TWI786620B - boost control circuit - Google Patents

boost control circuit Download PDF

Info

Publication number
TWI786620B
TWI786620B TW110115942A TW110115942A TWI786620B TW I786620 B TWI786620 B TW I786620B TW 110115942 A TW110115942 A TW 110115942A TW 110115942 A TW110115942 A TW 110115942A TW I786620 B TWI786620 B TW I786620B
Authority
TW
Taiwan
Prior art keywords
switch
signal
control circuit
boost control
voltage
Prior art date
Application number
TW110115942A
Other languages
Chinese (zh)
Other versions
TW202230953A (en
Inventor
羅強
方列義
Original Assignee
大陸商昂寶電子(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商昂寶電子(上海)有限公司 filed Critical 大陸商昂寶電子(上海)有限公司
Publication of TW202230953A publication Critical patent/TW202230953A/en
Application granted granted Critical
Publication of TWI786620B publication Critical patent/TWI786620B/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel

Abstract

本發明公開了一種升壓控制電路。該升壓控制電路包括電感、與電感串聯連接在升壓控制電路的輸入端和輸出端之間的第一開關、以及與電感串聯連接在輸入端和地之間的第二開關,其特徵在於,還包括:開關控制器,被配置為基於表徵升壓控制電路的輸出電壓的電壓回饋訊號和表徵流過第二開關的電流的電流採樣訊號,生成分別用於控制第一開關和第二開關的導通和關斷的第一控制訊號和第二控制訊號。根據本發明實施例提供的升壓控制電路,通過開關控制器來生成開關控制訊號,以基於開關控制訊號來控制該升壓控制電路的相應開關的導通和斷開,進而對輸出電壓進行調變控制。 The invention discloses a boost control circuit. The boost control circuit includes an inductor, a first switch connected in series with the inductor between the input terminal and the output terminal of the boost control circuit, and a second switch connected in series with the inductor between the input terminal and ground, characterized in that , further comprising: a switch controller configured to generate signals for controlling the first switch and the second switch based on the voltage feedback signal representing the output voltage of the boost control circuit and the current sampling signal representing the current flowing through the second switch The first control signal and the second control signal for turning on and turning off. According to the boost control circuit provided by the embodiment of the present invention, a switch control signal is generated by a switch controller, so as to control the on and off of the corresponding switch of the boost control circuit based on the switch control signal, and then modulate the output voltage control.

Description

升壓控制電路 boost control circuit

本發明屬於積體電路領域,尤其涉及一種升壓控制電路。 The invention belongs to the field of integrated circuits, in particular to a boost control circuit.

通常,傳統的電壓調節系統都是含有電流回饋的電壓調變控制系統。這種傳統的系統的最大特點在於其需要進行電感電流的採樣,以產生電流回饋,參與到電壓調節系統的電壓電流環路控制中。 Usually, the traditional voltage regulation system is a voltage modulation control system with current feedback. The biggest feature of this traditional system is that it needs to sample the inductor current to generate current feedback and participate in the voltage and current loop control of the voltage regulation system.

然而,為了進行電流採樣,往往需要引入複雜的電路結構來進行電流採樣,這大大增加了電路面積,並加大了電路設計的複雜度。 However, in order to perform current sampling, it is often necessary to introduce a complex circuit structure to perform current sampling, which greatly increases the circuit area and increases the complexity of circuit design.

本發明實施例提供一種升壓控制電路,不再使用傳統的感測和採樣電感電流的方法,而是通過開關控制器來生成開關控制訊號,以基於開關控制訊號來控制該升壓控制電路的相應開關的導通和斷開,進而對輸出電壓進行調變控制。 The embodiment of the present invention provides a boost control circuit, instead of using the traditional method of sensing and sampling the inductor current, a switch controller is used to generate a switch control signal to control the boost control circuit based on the switch control signal The corresponding switch is turned on and off, and then the output voltage is modulated and controlled.

本發明實施例提供一種升壓控制電路,包括電感、與電感串聯連接在升壓控制電路的輸入端和輸出端之間的第一開關、以及與電感串聯連接在輸入端和地之間的第二開關,其特徵在於,還包括:開關控制器,被配置為基於表徵升壓控制電路的輸出電壓的電壓回饋訊號和表徵流過第二開關的電流的電流採樣訊號,生成分別用於控制第一開關和第二開關的導通和關斷的第一控制訊號和第二控制訊號。 An embodiment of the present invention provides a boost control circuit, including an inductor, a first switch connected in series with the inductor between the input end and the output end of the boost control circuit, and a first switch connected in series with the inductor between the input end and ground The second switch is characterized in that it further includes: a switch controller configured to generate, based on the voltage feedback signal representing the output voltage of the boost control circuit and the current sampling signal representing the current flowing through the second switch, respectively used to control the second switch. A first control signal and a second control signal for turning on and off the first switch and the second switch.

根據本發明實施例提供的升壓控制電路,開關控制器包括第三開關、第四開關、和電容器,開關控制器進一步被配置為:基於電壓回饋訊號和電流採樣訊號,生成用於控制第二開關和第三開關的導通和關斷的第二控制訊號;基於第二控制訊號和電容器上的電壓,生成用於控制第一開關和第四開關的導通和關斷的第一控制訊號;其中,電容器的充 電和放電與第三開關和第四開關的導通和關斷有關。 According to the boost control circuit provided by the embodiment of the present invention, the switch controller includes a third switch, a fourth switch, and a capacitor, and the switch controller is further configured to: generate a voltage for controlling the second switch based on the voltage feedback signal and the current sampling signal a second control signal for turning on and off the switch and the third switch; generating a first control signal for controlling the turning on and off of the first switch and the fourth switch based on the second control signal and the voltage on the capacitor; wherein , the charging of the capacitor Charging and discharging are related to the turn-on and turn-off of the third switch and the fourth switch.

根據本發明實施例提供的升壓控制電路,開關控制器進一步被配置為:基於電壓回饋訊號與第一參考訊號之間的第一比較結果和電流採樣訊號,生成第二控制訊號。 According to the boost control circuit provided by an embodiment of the present invention, the switch controller is further configured to: generate a second control signal based on the first comparison result between the voltage feedback signal and the first reference signal and the current sampling signal.

根據本發明實施例提供的升壓控制電路,開關控制器進一步被配置為:基於第一比較結果和電流採樣訊號與第二參考訊號之間的第二比較結果,生成第二控制訊號。 According to the boost control circuit provided by an embodiment of the present invention, the switch controller is further configured to: generate a second control signal based on the first comparison result and the second comparison result between the current sampling signal and the second reference signal.

根據本發明實施例提供的升壓控制電路,第三開關和第四開關串聯連接在電流源與地之間,電容器並行連接在第四開關的兩端,並且開關控制器還包括:第一比較器,被配置為基於電流採樣訊號與第二參考訊號,生成第二比較結果;觸發器,被配置為基於第一比較結果和第二比較結果,生成第二控制訊號;以及發生器,被配置為基於第二控制訊號和電容器上的電壓,生成第一控制訊號,其中,電容器上的電壓為放電狀態下電容器上的電壓。 According to the boost control circuit provided by the embodiment of the present invention, the third switch and the fourth switch are connected in series between the current source and the ground, the capacitor is connected in parallel at both ends of the fourth switch, and the switch controller further includes: a first comparator The device is configured to generate a second comparison result based on the current sampling signal and the second reference signal; the flip-flop is configured to generate a second control signal based on the first comparison result and the second comparison result; and the generator is configured The first control signal is generated based on the second control signal and the voltage on the capacitor, wherein the voltage on the capacitor is the voltage on the capacitor in a discharged state.

根據本發明實施例提供的升壓控制電路,第二開關和第三開關的導通時間由下式決定: According to the boost control circuit provided by the embodiment of the present invention, the conduction time of the second switch and the third switch is determined by the following formula:

Figure 110115942-A0101-12-0002-1
Figure 110115942-A0101-12-0002-1

其中,T on 為第二開關和第三開關的導通時間,Vref2為第二參考訊號,Rsns為用於產生電流採樣訊號的電阻的阻值,I0為第二開關從關斷到導通時刻對應的電感電流,L為電感的電感值,並且Vin為升壓控制電路的輸入電壓。 Wherein, T on is the turn-on time of the second switch and the third switch, Vref 2 is the second reference signal, Rsns is the resistance value of the resistor used to generate the current sampling signal, and I 0 is the moment from turning off to turning on of the second switch Corresponding to the inductor current, L is the inductance value of the inductor, and Vin is the input voltage of the boost control circuit.

根據本發明實施例提供的升壓控制電路,第一開關和第四開關的導通時間由下式決定: According to the boost control circuit provided by the embodiment of the present invention, the conduction time of the first switch and the fourth switch is determined by the following formula:

Figure 110115942-A0101-12-0002-2
Figure 110115942-A0101-12-0002-2

其中,Toff為第一開關和第四開關的導通時間,Vout為輸出電壓。 Wherein, Toff is the conduction time of the first switch and the fourth switch, and Vout is the output voltage.

根據本發明實施例提供的升壓控制電路,第一開關、第二開關、第三開關、和第四開關均為金屬氧化物半導體場效應電晶體,並 且觸發器為RS觸發器。 According to the boost control circuit provided by the embodiment of the present invention, the first switch, the second switch, the third switch, and the fourth switch are metal-oxide-semiconductor field-effect transistors, and And the flip-flop is an RS flip-flop.

根據本發明實施例提供的升壓控制電路,還包括:第二比較器,被配置為基於電壓回饋訊號與第一參考訊號,生成第一比較訊號;分壓電路,被配置為通過對輸出電壓進行分壓,生成電壓回饋訊號;第一二極體,第一二極體的兩極分別連接至第一開關的源極和汲極,第一開關的閘極接收第一控制訊號;以及第二二極體,第二二極體的兩極分別連接至第二開關的源極和汲極,第二開關的閘極接收第二控制訊號。 The boost control circuit provided according to an embodiment of the present invention further includes: a second comparator configured to generate a first comparison signal based on the voltage feedback signal and the first reference signal; The voltage is divided to generate a voltage feedback signal; the first diode, the two poles of the first diode are respectively connected to the source and drain of the first switch, and the gate of the first switch receives the first control signal; and the second Two diodes, the two poles of the second diode are respectively connected to the source and the drain of the second switch, and the gate of the second switch receives the second control signal.

根據本發明實施例提供的升壓控制電路,升壓控制電路工作在連續傳導模式或不連續傳導模式。 According to the boost control circuit provided by the embodiment of the present invention, the boost control circuit works in a continuous conduction mode or a discontinuous conduction mode.

本發明實施例的升壓控制電路,不再使用傳統的感測和採樣電感電流的方法,而是通過開關控制器來生成開關控制訊號,以基於開關控制訊號來控制該升壓控制電路的相應開關的導通和斷開,進而對輸出電壓進行調變控制。 The boost control circuit of the embodiment of the present invention no longer uses the traditional method of sensing and sampling the inductor current, but uses a switch controller to generate a switch control signal to control the corresponding voltage of the boost control circuit based on the switch control signal. The switch is turned on and off, and then the output voltage is modulated and controlled.

100,200:升壓控制電路 100,200: boost control circuit

210:開關控制器 210: switch controller

220:比較器 220: comparator

230:分壓電路 230: Voltage divider circuit

2101:比較器 2101: comparator

2102:觸發器 2102: Trigger

2103:Toff發生器 2103: Toff generator

a:節點 a: node

C1,C2,C3:電容器 C1, C2, C3: Capacitors

D1,D2,D3,D4:二極體 D1, D2, D3, D4: Diodes

HG,LG:訊號 HG,LG:Signal

I1,I2:電流 I1, I2: current

L:電感 L: inductance

M1,M2,M3,M4,SW1,SW2:開關 M1, M2, M3, M4, SW1, SW2: switch

R0,R1,R2,Rsns:電阻 R0, R1, R2, Rsns: resistance

T1,T2,T3:時刻 T1, T2, T3: time

Ton,Toff:時間 Ton, Toff: time

V1:谷值 V1: valley value

V2:峰值 V2: Peak

Vc:輸出訊號 Vc: output signal

Vfb:電壓回饋訊號 Vfb: voltage feedback signal

Vin:輸入電壓 Vin: input voltage

Vout:輸出電壓 Vout: output voltage

Vramp:斜坡電壓(訊號) Vramp: ramp voltage (signal)

V_ramp1:上升斜坡訊號 V_ramp1: rising ramp signal

Vref:參考訊號 Vref: reference signal

Vref2:參考電壓(訊號) Vref2: reference voltage (signal)

Vsns:電流採樣訊號 Vsns: current sampling signal

為了更清楚地說明本發明實施例的技術方案,下面將對本發明實施例中所需要使用的圖式作簡單的介紹,對於本領域普通技術人員來講,在不付出創造性勞動的前提下,還可以根據這些圖式獲得其他的圖式。 In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the diagrams that need to be used in the embodiments of the present invention will be briefly introduced below. Other schemas can be derived from these schemas.

圖1示出了習知技術提供的升壓控制電路100的結構示意圖; FIG. 1 shows a schematic structural diagram of a boost control circuit 100 provided in the prior art;

圖2是本發明實施例提供的升壓控制電路200的結構示意圖; FIG. 2 is a schematic structural diagram of a boost control circuit 200 provided by an embodiment of the present invention;

圖3是本發明實施例提供的升壓控制電路中的開關控制器的結構示意圖; 3 is a schematic structural diagram of a switch controller in a boost control circuit provided by an embodiment of the present invention;

圖4是本發明實施例提供的處於連續傳導模式下的升壓控制電路中各個訊號的波形示意圖;以及 FIG. 4 is a schematic diagram of waveforms of various signals in the boost control circuit in the continuous conduction mode provided by an embodiment of the present invention; and

圖5是本發明實施例提供的處於非連續傳導模式下的升壓控制電路中各個訊號的波形示意圖。 FIG. 5 is a schematic diagram of waveforms of various signals in the boost control circuit in the discontinuous conduction mode provided by an embodiment of the present invention.

下面將詳細描述本發明的各個方面的特徵和示例性實施 例,為了使本發明的目的、技術方案及優點更加清楚明白,以下結合圖式及具體實施例,對本發明進行進一步詳細描述。應理解,此處所描述的具體實施例僅被配置為解釋本發明,並不被配置為限定本發明。對於本領域技術人員來說,本發明可以在不需要這些具體細節中的一些細節的情況下實施。下面對實施例的描述僅僅是為了通過示出本發明的示例來提供對本發明更好的理解。 Features and exemplary implementations of various aspects of the invention are described in detail below For example, in order to make the purpose, technical solutions and advantages of the present invention more clear, the present invention will be further described in detail below in conjunction with the drawings and specific embodiments. It should be understood that the specific embodiments described here are only configured to explain the present invention, not to limit the present invention. It will be apparent to one skilled in the art that the present invention may be practiced without some of these specific details. The following description of the embodiments is only to provide a better understanding of the present invention by showing examples of the present invention.

需要說明的是,在本文中,諸如第一和第二等之類的關係術語僅僅用來將一個實體或者操作與另一個實體或操作區分開來,而不一定要求或者暗示這些實體或操作之間存在任何這種實際的關係或者順序。而且,術語“包括”、“包含”或者其任何其他變體意在涵蓋非排他性的包含,從而使得包括一系列要素的過程、方法、物品或者設備不僅包括那些要素,而且還包括沒有明確列出的其他要素,或者是還包括為這種過程、方法、物品或者設備所固有的要素。在沒有更多限制的情況下,由語句“包括......”限定的要素,並不排除在包括所述要素的過程、方法、物品或者設備中還存在另外的相同要素。 It should be noted that in this article, relational terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply that there is a relationship between these entities or operations. There is no such actual relationship or order between them. Furthermore, the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus comprising a set of elements includes not only those elements, but also includes elements not expressly listed. other elements of or also include elements inherent in such a process, method, article, or device. Without further limitations, an element defined by the word "comprising..." does not exclude the presence of additional same elements in the process, method, article or device comprising said element.

為了更好地理解本發明,首先,對習知技術進行介紹,參考圖1,圖1示出了習知技術提供的升壓控制電路100的結構示意圖。 In order to better understand the present invention, first, the prior art is introduced, referring to FIG. 1 , which shows a schematic structural diagram of a boost control circuit 100 provided by the prior art.

在圖1中,該升壓控制電路100包括電感L、開關M1、開關M2、二極體D1、二極體D2以及電容器C1,如圖1所示,電感L的一端連接至該電路的輸入端,電感L的另一端連接至開關M1的一端,開關M1的另一端連接至該電路的輸出端,並且輸出端經由電容器C1接地,開關M2的一端連接至電感L和開關M1的公共端,開關M2的另一端接地,並且用於控制開關M1和M2的導通和關斷的開關控制訊號分別為HG和LG,二極體D1的兩極連接在開關M1中除用於接收HG訊號的端子之外的兩個端子之間,而二極體D2的兩極連接在開關M2中除用於接收LG訊號的端子之外的兩個端子之間。 In FIG. 1, the boost control circuit 100 includes an inductor L, a switch M1, a switch M2, a diode D1, a diode D2, and a capacitor C1. As shown in FIG. 1, one end of the inductor L is connected to the input of the circuit end, the other end of the inductor L is connected to one end of the switch M1, the other end of the switch M1 is connected to the output end of the circuit, and the output end is grounded via the capacitor C1, and one end of the switch M2 is connected to the common end of the inductor L and the switch M1, The other end of the switch M2 is grounded, and the switch control signals used to control the on and off of the switches M1 and M2 are HG and LG respectively, and the two poles of the diode D1 are connected to the terminal of the switch M1 except for receiving the HG signal. The two poles of the diode D2 are connected between the two terminals of the switch M2 except the terminal for receiving the LG signal.

其中,Vin為該升壓控制電路100的輸入電壓,Vout為該升壓控制電路100的輸出電壓,針對升壓控制電路100,輸出電壓Vout大 於輸入電壓Vin;M1和M2是用於控制升壓的開關,例如,M1是輸出控制開關,M2是電感儲能開啟開關;L是用於控制升壓的電感;Ton是控制開關M2導通的時間,而Toff是控制開關M1導通的時間。 Wherein, Vin is the input voltage of the boost control circuit 100, Vout is the output voltage of the boost control circuit 100, for the boost control circuit 100, the output voltage Vout is larger For the input voltage Vin; M1 and M2 are switches used to control the boost, for example, M1 is the output control switch, M2 is the inductance energy storage switch; L is the inductance used to control the boost; Ton is the control switch M2 conduction time, and Toff is the time when the control switch M1 is turned on.

在這種傳統的電路中,其是通過添加電流採樣電路,用於對電感電流進行採樣,以產生電流回饋訊號,並基於該電流回饋訊號來控制開關M1和M2的導通和關斷,進而調變輸出電壓Vout,使得輸出電壓Vout能夠大於輸入電壓Vin。 In this traditional circuit, a current sampling circuit is added to sample the inductor current to generate a current feedback signal, and based on the current feedback signal to control the on and off of the switches M1 and M2, and then adjust The output voltage Vout is changed so that the output voltage Vout can be greater than the input voltage Vin.

然而,這種傳統的通過電流採樣電路來進行電感電流的採樣,以產生電流回饋,進而基於電流回饋來調變輸出電壓的方法,大大增加了電路面積,並加大了電路設計的複雜度。 However, this traditional method of sampling the inductor current through a current sampling circuit to generate current feedback, and then modulating the output voltage based on the current feedback greatly increases the circuit area and increases the complexity of the circuit design.

為了解決習知技術問題,本發明實施例提供了一種升壓控制電路。本發明實施例提供的升壓控制電路不再感測和採樣電感電流,而是通過伏秒平衡原理來建立對輸出電壓的調變控制。 In order to solve the problem of the conventional technology, an embodiment of the present invention provides a boost control circuit. The boost control circuit provided by the embodiment of the present invention no longer senses and samples the inductor current, but establishes modulation control on the output voltage through the principle of volt-second balance.

應注意的是,本發明實施例提供的這種升壓控制電路僅僅是一種示例實現方式,本發明對此不作限制,例如,本發明實施例提供的這種原理實質上也可以應用於例如降壓控制電路等,其等同物和構造等均在本發明的範圍之內。 It should be noted that the boost control circuit provided by the embodiment of the present invention is only an exemplary implementation manner, and the present invention is not limited thereto. For example, the principle provided by the embodiment of the present invention can also be applied to the Voltage control circuits, etc., their equivalents and configurations, etc. are within the scope of the present invention.

繼續參考圖1,基於伏秒平衡原理,在輸出開關M2導通時,流經電感的電流的變化可以表示為下式: Continuing to refer to Figure 1, based on the principle of volt-second balance, when the output switch M2 is turned on, the change of the current flowing through the inductor can be expressed as the following formula:

Figure 110115942-A0101-12-0005-3
Figure 110115942-A0101-12-0005-3

可見,在公式(1)中,電感電流IL是VinT on 的函數,如上所述,在傳統的結構中,這個電感電流被感測和採樣,並在一個電阻(例如,電阻R0)上產生電壓(如公式(2)所示),進而將該電壓輸入到升壓控制電路的環路控制中。 It can be seen that in Equation (1), the inductor current IL is a function of Vin and T on , as mentioned above, in the traditional structure, this inductor current is sensed and sampled, and across a resistor (for example, resistor R0) Generate a voltage (as shown in equation (2)), and then input this voltage into the loop control of the boost control circuit.

Figure 110115942-A0101-12-0005-4
Figure 110115942-A0101-12-0005-4

其中,k是電感電流被感測和採樣後的係數,它是一個常數。電阻R0是用於將電流轉換為電壓的電阻,該電阻R0可以是與電感L 串聯連接的電阻,也可以是電流採樣電路中用於將電流轉換為電壓的電阻,Vin是該結構的輸入電壓,T on 是開關M2的導通時間。 Among them, k is the coefficient of the sensed and sampled inductor current, which is a constant. Resistor R0 is a resistor used to convert current to voltage. This resistor R0 can be a resistor connected in series with inductor L, or it can be a resistor used to convert current to voltage in a current sampling circuit. Vin is the input voltage of the structure , T on is the on-time of switch M2.

作為一個示例,參考圖2,圖2是本發明實施例提供的升壓控制電路200的結構示意圖。 As an example, refer to FIG. 2 , which is a schematic structural diagram of a boost control circuit 200 provided by an embodiment of the present invention.

如圖2所示,該升壓控制電路200可以包括電感L、開關M3、開關M4、二極體D3、二極體D4、電容器C2、開關控制器210、比較器220以及分壓電路230。 As shown in FIG. 2 , the boost control circuit 200 may include an inductor L, a switch M3, a switch M4, a diode D3, a diode D4, a capacitor C2, a switch controller 210, a comparator 220 and a voltage divider circuit 230. .

作為一個示例,開關控制器210可以被配置為基於表徵升壓控制電路200的輸出電壓的電壓回饋訊號(例如,Vfb)和表徵流過開關M4的電流的電流採樣訊號(例如,Vsns),生成分別用於控制開關M3的導通和關斷的訊號HG,以及用於控制開關M4的導通和關斷的訊號LG。 As an example, the switch controller 210 may be configured to generate The signal HG for controlling the turn-on and turn-off of the switch M3 and the signal LG for controlling the turn-on and turn-off of the switch M4 are respectively used.

具體地,在某些實施例中,開關M3和M4可以是MOS電晶體(Metal-Oxide-Semiconductor,金屬氧化物半導體場效應電晶體)。 Specifically, in some embodiments, the switches M3 and M4 may be MOS transistors (Metal-Oxide-Semiconductor, metal-oxide-semiconductor field-effect transistors).

作為一個示例,電感L的一端可以連接至升壓控制電路200的輸入端,電感L的另一端可以連接至開關M3的一端,開關M3的另一端可以連接至升壓控制電路200的輸出端,二極體D3的兩極可以連接至開關M3的兩端(例如,源極和汲極),開關M4的一端可以連接至電感L和開關M3的公共端(例如,節點a),開關M4的另一端可以經由電阻Rsns接地,二極體D4的兩極可以連接至開關M4的兩端(例如,源極和汲極),其中電阻Rsns用於對流經開關M4的電流進行採樣,生成電流採樣訊號(例如,Vsns),其中,該電流採樣訊號Vsns是一個類似於V_ramp1的上升斜坡訊號,開關控制器210可以用於接收表徵升壓控制電路200的輸出電壓的電壓回饋訊號(例如,Vfb)和電流採樣訊號(例如,Vsns),以生成兩個開關控制訊號(例如,LG和HG),其中開關M3的閘極可以接收訊號HG,以基於訊號HG來導通和關斷,而開關M4的閘極可以接收訊號LG,以基於訊號LG來導通和關斷,進而對升壓控制電路200的輸出電壓Vout進行調變。 As an example, one end of the inductor L can be connected to the input end of the boost control circuit 200, the other end of the inductor L can be connected to one end of the switch M3, and the other end of the switch M3 can be connected to the output end of the boost control circuit 200, Two poles of the diode D3 can be connected to both ends of the switch M3 (for example, source and drain), one end of the switch M4 can be connected to the common terminal of the inductor L and the switch M3 (for example, node a), and the other end of the switch M4 One end can be grounded through the resistor Rsns, and the two poles of the diode D4 can be connected to both ends of the switch M4 (for example, source and drain), wherein the resistor Rsns is used to sample the current flowing through the switch M4 to generate a current sampling signal ( For example, Vsns), wherein the current sampling signal Vsns is a rising ramp signal similar to V_ramp1, the switch controller 210 can be used to receive the voltage feedback signal (for example, Vfb) and the current representing the output voltage of the boost control circuit 200 Sampling a signal (eg, Vsns) to generate two switch control signals (eg, LG and HG), wherein the gate of switch M3 can receive signal HG to turn on and off based on signal HG, and the gate of switch M4 The signal LG can be received to be turned on and off based on the signal LG, so as to modulate the output voltage Vout of the boost control circuit 200 .

在一些實施例中,分壓電路230可以用於對升壓控制電 路200的輸出電壓Vout進行分壓,以生成電壓回饋訊號(例如,Vfb),比較器220可以用於接收參考訊號Vref和電壓回饋訊號(例如,Vfb),例如比較器220的負相輸入端可以用於接收參考訊號Vref,並且正相輸入端可以用於接收電壓回饋訊號Vfb,以對二者進行比較,並產生訊號Vc以輸出至開關控制器210,並且其中,分壓電路230可以包括兩個串聯連接的電阻(例如,R1和R2),本發明對此不作限制。 In some embodiments, the voltage divider circuit 230 can be used to control the boost voltage The output voltage Vout of the circuit 200 is divided to generate a voltage feedback signal (for example, Vfb). The comparator 220 can be used to receive the reference signal Vref and the voltage feedback signal (for example, Vfb). For example, the negative input terminal of the comparator 220 It can be used to receive the reference signal Vref, and the non-inverting input terminal can be used to receive the voltage feedback signal Vfb, so as to compare the two, and generate a signal Vc to output to the switch controller 210, and wherein, the voltage divider circuit 230 can be Including two resistors connected in series (for example, R1 and R2), the present invention is not limited thereto.

通過本發明實施例提供的上述技術方案,不再需要對電感電流進行感測和採樣,而是通過開關控制器來生成開關控制訊號,以控制開關的導通和關斷,進而調變輸出電壓,在保證轉換效率的前提下實現了面積極小的升壓電路,利用較少的資源來實現電壓調變,以適用在有限資源的應用中。 Through the above technical solution provided by the embodiment of the present invention, it is no longer necessary to sense and sample the inductor current, but to generate a switch control signal through the switch controller to control the on and off of the switch, and then modulate the output voltage. On the premise of ensuring conversion efficiency, a very small boost circuit is realized, and less resources are used to realize voltage regulation, so as to be suitable for applications with limited resources.

作為一個示例,參考圖3,圖3是本發明實施例提供的升壓控制電路中的開關控制器的結構示意圖。 As an example, refer to FIG. 3 , which is a schematic structural diagram of a switch controller in a boost control circuit provided by an embodiment of the present invention.

在圖3所示的實施例中,開關控制器210可以包括開關SW1和SW2以及電容器C3,該開關控制器210可以被配置為基於電壓回饋訊號Vfb和電流採樣訊號Vsns來生成用於控制開關SW1和M4(參見圖2)的導通和關斷的控制訊號LG,進而基於訊號LG和電容器C3上的電壓來生成用於控制開關SW2和M3(參見圖2)的導通和關斷的控制訊號HG,並且電容器C3在開關SW1導通、開關SW2關斷時進行充電,並在開關SW1關斷、開關SW2導通時進行放電。在某些實施例中,開關SW1和SW2可以為MOS電晶體。 In the embodiment shown in FIG. 3 , the switch controller 210 may include switches SW1 and SW2 and a capacitor C3, and the switch controller 210 may be configured to generate a voltage for controlling the switch SW1 based on the voltage feedback signal Vfb and the current sampling signal Vsns. and the turn-on and turn-off control signal LG of M4 (see Figure 2), and then generate the control signal HG for controlling the turn-on and turn-off of switches SW2 and M3 (see Figure 2) based on the signal LG and the voltage on the capacitor C3 , and the capacitor C3 is charged when the switch SW1 is turned on and the switch SW2 is turned off, and is discharged when the switch SW1 is turned off and the switch SW2 is turned on. In some embodiments, switches SW1 and SW2 may be MOS transistors.

以下通過示例的方式進行詳細介紹,具體地,如圖3所示,開關控制器210還可以包括比較器2101、觸發器2102以及Toff發生器等,在某些實施例中,觸發器2102可以為RS觸發器。 The following will be described in detail by way of example. Specifically, as shown in FIG. RS flip-flop.

作為一個示例,比較器2101的兩個輸入端可以接收電流採樣訊號Vsns和參考電壓Vref2,例如比較器2101的負相輸入端可以用於接收參考電壓Vref2,並且正相輸入端可以用於接收電流採樣訊號Vsns,以對二者進行比較,比較器2101的輸出端可以連接至例如RS觸發器2102 的重定端(標記為R),比較器220(參見圖2)的輸出端可以連接至RS觸發器2102的置位元端(標記為S),RS觸發器2102的輸出端可以連接至開關SW1的一端(例如,閘極),以控制開關SW1的導通和關斷,開關SW1和開關SW2串聯連接在電流源(標記為I1)和地之間,電容器C3並聯連接在開關SW2的兩端,RS觸發器的輸出端還可以連接至Toff發生器的一個輸入端,Toff發生器的另一輸入端可以連接至開關SW1和開關SW2的公共端,以接收放電狀態下電容器C3上的電壓,Toff發生器的輸出端可以連接至開關SW2的一端(例如,閘極),以控制開關SW2的導通和關斷。 As an example, the two input terminals of the comparator 2101 can receive the current sampling signal Vsns and the reference voltage Vref2, for example, the negative input terminal of the comparator 2101 can be used to receive the reference voltage Vref2, and the positive input terminal can be used to receive the current The sampling signal Vsns is used to compare the two, and the output terminal of the comparator 2101 can be connected to, for example, an RS flip-flop 2102 The reset terminal (marked as R), the output terminal of the comparator 220 (see FIG. 2 ) can be connected to the set element terminal (marked as S) of the RS flip-flop 2102, and the output terminal of the RS flip-flop 2102 can be connected to the switch SW1 One end (for example, gate) of the switch SW1 is controlled to be turned on and off, the switch SW1 and the switch SW2 are connected in series between the current source (marked as I1) and the ground, and the capacitor C3 is connected in parallel across the switch SW2, The output terminal of the RS flip-flop can also be connected to one input terminal of the Toff generator, and the other input terminal of the Toff generator can be connected to the common terminal of the switch SW1 and the switch SW2 to receive the voltage on the capacitor C3 in the discharge state, Toff The output terminal of the generator can be connected to one terminal (eg, gate) of the switch SW2 to control the switch SW2 to be turned on and off.

具體地,比較器2101可以被配置為接收電流採樣訊號Vsns和參考訊號Vref2(用於確定電流採樣訊號Vsns是否抬升到參考訊號Vref2),以對二者進行比較,並將比較結果輸出到RS觸發器2102,RS觸發器2102還接收來自比較器220(參見圖2)的比較結果Vc,以基於這兩個比較結果來輸出控制訊號LG至開關SW1和M4,以控制開關SW1和M4的導通和關斷,即,Ton為SW1和M4的導通時間,當訊號LG控制開關SW1導通時,電流源(例如,I1,該電流源可提供的電流大小為Vin/R1)對電容器C3進行充電,在電容器C3上產生一個上升的斜坡電壓(這將在下面詳細介紹),在SW1從導通切換至關斷的時刻使得開關SW2導通(或經過預定時間段導通,本發明對此不做限制),此時電容器C3被放電,在電容器C3上產生一個下降的斜坡電壓(這將在下面詳細介紹),該上升的和下降的斜坡電壓在圖3中標記為Vramp,Toff發生器2103可以被配置為基於訊號LG和放電狀態下電容器C3上的電壓(即,下降的斜坡電壓)來生成訊號HG,進而基於訊號HG來控制開關SW2的導通和關斷。 Specifically, the comparator 2101 can be configured to receive the current sampling signal Vsns and the reference signal Vref2 (used to determine whether the current sampling signal Vsns rises to the reference signal Vref2), to compare the two, and output the comparison result to the RS trigger RS flip-flop 2102, RS flip-flop 2102 also receives the comparison result Vc from the comparator 220 (see FIG. 2), so as to output the control signal LG to the switches SW1 and M4 based on the two comparison results to control the conduction and switching of the switches SW1 and M4. Turn off, that is, Ton is the conduction time of SW1 and M4. When the signal LG controls the switch SW1 to be turned on, the current source (for example, I1, the current size that the current source can provide is Vin/R1) charges the capacitor C3. A rising ramp voltage is generated on the capacitor C3 (this will be described in detail below), and the switch SW2 is turned on (or turned on after a predetermined time period, the present invention is not limited to this) at the moment when SW1 is switched from on to off. When the capacitor C3 is discharged, a falling ramp voltage (this will be described in detail below) is generated on the capacitor C3. The rising and falling ramp voltages are marked as Vramp in FIG. 3, and the Toff generator 2103 can be configured to be based on The signal LG and the voltage on the capacitor C3 in the discharge state (ie, the falling ramp voltage) generate the signal HG, and then control the switch SW2 to be turned on and off based on the signal HG.

綜上,該Ton由流經開關M4的採樣電流達到參考電流的時間決定,Ton的公式如下: To sum up, the Ton is determined by the time when the sampling current flowing through the switch M4 reaches the reference current, and the formula of Ton is as follows:

Figure 110115942-A0101-12-0008-5
Figure 110115942-A0101-12-0008-5

其中,T on 為開關SW1和M4的導通時間,Vref2為參考 訊號,Rsns為用於產生電流採樣訊號Vsns的電阻的阻值,I0為開關M4從關斷到導通時刻對應的電感電流,針對不連續導通模式(Discontinuous Conduction Mode,DCM),I0為0,L為電感的電感值,並且Vin為升壓控制電路的輸入電壓。 Wherein, T on is the turn-on time of the switches SW1 and M4, Vref 2 is the reference signal, Rsns is the resistance value of the resistor used to generate the current sampling signal Vsns, I 0 is the inductor current corresponding to the moment when the switch M4 is turned off, For the discontinuous conduction mode (Discontinuous Conduction Mode, DCM), I 0 is 0, L is the inductance value of the inductor, and Vin is the input voltage of the boost control circuit.

既然電感L、輸入電壓Vin和時間Ton都是已知的,在本發明實施例提供的電路中,產生一個類似的電流,並且具有公式(1)一樣的對輸入Vin和時間Ton的函數關係,就可以表徵這個電感電流。其中,當開關SW1導通,開關SW2關斷時,電容器C3處於充電狀態,電流I1在電容器C3上產生一個上升的斜坡電壓,該斜坡電壓的維持時間為Ton,並且充電狀態下電容器C3上的斜坡電壓可以表示為: Since the inductance L, the input voltage Vin and the time Ton are all known, in the circuit provided by the embodiment of the present invention, a similar current is generated and has the same functional relationship to the input Vin and the time Ton as formula (1), The inductor current can be characterized. Wherein, when the switch SW1 is turned on and the switch SW2 is turned off, the capacitor C3 is in the charging state, and the current I1 generates a rising slope voltage on the capacitor C3, and the maintenance time of the slope voltage is Ton, and the slope on the capacitor C3 in the charging state Voltage can be expressed as:

Figure 110115942-A0101-12-0009-6
Figure 110115942-A0101-12-0009-6

這裡,

Figure 110115942-A0101-12-0009-7
。只要選擇
Figure 110115942-A0101-12-0009-8
V ramp2就可以完全代表V ramp1。 here,
Figure 110115942-A0101-12-0009-7
. just choose
Figure 110115942-A0101-12-0009-8
, V ramp 2 can completely represent V ramp 1 .

同理,根據伏秒平衡原理,在圖1中,當開關M2關斷,開關M1開啟時,滿足下式: Similarly, according to the principle of volt-second balance, in Figure 1, when the switch M2 is turned off and the switch M1 is turned on, the following formula is satisfied:

Figure 110115942-A0101-12-0009-9
Figure 110115942-A0101-12-0009-9

基於該原理,在圖3所示的實施例中,當開關SW1關斷,開關SW2開啟時,電流I2開始對電容器C3進行放電,放電時間為Toff,在放電階段期間,電容器C3上的電壓線性下降,在電容器C3上產生一個下降的斜坡電壓,開關SW2導通的脈衝寬度為Toff。應注意的是,其電路的實現方式不限於本發明提供的實施例,在不脫離本發明的精神和範圍的情況下,本領域技術人員可以基於上面描述的伏秒平衡原理來設計該電路的其他實現方式。選擇I2為以下公式,可以滿足公式(5)所反應的伏秒平衡。 Based on this principle, in the embodiment shown in Figure 3, when the switch SW1 is turned off and the switch SW2 is turned on, the current I2 starts to discharge the capacitor C3 for a discharge time of Toff, during the discharge phase, the voltage on the capacitor C3 is linear A falling ramp voltage is generated on the capacitor C3, and the pulse width of the switch SW2 is turned on is Toff. It should be noted that the implementation of the circuit is not limited to the embodiments provided by the present invention, and those skilled in the art can design the circuit based on the volt-second balance principle described above without departing from the spirit and scope of the present invention. other implementations. Selecting I2 as the following formula can satisfy the volt-second balance reflected by formula (5).

Figure 110115942-A0101-12-0009-10
Figure 110115942-A0101-12-0009-10

參考圖3和圖4,圖4是本發明實施例提供的處於連續傳導模式下的升壓控制電路中各個訊號的波形示意圖。其中,圖4(a)示出 了圖3中所示的電容器上的電壓Vramp與時間之間的關係的曲線示意圖;圖4(b)示出了圖3中所示的訊號LG與時間之間的關係的曲線示意圖;以及圖4(c)示出了圖3中所示的訊號HG與時間之間的關係的曲線示意圖。 Referring to FIG. 3 and FIG. 4 , FIG. 4 is a schematic waveform diagram of various signals in the boost control circuit in continuous conduction mode provided by an embodiment of the present invention. Among them, Figure 4(a) shows A schematic diagram of the curve showing the relationship between the voltage Vramp on the capacitor shown in Figure 3 and time; Figure 4 (b) shows a schematic diagram of the curve showing the relationship between the signal LG and time shown in Figure 3; and 4(c) shows a schematic diagram of the relationship between the signal HG and time shown in FIG. 3 .

作為一個示例,當開關SW1開啟,開關SW2關斷時,電流I1開始對電容器C3進行充電,充電時間為Ton(對應於圖4中的時間段T0-T1),在時間段T0-T1期間,電容器C3上的電壓Vramp線性上升(例如,在時間段T0-T1期間,電壓Vramp從V1(谷底)線性上升至V2(峰值),參見公式(4)),並且訊號LG處於高位準,而訊號HG處於低位準;以及當開關SW1關斷,開關SW2開啟時,電流I2開始對電容器C3進行放電,放電時間為Toff(對應於時間段T1-T2),在時間段T1-T2期間,電容器C3上的電壓(即,Vramp)線性下降(例如,在時間段T1-T2期間,訊號Vramp從V2(峰值)線性下降至V1(谷底),參見公式(6)),並且訊號LG處於低位準,而訊號HG處於高位準。 As an example, when the switch SW1 is turned on and the switch SW2 is turned off, the current I1 starts to charge the capacitor C3 for a charging time of Ton (corresponding to the time period T0-T1 in FIG. 4 ). During the time period T0-T1, The voltage Vramp on the capacitor C3 rises linearly (for example, during the time period T0-T1, the voltage Vramp rises linearly from V1 (bottom) to V2 (peak), see formula (4)), and the signal LG is at a high level, and the signal HG is at a low level; and when the switch SW1 is turned off and the switch SW2 is turned on, the current I2 starts to discharge the capacitor C3, and the discharge time is Toff (corresponding to the time period T1-T2). During the time period T1-T2, the capacitor C3 The voltage on (ie, Vramp) decreases linearly (for example, during the time period T1-T2, the signal Vramp decreases linearly from V2 (peak value) to V1 (valley), see formula (6)), and the signal LG is at a low level, And the signal HG is at a high level.

參考圖3和圖4,在圖3中使用Toff發生器來表徵開關SW2的控制訊號HG的產生。其中,訊號HG的上升沿可以由訊號LG的下降沿產生(例如,在時刻T1,訊號LG從高位準切換為低位準,使得訊號HG從低位準切換為高位準,參見圖4),而訊號HG的下降沿在訊號Vramp由峰值V2下降至谷值V1的時刻產生(例如,在時刻T2,當訊號Vramp下降至谷值V1時,訊號HG從高位準切換為低位準,參見圖4)。 Referring to FIG. 3 and FIG. 4 , in FIG. 3 a Toff generator is used to characterize the generation of the control signal HG of the switch SW2 . Wherein, the rising edge of the signal HG can be generated by the falling edge of the signal LG (for example, at time T1, the signal LG is switched from a high level to a low level, so that the signal HG is switched from a low level to a high level, see FIG. 4 ), and the signal The falling edge of HG is generated when the signal Vramp falls from the peak value V2 to the valley value V1 (for example, at time T2, when the signal Vramp falls to the valley value V1, the signal HG switches from a high level to a low level, see FIG. 4 ).

根據公式(6)來選取電容C3的放電電流,訊號Vramp從峰值V2下降至谷值V1所經歷的時間就是實現伏秒平衡所需的時間Toff。 The discharge current of the capacitor C3 is selected according to formula (6), and the time taken for the signal Vramp to drop from the peak value V2 to the valley value V1 is the time Toff required to achieve volt-second balance.

這樣,公式(5)所反應的電感電流在伏秒平衡下升壓的開關M3和M4工作時的電流關係,可以轉換為公式(7)所示的電壓關係: In this way, the current relationship of the inductor current reflected by the formula (5) when the switches M3 and M4 are boosted under the volt-second balance can be converted into the voltage relationship shown in the formula (7):

Figure 110115942-A0101-12-0010-11
Figure 110115942-A0101-12-0010-11

所以, so,

Figure 110115942-A0101-12-0010-12
Figure 110115942-A0101-12-0010-12

因此,輸入電壓Vin、輸出電壓Vout以及開關SW1和M4的導通時間Ton(參見公式(3))都是已知的參數,基於公式(8)來設置開關SW2和M3的導通時間Toff,在Toff時段期間(例如,圖4中從T1時刻至T2時刻),開關M3和SW2導通。 Therefore, the input voltage Vin , the output voltage Vout , and the on-time Ton of switches SW1 and M4 (see formula (3)) are all known parameters, and the on-time Toff of switches SW2 and M3 is set based on formula (8). During a time period (eg, from time T1 to time T2 in FIG. 4 ), switches M3 and SW2 are turned on.

作為一個示例,結合圖2對本發明實施例提供的升壓控制電路的工作原理進行介紹,當電壓回饋訊號Vfb小於參考訊號Vref時,比較器220的輸出訊號Vc發生翻轉,其上升沿可以開啟開關控制器210中的開關SW1(參見圖3)。隨後,比較器220的輸出訊號Vc被重定。經過導通時間Ton之後,開關SW1被關斷,也就是說,開關SW1在導通時間Ton期間保持處於導通狀態。在某些實施例中,可以在開關SW1被關斷的時刻之後,間隔例如十幾奈秒(可以根據需求進行選擇),接通開關SW2,使得開關SW2經過導通時間Toff之後被關斷,即開關SW2在導通時間Toff期間保持處於導通狀態。而在某些其他實施例中,間隔時間可以為零,即可以在開關SW1被斷開的時刻,立即接通開關SW2,使得開關SW2經過導通時間Toff之後被關斷,即開關SW2在導通時間Toff期間保持處於導通狀態。 As an example, the working principle of the boost control circuit provided by the embodiment of the present invention is introduced with reference to FIG. 2 . When the voltage feedback signal Vfb is smaller than the reference signal Vref, the output signal Vc of the comparator 220 is reversed, and its rising edge can turn on the switch. Switch SW1 in controller 210 (see FIG. 3 ). Then, the output signal Vc of the comparator 220 is reset. After the on-time Ton elapses, the switch SW1 is turned off, that is, the switch SW1 remains in the on-state during the on-time Ton. In some embodiments, after the moment when the switch SW1 is turned off, the switch SW2 can be turned on at intervals of, for example, tens of nanoseconds (can be selected according to requirements), so that the switch SW2 is turned off after the on-time Toff, that is The switch SW2 is kept in an on-state during the on-time Toff. In some other embodiments, the interval time can be zero, that is, the switch SW2 can be turned on immediately when the switch SW1 is turned off, so that the switch SW2 can be turned off after the on-time Toff, that is, the switch SW2 can be turned off during the on-time It remains on during Toff.

在開關SW2關斷的時刻,使能比較器220的輸出,如果比較器220的輸出訊號Vc翻轉出一個上升沿,則立即開始一下個週期的上述操作,這時該升壓控制電路工作在連續傳導模式(Constant Current Mode,CCM),如圖4所示。否則,一直等待直到比較器220的輸出訊號Vc翻轉出一個上升沿,再開始下一個週期的上述操作,這時該升壓控制電路工作在不連續導通模式(Discontinuous Conduction Mode,DCM),如圖5所示,圖5是本發明實施例提供的處於非連續傳導模式下的升壓控制電路中各個訊號的波形示意圖,其中,時間段(T3-T2)表示上述等待的時間。 When the switch SW2 is turned off, the output of the comparator 220 is enabled. If the output signal Vc of the comparator 220 reverses a rising edge, the above-mentioned operation of the next cycle starts immediately. At this time, the boost control circuit works in continuous conduction mode (Constant Current Mode, CCM), as shown in Figure 4. Otherwise, wait until the output signal Vc of the comparator 220 flips to a rising edge, and then start the above operation of the next cycle. At this time, the boost control circuit works in a discontinuous conduction mode (Discontinuous Conduction Mode, DCM), as shown in FIG. 5 As shown, FIG. 5 is a schematic waveform diagram of various signals in the boost control circuit in the discontinuous conduction mode provided by the embodiment of the present invention, wherein the time period (T3-T2) represents the above-mentioned waiting time.

綜上,通過本發明實施例提供的升壓控制電路,不再使用傳統的感測和採樣電感電流的方法,而是基於伏秒平衡原理來建立對輸出電壓的升壓調整控制。該電路的目的是在保證轉換效率的前提下實現面積較小的升壓電路,即用最小的資源來實現對輸出電壓的調變,進而使用 在資源有限的應用中。 To sum up, the boost control circuit provided by the embodiment of the present invention no longer uses the traditional method of sensing and sampling the inductor current, but establishes the boost adjustment control of the output voltage based on the principle of volt-second balance. The purpose of this circuit is to realize a boost circuit with a small area under the premise of ensuring conversion efficiency, that is, to use the smallest resources to realize the modulation of the output voltage, and then use in resource-constrained applications.

本發明實施例提供的升壓控制電路使用通用的恒開啟時間(constant on time)結構,而輸出開關的調變控制是基於伏秒平衡原理來實現的,由RC轉化來替代電感電流的變化,可見,通過恒開啟時間和RC轉化替代來決定該升壓控制電路的輸出開關的導通時間。 The boost control circuit provided by the embodiment of the present invention uses a general constant on time (constant on time) structure, and the modulation control of the output switch is realized based on the principle of volt-second balance, and the change of the inductor current is replaced by RC conversion. It can be seen that the on-time of the output switch of the boost control circuit is determined by the constant on-time and RC conversion substitution.

需要明確的是,本發明並不局限於上文所描述並在圖中示出的特定配置和處理。為了簡明起見,這裡省略了對已知方法的詳細描述。在上述實施例中,描述和示出了若干具體的步驟作為示例。但是,本發明的方法過程並不限於所描述和示出的具體步驟,本領域的技術人員可以在領會本發明的精神後,作出各種改變、修改和添加,或者改變步驟之間的順序。 It is to be understood that the invention is not limited to the specific arrangements and processes described above and shown in the drawings. For conciseness, detailed descriptions of known methods are omitted here. In the above embodiments, several specific steps are described and shown as examples. However, the method process of the present invention is not limited to the specific steps described and shown, and those skilled in the art can make various changes, modifications and additions, or change the sequence of steps after understanding the spirit of the present invention.

以上所述的結構框圖中所示的功能塊可以實現為硬體、軟體、固件或者它們的組合。當以硬體方式實現時,其可以例如是電子電路、專用積體電路(Application Specific Integrated Circuit,ASIC)、適當的固件、外掛程式、功能卡等等。當以軟體方式實現時,本發明的元素是被用於執行所需任務的程式或者程式碼片段。程式或者程式碼片段可以存儲在機器可讀介質中,或者通過載波中攜帶的資料訊號在傳輸介質或者通信鏈路上傳送。“機器可讀介質”可以包括能夠存儲或傳輸資訊的任何介質。機器可讀介質的例子包括電子電路、半導體記憶體設備、唯讀記憶體(Read Only Memory,ROM)、快閃記憶體、可擦除ROM(Erasable Read Only Memory,EROM)、軟碟、光碟唯讀記憶體(Compact Disc Read-Only Memory,CD-ROM)、光碟、硬碟、光纖介質、射頻(Radio Frequency,RF)鏈路,等等。程式碼片段可以經由諸如網際網路、內聯網等的電腦網路被下載。 The functional blocks shown in the structural block diagrams above can be realized as hardware, software, firmware or a combination thereof. When implemented in hardware, it may be, for example, an electronic circuit, an Application Specific Integrated Circuit (ASIC), appropriate firmware, a plug-in program, a function card, and the like. When implemented in software, the elements of the invention are the programs or code segments used to perform the required tasks. Programs or code segments may be stored on a machine-readable medium or transmitted over a transmission medium or communication link by a data signal carried in a carrier wave. "Machine-readable medium" may include any medium that can store or transmit information. Examples of machine-readable media include electronic circuits, semiconductor memory devices, Read Only Memory (ROM), flash memory, erasable ROM (Erasable Read Only Memory, EROM), floppy disks, CD-ROMs, etc. Read memory (Compact Disc Read-Only Memory, CD-ROM), optical disk, hard disk, optical fiber media, radio frequency (Radio Frequency, RF) link, etc. Code snippets may be downloaded via computer networks such as the Internet, Intranet, and the like.

還需要說明的是,本發明中提及的示例性實施例,基於一系列的步驟或者裝置描述一些方法或系統。但是,本發明不局限於上述步驟的順序,也就是說,可以按照實施例中提及的循序執行步驟,也可以不同於實施例中的順序,或者若干步驟同時執行。 It should also be noted that the exemplary embodiments mentioned in the present invention describe some methods or systems based on a series of steps or devices. However, the present invention is not limited to the order of the above steps, that is to say, the steps may be executed sequentially as mentioned in the embodiment, or may be different from the order in the embodiment, or several steps may be executed simultaneously.

以上所述,僅為本發明的具體實施方式,所屬領域的技術人員可以清楚地瞭解到,為了描述的方便和簡潔,上述描述的系統、模組和單元的具體工作過程,可以參考前述方法實施例中的對應過程,在此不再贅述。應理解,本發明的保護範圍並不局限於此,任何熟悉本技術領域的技術人員在本發明揭露的技術範圍內,可輕易想到各種等效的修改或替換,這些修改或替換都應涵蓋在本發明的保護範圍之內。 The above is only a specific implementation of the present invention, and those skilled in the art can clearly understand that for the convenience and simplicity of description, the specific working process of the system, modules and units described above can be implemented by referring to the aforementioned method The corresponding process in the example will not be repeated here. It should be understood that the protection scope of the present invention is not limited thereto, and any person skilled in the art can easily think of various equivalent modifications or replacements within the technical scope disclosed in the present invention, and these modifications or replacements should all be covered in within the protection scope of the present invention.

200:升壓控制電路 200: boost control circuit

210:開關控制器 210: switch controller

220:比較器 220: comparator

230:分壓電路 230: Voltage divider circuit

a:節點 a: node

C2:電容器 C2: Capacitor

D3,D4:二極體 D3, D4: Diodes

HG,LG:訊號 HG,LG:Signal

L:電感 L: inductance

M3,M4:開關 M3, M4: switch

R1,R2,Rsns:電阻 R1, R2, Rsns: resistance

Vc:輸出訊號 Vc: output signal

Vfb:電壓回饋訊號 Vfb: voltage feedback signal

Vin:輸入電壓 Vin: input voltage

Vout:輸出電壓 Vout: output voltage

Vref:參考訊號 Vref: reference signal

Vsns:電流採樣訊號 Vsns: current sampling signal

Claims (9)

一種升壓控制電路,包括電感、與所述電感串聯連接在所述升壓控制電路的輸入端和輸出端之間的第一開關、以及與所述電感串聯連接在所述輸入端和地之間的第二開關,其特徵在於,還包括:開關控制器,包括第三開關、第四開關、和電容器,被配置為基於表徵所述升壓控制電路的輸出電壓的電壓回饋訊號和表徵流過所述第二開關的電流的電流採樣訊號,生成分別用於控制所述第一開關和所述第二開關的導通和關斷的第一控制訊號和第二控制訊號,且,基於所述電壓回饋訊號和所述電流採樣訊號,生成用於控制所述第二開關和所述第三開關的導通和關斷的所述第二控制訊號;並基於所述第二控制訊號和所述電容器上的電壓,生成用於控制所述第一開關和所述第四開關的導通和關斷的所述第一控制訊號;而且所述電容器的充電和放電與所述第三開關和所述第四開關的導通和關斷有關。 A boost control circuit, comprising an inductor, a first switch connected in series with the inductor between the input end and the output end of the boost control circuit, and a first switch connected in series with the inductor between the input end and ground The second switch among them is characterized in that it further includes: a switch controller, including a third switch, a fourth switch, and a capacitor, configured to characterize the output voltage of the boost control circuit based on a voltage feedback signal and a characterization current A current sampling signal of the current passing through the second switch, generating a first control signal and a second control signal for respectively controlling the on and off of the first switch and the second switch, and, based on the a voltage feedback signal and the current sampling signal to generate the second control signal for controlling the turn-on and turn-off of the second switch and the third switch; and based on the second control signal and the capacitor to generate the first control signal for controlling the on and off of the first switch and the fourth switch; and the charging and discharging of the capacitor is related to the third switch and the The turn-on and turn-off of the four switches are related. 如請求項1所述的升壓控制電路,其中,所述開關控制器進一步被配置為:基於所述電壓回饋訊號與第一參考訊號之間的第一比較結果和所述電流採樣訊號,生成所述第二控制訊號。 The boost control circuit according to claim 1, wherein the switch controller is further configured to: based on the first comparison result between the voltage feedback signal and the first reference signal and the current sampling signal, generate the second control signal. 如請求項2所述的升壓控制電路,其中,所述開關控制器進一步被配置為:基於所述第一比較結果和所述電流採樣訊號與第二參考訊號之間的第二比較結果,生成所述第二控制訊號。 The boost control circuit according to claim 2, wherein the switch controller is further configured to: based on the first comparison result and a second comparison result between the current sampling signal and a second reference signal, generating the second control signal. 如請求項3所述的升壓控制電路,其中,所述第三開關和所述第四開關串聯連接在電流源與地之間,所述電容器並行連接在所述第四開關的兩端,並且所述開關控制器還包括:第一比較器,被配置為基於所述電流採樣訊號與所述第二參考訊號,生成所述第二比較結果;觸發器,被配置為基於所述第一比較結果和所述第二比較結果,生成 所述第二控制訊號;以及發生器,被配置為基於所述第二控制訊號和所述電容器上的電壓,生成所述第一控制訊號,其中,所述電容器上的電壓為放電狀態下電容器上的電壓。 The boost control circuit according to claim 3, wherein the third switch and the fourth switch are connected in series between the current source and ground, and the capacitor is connected in parallel to both ends of the fourth switch, And the switch controller further includes: a first comparator configured to generate the second comparison result based on the current sampling signal and the second reference signal; a flip-flop configured to generate the second comparison result based on the first comparison result and the second comparison result, generating the second control signal; and a generator configured to generate the first control signal based on the second control signal and a voltage on the capacitor, wherein the voltage on the capacitor is the capacitor in a discharged state on the voltage. 如請求項4所述的升壓控制電路,其中,所述第二開關和所述第三開關的導通時間由下式決定:
Figure 110115942-A0305-02-0018-1
其中,T on 為所述第二開關和所述第三開關的導通時間,Vref2為所述第二參考訊號,Rsns為用於產生所述電流採樣訊號的電阻的阻值,I0為所述第二開關從關斷到導通時刻對應的電感電流,L為所述電感的電感值,並且Vin為所述升壓控制電路的輸入電壓。
The boost control circuit according to claim 4, wherein the conduction time of the second switch and the third switch is determined by the following formula:
Figure 110115942-A0305-02-0018-1
Wherein, T on is the conduction time of the second switch and the third switch, Vref 2 is the second reference signal, Rsns is the resistance value of the resistor used to generate the current sampling signal, I 0 is the The inductor current corresponding to the moment from turning off to turning on of the second switch, L is the inductance value of the inductor, and Vin is the input voltage of the boost control circuit.
如請求項4所述的升壓控制電路,其中,所述第一開關和所述第四開關的導通時間由下式決定:
Figure 110115942-A0305-02-0018-2
其中,Toff為所述第一開關和所述第四開關的導通時間,Vout為所述輸出電壓。
The boost control circuit according to claim 4, wherein the conduction time of the first switch and the fourth switch is determined by the following formula:
Figure 110115942-A0305-02-0018-2
Wherein, Toff is the conduction time of the first switch and the fourth switch, and Vout is the output voltage.
如請求項4所述的升壓控制電路,其中,所述第一開關、所述第二開關、所述第三開關、和所述第四開關均為金屬氧化物半導體場效應電晶體,並且所述觸發器為RS觸發器。 The boost control circuit according to claim 4, wherein the first switch, the second switch, the third switch, and the fourth switch are metal-oxide-semiconductor field-effect transistors, and The flip-flop is an RS flip-flop. 如請求項7所述的升壓控制電路,其中,還包括:第二比較器,被配置為基於所述電壓回饋訊號與所述第一參考訊號,生成所述第一比較訊號;分壓電路,被配置為通過對所述輸出電壓進行分壓,生成所述電壓回饋訊號;第一二極體,所述第一二極體的兩極分別連接至所述第一開關的源極和汲極,所述第一開關的閘極接收所述第一控制訊號;以及第二二極體,所述第二二極體的兩極分別連接至所述第二開關的源極 和汲極,所述第二開關的閘極接收所述第二控制訊號。 The boost control circuit according to claim 7, further comprising: a second comparator configured to generate the first comparison signal based on the voltage feedback signal and the first reference signal; circuit, configured to generate the voltage feedback signal by dividing the output voltage; the first diode, the two poles of the first diode are respectively connected to the source and drain of the first switch Pole, the gate of the first switch receives the first control signal; and a second diode, the two poles of the second diode are respectively connected to the source of the second switch and a drain, the gate of the second switch receives the second control signal. 如請求項1所述的升壓控制電路,其中,所述升壓控制電路工作在連續傳導模式或不連續傳導模式。 The boost control circuit according to claim 1, wherein the boost control circuit operates in a continuous conduction mode or a discontinuous conduction mode.
TW110115942A 2021-01-22 2021-05-03 boost control circuit TWI786620B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110093527.3 2021-01-22
CN202110093527.3A CN112953219A (en) 2021-01-22 2021-01-22 Boost control circuit

Publications (2)

Publication Number Publication Date
TW202230953A TW202230953A (en) 2022-08-01
TWI786620B true TWI786620B (en) 2022-12-11

Family

ID=76236209

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110115942A TWI786620B (en) 2021-01-22 2021-05-03 boost control circuit

Country Status (2)

Country Link
CN (1) CN112953219A (en)
TW (1) TWI786620B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4213354A1 (en) * 2022-01-14 2023-07-19 Goodix Technology (HK) Company Limited Current limit control circuit for a boost converter in ccm

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI317570B (en) * 2006-05-26 2009-11-21 Leadtrend Tech Corp Voltage converter capable of avoiding voltage drop occurring in input signal and related method thereof
US10110120B2 (en) * 2016-05-06 2018-10-23 Infineon Technologies Austria Ag Load adaptable boost DC-DC power converter
TWI695572B (en) * 2019-09-28 2020-06-01 立錡科技股份有限公司 Inductor current emulator circuit and inductor current emulation method
TW202023167A (en) * 2018-07-23 2020-06-16 南韓商三星電子股份有限公司 Switching regulator, power supply circuit and method of operating switching regulator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7923973B2 (en) * 2008-09-15 2011-04-12 Power Integrations, Inc. Method and apparatus to reduce line current harmonics from a power supply
KR20120079763A (en) * 2011-01-05 2012-07-13 페어차일드코리아반도체 주식회사 Switch control circuit, converter using the same, and switch controlling method
CN102594118B (en) * 2012-02-29 2014-06-25 矽力杰半导体技术(杭州)有限公司 Boost PFC controller
CN203206106U (en) * 2013-03-21 2013-09-18 成都芯源系统有限公司 Power factor correction circuit and control circuit thereof
CN106788398B (en) * 2016-12-06 2020-06-02 矽力杰半导体技术(杭州)有限公司 Clock frequency dividing circuit, control circuit and power management integrated circuit
CN108063554B (en) * 2017-12-14 2023-07-18 杰华特微电子股份有限公司 Control circuit, control method and switching circuit of switching power supply
CN212278120U (en) * 2020-05-28 2021-01-01 上海灿瑞科技股份有限公司 Boost DC-DC control circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI317570B (en) * 2006-05-26 2009-11-21 Leadtrend Tech Corp Voltage converter capable of avoiding voltage drop occurring in input signal and related method thereof
US10110120B2 (en) * 2016-05-06 2018-10-23 Infineon Technologies Austria Ag Load adaptable boost DC-DC power converter
TW202023167A (en) * 2018-07-23 2020-06-16 南韓商三星電子股份有限公司 Switching regulator, power supply circuit and method of operating switching regulator
TWI695572B (en) * 2019-09-28 2020-06-01 立錡科技股份有限公司 Inductor current emulator circuit and inductor current emulation method

Also Published As

Publication number Publication date
CN112953219A (en) 2021-06-11
TW202230953A (en) 2022-08-01

Similar Documents

Publication Publication Date Title
US11005361B2 (en) Control circuit and method of a switching power supply
US7495934B2 (en) Adaptive synchronous rectification control circuit and method thereof
CN102163919B (en) For the charge mode control appliance of controlled resonant converter
US9647562B2 (en) Power conversion with switch turn-off delay time compensation
US8193797B2 (en) Self-oscillating switched mode converter with valley detection
CN109428471B (en) Method and apparatus for bi-directional switch mode power supply with fixed frequency operation
US9515545B2 (en) Power conversion with external parameter detection
CN109586580B (en) Control circuit, resonant converter and integrated circuit control chip
JP2011083186A (en) Device for controlling resonant converter
TW202145693A (en) Synchronous rectification control circuit and method and switching power supply system
US11509227B2 (en) Active clamp flyback converter
JP3839737B2 (en) DC voltage conversion circuit
TWI786620B (en) boost control circuit
US9998005B2 (en) Single inductor dual output voltage converter and the method thereof
CN113472207B (en) Switching power supply and control circuit thereof
US10972013B2 (en) Switching power supply device with current limiting operation by feedback current
CN115733343B (en) Self-adaptive switch control circuit and Buck-Boost switching power supply
TWI633744B (en) Control device and control method of Boost PFC converter for quasi-resonant working mode
TWI784756B (en) Switching converter control system and method
TWI784455B (en) Buck-Boost Converter Control System
CN213637504U (en) Quasi-resonance flyback converter and controller thereof
TWI807702B (en) Switching power supply and its control chip and control method
JPH09285110A (en) Dc-dc converter
CN115833582B (en) Buck-boost converter, controller and control method thereof
US20230336074A1 (en) Power converter preventing overvoltage damage and control method thereof