TWI788987B - Memory cell for analog content-addressable memory and analog content-addressable memory device - Google Patents

Memory cell for analog content-addressable memory and analog content-addressable memory device Download PDF

Info

Publication number
TWI788987B
TWI788987B TW110132411A TW110132411A TWI788987B TW I788987 B TWI788987 B TW I788987B TW 110132411 A TW110132411 A TW 110132411A TW 110132411 A TW110132411 A TW 110132411A TW I788987 B TWI788987 B TW I788987B
Authority
TW
Taiwan
Prior art keywords
type transistor
channel nand
sense amplifier
gate
nand series
Prior art date
Application number
TW110132411A
Other languages
Chinese (zh)
Other versions
TW202312169A (en
Inventor
曾柏皓
李峯旻
李明修
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW110132411A priority Critical patent/TWI788987B/en
Application granted granted Critical
Publication of TWI788987B publication Critical patent/TWI788987B/en
Publication of TW202312169A publication Critical patent/TW202312169A/en

Links

Images

Landscapes

  • Analogue/Digital Conversion (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

A memory cell for an analog content-addressable memory is provided. The memory cell includes an N-type transistor, a P-type transistor, and a current magnitude control circuit. The gate of the N-type transistor is configured to receive a first input signal. The gate of the P-type transistor is configured to receive a second input signal. The current magnitude control circuit is coupled to at least one of the N-type transistor and the P-type transistor. The current magnitude control circuit is configured to output a passing current. When the input voltage of the first input signal and the second input signal are within a matching range, the N-type transistor and the P-type transistor are turned on, and the passing current is substantially a fixed current value. The matching range is related to the threshold voltages of the N-type transistor and the P-type transistor, and the fixed current value.

Description

用於類比內容可定址記憶體的記憶胞以及類比內容可定址記憶體裝置Memory cell for analog content addressable memory and analog content addressable memory device

本發明是有關於一種用於內容可定址記憶體的記憶胞以及內容可定址記憶體裝置,且特別是有關於一種用於類比內容可定址記憶體的記憶胞以及類比內容可定址記憶體裝置。The present invention relates to a memory cell for a content-addressable memory and a content-addressable memory device, and more particularly to a memory cell for an analog content-addressable memory and an analog content-addressable memory device.

隨著記憶體技術的發展,一種內容可定址記憶體(Content-Addressable Memory, CAM)係被提出。CAM是一種應用於高速記憶體內部(In-memory)搜尋的特殊記憶體,並可以使用高度並行的方式將輸入搜索詞與陣列中所有列的儲存詞進行比較。CAM在圖像(pattern)匹配與搜索的許多應用提供了非常強大的功能。With the development of memory technology, a Content-Addressable Memory (CAM) system is proposed. CAM is a special memory used for in-memory search, and can compare the input search word with the stored words in all columns in the array in a highly parallel manner. CAM provides very powerful functions in many applications of image (pattern) matching and searching.

相較於傳統的三元CAM(ternary CAM),類比CAM顯著地增加了資料密度,並減少記憶體內部之處理電路操作之能量損耗與處理電路之面積。類比CAM 需要具有良好記憶胞的穩定性與較高的陣列密度。隨著大數據(big data)的發展,在龐大資料庫中進行資料搜尋與資料比對時,則需要一個高密度的類比CAM。如何在判斷搜尋範圍是否匹配於儲存範圍時,避免資料比較的誤判,乃業界所致力的方向之一。Compared with the traditional ternary CAM (ternary CAM), analog CAM significantly increases the data density, and reduces the energy consumption and the area of the processing circuit in the memory. Analog CAM requires good memory cell stability and high array density. With the development of big data, a high-density analog CAM is required when searching and comparing data in a huge database. How to avoid misjudgment in data comparison when judging whether the search range matches the storage range is one of the directions that the industry is working on.

本發明係有關於一種用於類比內容可定址記憶體的記憶胞以及類比內容可定址記憶體裝置,其利用電流控制電路來固定匹配範圍內之不同輸入訊號所對應的電流位準,減少資料比較時的誤判情況。The present invention relates to a memory cell used for an analog content addressable memory and an analog content addressable memory device, which uses a current control circuit to fix the current levels corresponding to different input signals within the matching range, reducing data comparison misjudgment situation.

根據本發明之第一方面,提出一種用於一類比內容可定址記憶體(Analog Content-Addressable Memory, analog CAM)的記憶胞。記憶胞包括一N型電晶體、一P型電晶體、及一電流控制電路。N型電晶體具有一第一閘極。N型電晶體的第一閘極用以接收一第一輸入訊號。P型電晶體具有一第二閘極。P型電晶體的第二閘極用以接收一第二輸入訊號。電流控制電路係耦接至N型電晶體及P型電晶體之至少二者之一,用以產生一導通電流。其中,當第一輸入訊號的輸入電壓與第二輸入訊號的輸入電壓位於一匹配範圍內時,N型電晶體與P型電晶體均導通,且對應之導通電流實質上係為一固定電流值。匹配範圍係與N型電晶體的臨界電壓、P型電晶體的臨界電壓、及固定電流值相關。According to a first aspect of the present invention, a memory cell for an Analog Content-Addressable Memory (analog CAM) is proposed. The memory cell includes an N-type transistor, a P-type transistor, and a current control circuit. The N-type transistor has a first gate. The first gate of the N-type transistor is used for receiving a first input signal. The P-type transistor has a second gate. The second gate of the P-type transistor is used for receiving a second input signal. The current control circuit is coupled to at least one of the N-type transistor and the P-type transistor for generating a conduction current. Wherein, when the input voltage of the first input signal and the input voltage of the second input signal are within a matching range, both the N-type transistor and the P-type transistor are turned on, and the corresponding conduction current is substantially a fixed current value . The matching range is related to the critical voltage of the N-type transistor, the critical voltage of the P-type transistor, and the fixed current value.

根據本發明之另一方面,提出一種類比內容可定址記憶體裝置,包括一字元線驅動電路、多個記憶胞、多個匹配訊號線、多個源極線、一源極線驅動電路、及一感測放大器電路。字元線驅動電路用以提供多個第一輸入訊號與多個第二輸入訊號。各記憶胞包括一N型電晶體、一P型電晶體、及一電流控制電路。N型電晶體具有一第一閘極。N型電晶體的第一閘極用以接收對應之第一輸入訊號。P型電晶體具有一第二閘極。P型電晶體的第二閘極用以接收對應之第二輸入訊號。電流控制電路係耦接至N型電晶體及P型電晶體之至少二者之一,用以產生一導通電流。各匹配訊號線係耦接至對應之記憶胞。各源極線係與對應之電流控制電路耦接。源極線驅動電路係耦接至此些源極線。感測放大器電路係耦接至此些匹配訊號線。其中,針對此些記憶胞中之一特定記憶胞,當對應至特定記憶胞之第一輸入訊號的輸入電壓與對應至特定記憶胞之第二輸入訊號的輸入電壓皆位於特定記憶胞之一匹配範圍內時,特定記憶胞之N型電晶體與P型電晶體均導通,且特定記憶胞之導通電流實質上係為一固定電流值。特定記憶胞之匹配範圍係與特定記憶胞之N型電晶體的臨界電壓、特定記憶胞之P型電晶體的臨界電壓、及固定電流值相關。According to another aspect of the present invention, an analog content addressable memory device is proposed, comprising a word line driver circuit, a plurality of memory cells, a plurality of matching signal lines, a plurality of source lines, and a source line driver circuit , and a sense amplifier circuit. The word line driving circuit is used for providing a plurality of first input signals and a plurality of second input signals. Each memory cell includes an N-type transistor, a P-type transistor, and a current control circuit. The N-type transistor has a first gate. The first gate of the N-type transistor is used for receiving the corresponding first input signal. The P-type transistor has a second gate. The second gate of the P-type transistor is used for receiving the corresponding second input signal. The current control circuit is coupled to at least one of the N-type transistor and the P-type transistor for generating a conduction current. Each matching signal line is coupled to the corresponding memory cell. Each source line is coupled with the corresponding current control circuit. The source line driving circuit is coupled to the source lines. The sense amplifier circuit is coupled to the matching signal lines. Wherein, for a specific memory cell among the memory cells, when the input voltage corresponding to the first input signal of the specific memory cell and the input voltage corresponding to the second input signal of the specific memory cell are located in one of the specific memory cells When within the range, both the N-type transistor and the P-type transistor of the specific memory cell are turned on, and the conduction current of the specific memory cell is essentially a fixed current value. The matching range of a specific memory cell is related to the threshold voltage of the N-type transistor of the specific memory cell, the threshold voltage of the P-type transistor of the specific memory cell, and the fixed current value.

根據本發明之再一方面,提出一種類比內容可定址記憶體裝置,包括一第一字元線驅動電路、一第二字元線驅動電路、一第一N通道NAND串列組、一第一P通道NAND串列組、多個第一感測放大電路、多個第二感測放大電路、及多個第一及邏輯閘。第一字元線驅動電路用以提供多個第一輸入訊號,第二字元線驅動電路用以提供多個第二輸入訊號。第一N通道NAND串列組包括多個第一N通道NAND串列。各第一N通道NAND串列用以接收此些第一輸入訊號。各第一N通道NAND串列更用以產生一第一電流。第一P通道NAND串列組包括多個第一P通道NAND串列。各第一P通道NAND串列用以接收此些第二輸入訊號,各第一P通道NAND串列更用以產生一第二電流。此些第一感測放大電路係分別耦接至第一N通道NAND串列組之此些第一N通道NAND串列。此些第二感測放大電路係分別耦接至第一P通道NAND串列組之此些第一P通道NAND串列。此些第一感測放大電路與此些第二感測放大電路係各具有一臨界電流值。各第一及邏輯閘係耦接至對應之第一感測放大電路與對應之第二感測放大電路。其中此些第一及邏輯閘之一為一選定之第一及邏輯閘。當選定之第一及邏輯閘所對應之第一電流與第二電流的電流均大於或等於臨界電流值時,選定之第一及邏輯閘輸出一第一邏輯值。According to still another aspect of the present invention, an analog content addressable memory device is proposed, including a first word line driver circuit, a second word line driver circuit, a first N-channel NAND series group, a first A P-channel NAND series group, a plurality of first sense amplifier circuits, a plurality of second sense amplifier circuits, and a plurality of first and logic gates. The first word line driving circuit is used for providing a plurality of first input signals, and the second word line driving circuit is used for providing a plurality of second input signals. The first N-channel NAND series group includes a plurality of first N-channel NAND series. Each first N-channel NAND series is used for receiving the first input signals. Each first N-channel NAND series is further used to generate a first current. The first P-channel NAND series group includes a plurality of first P-channel NAND series. Each first P-channel NAND series is used to receive the second input signals, and each first P-channel NAND series is further used to generate a second current. The first sense amplifier circuits are respectively coupled to the first N-channel NAND series of the first N-channel NAND series group. The second sense amplifier circuits are respectively coupled to the first P-channel NAND series of the first P-channel NAND series group. Each of the first sense amplifier circuits and the second sense amplifier circuits has a critical current value. Each of the first and logic gates is coupled to a corresponding first sense amplifier circuit and a corresponding second sense amplifier circuit. One of the first and logic gates is a selected first and logic gate. When the currents of the first current and the second current corresponding to the selected first and logic gates are greater than or equal to the critical current value, the selected first and logic gates output a first logic value.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下:In order to have a better understanding of the above-mentioned and other aspects of the present invention, the following specific examples are given in detail with the accompanying drawings as follows:

請參照第1圖,其繪示類比內容可定址記憶體(analog content-addressable memory, analog CAM)100之操作示意圖。類比內容可定址記憶體100包括數個類比CAM記憶胞CL1。類比CAM記憶胞CL1排列於多列R(1)、R(2)、R(3)、R(4),以儲存數筆類比內容。舉例來說,儲存於列R(1)的內容是「0.00~1.00、0.48~0.76、0.00~0.15」。「0.00~1.00」代表任何數值都能匹配。儲存於列R(2)的內容是「0.62~1.00、0.25~0.63、0.25~1.00」。儲存於列R(3)的內容是「0.26~0.61、0.12~0.40、0.00~1.00」。儲存於列R(4)的內容是「0.00~0.43、0.00~0.28、0.58~1.00」。數個輸入訊號S1輸入至類比內容可定址記憶體100。第一個輸入訊號S1的內容是「0.81」,第二個輸入訊號S1的內容是「0.62」,第三個輸入訊號S1的內容是「0.12」。Please refer to FIG. 1 , which shows an operation diagram of an analog content-addressable memory (analog CAM) 100 . The analog content addressable memory 100 includes several analog CAM memory cells CL1. The analog CAM memory cells CL1 are arranged in rows R(1), R(2), R(3), R(4) to store several analog content. For example, the content stored in row R(1) is "0.00-1.00, 0.48-0.76, 0.00-0.15". "0.00~1.00" means that any value can match. The contents stored in row R(2) are "0.62-1.00, 0.25-0.63, 0.25-1.00". The contents stored in row R(3) are "0.26-0.61, 0.12-0.40, 0.00-1.00". The contents stored in row R(4) are "0.00-0.43, 0.00-0.28, 0.58-1.00". Several input signals S1 are input to the analog content addressable memory 100 . The content of the first input signal S1 is "0.81", the content of the second input signal S1 is "0.62", and the content of the third input signal S1 is "0.12".

這些輸入訊號S1與儲存於列R(1)的內容進行比對。儲存於列R(1)之「0.00~1.00、0.48~0.76、0.00~0.15」係為匹配。由於「0.81」、「0.62」及「0.12」分別落入「0.00~1.00」、「0.48~0.76」及「0.00~0.15」,故據以輸出匹配成功結果Ry。These input signals S1 are compared with the contents stored in row R(1). "0.00~1.00, 0.48~0.76, 0.00~0.15" stored in column R(1) is a match. Since "0.81", "0.62" and "0.12" fall into "0.00-1.00", "0.48-0.76" and "0.00-0.15" respectively, the successful matching result Ry is output accordingly.

這些輸入訊號S1與儲存於列R(2)之內容進行比對後,輸出匹配不成功結果Rn。這些輸入訊號S1與儲存於列R(3)之內容進行比對後,輸出匹配不成功結果Rn。這些輸入訊號S1與儲存於列R(4)之內容進行比對後,輸出匹配不成功結果Rn。也就是說,類比內容可定址記憶體100可以儲存類比內容,任何與輸入訊號S1匹配的類比內容可以被搜尋出來。After these input signals S1 are compared with the contents stored in the row R(2), a result of unsuccessful matching Rn is output. After these input signals S1 are compared with the contents stored in the column R(3), a result of unsuccessful matching Rn is output. After these input signals S1 are compared with the contents stored in the column R(4), the result of unsuccessful matching Rn is output. That is to say, the analog content addressable memory 100 can store analog content, and any analog content matching the input signal S1 can be searched out.

請參照第2圖,其繪示類比CAM記憶胞CL1。類比CAM記憶胞CL1包括一第一浮動閘極裝置MSn及第二浮動閘極裝置MSp。第一浮動閘極裝置MSn具有一N型通道,第二浮動閘極裝置MSp具有一P型通道。第二浮動閘極裝置MSp以串聯之方式連接於第一浮動閘極裝置MSn。第一浮動閘極裝置MSn係為一N型金氧半導體(NMOS),第二浮動閘極裝置MSp係為一P型金氧半導體(PMOS)。第一浮動閘極裝置MSn之汲極連接於一匹配訊號線ML,第一浮動閘極裝置MSn之源極連接於第二浮動閘極裝置MSp之源極。第二浮動閘極裝置MSp之汲極連接於一源極線SL。輸入訊號S1同時輸入至第一浮動閘極裝置MSn與第二浮動閘極裝置MSp之閘極。Please refer to FIG. 2, which shows the analog CAM memory cell CL1. The analog CAM memory cell CL1 includes a first floating gate device MSn and a second floating gate device MSp. The first floating gate device MSn has an N-type channel, and the second floating gate device MSp has a P-type channel. The second floating gate device MSp is connected in series to the first floating gate device MSn. The first floating gate device MSn is an N-type metal oxide semiconductor (NMOS), and the second floating gate device MSp is a P-type metal oxide semiconductor (PMOS). The drain of the first floating gate device MSn is connected to a matching signal line ML, and the source of the first floating gate device MSn is connected to the source of the second floating gate device MSp. The drain of the second floating gate device MSp is connected to a source line SL. The input signal S1 is simultaneously input to the gates of the first floating gate device MSn and the second floating gate device MSp.

請參照第3圖,其繪示類比CAM記憶胞CL1的匹配範圍MR。曲線CN係為第一浮動閘極裝置MSn之特性曲線,曲線CP係為第二浮動閘極裝置MSp之特性曲線。曲線CN與曲線CP之陡峭斜率大於0.01 mV/dec。舉例來說,第3圖之曲線CN及曲線CP的陡峭曲線係為0.015 mV/dec。第一浮動閘極裝置MSn與第二浮動閘極裝置MSp係為超陡峭元件(super steep slope devices)。Please refer to FIG. 3, which shows the matching range MR of the analog CAM memory cell CL1. Curve CN is the characteristic curve of the first floating gate device MSn, and curve CP is the characteristic curve of the second floating gate device MSp. The steep slope of curve CN and curve CP is greater than 0.01 mV/dec. For example, the steep curves of curve CN and curve CP in Fig. 3 are 0.015 mV/dec. The first floating gate device MSn and the second floating gate device MSp are super steep slope devices.

在類比CAM記憶胞CL1中,第一浮動閘極裝置MSn之臨界電壓低於第二浮動閘極裝置MSp之臨界電壓,以於第一浮動閘極裝置MSn之臨界電壓與第二浮動閘極裝置MSp之臨界電壓之間形成匹配範圍MR。在類比CAM記憶胞CL1中,匹配範圍MR之下限LB係為第一浮動閘極裝置MSn之臨界電壓,匹配範圍MR之上限UB係為第二浮動閘極裝置MSp之臨界電壓。In the analog CAM memory cell CL1, the threshold voltage of the first floating gate device MSn is lower than the threshold voltage of the second floating gate device MSp, so that the threshold voltage of the first floating gate device MSn and the second floating gate device The threshold voltages of MSp form a matching range MR. In the analog CAM memory cell CL1, the lower limit LB of the matching range MR is the critical voltage of the first floating gate device MSn, and the upper limit UB of the matching range MR is the critical voltage of the second floating gate device MSp.

如第2圖及第3圖所示,當輸入訊號S1落於匹配範圍MR之內時,第一浮動閘極裝置MSn被導通且第二浮動閘極裝置MSp也被導通,故形成了導通電流Ip。當輸入訊號S1不位於匹配範圍MR之內時,第一浮動閘極裝置MSn不導通或者第二浮動閘極裝置MSp不導通,故不會形成導通電流Ip。As shown in Figure 2 and Figure 3, when the input signal S1 falls within the matching range MR, the first floating gate device MSn is turned on and the second floating gate device MSp is also turned on, thus forming a conduction current Ip. When the input signal S1 is not within the matching range MR, the first floating gate device MSn is not turned on or the second floating gate device MSp is not turned on, so the conduction current Ip will not be formed.

請參照第4圖,其繪示根據本揭露一實施例之類比內容可定址記憶體200的記憶胞202之電路圖。類比內容可定址記憶體200例如包括記憶胞202與匹配訊號線204。記憶胞202包括N型電晶體206、P型電晶體208與電流控制電路210。N型電晶體206具有閘極G1,N型電晶體206的閘極G1用以接收輸入訊號B(i)。P型電晶體208具有閘極G2,P型電晶體208的閘極G2用以接收輸入訊號A(i)。電流控制電路210耦接至N型電晶體206及P型電晶體208之至少二者之一,例如是耦接至P型電晶體208,電流控制電路210並用以產生至少一導通電流,例如是導通電流I pass。其中,當輸入訊號B(i)的輸入電壓與輸入訊號A(i)的輸入電壓位於匹配範圍內時,N型電晶體206與P型電晶體208均導通,且對應之導通電流I pass實質上係為一固定電流值。匹配範圍係與N型電晶體的臨界電壓206、P型電晶體208的臨界電壓、及此固定電流值相關。 Please refer to FIG. 4 , which shows a circuit diagram of a memory cell 202 of an analog content addressable memory 200 according to an embodiment of the present disclosure. The analog content addressable memory 200 includes, for example, memory cells 202 and matching signal lines 204 . The memory cell 202 includes an N-type transistor 206 , a P-type transistor 208 and a current control circuit 210 . The N-type transistor 206 has a gate G1, and the gate G1 of the N-type transistor 206 is used for receiving the input signal B(i). The P-type transistor 208 has a gate G2, and the gate G2 of the P-type transistor 208 is used for receiving the input signal A(i). The current control circuit 210 is coupled to at least one of the N-type transistor 206 and the P-type transistor 208, such as being coupled to the P-type transistor 208, and the current control circuit 210 is used to generate at least one conduction current, such as Turn-on current I pass . Wherein, when the input voltage of the input signal B(i) and the input voltage of the input signal A(i) are within the matching range, both the N-type transistor 206 and the P-type transistor 208 are turned on, and the corresponding conduction current I pass is substantially The upper line is a fixed current value. The matching range is related to the threshold voltage 206 of the N-type transistor, the threshold voltage of the P-type transistor 208, and the fixed current value.

如此,藉由使用電流控制電路210,使得N型電晶體206與P型電晶體208導通時流過N型電晶體206與P型電晶體208的電流大小,被固定為電流控制電路210的電流大小。如此,即使輸入訊號A(i)或B(i)的輸入電壓可能有多個不同的位準,仍使得N型電晶體206與P型電晶體208導通時流過N型電晶體206與P型電晶體208的電流大小實質上相同。如此,即使輸入訊號A(i)或B(i)的輸入電壓可能有多個不同的位準,仍可使得連接於記憶胞202之匹配訊號線204上的放電時間相同,以致使匹配訊號線204具有穩定的放電時間以減少誤判產生。In this way, by using the current control circuit 210, the magnitude of the current flowing through the N-type transistor 206 and the P-type transistor 208 when the N-type transistor 206 and the P-type transistor 208 are turned on is fixed to the current magnitude of the current control circuit 210 . In this way, even though the input voltage of the input signal A(i) or B(i) may have multiple different levels, it still makes the N-type transistor 206 and the P-type transistor 208 flow through the N-type transistor 206 and the P-type transistor 208 when they are turned on. The current magnitudes of the transistors 208 are substantially the same. In this way, even though the input voltage of the input signal A(i) or B(i) may have multiple different levels, the discharge time on the matching signal line 204 connected to the memory cell 202 can still be made the same, so that the matching signal line 204 has a stable discharge time to reduce misjudgment.

如第4圖所示,電流控制電路210例如具有控制電晶體210A,控制電晶體210A為金屬氧化物半導體場效電晶體(MOSFET)或浮動閘極(Float gate, FG)電晶體。N型電晶體206之汲極D1係用以與匹配訊號線204電性連接,N型電晶體206之源極S1係與P型電晶體208之源極S2電性連接,P型電晶體208之汲極D2係與控制電晶體210A之一端(例如是控制電晶體210A之汲極D3)電性連接。控制電晶體210A係具有閘極G3,控制電晶體210A之閘極G3係用以接收控制電壓C(i),控制電壓C(i)係實質上為一固定電壓值。As shown in FIG. 4 , the current control circuit 210 includes, for example, a control transistor 210A, and the control transistor 210A is a metal oxide semiconductor field effect transistor (MOSFET) or a floating gate (Float gate, FG) transistor. The drain D1 of the N-type transistor 206 is electrically connected to the matching signal line 204, the source S1 of the N-type transistor 206 is electrically connected to the source S2 of the P-type transistor 208, and the P-type transistor 208 The drain D2 is electrically connected to one end of the control transistor 210A (for example, the drain D3 of the control transistor 210A). The control transistor 210A has a gate G3, and the gate G3 of the control transistor 210A is used to receive the control voltage C(i), and the control voltage C(i) is substantially a fixed voltage value.

控制電晶體210A之另一端(例如是控制電晶體210A之源極S3)例如是與一源極線SL電性連接。在一實施例中,N型電晶體206與P型電晶體208係為2D(二維)快閃記憶體結構或3D(二維)快閃記憶體結構。在一實施例中,N型電晶體206與P型電晶體208可以使用F-N穿隧(Fowler-Nordheim tunneling, FN tunneling)、通道熱電子注入技術(Channel Hot Electron, CHE)或是多晶矽對多晶矽(poly to poly)的方式來進行編程(program)。於進行編程時,輸入訊號A(i)的輸入電壓與輸入訊號B(i)的輸入電壓可為不同。而於進行資料搜尋與比較時,輸入訊號A(i)的輸入電壓與輸入訊號B(i)的輸入電壓則為相同。在一實施例中,N型電晶體206與P型電晶體208可以使用F-N穿隧、帶對帶熱電洞入射(Band-To-Band Hot Hole, BTBHH)或是多晶矽對多晶矽的方式來進行抹除(erase)。The other end of the control transistor 210A (for example, the source S3 of the control transistor 210A) is, for example, electrically connected to a source line SL. In one embodiment, the N-type transistor 206 and the P-type transistor 208 are 2D (two-dimensional) flash memory structure or 3D (two-dimensional) flash memory structure. In one embodiment, the N-type transistor 206 and the P-type transistor 208 can use F-N tunneling (Fowler-Nordheim tunneling, FN tunneling), channel hot electron injection technology (Channel Hot Electron, CHE) or polysilicon-to-polysilicon ( Poly to poly) way to program (program). During programming, the input voltage of the input signal A(i) and the input voltage of the input signal B(i) may be different. When performing data search and comparison, the input voltage of the input signal A(i) is the same as the input voltage of the input signal B(i). In one embodiment, the N-type transistor 206 and the P-type transistor 208 can be wiped by F-N tunneling, Band-To-Band Hot Hole (BTBHH) or polysilicon-to-polysilicon. Except (erase).

在一實施例中,類比內容可定址記憶體200係為快閃記憶體。快閃記憶體例如為電荷儲存記憶體(Charge storage memory)、電荷捕捉記憶體(Charge trapping memory)、分離式閘極記憶體(Split gate memory)或鐵電體場效電晶體(Ferroelectric field-effect transistor, FeFET)記憶體。在另一實施例中,類比內容可定址記憶體200係為超陡峭(super steep slope)快閃記憶體。超陡峭快閃記憶體為閘流體隨機存取記憶體(Thyristor Random Access Memory, TRAM)、閘極控制閘流體(Gate Control Thyristor, GCT)、穿隧式場效電晶體(Tunnel Field-Effect Transistor, TFET)或負電容場效電晶體(Negative Capacitance Field-Effect Transistor, NCFET)。In one embodiment, the analog content addressable memory 200 is a flash memory. Flash memory is, for example, Charge storage memory, Charge trapping memory, Split gate memory or Ferroelectric field-effect transistor. transistor, FeFET) memory. In another embodiment, the analog content addressable memory 200 is a super steep slope flash memory. Ultra-steep flash memory is Thyristor Random Access Memory (TRAM), Gate Control Thyristor (Gate Control Thyristor, GCT), Tunnel Field-Effect Transistor (TFET) ) or Negative Capacitance Field-Effect Transistor (NCFET).

請參照第5A圖與第5B圖,第5A圖繪示未具有電流控制電路210之記憶胞202的匹配範圍MR0,第5B圖繪示連接於第5A圖的記憶胞202之匹配訊號線204的輸出電壓與放電時間的關係圖。曲線CN係為N型電晶體206之特性曲線,曲線CP係為P型電晶體208之特性曲線,N型電晶體206的臨界電壓Vthn (例如,約-2.8V)與P型電晶體208的臨界電壓Vthp(例如,約-0.4V)定義出匹配範圍MR0。當N型電晶體206與P型電晶體208操作於次臨界區(subthreshold region)時,即可能產生之曲線CN與CP在匹配範圍MR0中的斜率不夠陡峭的情形。如第5A圖與第5B圖所示,當記憶胞202未具有電流控制電路210時,當輸入訊號A(i)及B(i)的輸入電壓為V1時,N型電晶體206的導通電流為I1,使得P型電晶體208的導通電流亦為I1。此時,導通的N型電晶體206與P型電晶體208將使得匹配訊號線204上的輸出電壓由原始電壓Vms依照曲線V(I1)下降,而於時間點t2下降至用以判斷是否匹配的參考電壓Vref。同理,當輸入訊號A(i)及B(i)的輸入電壓為V2時,N型電晶體206的導通電流為I2,使得匹配訊號線204上的輸出電壓由原始電壓Vms依照曲線V(I2)下降,而於時間點t1下降至用以判斷是否匹配的參考電壓Vref。當輸入訊號A(i)及B(i)的輸入電壓為V3時,N型電晶體206的導通電流為I3,使得匹配訊號線204上的輸出電壓由原始電壓Vms依照曲線V(I3)下降,而於時間點t3下降至用以判斷是否匹配的參考電壓Vref。由於不同的輸入訊號A(i)及B(i)的輸入電壓將對應至不同的導通電流大小,而使得匹配訊號線204上的輸出電壓由原始電壓Vms下降至參考電壓Vref的時間不同。也就是說,對於電壓位準不同的多個輸入訊號A(i)或B(i)來說,由於匹配訊號線204放電時的電流位準並未固定,使得連接於記憶胞202之匹配訊號線204上的放電時間不同,以致使匹配訊號線204具有不同的放電時間。如此,將使得要在進行記憶體內部之資料搜尋與比對,以判斷記憶胞所儲存的資料範圍以及所輸入的資料是否匹配時,進行判斷動作所需的時間長度變得不固定,而使得誤判的機率上升。Please refer to FIG. 5A and FIG. 5B. FIG. 5A shows the matching range MR0 of the memory cell 202 without the current control circuit 210, and FIG. 5B shows the matching signal line 204 connected to the memory cell 202 in FIG. 5A. Graph of output voltage versus discharge time. Curve CN is the characteristic curve of N-type transistor 206, and curve CP is the characteristic curve of P-type transistor 208. The threshold voltage Vthp (eg, about −0.4V) defines the matching range MR0. When the N-type transistor 206 and the P-type transistor 208 operate in the subthreshold region, it is possible that the slopes of the curves CN and CP in the matching range MR0 are not steep enough. As shown in FIG. 5A and FIG. 5B, when the memory cell 202 does not have the current control circuit 210, when the input voltage of the input signals A(i) and B(i) is V1, the conduction current of the N-type transistor 206 is I1, so that the conduction current of the P-type transistor 208 is also I1. At this time, the turned-on N-type transistor 206 and P-type transistor 208 will cause the output voltage on the matching signal line 204 to drop from the original voltage Vms according to the curve V(I1), and drop to the point at time t2 to determine whether it is matched or not. The reference voltage Vref. Similarly, when the input voltage of the input signals A(i) and B(i) is V2, the conduction current of the N-type transistor 206 is I2, so that the output voltage on the matching signal line 204 changes from the original voltage Vms according to the curve V( I2) drops, and drops to the reference voltage Vref for judging whether there is a match at the time point t1. When the input voltage of the input signals A(i) and B(i) is V3, the conduction current of the N-type transistor 206 is I3, so that the output voltage on the matching signal line 204 drops from the original voltage Vms according to the curve V(I3) , and drops to the reference voltage Vref for judging whether to match at time point t3. Since the input voltages of different input signals A(i) and B(i) correspond to different conduction currents, the time for the output voltage on the matching signal line 204 to drop from the original voltage Vms to the reference voltage Vref is different. That is to say, for multiple input signals A(i) or B(i) with different voltage levels, since the current level when the matching signal line 204 discharges is not fixed, the matching signal connected to the memory cell 202 The discharge times on the lines 204 are different, so that the matching signal lines 204 have different discharge times. In this way, when searching and comparing the data inside the memory to judge whether the range of data stored in the memory cell and the input data match, the length of time required for the judging action becomes unstable, making the The chance of misjudgment increases.

請參照第6A圖與第6B圖,第6A圖繪示具有電流控制電路210之記憶胞202的匹配範圍MR1,第6B圖繪示連接於第6A圖的記憶胞202之匹配訊號線204的輸出電壓與放電時間的關係圖。第6A圖的曲線CN與曲線CP相同於第5A圖的曲線CN與曲線CP。具有電流控制電路210之記憶胞202的匹配範圍MR1係與N型電晶體206的臨界電壓、P型電晶體208的臨界電壓相關、及固定電流值相關。匹配範圍MR1例如是由N型電晶體206與P型電晶體208以導通電流I pass均導通時,所對應之N型電晶體206的最小的閘極電壓V4(大於N型電晶體206的臨界電壓Vthn),以及P型電晶體208的最大閘極電壓V5(小於P型電晶體208的臨界電壓Vthp)所定義。如第6A圖與第6B圖所示,當輸入訊號A(i)及B(i)的輸入電壓為V1時,N型電晶體206與 P型電晶體208的導通電流為Ipass。此時,導通的N型電晶體206與P型電晶體208將使得匹配訊號線204上的輸出電壓由原始電壓Vms依照曲線V下降,而於時間點t4下降至用以判斷是否匹配的參考電壓Vref。同理,當輸入訊號A(i)及B(i)的輸入電壓為V2及V3時,N型電晶體206的導通電流依然為Ipass,使得匹配訊號線204上的輸出電壓由原始電壓Vms仍然依照曲線V)下降,而分別於時間點t4下降至用以判斷是否匹配的參考電壓Vref。由於不同的輸入訊號A(i)及B(i)的輸入電壓將對應至相同的導通電流Ipass,而使得匹配訊號線204上的輸出電壓由原始電壓Vms下降至參考電壓Vref的放電時間幾乎相同。也就是說,當記憶胞202具有電流控制電路210時,由於匹配訊號線204放電時的電流大小被固定,使得連接於記憶胞202之匹配訊號線204上的不同之輸入訊號的輸入電壓所對應的放電時間實質上相同,以使匹配訊號線204具有穩定的放電時間。如此,將使得要在進行記憶體內部之資料搜尋與比對,以判斷記憶胞所儲存的資料與所輸入的資料是否匹配時,進行判斷動作所需的時間長度係為固定,而減少誤判的機率。 Please refer to FIG. 6A and FIG. 6B. FIG. 6A shows the matching range MR1 of the memory cell 202 with the current control circuit 210, and FIG. 6B shows the output of the matching signal line 204 connected to the memory cell 202 in FIG. 6A The relationship between voltage and discharge time. The curve CN and the curve CP in Fig. 6A are the same as the curve CN and the curve CP in Fig. 5A. The matching range MR1 of the memory cell 202 with the current control circuit 210 is related to the threshold voltage of the N-type transistor 206, the threshold voltage of the P-type transistor 208, and the fixed current value. The matching range MR1 is, for example, when the N-type transistor 206 and the P-type transistor 208 are both turned on with the conduction current I pass , the corresponding minimum gate voltage V4 of the N-type transistor 206 (greater than the critical value of the N-type transistor 206 voltage Vthn), and the maximum gate voltage V5 of the P-type transistor 208 (less than the threshold voltage Vthp of the P-type transistor 208). As shown in FIG. 6A and FIG. 6B, when the input voltage of the input signals A(i) and B(i) is V1, the conduction current of the N-type transistor 206 and the P-type transistor 208 is Ipass. At this time, the turned-on N-type transistor 206 and P-type transistor 208 will cause the output voltage on the matching signal line 204 to drop from the original voltage Vms according to the curve V, and drop to the reference voltage for judging whether there is a match at time point t4. Vref. Similarly, when the input voltages of the input signals A(i) and B(i) are V2 and V3, the conduction current of the N-type transistor 206 is still Ipass, so that the output voltage on the matching signal line 204 remains unchanged from the original voltage Vms. Decrease according to the curve V), and drop to the reference voltage Vref for judging whether to match at the time point t4 respectively. Since the input voltages of different input signals A(i) and B(i) correspond to the same conduction current Ipass, the discharge time for the output voltage on the matching signal line 204 to drop from the original voltage Vms to the reference voltage Vref is almost the same. . That is to say, when the memory cell 202 has the current control circuit 210, since the current magnitude when the matching signal line 204 discharges is fixed, the input voltages of different input signals connected to the matching signal line 204 of the memory cell 202 correspond to The discharge times of the two are substantially the same, so that the matching signal line 204 has a stable discharge time. In this way, when searching and comparing the data inside the memory to judge whether the data stored in the memory cell matches the input data, the time required for the judgment action is fixed, and the error of misjudgment is reduced. probability.

請參照第7圖,其繪示將第4圖所示之記憶胞應用於類比內容可定址記憶體裝置300之一例。類比內容可定址記憶體裝置300包括字元線驅動電路302、多個記憶胞304(即第4圖的記憶胞202)、多個匹配訊號線312、多個源極線314、源極線驅動電路316與感測放大器電路(Sense Amplifier)318。字元線驅動電路302用以提供多個輸入訊號B(1), B(2), …, B(n)與多個輸入訊號A(1), A(2, …, A(n)。類比內容可定址記憶體裝置300的各個記憶胞304包括N型電晶體306、P型電晶體308與電流控制電路310,各個記憶胞304的N型電晶體306具有閘極G1,各個記憶胞304的N型電晶體306的閘極G1用以接收對應之輸入訊號B(i),i為1至n之正整數。各個記憶胞304的P型電晶體308具有閘極G2,各個記憶胞304的P型電晶體308的閘極G2用以接收對應之輸入訊號A(i)。電流控制電路310耦接至P型電晶體308,用以產生導通電流I pass。各個匹配訊號線312係耦接至對應之記憶胞304,各個源極線314係與對應之電流控制電路310耦接。源極線驅動電路316耦接至多個源極線314,感測放大器電路318耦接至多個匹配訊號線312。其中,針對該些記憶胞中之一特定記憶胞304(j, i) (j為介於1與m之間的整數),當對應至特定記憶胞304(j, i)之輸入訊號B(i)的輸入電壓與對應至特定記憶胞304(j, i)之輸入訊號A(i)的輸入電壓皆位於特定記憶胞304(j, i)之匹配範圍內時,特定記憶胞304(j, i)之N型電晶體306與P型電晶體308均導通,且特定記憶胞304(j, i)之導通電流I pass實質上係為一固定電流值。特定記憶胞304(j, i)之匹配範圍係與特定記憶胞304(j, i)之N型電晶體306的臨界電壓、特定記憶胞304(j, i)之P型電晶體308的臨界電壓、與此固定電流值相關。 Please refer to FIG. 7 , which shows an example of applying the memory cell shown in FIG. 4 to an analog content addressable memory device 300 . The analog content addressable memory device 300 includes a word line driver circuit 302, a plurality of memory cells 304 (that is, the memory cells 202 in FIG. 4 ), a plurality of matching signal lines 312, a plurality of source lines 314, source line drivers The circuit 316 and the sense amplifier circuit (Sense Amplifier) 318 . The word line driving circuit 302 is used for providing a plurality of input signals B(1), B(2), . . . , B(n) and a plurality of input signals A(1), A(2, . . . , A(n). Each memory cell 304 of the analog content addressable memory device 300 includes an N-type transistor 306, a P-type transistor 308, and a current control circuit 310. The N-type transistor 306 of each memory cell 304 has a gate G1, and each memory cell 304 The gate G1 of the N-type transistor 306 is used to receive the corresponding input signal B(i), i is a positive integer from 1 to n. The P-type transistor 308 of each memory cell 304 has a gate G2, and each memory cell 304 The gate G2 of the P-type transistor 308 is used to receive the corresponding input signal A(i). The current control circuit 310 is coupled to the P-type transistor 308 to generate the conduction current I pass . Each matching signal line 312 is coupled Connected to the corresponding memory cell 304, each source line 314 is coupled to the corresponding current control circuit 310. The source line driver circuit 316 is coupled to a plurality of source lines 314, and the sense amplifier circuit 318 is coupled to a plurality of matching signals Line 312. Wherein, for a specific memory cell 304(j, i) (j is an integer between 1 and m) among the memory cells, when the input corresponding to the specific memory cell 304(j, i) When the input voltage of the signal B(i) and the input voltage of the input signal A(i) corresponding to the specific memory cell 304(j, i) are within the matching range of the specific memory cell 304(j, i), the specific memory cell The N-type transistor 306 and the P-type transistor 308 of 304(j, i) are both turned on, and the conduction current Ipass of the specific memory cell 304(j, i) is substantially a fixed current value. The specific memory cell 304( The matching range of j, i) is the critical voltage of the N-type transistor 306 of the specific memory cell 304 (j, i), the critical voltage of the P-type transistor 308 of the specific memory cell 304 (j, i), and this fixed related to the current value.

當對多個記憶胞304(例如是記憶胞304(1, 1)至記憶胞304(m, n))進行編程或抹除時,輸入訊號A(i)可與輸入訊號B(i)不同。而當使輸入訊號A(1)至A(n)與儲存於第1列至第m列記憶胞304的內容進行比對時,則輸入訊號A(i)係輸入訊號B(i)相同。When programming or erasing a plurality of memory cells 304 (eg memory cell 304(1, 1) to memory cell 304(m, n)), the input signal A(i) may be different from the input signal B(i) . When the input signals A(1) to A(n) are compared with the contents stored in the memory cells 304 in the first to mth columns, the input signal A(i) is the same as the input signal B(i).

舉例來說,當輸入訊號A(1)至輸入訊號A(n)與儲存於第1列至第m列之記憶胞304(1, 1)至記憶胞304(m, n)的內容進行比對時,假設輸入訊號A(1)至輸入訊號A(n)分別位於第1列之記憶胞304(1, 1)至記憶胞304(1, n)之匹配範圍內時,代表輸入訊號A(1)至輸入訊號A(n)的內容與儲存於第1列之記憶胞304(1, 1)至記憶胞304(1, n)的內容為匹配。亦即是輸入訊號A(1)至輸入訊號A(n)所對應之類比數值,係分別位於第1列之記憶胞304(1, 1)至記憶胞304(1, n)之匹配範圍所對應之類比數值範圍之內。此時,第1列之記憶胞304(1, 1)至記憶胞304(1, n)均會導通而有電流流過,以將匹配訊號線312(1)的電壓下拉,使感測放大器電路318偵測出匹配成功結果。For example, when the input signal A(1) to the input signal A(n) are compared with the contents stored in the memory cell 304(1, 1) to the memory cell 304(m, n) in the first column to the mth column Timing, assuming that the input signal A(1) to the input signal A(n) are respectively within the matching range of the memory cell 304(1, 1) to the memory cell 304(1, n) in the first row, it means the input signal A (1) The content of the input signal A(n) matches the content stored in the memory cells 304(1, 1) to 304(1, n) of the first column. That is to say, the analog values corresponding to the input signal A(1) to the input signal A(n) are determined by the matching ranges of the memory cell 304(1, 1) to the memory cell 304(1, n) respectively located in the first column within the corresponding analog value range. At this moment, the memory cell 304(1, 1) to the memory cell 304(1, n) in the first column are all turned on and current flows, so as to pull down the voltage of the matching signal line 312(1), so that the sense amplifier The circuit 318 detects a successful match result.

而如果輸入訊號A(1)至輸入訊號A(n)有任何一個不位於第1列之記憶胞304(1, 1)至記憶胞304(1, n)之匹配範圍內時,代表輸入訊號A(1)至輸入訊號A(n)的內容與儲存於第1列之記憶胞304(1, 1)至記憶胞304(1, n)的內容為不匹配。亦即是輸入訊號A(1)至輸入訊號A(n)所對應之類比數值,並沒有完全位於第1列之記憶胞304(1, 1)至記憶胞304(1, n)之匹配範圍所對應之類比數值範圍之內。此時,第1列之記憶胞304(1, 1)至記憶胞304(1, n)至少一者不會導通,而使得匹配訊號線312(1)的電壓不會被下拉至小於參考電壓Vref。如此,感測放大器電路318將偵測出匹配不成功結果。也就是說,類比內容可定址記憶體300可以儲存類比內容,任何與輸入訊號A(1)至輸入訊號A(n)匹配的類比內容(例如是某一列之記憶胞304所儲存的類比內容)可以被搜尋出來。And if any one of the input signal A(1) to the input signal A(n) is not within the matching range of the memory cell 304(1, 1) to the memory cell 304(1, n) in the first column, it means the input signal The contents of A(1) to input signal A(n) do not match the contents of memory cells 304(1, 1) to 304(1, n) stored in row 1. That is to say, the analog values corresponding to the input signal A(1) to the input signal A(n) are not completely located in the matching range of the memory cell 304(1, 1) to the memory cell 304(1, n) in the first column within the corresponding analog value range. At this time, at least one of the memory cell 304(1, 1) to the memory cell 304(1, n) in the first column will not be turned on, so that the voltage of the matching signal line 312(1) will not be pulled down to be lower than the reference voltage Vref. In this way, the sense amplifier circuit 318 will detect an unsuccessful matching result. That is to say, the analog content addressable memory 300 can store analog content, any analog content matching the input signal A(1) to the input signal A(n) (for example, the analog content stored in the memory cell 304 of a row) can be searched out.

藉由使用第4圖所示之記憶胞,可以讓類比內容可定址記憶體裝置300在進行記憶體內部之資料搜尋與比對,以判斷記憶胞所儲存的資料以及所輸入的資料是否匹配時,可以讓導通的記憶胞以固定的電流來使匹配訊號線312的電壓下降,讓匹配訊號線312的電壓下降的時間係為可控制的,以減少誤判的機率。By using the memory cell shown in FIG. 4, the analog content addressable memory device 300 can search and compare data inside the memory to determine whether the data stored in the memory cell matches the input data. The voltage of the matching signal line 312 can be reduced by a fixed current for the turned-on memory cells, and the time for the voltage drop of the matching signal line 312 can be controlled to reduce the probability of misjudgment.

請參照第8圖,其繪示根據本揭露另一實施例之類比內容可定址記憶體的記憶胞400之電路圖。記憶胞400包括N型電晶體402、P型電晶體404、電流控制電路406與及邏輯閘408,N型電晶體402具有閘極G1,N型電晶體402的閘極G1用以接收輸入訊號B(i)。P型電晶體404具有閘極G2,P型電晶體404的閘極G2用以接收輸入訊號A(i)。電流控制電路406係具有第一感測放大器406A與第二感測放大器406B。及邏輯閘408係耦接至第一感測放大器406A與第二感測放大器406B,第一感測放大器406A與第二感測放大器406B各具有一臨界電流值。N型電晶體402係與第一感測放大器406A電性連接,P型電晶體404係與第二感測放大器406B電性連接。當輸入訊號B(i)的輸入電壓與輸入訊號A(i)的輸入電壓位於匹配範圍內時,N型電晶體402對應之至少一導通電流之一I1與P型電晶體404對應之至少一導通電流之另一I2均大於或等於臨界電流值,及邏輯閘408輸出一第一邏輯值。Please refer to FIG. 8 , which shows a circuit diagram of a memory cell 400 of an analog content addressable memory according to another embodiment of the present disclosure. The memory cell 400 includes an N-type transistor 402, a P-type transistor 404, a current control circuit 406, and a logic gate 408. The N-type transistor 402 has a gate G1, and the gate G1 of the N-type transistor 402 is used to receive an input signal. B(i). The P-type transistor 404 has a gate G2, and the gate G2 of the P-type transistor 404 is used for receiving the input signal A(i). The current control circuit 406 has a first sense amplifier 406A and a second sense amplifier 406B. The AND logic gate 408 is coupled to the first sense amplifier 406A and the second sense amplifier 406B, and each of the first sense amplifier 406A and the second sense amplifier 406B has a threshold current value. The N-type transistor 402 is electrically connected to the first sense amplifier 406A, and the P-type transistor 404 is electrically connected to the second sense amplifier 406B. When the input voltage of the input signal B(i) and the input voltage of the input signal A(i) are within the matching range, at least one of the conduction currents I1 corresponding to the N-type transistor 402 and at least one of the conduction currents corresponding to the P-type transistor 404 The other I2 of the conduction current is greater than or equal to the critical current value, and the logic gate 408 outputs a first logic value.

請同時參考第8圖及第9圖,其中第9圖繪示具有電流控制電路406之記憶胞400的匹配範圍示意圖。匹配範圍係與N型電晶體402的臨界電壓Vthn、P型電晶體404的臨界電壓Vthp、及第一感測放大器406A與第二感測放大器406B的臨界電流值相關。如第9圖所示,當第一感測放大器406A與第二感測放大器406B的臨界電流值為臨界電流值Ith1時,匹配範圍MRa為N型電晶體402之導通電流為臨界電流值Ith1的閘極電壓V1’與P型電晶體404的之導通電流為臨界電流值Ith1的閘極電壓V6’所決定。當第一感測放大器406A與第二感測放大器406B的臨界電流值為臨界電流值Ith2時,匹配範圍MRa為N型電晶體402之導通電流為臨界電流值Ith2的閘極電壓V2’與P型電晶體404的之導通電流為臨界電流值Ith1的閘極電壓V5’所決定。當第一感測放大器406A與第二感測放大器406B的臨界電流值為臨界電流值Ith3時,匹配範圍MRa為N型電晶體402之導通電流為臨界電流值Ith3的閘極電壓V3’與P型電晶體404的之導通電流為臨界電流值Ith1的閘極電壓V4’所決定。Please refer to FIG. 8 and FIG. 9 at the same time, wherein FIG. 9 shows a schematic diagram of the matching range of the memory cell 400 with the current control circuit 406 . The matching range is related to the threshold voltage Vthn of the N-type transistor 402 , the threshold voltage Vthp of the P-type transistor 404 , and the threshold current values of the first sense amplifier 406A and the second sense amplifier 406B. As shown in FIG. 9, when the critical current value of the first sense amplifier 406A and the second sense amplifier 406B is the critical current value Ith1, the matching range MRa is when the conduction current of the N-type transistor 402 is the critical current value Ith1. The gate voltage V1' and the conduction current of the P-type transistor 404 are determined by the gate voltage V6' of the critical current value Ith1. When the critical current value of the first sense amplifier 406A and the second sense amplifier 406B is the critical current value Ith2, the matching range MRa is the gate voltage V2' and P where the conduction current of the N-type transistor 402 is the critical current value Ith2. The conduction current of the type transistor 404 is determined by the gate voltage V5' of the critical current value Ith1. When the critical current value of the first sense amplifier 406A and the second sense amplifier 406B is the critical current value Ith3, the matching range MRa is the gate voltage V3' and P where the conduction current of the N-type transistor 402 is the critical current value Ith3. The conduction current of the transistor 404 is determined by the gate voltage V4' of the critical current value Ith1.

茲以第一感測放大器406A與第二感測放大器406B之臨界電流值為臨界電流值Ith1為例做說明。請同時參考第8圖與第9圖。當輸入訊號A(i)的輸入電壓與輸入訊號B(i)的輸入電壓位於匹配範圍MRa內時,N型電晶體402產生第一電流I1,P型電晶體404產生第二電流I2。當第一電流I1及第二電流I2均大於或等於第一感測放大器406A與第二感測放大器406B的臨界電流值,第一感測放大器406A與第二感測放大器406B將輸出第一邏輯值,例如是邏輯值1。當及邏輯閘408的兩個輸入端的輸入均為第一邏輯值時,及邏輯閘408將輸出第一邏輯值(例如是邏輯值1),以指示輸入訊號A(i)的輸入電壓與輸入訊號B(i)的輸入電壓均位於匹配範圍MRa內。The critical current value Ith1 of the first sense amplifier 406A and the second sense amplifier 406B is taken as an example for illustration. Please refer to Figure 8 and Figure 9 at the same time. When the input voltage of the input signal A(i) and the input voltage of the input signal B(i) are within the matching range MRa, the N-type transistor 402 generates the first current I1, and the P-type transistor 404 generates the second current I2. When both the first current I1 and the second current I2 are greater than or equal to the critical current values of the first sense amplifier 406A and the second sense amplifier 406B, the first sense amplifier 406A and the second sense amplifier 406B will output the first logic Value, such as logical value 1. When the input of the two input ends of the AND logic gate 408 is the first logic value, the AND logic gate 408 will output the first logic value (for example, logic value 1), to indicate the input voltage of the input signal A(i) and the input The input voltages of the signal B(i) are all within the matching range MRa.

因此,依據第8圖的實施例,記憶胞400的第一感測放大器406A與第二感測放大器406B可分別於輸入訊號A(i)與輸入訊號B(i)位於匹配範圍內時,以相同的第一感測放大器406A與第二感測放大器406B的臨界電流值來進行N型電晶體402與P型電晶體404是否導通的判斷,而可達到減少誤判之機率的功效。Therefore, according to the embodiment shown in FIG. 8, the first sense amplifier 406A and the second sense amplifier 406B of the memory cell 400 can respectively operate in a matching range when the input signal A(i) and the input signal B(i) are within the matching range. The critical current values of the first sense amplifier 406A and the second sense amplifier 406B are the same to determine whether the N-type transistor 402 and the P-type transistor 404 are on, so as to reduce the probability of misjudgment.

請參照第10圖,其繪示應用第8圖之記憶胞之類比內容可定址記憶體裝置500的電路圖。類比內容可定址記憶體裝置500包括第一字元線驅動電路502、第二字元線驅動電路504、第一N通道NAND串列組506、第一P通道NAND串列組508、多個第一感測放大電路510(1), 510(2), …, 510(n)、多個第二感測放大電路512(1), 512(2), …, 512(n)與多個第一及邏輯閘514(1), 514(2), …, 514(n)。第一字元線驅動電路502用以提供多個第一輸入訊號SL1(1), SL1(2), …, SL1(m),第二字元線驅動電路504用以提供多個第二輸入訊號SL2(1), SL2(2), …, SL2(m)。第一N通道NAND串列組506包括多個第一N通道NAND串列516(1), 516(2), …, 516(n),各第一N通道NAND串列516用以接收第一輸入訊號SL1(1), SL1(2), …, SL1(m),各第一N通道NAND串列516更用以產生第一電流,例如第一N通道NAND串列516(1), 516(2), …, 516(n)分別產生第一電流I1(1), I1(2), …, I1(n)。第一P通道NAND串列組508包括多個第一P通道NAND串列518(1), 518(2), …, 518(n),各第一P通道NAND串列518用以接收第二輸入訊號SL2(1), SL2(2), …, SL2(m)。各第一P通道NAND串列518更用以產生一第二電流,例如第一P通道NAND串列518(1), 518(2), …, 518(n)分別產生第二電流I2(1), I2(2), …, I2(n)。多個第一感測放大電路510(1), 510(2), …, 510(n)係分別耦接至第一N通道NAND串列組506之第一N通道NAND串列516(1), 516(2), …, 516(n)。第二感測放大電路512(1), 512(2), …, 512(n)係分別耦接至第一P通道NAND串列組508之多個第一P通道NAND串列518(1), 518(2), …, 518(n),第一感測放大電路510(1), 510(2), …, 510(n)與第二感測放大電路512(1), 512(2), …, 512(n)係各具有一臨界電流值。各個第一及邏輯閘係耦接至對應之第一感測放大電路510與對應之第二感測放大電路512。其中第一及邏輯閘514(1), 514(2), …, 514(n)之一為選定之第一及邏輯閘514(i)(i為1至n中之一正整數)。當選定之第一及邏輯閘510(i)所對應之第一電流I1(i)與第二電流I2(i)的電流均大於或等於臨界電流值時,選定之第一及邏輯閘514(i)輸出一第一邏輯值至解碼器520。此時解碼器520將判斷出第一字元線驅動電路502所提供之資料係與第一N通道NAND串列516(i)所儲存的資料匹配,第二字元線驅動電路504所提供之資料係與第一P通道NAND串列518(i)所儲存的資料匹配。Please refer to FIG. 10 , which shows a circuit diagram of an analog content addressable memory device 500 using the memory cells of FIG. 8 . The analog content addressable memory device 500 includes a first word line driver circuit 502, a second word line driver circuit 504, a first N-channel NAND string group 506, a first P-channel NAND string group 508, a plurality of A sense amplifier circuit 510(1), 510(2), ..., 510(n), a plurality of second sense amplifier circuits 512(1), 512(2), ..., 512(n) and a plurality of the first One and logic gates 514(1), 514(2), . . . , 514(n). The first word line driving circuit 502 is used to provide a plurality of first input signals SL1(1), SL1(2), ..., SL1(m), and the second word line driving circuit 504 is used to provide a plurality of second input signals Signals SL2(1), SL2(2), …, SL2(m). The first N-channel NAND series group 506 includes a plurality of first N-channel NAND series 516(1), 516(2), ..., 516(n), and each first N-channel NAND series 516 is used to receive the first Input signals SL1(1), SL1(2), ..., SL1(m), each of the first N-channel NAND series 516 is further used to generate a first current, for example, the first N-channel NAND series 516(1), 516 (2), ..., 516(n) generate first currents I1(1), I1(2), ..., I1(n) respectively. The first P-channel NAND series group 508 includes a plurality of first P-channel NAND series 518(1), 518(2), ..., 518(n), and each first P-channel NAND series 518 is used to receive the second Input signals SL2(1), SL2(2), …, SL2(m). Each first P-channel NAND series 518 is further used to generate a second current, for example, the first P-channel NAND series 518(1), 518(2), . . . , 518(n) respectively generate a second current I2(1 ), I2(2), …, I2(n). A plurality of first sense amplifier circuits 510(1), 510(2), ..., 510(n) are respectively coupled to the first N-channel NAND series 516(1) of the first N-channel NAND series group 506 , 516(2), …, 516(n). The second sense amplifier circuits 512(1), 512(2), ..., 512(n) are respectively coupled to a plurality of first P-channel NAND series 518(1) of the first P-channel NAND series group 508 , 518(2), ..., 518(n), the first sense amplifier circuits 510(1), 510(2), ..., 510(n) and the second sense amplifier circuits 512(1), 512(2 ), …, 512(n) each have a critical current value. Each of the first and logic gates is coupled to a corresponding first sense amplifier circuit 510 and a corresponding second sense amplifier circuit 512 . One of the first sum logic gates 514(1), 514(2), . . . , 514(n) is the selected first sum logic gate 514(i) (i is a positive integer from 1 to n). When the currents of the first current I1(i) and the second current I2(i) corresponding to the selected first and logic gate 510(i) are greater than or equal to the critical current value, the selected first and logic gate 514(i ) outputs a first logic value to the decoder 520. At this time, the decoder 520 will judge that the data provided by the first word line driving circuit 502 matches the data stored in the first N-channel NAND series 516(i), and the data provided by the second word line driving circuit 504 The data matches the data stored in the first P-channel NAND string 518(i).

因此,依據第9圖,類比內容可定址記憶體裝置500的第一感測放大電路510(i)與第二感測放大電路512(i)可分別於第一電流I1(i)與第二電流I2(i)大於或等於相同的電流位準,亦即是第一感測放大電路510(i)與第二感測放大電路512(i)的臨界電流值時,即可讓第一感測放大電路510(i)與第二感測放大電路512(i)輸出第一邏輯值。如此,可以避免於進行記憶體內部之類比資料的搜尋與比對時,因為第一電流I1(i)或第二電流I2(i)的大小不同,而使得偵測是否匹配所需的時間長度有所差異,而造成誤判的情況。Therefore, according to FIG. 9, the first sense amplifier circuit 510(i) and the second sense amplifier circuit 512(i) of the analog content addressable memory device 500 can be respectively in the first current I1(i) and the second current I1(i). When the current I2(i) is greater than or equal to the same current level, that is, the critical current value of the first sense amplifier circuit 510(i) and the second sense amplifier circuit 512(i), the first sense amplifier circuit The sense amplifier circuit 510(i) and the second sense amplifier circuit 512(i) output a first logic value. In this way, when searching and comparing the analog data inside the memory, it is possible to avoid the length of time required to detect whether the match is due to the difference in magnitude of the first current I1(i) or the second current I2(i) discrepancies, resulting in misjudgment.

更進一步來說,如第10圖所示,第一N通道NAND串列組506之第一N通道NAND串列516(i)的一端用以接收第一位元線訊號BL1(i),第一N通道NAND串列組506之第一N通道NAND串列516(i)的另一端則耦接至對應之第一感測放大電路510(i)。第一P通道NAND串列組508之第一P通道NAND串列518(i)的一端用以接收第二位元線訊號BL2(i),第一P通道NAND串列組508之第一P通道NAND串列518(i)的另一端則是耦接至第二感測放大電路512(i)。第一N通道NAND串列組506之第一N通道NAND串列516(i)包括多個第一N型電晶體,第一P通道NAND串列組508之第一P通道NAND串列518(i)包括多個第一P型電晶體。第一N通道NAND串列516(i)之第一N型電晶體的閘極用以接收第一輸入訊號SL1(1), SL1(2), …, SL1(m)。第一P通道NAND串列518(i)之第一P型電晶體的閘極用以接收第二輸入訊號SL2(1), SL2(2), …, SL2(m)。Furthermore, as shown in FIG. 10, one end of the first N-channel NAND series 516(i) of the first N-channel NAND series group 506 is used to receive the first bit line signal BL1(i). The other end of the first N-channel NAND series 516(i) of an N-channel NAND series group 506 is coupled to the corresponding first sense amplifier circuit 510(i). One end of the first P-channel NAND series 518(i) of the first P-channel NAND series group 508 is used to receive the second bit line signal BL2(i), and the first P channel of the first P-channel NAND series group 508 The other end of the channel NAND series 518(i) is coupled to the second sense amplifier circuit 512(i). The first N-channel NAND series 516(i) of the first N-channel NAND series group 506 includes a plurality of first N-type transistors, and the first P-channel NAND series 518(i) of the first P-channel NAND series group 508 ( i) including a plurality of first P-type transistors. The gates of the first N-type transistors of the first N-channel NAND series 516(i) are used to receive the first input signals SL1(1), SL1(2), . . . , SL1(m). The gates of the first P-type transistors of the first P-channel NAND series 518(i) are used to receive the second input signals SL2(1), SL2(2), . . . , SL2(m).

假設多個第一N通道NAND串列之一(例如是第一N通道NAND串列516(i),i為1至n之正整數)所儲存的資料範圍與輸入訊號匹配。當第一字元線驅動電路502所提供之第一輸入訊號SL1(1), SL1(2), …, SL1(m)與第一N通道NAND串列516(i)中之m個記憶胞的儲存範圍匹配時,亦即是第一輸入訊號SL1(1), SL1(2), …, SL1(m)的電壓位準分別位於第一N通道NAND串列516(i)中之m個記憶胞的匹配範圍內時,則第一N通道NAND串列516(i)將輸出第一電流I1(i)。同理,當第二字元線驅動電路504所提供之第二輸入訊號SL2(1), SL2(2), …, SL2(m)與第一P通道NAND串列518(i)中之m個記憶胞的儲存範圍匹配時,亦即是第二輸入訊號SL2(1), SL2(2), …, SL2(m)的電壓位準分別位於第一P通道NAND串列518(i)中之m個記憶胞的匹配範圍內時,則第一P通道NAND串列518(i)將輸出第二電流I2(i)。此時,當第一電流I1(i)與第二電流I2(i)的電流均大於或等於臨界電流值時,第一及邏輯閘514(i)輸出一第一邏輯值,代表第一字元線驅動電路502所提供之資料係與第一N通道NAND串列516(i)所儲存的資料匹配,且第二字元線驅動電路504所提供之資料係與第一P通道NAND串列518(i)所儲存的資料匹配。Assume that the range of data stored in one of the first N-channel NAND series (for example, the first N-channel NAND series 516(i), where i is a positive integer from 1 to n) matches the input signal. When the first input signal SL1(1), SL1(2), . When the storage ranges match, that is, the voltage levels of the first input signals SL1(1), SL1(2), . When the memory cell is within the matching range, the first N-channel NAND series 516(i) will output the first current I1(i). Similarly, when the second input signal SL2(1), SL2(2), . When the storage ranges of the memory cells match, that is, the voltage levels of the second input signals SL2(1), SL2(2), ..., SL2(m) are respectively located in the first P-channel NAND series 518(i) When the m memory cells are within the matching range, the first P-channel NAND series 518(i) will output the second current I2(i). At this time, when the currents of the first current I1(i) and the second current I2(i) are greater than or equal to the critical current value, the first logic gate 514(i) outputs a first logic value, representing the first word The data provided by the word line driver circuit 502 matches the data stored in the first N-channel NAND series 516(i), and the data provided by the second word line driver circuit 504 matches the data stored in the first P-channel NAND series 518(i) stored data match.

在一實施例中,第一N通道NAND串列組506與第一P通道NAND串列組508為2D快閃記憶體結構或3D快閃記憶體結構。在一實施例中,第一N通道NAND串列組506與第一P通道NAND串列組508可以使用F-N穿隧、通道熱電子注入技術或是多晶矽對多晶矽的方式來進行編程。在一實施例中,第一N通道NAND串列組506與第一P通道NAND串列組508可以使用F-N穿隧、帶對帶熱電洞入射或是多晶矽對多晶矽的方式來進行抹除。In one embodiment, the first N-channel NAND series set 506 and the first P-channel NAND series set 508 are 2D flash memory structure or 3D flash memory structure. In one embodiment, the first N-channel NAND series 506 and the first P-channel NAND series 508 can be programmed using F-N tunneling, channel hot electron injection or polysilicon-to-polysilicon. In one embodiment, the first N-channel NAND series 506 and the first P-channel NAND series 508 can be erased by F-N tunneling, band-to-band hot hole injection or polysilicon to polysilicon.

在一實施例中,類比內容可定址記憶體裝置500係為快閃記憶體,快閃記憶體為電荷儲存記憶體、電荷捕捉記憶體、分離式閘極記憶體或鐵電體場效電晶體記憶體。在另一實施例中,類比內容可定址記憶體裝置500係為超陡峭快閃記憶體,超陡峭快閃記憶體為閘流體隨機存取記憶體、閘極控制閘流體、穿隧式場效電晶體、或負電容場效電晶體。In one embodiment, the analog content addressable memory device 500 is a flash memory, and the flash memory is a charge storage memory, a charge trapping memory, a split gate memory, or a ferroelectric field effect transistor. Memory. In another embodiment, the analog content addressable memory device 500 is an ultra-steep flash memory, and the ultra-steep flash memory is a thyristor random access memory, a gate-controlled thyristor, a tunneling field effect crystal, or negative capacitance field effect transistor.

請參照第11圖,其繪示根據另一實施例之類比內容可定址記憶體裝置600。類比內容可定址記憶體裝置600包括第10圖的類比內容可定址記憶體裝置500、第三字元線驅動電路602、第四字元線驅動電路604、第二N通道NAND串列組606、第二P通道NAND串列組608、多個第三感測放大電路610(1), 610(2), …, 610(n)、多個第四感測放大電路612(1), 612(2), …, 612(n)、多個第二及邏輯閘614(1), 614(2), …, 614(n)與多個第三及邏輯閘622(1), 622(2), …, 622(n)。第三字元線驅動電路602用以提供多個第三輸入訊號SL3(1), SL3(2), …, SL3(m),第四字元線驅動電路604用以提供多個第四輸入訊號SL4(1), SL4(2), …, SL4(m)。第二N通道NAND串列組606包括多個第二N通道NAND串列616(1), 616(2), …, 616(n),各第二N通道NAND串列用以接收第三輸入訊號SL3(1), SL3(2), …, SL3(m)。各第二N通道NAND串列更用以產生一第三電流,例如第二N通道NAND串列616(1), 616(2), …, 616(n)分別產生第三電流I3(1), I3(2), …, I3(n)。第二P通道NAND串列組608包括多個第二P通道NAND串列618(1), 618(2), …, 618(n)。各第二P通道NAND串列用以接收第四輸入訊號SL4(1), SL4(2), …, SL4(m),各第二P通道NAND串列更用以產生一第四電流,例如第二P通道NAND串列618(1), 618(2), …, 618(n)分別產生第四電流I4(1), I4(2), …, I4(n)。第三感測放大電路610(1), 610(2), …, 610(n)係耦接至第二N通道NAND串列組606之多個第二N通道NAND串列616(1),616(2), …, 616(n),多個第四感測放大電路612(1), 612(2), …, 612(n)係耦接至第二P通道NAND串列組608之多個第二P通道NAND串列618(1), 618(2), …, 618(n),多個第三感測放大電路610(1), 610(2), …, 610(n)與多個第四感測放大電路612(1), 612(2), …, 612(n)係各具有一臨界電流值。各個第二及邏輯閘614(1), 614(2), …, 614(n)係耦接至對應之第三感測放大電路與對應之第四感測放大電路。各個第三及邏輯閘622(1), 622(2), …, 622(n)係耦接至對應之第一及邏輯閘及對應之第二及邏輯閘。其中,第二及邏輯閘614(1), 614(2), …, 614(n)之一為選定之第二及邏輯閘614(i), i為1至n中之一正整數。當選定之第二及邏輯閘614(i)所對應之第三電流I3(i)與第四電流I4(i)的電流均大於或等於臨界電流值時,選定之第二及邏輯閘輸614(i)出第一邏輯值。第三及邏輯閘622(1), 622(2), …, 622(n)之一為選定之第三及邏輯閘622(i)。當選定之第三及邏輯閘622(i)所對應之第一及邏輯閘514(i)與第二及邏輯閘614(i)均輸出第一邏輯值時,選定之第三及邏輯閘輸622(i)出第一邏輯值。Please refer to FIG. 11 , which shows an analog content addressable memory device 600 according to another embodiment. The analog content addressable memory device 600 includes the analog content addressable memory device 500 of FIG. 10, a third word line driver circuit 602, a fourth word line driver circuit 604, a second N-channel NAND serial group 606, The second P-channel NAND series group 608, a plurality of third sense amplifier circuits 610(1), 610(2), ..., 610(n), a plurality of fourth sense amplifier circuits 612(1), 612( 2), ..., 612(n), a plurality of second sum logic gates 614(1), 614(2), ..., 614(n) and a plurality of third sum logic gates 622(1), 622(2) , …, 622(n). The third word line driving circuit 602 is used for providing a plurality of third input signals SL3(1), SL3(2), ..., SL3(m), and the fourth word line driving circuit 604 is used for providing a plurality of fourth input signals Signals SL4(1), SL4(2), …, SL4(m). The second N-channel NAND series group 606 includes a plurality of second N-channel NAND series 616(1), 616(2), ..., 616(n), and each second N-channel NAND series is used to receive a third input Signals SL3(1), SL3(2), …, SL3(m). Each second N-channel NAND series is further used to generate a third current, for example, the second N-channel NAND series 616(1), 616(2), . . . , 616(n) respectively generate a third current I3(1) , I3(2), …, I3(n). The second P-channel NAND string group 608 includes a plurality of second P-channel NAND strings 618(1), 618(2), . . . , 618(n). Each second P-channel NAND series is used to receive a fourth input signal SL4(1), SL4(2), ..., SL4(m), and each second P-channel NAND series is further used to generate a fourth current, for example The second P-channel NAND series 618(1), 618(2), ..., 618(n) generate fourth currents I4(1), I4(2), ..., I4(n) respectively. The third sense amplifier circuits 610(1), 610(2), . 616(2), ..., 616(n), a plurality of fourth sense amplifier circuits 612(1), 612(2), ..., 612(n) are coupled to the second P-channel NAND series group 608 A plurality of second P-channel NAND strings 618(1), 618(2), ..., 618(n), a plurality of third sense amplifier circuits 610(1), 610(2), ..., 610(n) Each of the plurality of fourth sense amplifier circuits 612(1), 612(2), . . . , 612(n) has a critical current value. Each second and logic gate 614(1), 614(2), . . . , 614(n) is coupled to a corresponding third sense amplifier circuit and a corresponding fourth sense amplifier circuit. Each third sum logic gate 622(1), 622(2), . . . , 622(n) is coupled to a corresponding first sum logic gate and a corresponding second sum logic gate. Wherein, one of the second sum logic gates 614(1), 614(2), . . . , 614(n) is the selected second sum logic gate 614(i), where i is a positive integer from 1 to n. When the currents of the third current I3(i) and the fourth current I4(i) corresponding to the selected second and logic gate 614(i) are greater than or equal to the critical current value, the selected second and logic gate 614( i) Output the first logic value. One of the third sum logic gates 622(1), 622(2), ..., 622(n) is the selected third sum logic gate 622(i). When the first sum logic gate 514(i) and the second sum logic gate 614(i) corresponding to the selected third sum logic gate 622(i) both output the first logic value, the selected third sum logic gate 622 (i) Output the first logical value.

如第11圖所示,第二N通道NAND串列組606之各個第二N通道NAND串列616(1), 616(2), …, 616(n)的一端用以接收一第三位元線訊號,例如第二N通道NAND串列616(1), 616(2), …, 616(n)分別接收第三位元線訊號BL3(1), BL3(2), …, BL3(n)。第二N通道NAND串列組606之各個第二N通道NAND串列616(1), 616(2), …, 616(n)的另一端耦接至對應之第三感測放大電路,例如各個第二N通道NAND串列616(1), 616(2), …, 616(n)分別耦接至第三感測放大電路610(1), 610(2), …, 610(n)。第二P通道NAND串列組608之各個第二P通道NAND串列618(1), 618(2), …, 618(n)的一端用以接收第四位元線訊號,例如第二P通道NAND串列618(1), 618(2), …, 618(n)接收第四位元線訊號BL4(1), BL4(2), …, BL4(n)。第二P通道NAND串列組608之各個第二P通道NAND串列618(1), 618(2), …, 618(n)的另一端耦接至對應之第四感測放大電路,例如第二P通道NAND串列618(1), 618(2), …, 618(n)的另一端耦接至第四感測放大電路612(1), 612(2), …, 612(n)。第二N通道NAND串列組606之各個第二N通道NAND串列包括多個第二N型電晶體。第二P通道NAND串列組608之各個第二P通道NAND串列包括多個第二P型電晶體。各個第二N通道NAND串列之各個第二N型電晶體的閘極用以接收對應之第三輸入訊號。各個第二P通道NAND串列之各個第二P型電晶體的閘極用以接收對應之第四輸入訊號。因此,依據第11圖的實施例,類比內容可定址記憶體裝置600的第一感測放大電路510(1), 510(2), …, 510(n)、第二感測放大電路512(1), 512(2), …, 512(n)、第三感測放大電路610(1), 610(2), …, 610(n)與第四感測放大電路612(1), 612(2), …, 612(n)係分別對應第一輸入訊號SL1(1), SL1(2), …, SL1(m)、第二輸入訊號SL2(1), SL2(2), …, SL2(m)、第三輸入訊號SL3(1), SL3(2), …, SL3(m)與第四輸入訊號SL4(1), SL4(2), …, SL4(m)。當第三字元線驅動電路602所提供之第三輸入訊號SL3(1), SL3(2), …, SL3(m)與第二N通道NAND串列616(i)中之m個記憶胞的儲存範圍匹配時,亦即是第三輸入訊號SL3(1), SL3(2), …, SL3(m)的電壓位準分別位於第二N通道NAND串列616(i)中之m個記憶胞的匹配範圍內時,則第二N通道NAND串列616(i)將輸出第三電流I3(i)。同理,當第四字元線驅動電路604所提供之第四輸入訊號SL4(1), SL4(2), …, SL4(m)與第二P通道NAND串列618(i)中之m個記憶胞的儲存範圍匹配時,亦即是第四輸入訊號SL4(1), SL4(2), …, SL4(m)的電壓位準分別位於第二P通道NAND串列618(i)中之m個記憶胞的匹配範圍內時,則第二P通道NAND串列618(i)將輸出第四電流I4(i)。此時,當第三電流I3(i)與第四電流I4(i)的電流均大於或等於臨界電流值時,第二及邏輯閘614(i)輸出一第一邏輯值,代表第三字元線驅動電路602所提供之資料係與第二N通道NAND串列616(i)所儲存的資料匹配,且第四字元線驅動電路604所提供之資料係與第二P通道NAND串列618(i)所儲存的資料匹配。As shown in FIG. 11, one end of each second N-channel NAND series 616(1), 616(2), ..., 616(n) of the second N-channel NAND series group 606 is used to receive a third bit Bit line signals, for example, the second N-channel NAND series 616(1), 616(2), ..., 616(n) respectively receive the third bit line signals BL3(1), BL3(2), ..., BL3( n). The other end of each second N-channel NAND series 616(1), 616(2), ..., 616(n) of the second N-channel NAND series group 606 is coupled to the corresponding third sense amplifier circuit, for example Each second N-channel NAND series 616(1), 616(2), ..., 616(n) is respectively coupled to a third sense amplifier circuit 610(1), 610(2), ..., 610(n) . One end of each second P-channel NAND series 618(1), 618(2), ..., 618(n) of the second P-channel NAND series group 608 is used to receive the fourth bit line signal, for example, the second P Channel NAND series 618(1), 618(2), ..., 618(n) receive fourth bit line signals BL4(1), BL4(2), ..., BL4(n). The other end of each second P-channel NAND series 618(1), 618(2), ..., 618(n) of the second P-channel NAND series group 608 is coupled to the corresponding fourth sense amplifier circuit, for example The other end of the second P-channel NAND series 618(1), 618(2), ..., 618(n) is coupled to the fourth sense amplifier circuit 612(1), 612(2), ..., 612(n ). Each second N-channel NAND series of the second N-channel NAND series group 606 includes a plurality of second N-type transistors. Each second P-channel NAND series of the second P-channel NAND series group 608 includes a plurality of second P-type transistors. The gates of each second N-type transistor of each second N-channel NAND series are used to receive the corresponding third input signal. The gates of each second P-type transistor of each second P-channel NAND series are used to receive the corresponding fourth input signal. Therefore, according to the embodiment of FIG. 11, the first sense amplifier circuit 510(1), 510(2), . . . , 510(n), the second sense amplifier circuit 512( 1), 512(2), ..., 512(n), third sense amplifier circuits 610(1), 610(2), ..., 610(n) and fourth sense amplifier circuits 612(1), 612 (2), ..., 612(n) respectively correspond to the first input signal SL1(1), SL1(2), ..., SL1(m), the second input signal SL2(1), SL2(2), ..., SL2(m), third input signals SL3(1), SL3(2), ..., SL3(m) and fourth input signals SL4(1), SL4(2), ..., SL4(m). When the third input signal SL3(1), SL3(2), . When the storage ranges match, that is, the voltage levels of the third input signals SL3(1), SL3(2), ..., SL3(m) are respectively located in m of the second N-channel NAND series 616(i) When the memory cell is within the matching range, the second N-channel NAND series 616(i) will output the third current I3(i). Similarly, when the fourth input signal SL4(1), SL4(2), ..., SL4(m) provided by the fourth word line driver circuit 604 is connected to m When the storage ranges of the two memory cells match, that is, the voltage levels of the fourth input signals SL4(1), SL4(2), ..., SL4(m) are respectively located in the second P-channel NAND series 618(i) When the m memory cells are within the matching range, the second P-channel NAND series 618(i) will output the fourth current I4(i). At this time, when the currents of the third current I3(i) and the fourth current I4(i) are both greater than or equal to the critical current value, the second logic gate 614(i) outputs a first logic value, representing the third word The data provided by the word line driver circuit 602 matches the data stored in the second N-channel NAND series 616(i), and the data provided by the fourth word line driver circuit 604 matches the data stored in the second P-channel NAND series 618(i) The stored data matches.

當第一及邏輯閘514(i)輸出第一邏輯值,且第二及邏輯閘614(i)輸出第一邏輯值時,第三及邏輯閘622(i)將輸出第一邏輯值。如第11圖所示,當i=2時,則第三及邏輯閘622(2)將輸出第一邏輯值(例如邏輯值“1”)至解碼器620。此時解碼器620將判斷出第一字元線驅動電路502所提供之資料係與第一N通道NAND串列516(i)所儲存的資料匹配,第二字元線驅動電路504所提供之資料係與第一P通道NAND串列518(i)所儲存的資料匹配,第三字元線驅動電路602所提供之資料係與第二N通道NAND串列616(i)所儲存的資料匹配,且第四字元線驅動電路604所提供之資料係與第二P通道NAND串列618(i)所儲存的資料匹配。如此,透過類比內容可定址記憶體裝置600,可增加搜尋的資料量(即增加輸入訊號量),例如可以增加第三字元線驅動電路602所提供之資料以及第四字元線驅動電路604所提供之資料來進行資料搜尋與比對,以提高類比內容可定址記憶體的效能。再者,類比內容可定址記憶體裝置600更可減少N通道NAND串列與P通道NAND串列的大小,以降低RC延遲,以加速類比內容可定址記憶體裝置的反應速度。When the first sum logic gate 514(i) outputs the first logic value and the second sum logic gate 614(i) outputs the first logic value, the third sum logic gate 622(i) will output the first logic value. As shown in FIG. 11 , when i=2, the third AND logic gate 622 ( 2 ) will output the first logic value (eg logic value “1”) to the decoder 620 . At this time, the decoder 620 will judge that the data provided by the first word line driving circuit 502 matches the data stored in the first N-channel NAND string 516(i), and the data provided by the second word line driving circuit 504 The data matches the data stored in the first P-channel NAND string 518(i), and the data provided by the third word line driver circuit 602 matches the data stored in the second N-channel NAND string 616(i). , and the data provided by the fourth word line driver circuit 604 matches the data stored in the second P-channel NAND string 618(i). In this way, by analogy to the content addressable memory device 600, the amount of data to be searched (that is, the amount of input signals) can be increased, for example, the data provided by the third word line driver circuit 602 and the fourth word line driver circuit 604 can be increased. The provided data is used for data search and comparison to improve the performance of the analog content addressable memory. Furthermore, the ADAM device 600 can further reduce the size of the N-channel NAND series and the P-channel NAND series, so as to reduce the RC delay and speed up the response speed of the ADAM device.

根據上述之實施例,本案提出之類比內容可定址記憶體的記憶胞以及類比內容可定址記憶體裝置利用電流控制電路來固定匹配範圍內之不同輸入訊號的電流位準,使匹配訊號線的放電時間穩定,以減少資料搜尋及比對時的誤判機率,並可加快類比內容可定址記憶體裝置的處理速度。According to the above-mentioned embodiment, the memory cell of the analog content addressable memory and the analog content addressable memory device proposed in this case use the current control circuit to fix the current level of different input signals within the matching range, so that the discharge of the matching signal line The time is stable to reduce the probability of misjudgment during data search and comparison, and to speed up the processing speed of analog content addressable memory devices.

綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。To sum up, although the present invention has been disclosed by the above embodiments, it is not intended to limit the present invention. Those skilled in the art of the present invention can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention should be defined by the scope of the appended patent application.

100,200,400:類比內容可定址記憶體 202,304:記憶胞 204,312,ML:匹配訊號線 206,306,402:N型電晶體 208,308,404:P型電晶體 210,310,406:電流控制電路 210A,310A:控制電晶體 300,500,600:類比內容可定址記憶體裝置 302:字元線驅動電路 314,SL:源極線 316:源極線驅動電路 318:感測放大器電路 406A:第一感測放大器 406B:第二感測放大器 408:及邏輯閘 502:第一字元線驅動電路 504:第二字元線驅動電路 506:第一N通道NAND串列組 508:第一P通道NAND串列組 510(1),510(2),510(n):第一感測放大電路 512(1),512(2),512(n):第二感測放大電路 514(1),514(2),514(n):第一及邏輯閘 516(1), 516(2),516(n):第一N通道NAND串列 518(1),518(2),518(n):第一P通道NAND串列 520,620:解碼器 602:第三字元線驅動電路 604:第四字元線驅動電路 606:第二N通道NAND串列組 608:第二P通道NAND串列組 610(1),610(2),610(n):第三感測放大電路 612(1),612(2),612(n):第四感測放大電路 614(1),614(2),614(n):第二及邏輯閘 616(1),616(2),616(n):第二N通道NAND串列 618(1),618(2),618(n):第二P通道NAND串列 622(1),622(2),622(n):第三及邏輯閘S1,A(1),A(2),A(n),B(1),B(2),B(n):輸入訊號 CL1:類比CAM記憶胞 R(1),R(2),R(3),R(4):列 Rn:匹配不成功結果 Ry:匹配成功結果 MSn:第一浮動閘極裝置 MSp:第二浮動閘極裝置 Ip,I pass:導通電流 MR,MR0,MR1,MRa,MRb,MRc:匹配範圍 CN,CP:曲線 LB:下限 UB:上限 G1,G2,G3:閘極 D1,D2,D3:汲極 S1,S2,S3:源極 C(1),C(2),…,C(n),C(i):控制電壓 I1(1),I1(2),I1(n):第一電流 I2(1),I2(2),I2(n):第二電流 I3(1),I3(2),I3(n):第三電流 I4(1),I4(2),I4(n):第四電流 SL1(1),SL1(2),SL1(m):第一輸入訊號 SL2(1),SL2(2),SL2(m):第二輸入訊號 SL3(1),SL3(2),SL3(m):第三輸入訊號 SL4(1),SL4(2),SL4(m):第四輸入訊號 BL1(1),BL1(2),BL1(3),BL1(n):第一位元線訊號 BL2(1),BL2(2),BL2(3),BL2(n):第二位元線訊號 BL3(1),BL3(2),BL3(3),BL3(n):第三位元線訊號 BL4(1),BL4(2),BL4(3),BL4(n):第四位元線訊號100, 200, 400: analog content addressable memory 202, 304: memory cell 204, 312, ML: matching signal line 206, 306, 402: N-type transistor 208, 308, 404: P-type transistor 210, 310, 406: current control circuit 210A, 310A: control transistor 300, 500, 600: analog content addressable memory Bulk device 302: word line drive circuit 314, SL: source line 316: source line drive circuit 318: sense amplifier circuit 406A: first sense amplifier 406B: second sense amplifier 408: and logic gate 502: First word line driving circuit 504: second word line driving circuit 506: first N-channel NAND string group 508: first P-channel NAND string group 510(1), 510(2), 510(n) : first sense amplifier circuits 512(1), 512(2), 512(n): second sense amplifier circuits 514(1), 514(2), 514(n): first and logic gates 516( 1), 516(2), 516(n): first N-channel NAND series 518(1), 518(2), 518(n): first P-channel NAND series 520, 620: decoder 602: third Word line driving circuit 604: fourth word line driving circuit 606: second N-channel NAND string group 608: second P-channel NAND string group 610(1), 610(2), 610(n): the first Three sense amplifier circuits 612(1), 612(2), 612(n): fourth sense amplifier circuits 614(1), 614(2), 614(n): second and logic gates 616(1) , 616(2), 616(n): the second N-channel NAND series 618(1), 618(2), 618(n): the second P-channel NAND series 622(1), 622(2), 622(n): third logic gate S1, A(1), A(2), A(n), B(1), B(2), B(n): input signal CL1: analog CAM memory cell R(1), R(2), R(3), R(4): column Rn: matching unsuccessful result Ry: matching successful result MSn: first floating gate device MSp: second floating gate device Ip, I pass : conduction current MR, MR0, MR1, MRa, MRb, MRc: matching range CN, CP: curve LB: lower limit UB: upper limit G1, G2, G3: gate D1, D2, D3: drain S1, S2, S3: source C(1), C(2),..., C(n), C(i): control voltage I1(1), I1(2), I1(n): first current I2(1) , I2(2), I2(n): the second current I3(1), I3(2), I3(n): the third current I4(1), I4(2), I4(n): the fourth current SL1(1), SL1(2 ), SL1(m): the first input signal SL2(1), SL2(2), SL2(m): the second input signal SL3(1), SL3(2), SL3(m): the third input signal SL4 (1), SL4(2), SL4(m): the fourth input signal BL1(1), BL1(2), BL1(3), BL1(n): the first bit line signal BL2(1), BL2 (2), BL2(3), BL2(n): second bit line signal BL3(1), BL3(2), BL3(3), BL3(n): third bit line signal BL4(1) , BL4(2), BL4(3), BL4(n): the fourth bit line signal

第1圖繪示類比內容可定址記憶體(analog content-addressable memory, analog CAM)之操作示意圖; 第2圖繪示類比CAM記憶胞; 第3圖繪示繪示類比CAM記憶胞的匹配範圍; 第4圖繪示根據一實施例之類比內容可定址記憶體的記憶胞之電路圖; 第5A圖繪示未具有電流控制電路之記憶胞的匹配範圍; 第5B圖繪示連接於第5A圖的記憶胞之匹配訊號線的輸出電壓與放電時間的關係圖; 第6A圖繪示具有電流控制電路之記憶胞的匹配範圍; 第6B圖繪示連接於第6A圖的記憶胞之匹配訊號線的輸出電壓與放電時間的關係圖; 第7圖繪示將第4圖所示之記憶胞應用於類比內容可定址記憶體裝置300之一例; 第8圖繪示根據另一實施例之類比內容可定址記憶體的記憶胞之電路圖; 第9圖繪示繪示具有電流控制電路之記憶胞的匹配範圍示意圖; 第10圖繪示應用第8圖之記憶胞之類比內容可定址記憶體裝置的電路圖。 第11圖繪示根據另一實施例之類比內容可定址記憶體裝置。 Figure 1 shows a schematic diagram of the operation of an analog content-addressable memory (analog CAM); Figure 2 shows an analog CAM memory cell; Figure 3 shows the matching range of the analog CAM memory cell; FIG. 4 shows a circuit diagram of a memory cell of an analog content addressable memory according to an embodiment; Figure 5A shows the matching range of a memory cell without a current control circuit; Figure 5B shows the relationship between the output voltage and the discharge time of the matching signal line connected to the memory cell in Figure 5A; Figure 6A shows the matching range of a memory cell with a current control circuit; Figure 6B shows the relationship between the output voltage and the discharge time of the matching signal line connected to the memory cell in Figure 6A; FIG. 7 shows an example of applying the memory cell shown in FIG. 4 to an analog content addressable memory device 300; FIG. 8 shows a circuit diagram of a memory cell of an analog content addressable memory according to another embodiment; FIG. 9 shows a schematic diagram of a matching range of a memory cell with a current control circuit; FIG. 10 shows a circuit diagram of an analog content addressable memory device using the memory cells of FIG. 8. FIG. 11 illustrates an analog content addressable memory device according to another embodiment.

200:類比內容可定址記憶體 200: Analog Content Addressable Memory

202:記憶胞 202: memory cell

204:匹配訊號線 204: Matching signal line

206:N型電晶體 206: N-type transistor

208:P型電晶體 208: P-type transistor

210:電流控制電路 210: current control circuit

210A:控制電晶體 210A: control transistor

A(i),B(i):輸入訊號 A(i), B(i): input signal

C(i):控制電壓 C(i): control voltage

G1,G2,G3:閘極 G1, G2, G3: gate

D1,D2,D3:汲極 D1, D2, D3: drain

S1,S2,S3:源極 S1, S2, S3: source

Ipass:導通電流 I pass : pass current

SL:源極線 SL: source line

Claims (20)

一種用於一類比內容可定址記憶體(Analog Content-Addressable Memory, analog CAM)的記憶胞,該記憶胞包括: 一N型電晶體,具有一第一閘極,該N型電晶體的該第一閘極用以接收一第一輸入訊號; 一P型電晶體,具有一第二閘極,該P型電晶體的該第二閘極用以接收一第二輸入訊號;以及 一電流控制電路,耦接至該N型電晶體及該P型電晶體之至少二者之一,用以產生至少一導通電流; 其中,當該第一輸入訊號的輸入電壓與該第二輸入訊號的輸入電壓位於一匹配範圍內時,該N型電晶體與該P型電晶體均導通,且對應之該導通電流實質上係為一固定電流值,該匹配範圍係與該N型電晶體的臨界電壓、該P型電晶體的臨界電壓、及該固定電流值相關。 A memory cell for an analog content-addressable memory (analog content-addressable memory, analog CAM), the memory cell comprising: An N-type transistor has a first gate, and the first gate of the N-type transistor is used to receive a first input signal; A P-type transistor has a second gate, and the second gate of the P-type transistor is used to receive a second input signal; and A current control circuit, coupled to at least one of the N-type transistor and the P-type transistor, for generating at least one conduction current; Wherein, when the input voltage of the first input signal and the input voltage of the second input signal are within a matching range, both the N-type transistor and the P-type transistor are turned on, and the corresponding conduction current is substantially It is a fixed current value, and the matching range is related to the threshold voltage of the N-type transistor, the threshold voltage of the P-type transistor, and the fixed current value. 如請求項1所述之記憶胞,其中該電流控制電路係具有一控制電晶體,該控制電晶體為一金屬氧化物半導體場效電晶體(MOSFET)或一浮動閘極(Float gate, FG)電晶體,該N型電晶體之一第一端係與該P型電晶體之一第一端電性連接,該P型電晶體之一第二端係與該控制電晶體之一端電性連接,該控制電晶體係具有一第三閘極,該控制電晶體之該第三閘極係用以接收一控制電壓,該控制電壓係實質上為一固定電壓值。The memory cell as claimed in item 1, wherein the current control circuit has a control transistor, and the control transistor is a metal oxide semiconductor field effect transistor (MOSFET) or a floating gate (Float gate, FG) A transistor, one of the first ends of the N-type transistor is electrically connected to one of the first ends of the P-type transistor, and one of the second ends of the P-type transistor is electrically connected to one end of the control transistor , the control transistor system has a third gate, the third gate of the control transistor is used to receive a control voltage, and the control voltage is substantially a fixed voltage value. 如請求項2所述之記憶胞,其中該N型電晶體之一第二端係用以與一匹配訊號線電性連接,該N型電晶體之該第二端係為汲極,該N型電晶體之該第一端係為源極。The memory cell as described in claim 2, wherein the second end of the N-type transistor is used to electrically connect with a matching signal line, the second end of the N-type transistor is a drain, and the N-type transistor The first end of the type transistor is the source. 如請求項1所述之記憶胞,其中該記憶胞更包括一及邏輯閘,該電流控制電路係具有一第一感測放大器與一第二感測放大器,該及邏輯閘係耦接至該第一感測放大器與該第二感測放大器,該第一感測放大器與該第二感測放大器各具有一臨界電流值,該N型電晶體係與該第一感測放大器電性連接,該P型電晶體係與該第二感測放大器電性連接; 其中,當該N型電晶體對應之該至少一導通電流之一與該P型電晶體對應之該至少一導通電流之另一均大於或等於該臨界電流值時,該及邏輯閘輸出一第一邏輯值。 The memory cell as claimed in item 1, wherein the memory cell further includes an AND logic gate, the current control circuit has a first sense amplifier and a second sense amplifier, the AND logic gate is coupled to the The first sense amplifier and the second sense amplifier, the first sense amplifier and the second sense amplifier each have a critical current value, the N-type transistor system is electrically connected to the first sense amplifier, The P-type transistor system is electrically connected to the second sense amplifier; Wherein, when one of the at least one conduction current corresponding to the N-type transistor and the other of the at least one conduction current corresponding to the P-type transistor are greater than or equal to the critical current value, the AND logic gate outputs a first a logical value. 如請求項1所述之記憶胞,其中該類比內容可定址記憶體係為一快閃記憶體,該快閃記憶體為一電荷儲存記憶體(Charge storage memory)、一電荷捕捉記憶體(Charge trapping memory)、一分離式閘極記憶體(Split gate memory)或一鐵電體場效電晶體(Ferroelectric field-effect transistor, FeFET)記憶體。The memory cell as described in claim 1, wherein the analog content addressable memory system is a flash memory, and the flash memory is a charge storage memory (Charge storage memory), a charge trapping memory (Charge trapping memory), a split gate memory (Split gate memory) or a ferroelectric field-effect transistor (Ferroelectric field-effect transistor, FeFET) memory. 如請求項1所述之記憶胞,其中該類比內容可定址記憶體係為一超陡峭(super steep slope)快閃記憶體,該超陡峭快閃記憶體為一閘流體隨機存取記憶體(Thyristor Random Access Memory, TRAM)、一閘極控制閘流體(Gate Control Thyristor, GCT)、一穿隧式場效電晶體(Tunnel Field-Effect Transistor, TFET)或一負電容場效電晶體(Negative Capacitance Field-Effect Transistor, NCFET)。The memory cell as claimed in item 1, wherein the analog content addressable memory system is a super steep slope flash memory, and the super steep slope flash memory is a thyristor random access memory (Thyristor Random Access Memory, TRAM), a Gate Control Thyristor (GCT), a Tunnel Field-Effect Transistor (TFET), or a Negative Capacitance Field-Effect Transistor (Negative Capacitance Field- Effect Transistor, NCFET). 如請求項1所述之記憶胞,其中該N型電晶體與該P型電晶體係為一2D(二維)快閃記憶體結構或一3D(三維)快閃記憶體結構。The memory cell according to claim 1, wherein the N-type transistor and the P-type transistor system are a 2D (two-dimensional) flash memory structure or a 3D (three-dimensional) flash memory structure. 一種類比內容可定址記憶體裝置,包括: 一字元線驅動電路,用以提供複數個第一輸入訊號與複數個第二輸入訊號; 複數個記憶胞,各該記憶胞包括: 一N型電晶體,具有一第一閘極,該N型電晶體的該第一閘極用以接收對應之該第一輸入訊號; 一P型電晶體,具有一第二閘極,該P型電晶體的該第二閘極用以接收對應之該第二輸入訊號;及 一電流控制電路,耦接至該N型電晶體及該P型電晶體之至少二者之一,用以產生一導通電流; 複數個匹配訊號線,各該匹配訊號線係耦接至對應之該記憶胞; 複數個源極線,各該源極線係與對應之該電流控制電路耦接; 一源極線驅動電路,耦接至該些源極線;以及 一感測放大器電路(Sense Amplifier),耦接至該些匹配訊號線; 其中,針對該些記憶胞中之一特定記憶胞,當對應至該特定記憶胞之該第一輸入訊號的輸入電壓與對應至該特定記憶胞之該第二輸入訊號的輸入電壓皆位於該特定記憶胞之一匹配範圍內時,該特定記憶胞之該N型電晶體與該P型電晶體均導通,且該特定記憶胞之該導通電流實質上係為一固定電流值,該特定記憶胞之該匹配範圍係與該特定記憶胞之該N型電晶體的臨界電壓、該特定記憶胞之該P型電晶體的臨界電壓、及該固定電流值相關。 An analog content addressable memory device comprising: A word line driving circuit for providing a plurality of first input signals and a plurality of second input signals; A plurality of memory cells, each of which includes: An N-type transistor having a first gate, the first gate of the N-type transistor is used to receive the corresponding first input signal; A P-type transistor has a second gate, and the second gate of the P-type transistor is used to receive the corresponding second input signal; and A current control circuit, coupled to at least one of the N-type transistor and the P-type transistor, for generating a conduction current; a plurality of matching signal lines, each of which is coupled to the corresponding memory cell; a plurality of source lines, each of which is coupled to the corresponding current control circuit; a source line driving circuit coupled to the source lines; and a sense amplifier circuit (Sense Amplifier), coupled to the matching signal lines; Wherein, for a specific memory cell among the memory cells, when the input voltage of the first input signal corresponding to the specific memory cell and the input voltage of the second input signal corresponding to the specific memory cell are both at the specific When the memory cell is within a matching range, both the N-type transistor and the P-type transistor of the specific memory cell are turned on, and the conduction current of the specific memory cell is substantially a fixed current value, and the specific memory cell The matching range is related to the threshold voltage of the N-type transistor of the specific memory cell, the threshold voltage of the P-type transistor of the specific memory cell, and the fixed current value. 如請求項8所述之類比內容可定址記憶體裝置,其中各該記憶胞的該電流控制電路係具有一控制電晶體,該控制電晶體為一金屬氧化物半導體場效電晶體(MOSFET)或一浮動閘極(Float gate, FG)電晶體,該N型電晶體之一第一端係與該P型電晶體之一第一端電性連接,該P型電晶體之一第二端係與該控制電晶體之一端電性連接,該控制電晶體係具有一第三閘極,該控制電晶體之該第三閘極係用以接收一控制電壓,該控制電壓係實質上為一固定電壓值。The analog content addressable memory device as described in claim 8, wherein the current control circuit of each of the memory cells has a control transistor, and the control transistor is a metal oxide semiconductor field effect transistor (MOSFET) or A floating gate (Float gate, FG) transistor, one of the first ends of the N-type transistor is electrically connected to one of the first ends of the P-type transistor, and one of the second ends of the P-type transistor is Electrically connected to one end of the control transistor, the control transistor system has a third gate, the third gate of the control transistor is used to receive a control voltage, the control voltage is substantially a fixed Voltage value. 如請求項9所述之類比內容可定址記憶體裝置,其中各該記憶胞的該N型電晶體之一第二端係用以與對應之該匹配訊號線電性連接,該N型電晶體之該第二端係為汲極,該N型電晶體之該第一端係為源極。The analog content addressable memory device as described in claim 9, wherein one of the second ends of the N-type transistors of each of the memory cells is used to electrically connect with the corresponding matching signal line, and the N-type transistors The second end is a drain, and the first end of the N-type transistor is a source. 如請求項8所述之類比內容可定址記憶體裝置,其中該類比內容可定址記憶體裝置係為一快閃記憶體,該快閃記憶體為一電荷儲存記憶體、一電荷捕捉記憶體、一分離式閘極記憶體或一鐵電體場效電晶體記憶體。The analog content addressable memory device as described in claim 8, wherein the analog content addressable memory device is a flash memory, and the flash memory is a charge storage memory, a charge capture memory, A split gate memory or a ferroelectric field effect transistor memory. 如請求項8所述之類比內容可定址記憶體裝置,其中該類比內容可定址記憶體裝置係為一超陡峭快閃記憶體,該超陡峭快閃記憶體為一閘流體隨機存取記憶體、一閘極控制閘流體、一穿隧式場效電晶體、或一負電容場效電晶體。The analog content addressable memory device as described in claim 8, wherein the analog content addressable memory device is an ultra-steep flash memory, and the ultra-steep flash memory is a thyristor random access memory , a gate-controlled thyristor, a tunneling field effect transistor, or a negative capacitance field effect transistor. 如請求項8所述之類比內容可定址記憶體裝置,其中該N型電晶體與該P型電晶體為一2D快閃記憶體結構。The analog content addressable memory device as claimed in claim 8, wherein the N-type transistor and the P-type transistor are a 2D flash memory structure. 一種類比內容可定址記憶體裝置,包括: 一第一字元線驅動電路與一第二字元線驅動電路,該第一字元線驅動電路用以提供複數個第一輸入訊號,該第二字元線驅動電路用以提供複數個第二輸入訊號; 一第一N通道NAND串列組,包括複數個第一N通道NAND串列,各第一N通道NAND串列用以接收該些第一輸入訊號,各第一N通道NAND串列更用以產生一第一電流; 一第一P通道NAND串列組,包括複數個第一P通道NAND串列,各第一P通道NAND串列用以接收該些第二輸入訊號,各第一P通道NAND串列更用以產生一第二電流; 複數個第一感測放大電路與複數個第二感測放大電路,該些第一感測放大電路係分別耦接至該第一N通道NAND串列組之該些第一N通道NAND串列,該些第二感測放大電路係分別耦接至該第一P通道NAND串列組之該些第一P通道NAND串列,該些第一感測放大電路與該些第二感測放大電路係各具有一臨界電流值;以及 複數個第一及邏輯閘,各該第一及邏輯閘係耦接至對應之該第一感測放大電路與對應之該第二感測放大電路; 其中該些第一及邏輯閘之一為一選定之第一及邏輯閘,當該選定之第一及邏輯閘所對應之該第一電流與該第二電流的電流均大於或等於該臨界電流值時,該選定之第一及邏輯閘輸出一第一邏輯值。 An analog content addressable memory device comprising: A first word line driving circuit and a second word line driving circuit, the first word line driving circuit is used to provide a plurality of first input signals, and the second word line driving circuit is used to provide a plurality of first input signals Two input signals; A first N-channel NAND series group, including a plurality of first N-channel NAND series, each first N-channel NAND series is used to receive these first input signals, and each first N-channel NAND series is further used for generating a first current; A first P-channel NAND series group, including a plurality of first P-channel NAND series, each first P-channel NAND series is used to receive the second input signals, and each first P-channel NAND series is further used for generate a second current; A plurality of first sense amplifier circuits and a plurality of second sense amplifier circuits, the first sense amplifier circuits are respectively coupled to the first N-channel NAND series of the first N-channel NAND series group , the second sense amplifier circuits are respectively coupled to the first P-channel NAND strings of the first P-channel NAND string group, the first sense amplifier circuits and the second sense amplifiers the circuits each have a critical current value; and a plurality of first and logic gates, each of the first and logic gates is coupled to the corresponding first sense amplifier circuit and the corresponding second sense amplifier circuit; One of the first and logic gates is a selected first and logic gate, when the first current and the second current corresponding to the selected first and logic gate are greater than or equal to the critical current value, the selected first sum logic gate outputs a first logic value. 如請求項14所述之類比內容可定址記憶體裝置,其中該第一N通道NAND串列組之各該第一N通道NAND串列的一端用以接收一第一位元線訊號,該第一N通道NAND串列組之各該第一N通道NAND串列的另一端耦接至對應之該第一感測放大電路,該第一P通道NAND串列組之各該第一P通道NAND串列的一端用以接收一第二位元線訊號,該第一P通道NAND串列組之各該第一P通道NAND串列的另一端耦接至對應之該第二感測放大電路,該第一N通道NAND串列組之各該第一N通道NAND串列包括複數個第一N型電晶體,該第一P通道NAND串列組之各該第一P通道NAND串列包括複數個第一P型電晶體,各該第一N通道NAND串列之各該第一N型電晶體的閘極用以接收對應之該第一輸入訊號,各該第一P通道NAND串列之各該第一P型電晶體的閘極用以接收對應之該第二輸入訊號。The analog content addressable memory device as described in claim 14, wherein one end of each of the first N-channel NAND series of the first N-channel NAND series group is used to receive a first bit line signal, the second The other end of each of the first N-channel NAND series of an N-channel NAND series group is coupled to the corresponding first sense amplifier circuit, and each of the first P-channel NAND of the first P-channel NAND series group One end of the series is used to receive a second bit line signal, and the other end of each of the first P-channel NAND series of the first P-channel NAND series group is coupled to the corresponding second sense amplifier circuit, Each of the first N-channel NAND series of the first N-channel NAND series group includes a plurality of first N-type transistors, and each of the first P-channel NAND series of the first P-channel NAND series group includes a plurality of a first P-type transistor, the gates of each of the first N-type transistors in each of the first N-channel NAND strings are used to receive the corresponding first input signal, and each of the first P-channel NAND strings The gates of each of the first P-type transistors are used to receive the corresponding second input signal. 如請求項14所述之類比內容可定址記憶體裝置,其中該類比內容可定址記憶體裝置更包括: 一第三字元線驅動電路與一第四字元線驅動電路,該第三字元線驅動電路用以提供複數個第三輸入訊號,該第四字元線驅動電路用以提供複數個第四輸入訊號; 一第二N通道NAND串列組,包括複數個第二N通道NAND串列,各第二N通道NAND串列用以接收該些第三輸入訊號,各第二N通道NAND串列更用以產生一第三電流; 一第二P通道NAND串列組,包括複數個第二P通道NAND串列,各第二P通道NAND串列用以接收該些第四輸入訊號,各第二P通道NAND串列更用以產生一第四電流; 複數個第三感測放大電路與複數個第四感測放大電路,該些第三感測放大電路係耦接至該第二N通道NAND串列組之該些第二N通道NAND串列,該些第四感測放大電路係耦接至該第二P通道NAND串列組之該些第二P通道NAND串列,該些第三感測放大電路與該些第四感測放大電路係各具有一臨界電流值;以及 複數個第二及邏輯閘,各該第二及邏輯閘係耦接至對應之該第三感測放大電路與對應之該第四感測放大電路; 複數個第三及邏輯閘,各該第三及邏輯閘係耦接至對應之該第一及邏輯閘及對應之該第二及邏輯閘; 其中,該些第二及邏輯閘之一為一選定之第二及邏輯閘,當該選定之第二及邏輯閘所對應之該第三電流與該第四電流的電流均大於或等於該臨界電流值時,該選定之第二及邏輯閘輸出該第一邏輯值;以及 其中該些第三及邏輯閘之一為一選定之第三及邏輯閘,當該選定之第三及邏輯閘所對應之該第一及邏輯閘與該第二及邏輯閘均輸出該第一邏輯值時,該選定之第三及邏輯閘輸出該第一邏輯值。 The analog content addressable memory device as described in claim 14, wherein the analog content addressable memory device further comprises: A third word line driving circuit and a fourth word line driving circuit, the third word line driving circuit is used to provide a plurality of third input signals, and the fourth word line driving circuit is used to provide a plurality of first Four input signals; A second N-channel NAND series group, including a plurality of second N-channel NAND series, each second N-channel NAND series is used to receive the third input signals, and each second N-channel NAND series is further used for generate a third current; A second P-channel NAND series group, including a plurality of second P-channel NAND series, each second P-channel NAND series is used to receive the fourth input signals, and each second P-channel NAND series is further used for generate a fourth current; a plurality of third sense amplifier circuits and a plurality of fourth sense amplifier circuits, the third sense amplifier circuits are coupled to the second N-channel NAND series of the second N-channel NAND series group, The fourth sense amplifier circuits are coupled to the second P-channel NAND series of the second P-channel NAND series group, the third sense amplifier circuits and the fourth sense amplifier circuits are each have a critical current value; and a plurality of second and logic gates, each of the second and logic gates is coupled to the corresponding third sense amplifier circuit and the corresponding fourth sense amplifier circuit; a plurality of third AND logic gates, each of the third AND logic gates is coupled to the corresponding first AND logic gates and the corresponding second AND logic gates; Wherein, one of the second and logic gates is a selected second and logic gate, when the currents of the third current and the fourth current corresponding to the selected second and logic gate are greater than or equal to the critical current value, the selected second logic gate outputs the first logic value; and One of the third sum logic gates is a selected third sum logic gate, when the first sum logic gate and the second sum logic gate corresponding to the selected third sum logic gate both output the first sum logic gate When a logic value is selected, the selected third logic gate outputs the first logic value. 如請求項16所述之類比內容可定址記憶體裝置,其中該第二N通道NAND串列組之各該第二N通道NAND串列的一端用以接收一第三位元線訊號,該第二N通道NAND串列組之各該第二N通道NAND串列的另一端耦接至對應之該第三感測放大電路,該第二P通道NAND串列組之各該第二P通道NAND串列的一端用以接收一第四位元線訊號,該第二P通道NAND串列組之各該第二P通道NAND串列的另一端耦接至對應之該第四感測放大電路,該第二N通道NAND串列組之各該第二N通道NAND串列包括複數個第二N型電晶體,該第二P通道NAND串列組之各該第二P通道NAND串列包括複數個第二P型電晶體,各該第二N通道NAND串列之各該第二N型電晶體的閘極用以接收對應之該第三輸入訊號,各該第二P通道NAND串列之各該第二P型電晶體的閘極用以接收對應之該第四輸入訊號。The analog content addressable memory device as described in claim 16, wherein one end of each of the second N-channel NAND series of the second N-channel NAND series group is used to receive a third bit line signal, the first The other end of each of the second N-channel NAND series of the two N-channel NAND series groups is coupled to the corresponding third sense amplifier circuit, and each of the second P-channel NAND of the second P-channel NAND series group One end of the series is used to receive a fourth bit line signal, and the other end of each second P-channel NAND series of the second P-channel NAND series group is coupled to the corresponding fourth sense amplifier circuit, Each of the second N-channel NAND series of the second N-channel NAND series group includes a plurality of second N-type transistors, and each of the second P-channel NAND series of the second P-channel NAND series group includes a plurality of a second P-type transistor, the gates of each of the second N-type transistors in each of the second N-channel NAND strings are used to receive the corresponding third input signal, and each of the second P-channel NAND strings The gates of each of the second P-type transistors are used to receive the corresponding fourth input signal. 如請求項14所述之類比內容可定址記憶體裝置,其中該類比內容可定址記憶體裝置係為一快閃記憶體,該快閃記憶體為一電荷儲存記憶體、一電荷捕捉記憶體、一分離式閘極記憶體或一鐵電體場效電晶體記憶體。The analog content addressable memory device as described in claim 14, wherein the analog content addressable memory device is a flash memory, and the flash memory is a charge storage memory, a charge capture memory, A split gate memory or a ferroelectric field effect transistor memory. 如請求項14所述之類比內容可定址記憶體裝置,其中該第一N通道NAND串列組與該第一P通道NAND串列組為一2D快閃記憶體結構或一3D快閃記憶體結構。The analog content addressable memory device as described in claim 14, wherein the first N-channel NAND series group and the first P-channel NAND series group are a 2D flash memory structure or a 3D flash memory structure. 如請求項14所述之類比內容可定址記憶體裝置,其中該類比內容可定址記憶體裝置係為一超陡峭快閃記憶體,該超陡峭快閃記憶體為一閘流體隨機存取記憶體、一閘極控制閘流體、一穿隧式場效電晶體、或一負電容場效電晶體。The analog content addressable memory device as described in claim 14, wherein the analog content addressable memory device is an ultra-steep flash memory, and the ultra-steep flash memory is a thyristor random access memory , a gate-controlled thyristor, a tunneling field effect transistor, or a negative capacitance field effect transistor.
TW110132411A 2021-09-01 2021-09-01 Memory cell for analog content-addressable memory and analog content-addressable memory device TWI788987B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110132411A TWI788987B (en) 2021-09-01 2021-09-01 Memory cell for analog content-addressable memory and analog content-addressable memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110132411A TWI788987B (en) 2021-09-01 2021-09-01 Memory cell for analog content-addressable memory and analog content-addressable memory device

Publications (2)

Publication Number Publication Date
TWI788987B true TWI788987B (en) 2023-01-01
TW202312169A TW202312169A (en) 2023-03-16

Family

ID=86669934

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110132411A TWI788987B (en) 2021-09-01 2021-09-01 Memory cell for analog content-addressable memory and analog content-addressable memory device

Country Status (1)

Country Link
TW (1) TWI788987B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6256216B1 (en) * 2000-05-18 2001-07-03 Integrated Device Technology, Inc. Cam array with minimum cell size
US6317349B1 (en) * 1999-04-16 2001-11-13 Sandisk Corporation Non-volatile content addressable memory
US6339540B1 (en) * 2000-12-05 2002-01-15 Tower Semiconductor Ltd. Content-addressable memory for virtual ground flash architectures
US7177183B2 (en) * 2003-09-30 2007-02-13 Sandisk 3D Llc Multiple twin cell non-volatile memory array and logic block structure and method therefor
US20090190404A1 (en) * 2008-01-25 2009-07-30 Roohparvar Frankie F Nand flash content addressable memory

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6317349B1 (en) * 1999-04-16 2001-11-13 Sandisk Corporation Non-volatile content addressable memory
US6256216B1 (en) * 2000-05-18 2001-07-03 Integrated Device Technology, Inc. Cam array with minimum cell size
US6339540B1 (en) * 2000-12-05 2002-01-15 Tower Semiconductor Ltd. Content-addressable memory for virtual ground flash architectures
US7177183B2 (en) * 2003-09-30 2007-02-13 Sandisk 3D Llc Multiple twin cell non-volatile memory array and logic block structure and method therefor
US20090190404A1 (en) * 2008-01-25 2009-07-30 Roohparvar Frankie F Nand flash content addressable memory

Also Published As

Publication number Publication date
TW202312169A (en) 2023-03-16

Similar Documents

Publication Publication Date Title
US7391652B2 (en) Method of programming and erasing a p-channel BE-SONOS NAND flash memory
KR960003398B1 (en) Nonvolatile semiconductor memory device having row decoder supplying a negative potential to word lines during erasing mode
US7262995B2 (en) Method for reading flash memory cell, NAND-type flash memory apparatus, and NOR-type flash memory apparatus
US9147485B2 (en) Memory page buffer
KR101844074B1 (en) Architecture for a 3d memory array
US7751243B2 (en) Semiconductor memory device provided with MOS transistor having charge accumulation layer and control gate and data write method of NAND flash memory
US20140198576A1 (en) Programming technique for reducing program disturb in stacked memory structures
US10803952B2 (en) Vertical memory device having improved electrical characteristics and method of operating the same
KR101556681B1 (en) Method for reading of the cell string
US8842475B2 (en) Configuration memory
JP2010198685A (en) Nonvolatile semiconductor memory
US20230368842A1 (en) Content-addressable memory and analog content-addressable memory device
US10658057B2 (en) Semiconductor memory device
US11328775B2 (en) Ternary content addressable memory and memory cell thereof
CN115394339A (en) Analog content addressable memory and method of operating the same
TWI788987B (en) Memory cell for analog content-addressable memory and analog content-addressable memory device
US6141244A (en) Multi level sensing of NAND memory cells by external bias current
KR20090039063A (en) Non-volatile memory device
TWI763493B (en) Analog content-address memory and operation method thereof
US11670373B2 (en) Three-dimensional memory device programming with reduced threshold voltage shift
US11205492B2 (en) Responding to power loss
TWI752667B (en) Ternary content addressable memory and memory cell thereof
US6778439B2 (en) Nonvolatile semiconductor memory device with MONOS type memory cell
TWI489593B (en) Hot carrier programming of nand flash memory
Ohnakado et al. Novel self-limiting high-speed program scheme of p-channel DINOR flash memory with n-channel select transistors