19
CN110381243B (zh) 2024-03-12
US11881896B2 (en) 2024-01-23
TWI731505B (zh) 2021-06-21
US11489596B2 (en) 2022-11-01
TW202136751A (zh) 2021-10-01
CN118158507A (zh) 2024-06-07
US20220085891A1 (en) 2022-03-17

Similar Documents

Publication Publication Date Title
TWI790639B (zh) 一種圖像採集晶片、物體成像識別設備及物體成像識別方法
CN111490060A (zh) 光谱成像芯片及光谱识别设备
CN111505820A (zh) 单片集成的图像传感芯片及光谱识别设备
KR102436236B1 (ko) 광변조 마이크로 나노 구조, 마이크로 통합 스펙트로미터 및 스펙트럼 변조 방법
DE202018006696U1 (de) Optischer Bildübertrager mit Helligkeitsverbesserung
CN111811651B (zh) 光谱芯片、光谱仪及光谱芯片制备方法
CN210376122U (zh) 一种光调制微纳结构及微集成光谱仪
CN113588085A (zh) 微型快照式光谱仪
TWI798940B (zh) 光譜成像晶片及訊息處理方法
CN211122509U (zh) 光谱仪结构及电子设备
CN210112118U (zh) 一种图像采集芯片及物体成像识别设备
CN211627935U (zh) 单片集成的图像传感芯片及光谱识别设备
CN211828773U (zh) 光谱成像芯片及光谱识别设备
CN114912598A (zh) 光人工神经网络智能芯片及制备方法
CN212721756U (zh) 光谱芯片及光谱仪
US20220344381A1 (en) Micro spectrum chip based on units of different shapes
CN111854949A (zh) 弱光光谱检测芯片及弱光光谱检测方法
CN209639829U (zh) 一种推扫式偏振光谱成像微系统
Jian et al. Research progress and applications of polarization integrated infrared photodetector
CN212363424U (zh) 弱光光谱检测芯片
CN115128791A (zh) 光谱成像天文望远镜及天文望远镜光谱成像方法
CN112730267A (zh) 光谱仪结构及电子设备
Lewis Evolution of EO/IR technology and systems
CN114912597A (zh) 农业控制芯片、智能农业控制设备及制备方法