TWI785698B - Method for monitoring abnormalities in injection molding process, electronic device, and storage medium - Google Patents

Method for monitoring abnormalities in injection molding process, electronic device, and storage medium Download PDF

Info

Publication number
TWI785698B
TWI785698B TW110127430A TW110127430A TWI785698B TW I785698 B TWI785698 B TW I785698B TW 110127430 A TW110127430 A TW 110127430A TW 110127430 A TW110127430 A TW 110127430A TW I785698 B TWI785698 B TW I785698B
Authority
TW
Taiwan
Prior art keywords
information
injection molding
risk value
parameter
mold
Prior art date
Application number
TW110127430A
Other languages
Chinese (zh)
Other versions
TW202301054A (en
Inventor
梁飛
劉陽
麻利軍
張濤
任佳東
汪穎
周凱
Original Assignee
大陸商深圳富桂精密工業有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商深圳富桂精密工業有限公司 filed Critical 大陸商深圳富桂精密工業有限公司
Application granted granted Critical
Publication of TWI785698B publication Critical patent/TWI785698B/en
Publication of TW202301054A publication Critical patent/TW202301054A/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06311Scheduling, planning or task assignment for a person or group
    • G06Q10/063114Status monitoring or status determination for a person or group
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0635Risk analysis of enterprise or organisation activities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Tourism & Hospitality (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Educational Administration (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

The present application provides a method for monitoring abnormalities in an injection molding process, an electronic device, and a storage medium. The method includes: acquiring data of a plurality of components in an injection molding process; using a pre-trained abnormality monitoring model to perform an abnormal analysis on data of each component, and obtaining a process risk value and at least one influencing parameter of each component; determining whether the component is abnormal according to the process risk value; when a target component is determined to be abnormal according to the process risk value, adjusting equipment parameters of the target component according to the at least one influencing parameter of the target component. By utilizing the present application, abnormal situations in the molding process can be discovered in time, thereby reducing a defective rate of molded products.

Description

注塑成型過程的異常監控方法、電子設備及儲存介質 Abnormal monitoring method, electronic equipment and storage medium of injection molding process

本申請涉及資訊分析領域,尤其涉及一種注塑成型過程的異常監控方法、電子設備及存儲介質。 The present application relates to the field of information analysis, in particular to an abnormality monitoring method, electronic equipment and a storage medium of an injection molding process.

目前注塑成型的品質監測是透過對成品品質的檢驗來實現的。對於持續生產的注塑生產現場,品質監管人員透過定期檢查或者隨機抽檢的方式對成品的品質進行檢驗。但是這種方式從產品生產到異常品檢出的週期通常較長,在此期間可能有更多的廢品產生。另外,品質監管人員在發現成品品質異常後會通知相關人員進行處理,這個過程需要耗費大量的時間,不能及時的回饋資訊。同時,相關人員需要根據自身經驗進行處理,處理過程嚴重依賴人員能力並且具有很大的不可控性。 At present, the quality monitoring of injection molding is realized through the inspection of the finished product quality. For the continuous production of injection molding production sites, quality supervisors inspect the quality of finished products through regular inspections or random inspections. However, the period from product production to detection of abnormal products in this way is usually longer, and more waste products may be generated during this period. In addition, quality supervisors will notify relevant personnel to deal with abnormalities in the quality of finished products. This process takes a lot of time and cannot provide timely feedback. At the same time, relevant personnel need to handle it according to their own experience, and the processing process relies heavily on personnel capabilities and is highly uncontrollable.

鑒於以上內容,有必要提供一種注塑成型過程的異常監控方法、電子設備及存儲介質,可以及時發現成型過程中的異常情況,從而降低成型品的不良率。 In view of the above, it is necessary to provide a method for monitoring abnormalities in the injection molding process, electronic equipment and storage media, which can detect abnormalities in the molding process in time, thereby reducing the defect rate of molded products.

本申請提供一種注塑成型過程的異常監控方法,所述方法包括:獲取注塑成型過程中多個部件的資訊;調用預先訓練完成的異常監測模型對每個部件的資訊進行異常分析,得到每個部件的製程風險值和至少一個影響參數; 根據所述製程風險值判斷對應的部件是否存在異常;當根據所述製程風險值確定目標部件存在異常時,根據所述目標部件的至少一個影響參數調整所述目標部件的設備參數。 The present application provides an abnormality monitoring method in the injection molding process, the method comprising: obtaining information on multiple components in the injection molding process; calling a pre-trained abnormality monitoring model to perform abnormality analysis on the information of each component, and obtaining the information of each component Process risk value and at least one influencing parameter; Determine whether the corresponding component is abnormal according to the process risk value; when it is determined that the target component is abnormal according to the process risk value, adjust the equipment parameters of the target component according to at least one influencing parameter of the target component.

在一種可能的實現方式中,所述獲取注塑成型過程中多個部件的資訊包括:獲取注塑機的控制器資訊、模具的第一感測器資訊和模溫機的第二感測器資訊。 In a possible implementation manner, the acquiring information of multiple components in the injection molding process includes: acquiring information of a controller of an injection molding machine, information of a first sensor of a mold, and information of a second sensor of a mold temperature controller.

在一種可能的實現方式中,所述獲取注塑機的控制器資訊、模具的第一感測器資訊和模溫機的第二感測器資訊之後,所述方法還包括:根據所述控制器資訊中的工段資訊,對所述控制器資訊進行切分,得到多個工段資訊,不同的工段資訊對應不同的注塑成型過程。 In a possible implementation manner, after acquiring the controller information of the injection molding machine, the first sensor information of the mold, and the second sensor information of the mold temperature machine, the method further includes: according to the controller The section information in the information divides the controller information to obtain multiple section information, and different section information corresponds to different injection molding processes.

在一種可能的實現方式中,所述調用預先訓練完成的異常監測模型對每個部件的資訊進行異常分析,得到每個部件的製程風險值和至少一個影響參數包括:調用預先訓練完成的異常監測模型對所述注塑機的控制器資訊進行異常分析,得到第一製程風險值和至少一個第一影響參數;調用預先訓練完成的異常監測模型對所述模具的第一感測器資訊進行異常分析,得到第二製程風險值和至少一個第二影響參數;調用預先訓練完成的異常監測模型對所述模溫機的第二感測器資訊進行異常分析,得到第三製程風險值和至少一個第三影響參數。 In a possible implementation, the calling the pre-trained abnormality monitoring model to analyze the abnormality of each component information, and obtaining the process risk value and at least one impact parameter of each component includes: calling the pre-trained abnormality monitoring The model performs abnormal analysis on the controller information of the injection molding machine to obtain the first process risk value and at least one first influencing parameter; calls the pre-trained abnormal monitoring model to perform abnormal analysis on the first sensor information of the mold , to obtain the second process risk value and at least one second influencing parameter; call the pre-trained abnormality monitoring model to analyze the abnormality of the second sensor information of the mold temperature machine, and obtain the third process risk value and at least one first Three influence parameters.

在一種可能的實現方式中,在所述調用預先訓練完成的異常監測模型對每個部件的資訊進行異常分析之前,所述方法還包括:設置注塑機的成型工作週期;每隔所述成型工作週期調用預先訓練完成的異常監測模型對每個部件的資訊進行異常分析。 In a possible implementation manner, before calling the pre-trained abnormality monitoring model to perform abnormality analysis on the information of each component, the method further includes: setting the molding work cycle of the injection molding machine; Periodically invoke the pre-trained anomaly monitoring model to analyze the information of each component abnormally.

在一種可能的實現方式中,所述方法還包括:每隔所述成型工作週 期,根據所述至少一個第一影響參數繪製第一參數週期變化狀態圖,根據所述至少一個第二影響參數繪製第二參數週期變化狀態圖,根據所述至少一個第三影響參數繪製第三參數週期變化狀態圖。 In a possible implementation manner, the method further includes: period, draw the first parameter period change state diagram according to the at least one first influence parameter, draw the second parameter period change state diagram according to the at least one second influence parameter, draw the third parameter according to the at least one third influence parameter Parameter cycle change state diagram.

在一種可能的實現方式中,所述根據所述製程風險值判斷對應的部件是否存在異常包括:判斷所述第一製程風險值是否大於預設的第一閾值,當所述第一製程風險值大於所述預設的第一閾值時,輸出第一結果,所述第一結果表明所述注塑機存在異常;判斷所述第二製程風險值是否大於預設的第二閾值,當所述第二製程風險值大於所述預設的第二閾值時,輸出第二結果,所述第二結果所述模具存在異常;判斷所述第三製程風險值是否大於預設的第三閾值,當所述第三製程風險值大於所述預設的第三閾值時,輸出第三結果,所述第三結果所述模溫機存在異常。 In a possible implementation manner, the determining whether the corresponding component is abnormal according to the process risk value includes: determining whether the first process risk value is greater than a preset first threshold, when the first process risk value When it is greater than the preset first threshold, a first result is output, and the first result indicates that there is an abnormality in the injection molding machine; it is judged whether the second process risk value is greater than the preset second threshold, and when the first When the risk value of the second process is greater than the preset second threshold, the second result is output, and the mold is abnormal in the second result; it is judged whether the risk value of the third process is greater than the preset third threshold, and when the second result is abnormal; When the third process risk value is greater than the preset third threshold, a third result is output, and the third result is that the mold temperature controller is abnormal.

在一種可能的實現方式中,所述當根據所述製程風險值確定目標部件存在異常時,根據所述目標部件的至少一個影響參數調整所述目標部件的設備參數包括:當確定所述注塑機出現異常時,將所述控制器資訊和所述至少一個第一影響參數輸入至預先訓練完成的智慧調節模型,所述智慧調節模型輸出所述注塑機的至少一個第一設備參數,根據所述至少一個第一設備參數調整所述注塑機的設備參數;當確定所述模具出現異常時,將所述第一感測器資訊和所述至少一個第二影響參數輸入至預先訓練完成的智慧調節模型,所述智慧調節模型輸出所述模具的至少一個第二設備參數,根據所述至少一個第二設備參數調整所述模具的設備參數;當確定所述模溫機出現異常時,將所述第二感測器資訊和所述至少一個第三影響參數輸入至預先訓練完成的智慧調節模型,所述智慧調節模型輸出所述模溫機的至少一個第三設備參數,根據所述至少一個第三設備參數調整所述模具的設備參數。 In a possible implementation manner, when it is determined according to the process risk value that there is an abnormality in the target component, adjusting the equipment parameter of the target component according to at least one influencing parameter of the target component includes: when determining that the injection molding machine When an abnormality occurs, input the controller information and the at least one first influencing parameter into a pre-trained intelligent adjustment model, and the intelligent adjustment model outputs at least one first equipment parameter of the injection molding machine, according to the At least one first equipment parameter to adjust the equipment parameters of the injection molding machine; when it is determined that the mold is abnormal, input the first sensor information and the at least one second influencing parameter to the pre-trained intelligent adjustment model, the intelligent adjustment model outputs at least one second equipment parameter of the mold, and adjusts the equipment parameter of the mold according to the at least one second equipment parameter; when it is determined that the mold temperature machine is abnormal, the The second sensor information and the at least one third influencing parameter are input to the pre-trained intelligent adjustment model, and the intelligent adjustment model outputs at least one third equipment parameter of the mold temperature controller, according to the at least one first Three Equipment Parameters Adjust the equipment parameters of the mould.

本申請還提供一種電子設備,所述電子設備包括處理器和記憶體,所述處理器用於執行所述記憶體中存儲的電腦程式時實現所述的注塑成型過程的異常監控方法。 The present application also provides an electronic device, the electronic device includes a processor and a memory, and the processor is used to implement the abnormality monitoring method of the injection molding process when executing the computer program stored in the memory.

本申請還提供一種電腦可讀存儲介質,所述電腦可讀存儲介質上存儲有電腦程式,所述電腦程式被處理器執行時實現所述的注塑成型過程的異常監控方法。 The present application also provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the method for monitoring abnormalities in the injection molding process is realized.

本申請公開的注塑成型過程的異常監控方法及相關設備,透過即時採集成型過程資訊,監測異常狀況並及時進行回饋提示,能夠及時的發現系統異常,減少不良品的產生,節省原料,提升注塑成型設備的有效價值時間。 The abnormal monitoring method and related equipment of the injection molding process disclosed in this application can detect system abnormalities in time, reduce the generation of defective products, save raw materials, and improve injection molding by collecting molding process information in real time, monitoring abnormal conditions and giving timely feedback prompts. The effective value time of the device.

S21~S24:步驟 S21~S24: Steps

1:電子設備 1: Electronic equipment

11:記憶體 11: Memory

12:處理器 12: Processor

13:通訊匯流排 13: Communication bus

圖1是本申請實施例提供的一種注塑成型過程的異常監控方法的較佳實施例的電子設備的結構示意圖。 FIG. 1 is a schematic structural diagram of an electronic device in a preferred embodiment of a method for monitoring abnormalities in an injection molding process provided by an embodiment of the present application.

圖2是本申請實施例提供的一種注塑成型過程的異常監控方法的較佳實施例的流程圖。 Fig. 2 is a flow chart of a preferred embodiment of a method for monitoring abnormalities in an injection molding process provided by an embodiment of the present application.

為了使本申請的目的、技術方案和優點更加清楚,下面結合附圖和具體實施例對本申請進行詳細描述。 In order to make the purpose, technical solution and advantages of the present application clearer, the present application will be described in detail below in conjunction with the accompanying drawings and specific embodiments.

請參閱圖1,圖1為本申請一實施例的電子設備的示意圖。參閱圖1所示,所述電子設備1包括,但不僅限於,記憶體11和至少一個處理器12上述元件之間可以透過通訊匯流排13連接,也可以直接連接。 Please refer to FIG. 1 , which is a schematic diagram of an electronic device according to an embodiment of the present application. As shown in FIG. 1 , the electronic device 1 includes, but is not limited to, a memory 11 and at least one processor 12 . The above components can be connected through a communication bus 13 or can be directly connected.

所述電子設備1可以是電腦、手機、平板電腦、個人數位助理(Personal Digital Assistant,PDA)等安裝有應用程式的設備。本領域技術人員可以理解,所述示意圖1僅僅是電子設備1的示例,並不構成對電子設備1的限定,可以 包括比圖示更多或更少的部件,或者組合某些部件,或者不同的部件,例如所述電子設備1還可以包括輸入輸出設備、網路接入設備、匯流排等。 The electronic device 1 may be a computer, a mobile phone, a tablet computer, a personal digital assistant (Personal Digital Assistant, PDA), etc., which are installed with application programs. Those skilled in the art can understand that the schematic diagram 1 is only an example of the electronic device 1, and does not constitute a limitation on the electronic device 1. It includes more or less components than shown in the figure, or some components are combined, or different components. For example, the electronic device 1 may also include input and output devices, network access devices, bus bars, and the like.

如圖2所示,是本申請注塑成型過程的異常監控方法的較佳實施例的流程圖。所述注塑成型過程的異常監控方法應用在所述電子設備1中。根據不同的需求,該流程圖中步驟的順序可以改變,某些步驟可以省略。在本實施方式中,所述注塑成型過程的異常監控方法包括:S21、獲取注塑成型過程中多個部件的資訊。 As shown in FIG. 2 , it is a flowchart of a preferred embodiment of the abnormality monitoring method of the injection molding process of the present application. The abnormality monitoring method of the injection molding process is applied in the electronic device 1 . According to different requirements, the order of the steps in the flowchart can be changed, and some steps can be omitted. In this embodiment, the abnormality monitoring method of the injection molding process includes: S21. Obtain information of multiple components in the injection molding process.

在本申請的一個實施例中,所述獲取注塑成型過程中多個部件的資訊包括: In one embodiment of the present application, the acquisition of information on multiple components in the injection molding process includes:

(1)獲取注塑機的控制器資訊。所述注塑機是將熱塑性塑膠或熱固性塑膠利用模具製成各種形狀的塑膠製品的主要成型設備。其中,所述注塑機能加熱塑膠,對熔融塑膠施加高壓,使其射出而充滿模具型腔。具體實施時,透過可程式設計邏輯控制器(Programmable Logic Controller,PLC)通訊板介面與所述注塑機通訊連接,即時採集PLC資訊,其中所述PLC資訊包括:所述注塑機系統參數、所述注塑機開關狀態和所述注塑機內部資訊。透過所述PLC通訊板介面發送所述PLC資訊至所述電子設備。 (1) Obtain the controller information of the injection molding machine. The injection molding machine is the main molding equipment for making thermoplastic or thermosetting plastic into various shapes of plastic products. Wherein, the injection molding machine can heat the plastic, apply high pressure to the molten plastic, and make it inject to fill the cavity of the mold. During specific implementation, a programmable logic controller (Programmable Logic Controller, PLC) communication board interface communicates with the injection molding machine to collect PLC information in real time, wherein the PLC information includes: the injection molding machine system parameters, the The switch status of the injection molding machine and the internal information of the injection molding machine. Send the PLC information to the electronic device through the PLC communication board interface.

(2)獲取模具的第一感測器資訊。所述模具為注塑成型過程中依據實物的形狀和結構按比例製成的,用壓製或澆灌的方法使材料成為一定形狀的工具。具體實施時,設置溫度感測器,透過所述溫度感測器測量所述模具的溫度資訊,設置距離感測器,透過所述距離感測器測量所述模具的位置資訊和尺寸資訊。將所述模具的溫度資訊、所述模具的位置資訊和所述模具尺寸資訊作為所述第一感測器資訊發送至所述電子設備。 (2) Obtain the information of the first sensor of the mould. The mold is made in proportion according to the shape and structure of the real object in the injection molding process, and the material is made into a tool of a certain shape by pressing or pouring. During specific implementation, a temperature sensor is set to measure the temperature information of the mold through the temperature sensor, and a distance sensor is set to measure the position information and size information of the mold through the distance sensor. Sending the temperature information of the mould, the position information of the mould, and the dimension information of the mould, as the first sensor information, to the electronic device.

(3)獲取模溫機的第二感測器資訊。所述模溫機是一種包含加熱和 冷卻作用的機械設備,用於工業控溫,在注塑城成型過程中用於控制所述模具的溫度。具體實施時,設置距離感測器透過所述距離感測器測量所述模溫機內部迴圈泵的尺寸資訊、加熱管的尺寸資訊和電器配件的尺寸資訊,設置溫度感測器,透過所述溫度感測器測量所述模溫機內部迴圈泵的溫度資訊、加熱管的溫度資訊和電器配件的溫度資訊。將所述迴圈泵的尺寸資訊、所述加熱管的尺寸數據、所述電器配件的尺寸資訊、所述迴圈泵的溫度資訊、所述加熱管的溫度資訊和所述電器配件的溫度資訊作為所述第二感測器資訊發送至所述電子設備。 (3) Obtain the information of the second sensor of the mold temperature controller. The mold temperature controller is a kind of heating and Mechanical equipment for cooling action, used for industrial temperature control, used to control the temperature of the mold during the injection molding process. During specific implementation, the distance sensor is set to measure the size information of the internal circulation pump of the mold temperature controller, the size information of the heating pipe and the size information of the electrical accessories through the distance sensor, and the temperature sensor is set to pass through the distance sensor. The temperature sensor measures the temperature information of the circulation pump inside the mold temperature controller, the temperature information of the heating pipe and the temperature information of the electrical accessories. The size information of the loop pump, the size data of the heating tube, the size information of the electrical accessories, the temperature information of the loop pump, the temperature information of the heating tube, and the temperature information of the electrical accessories sent to the electronic device as the second sensor information.

透過獲取注塑成型過程中各個部件的資訊,可以更全面的對注塑成型過程進行異常分析,從而使得分析結果更加準確。 By obtaining the information of each component in the injection molding process, it is possible to analyze the abnormality of the injection molding process more comprehensively, so that the analysis results are more accurate.

作為一種可選的實施方式,所述步驟S21之後,所述方法還包括:根據所述控制器資訊中的工段資訊,對所述控制器資訊進行切分,得到多個工段資訊,不同的工段資訊對應不同的注塑成型過程。 As an optional implementation manner, after the step S21, the method further includes: segmenting the controller information according to the section information in the controller information to obtain a plurality of section information, different section information The information corresponds to different injection molding processes.

在本申請的一個實施例中,注射成型是一個迴圈的過程,每一個迴圈週期包括:定量加料、熔融塑化、施壓注射、充模冷卻和啟模取件。取出塑件後又再閉模,進行下一個迴圈。根據所述迴圈週期,可以將所述控制器資訊劃分為加料過程資訊、塑化過程資訊、注射過程資訊、冷卻過程資訊和取件過程資訊。 In one embodiment of the present application, injection molding is a cycle process, and each cycle cycle includes: quantitative feeding, melting and plasticizing, pressure injection, mold filling and cooling, and mold opening and taking. After the plastic part is taken out, the mold is closed again, and the next cycle is performed. According to the loop cycle, the controller information can be divided into feeding process information, plasticizing process information, injection process information, cooling process information and pick-up process information.

透過對所述控制器資訊進行劃分,後續對資訊進行異常分析時,可以精準的定位異常資訊所在的過程,從而提高異常監測效率。 By dividing the information of the controller, when performing abnormality analysis on the information, the process where the abnormal information is located can be accurately located, thereby improving the efficiency of abnormality monitoring.

S22、調用預先訓練完成的異常監測模型對每個部件的資訊進行異常分析,得到每個部件的製程風險值和至少一個影響參數。 S22. Invoke the pre-trained abnormality monitoring model to analyze the abnormality of the information of each component, and obtain the process risk value and at least one influencing parameter of each component.

在本申請的一個實施例中,預先訓練異常監測模型,具體實施時, 獲取第一訓練資訊集,所述第一訓練資訊集包括預設第一數量的第一訓練資訊,將所述第一訓練資訊登錄至預先搭建的神經網路框架中進行訓練,得到所述異常監測模型。獲取第一測試資訊集,所述第一測試資訊集包括預設第二數量的第一測試資訊,使用所述第一測試資訊測試所述異常監測模型並獲取第一測試透過率。當所述測試透過率大於預設第一透過率閾值時,將所述異常監測模型作為所述訓練完成的異常監測模型,當所述第一測試透過率小於預設第一透過率閾值時,調整所述異常監測模型的模型參數,直至所述第一測試透過率大於預設第一透過率閾值。 In one embodiment of the present application, the abnormality monitoring model is pre-trained, and during specific implementation, Obtain a first training information set, the first training information set includes a preset first number of first training information, log the first training information into a pre-built neural network framework for training, and obtain the abnormality monitoring model. Obtain a first test information set, the first test information set includes a preset second amount of first test information, use the first test information to test the abnormality monitoring model and obtain a first test penetration rate. When the test transmittance is greater than the preset first transmittance threshold, the abnormality monitoring model is used as the trained abnormality monitor model; when the first test transmittance is less than the preset first transmittance threshold, Adjusting model parameters of the abnormality monitoring model until the first test transmittance is greater than a preset first transmittance threshold.

在本申請的一個實施例中,所述調用預先訓練完成的異常監測模型對每個部件的資訊進行異常分析,得到每個部件的製程風險值和至少一個影響參數包括: In one embodiment of the present application, the calling of the pre-trained anomaly monitoring model to perform anomaly analysis on the information of each component, and obtaining the process risk value and at least one influencing parameter of each component include:

(1)調用所述訓練完成的異常監測模型對所述注塑機的控制器資訊進行異常分析,得到第一製程風險值和至少一個第一影響參數的參數值。具體實施時,輸入所述加料過程資訊至所述訓練完成的異常監測模型,輸出第一加料風險值;輸入所述塑化過程資訊至所述訓練完成的異常監測模型,輸出第一塑化風險值;輸入所述注射過程資訊至所述訓練完成的異常監測模型,輸出第一注射風險值;輸入所述冷卻過程資訊至所述訓練完成的異常監測模型,輸出第一冷卻風險值;輸入所述取件過程資訊至所述訓練完成的異常監測模型,輸出第一取件風險值;根據所述工段的重要性設置每個工段的占比,例如,加料過程占比10%,塑化過程占比30%,注射過程占比20%,冷卻過程占比30%以及取件過程占比10%;根據所述第一加料風險值、所述第一塑化風險值、所述第一注射風險值、所述第一冷卻風險值和所述第一取件風險值,以及所述每個工段的占比得到所述第一製程風險值。其中,所述第一製程風險值越大,表 示所述注塑機存在異常的可能性越高,注塑過程的風險值越大。所述第一影響參數為所述注塑機的設備參數,包括:注射量、注射壓力、注射速率、塑化能力、合模面積、合模力、開合模速度和空迴圈時間。 (1) Invoking the trained abnormality monitoring model to analyze the abnormality of the controller information of the injection molding machine to obtain the first process risk value and the parameter value of at least one first influencing parameter. During specific implementation, input the feeding process information into the trained abnormality monitoring model, and output the first feeding risk value; input the plasticizing process information into the trained abnormality monitoring model, and output the first plasticizing risk value; input the injection process information to the trained abnormal monitoring model, and output the first injection risk value; input the cooling process information to the trained abnormal monitoring model, and output the first cooling risk value; input the Describe the pickup process information to the abnormal monitoring model that has been trained, and output the first pickup risk value; set the proportion of each section according to the importance of the section, for example, the feeding process accounts for 10%, and the plasticizing process accounted for 30%, the injection process accounted for 20%, the cooling process accounted for 30% and the pick-up process accounted for 10%; according to the first feeding risk value, the first plasticizing risk value, the first injection The risk value, the first cooling risk value, the first pick-up risk value, and the proportion of each process section obtain the first process risk value. Wherein, the greater the risk value of the first process, the table The higher the possibility that the injection molding machine is abnormal, the greater the risk value of the injection molding process. The first influencing parameter is the equipment parameter of the injection molding machine, including: injection volume, injection pressure, injection rate, plasticizing capacity, mold clamping area, mold clamping force, mold opening and closing speed, and empty cycle time.

(2)調用所述訓練完成的異常監測模型對所述模具的第一感測器資訊進行異常分析,得到第二製程風險值和至少一個第二影響參數的參數值。其中,所述第二製程風險值越大,表示所述模具存在異常的可能性越高,成型過程的風險值越大。所述第二影響參數為所述模具的設備參數,包括:材料類別,抗拉強度、厚度、毛刺高度、雙面間隙、塌角深度和複磨壽命。 (2) Invoking the trained abnormality monitoring model to analyze the abnormality of the first sensor information of the mold to obtain a second process risk value and a parameter value of at least one second influencing parameter. Wherein, the greater the risk value of the second process, the higher the possibility of abnormality in the mold, and the greater the risk value of the molding process. The second influencing parameter is the equipment parameter of the mold, including: material type, tensile strength, thickness, burr height, double-sided clearance, sag depth and regrinding life.

(3)調用所述訓練完成的異常監測模型對所述模溫機的第二感測器資訊進行異常分析,得到第三製程風險值和至少一個第三影響參數的參數值。其中,所述第三製程風險值越大,表示所述模溫機存在異常的可能性越高,模具製作過程的風險值越大。所述第三影響參數為所述模溫機的設備參數,包括:溫控範圍、溫控精度、傳熱媒體、膨脹箱容量、泵浦功率和泵浦壓力。 (3) Invoking the trained abnormality monitoring model to analyze the abnormality of the second sensor information of the mold temperature controller to obtain a third process risk value and a parameter value of at least one third influencing parameter. Wherein, the greater the risk value of the third process, the higher the possibility of abnormality in the mold temperature controller, and the greater the risk value of the mold making process. The third influencing parameter is the equipment parameter of the mold temperature controller, including: temperature control range, temperature control accuracy, heat transfer medium, expansion tank capacity, pump power and pump pressure.

透過利用預先訓練完成的異常監測模型得到所述注塑機的製程風險值和影響參數、所述模具的製程風險值和影響參數和所述模溫機的製程風險值和影響參數,代替了傳統的人工監測方法,可以提高監測的準確率和效率。 The process risk value and influence parameters of the injection molding machine, the process risk value and influence parameters of the mold, and the process risk value and influence parameters of the mold temperature machine are obtained by using the pre-trained abnormality monitoring model, replacing the traditional Manual monitoring method can improve the accuracy and efficiency of monitoring.

作為一種可選的實施方式,所述步驟S22之前,所述方法還包括:設置注塑機的成型工作週期;每隔所述成型工作週期調用預先訓練完成的異常監測模型對每個部件的資訊進行異常分析。 As an optional implementation manner, before the step S22, the method further includes: setting the molding work cycle of the injection molding machine; calling the pre-trained abnormality monitoring model to monitor the information of each component every time the molding work cycle Exception analysis.

作為一種可選的實施方式,所述步驟S22之後,所述方法還包括:每隔所述成型工作週期,根據所述至少一個第一影響參數繪製第一參數週期變化狀態圖,根據所述至少一個第二影響參數繪製第二參數週期變化狀態圖,根據所述至少一個第三影響參數繪製第三參數週期變化狀態圖。 As an optional implementation manner, after the step S22, the method further includes: drawing a first parameter periodic change state diagram according to the at least one first influencing parameter every working cycle of the molding, according to the at least one A second influencing parameter is used to draw a state diagram of the periodical variation of the second parameter, and a diagram of the periodical variation of the third parameter is drawn according to the at least one third influencing parameter.

S23、根據所述製程風險值判斷對應的部件是否存在異常。 S23. Determine whether the corresponding component is abnormal according to the process risk value.

在本申請的一個實施例中,所述根據所述製程風險值判斷對應的部件是否存在異常包括:判斷所述第一製程風險值是否大於預設的第一閾值,當所述第一製程風險值大於所述預設的第一閾值時,輸出第一結果,所述第一結果表明所述注塑機存在異常;判斷所述第二製程風險值是否大於預設的第二閾值,當所述第二製程風險值大於所述預設的第二閾值時,輸出第二結果,所述第二結果所述模具存在異常;判斷所述第三製程風險值是否大於預設的第三閾值,當所述第三製程風險值大於所述預設的第三閾值時,輸出第三結果,所述第三結果所述模溫機存在異常。 In one embodiment of the present application, the determining whether the corresponding component is abnormal according to the process risk value includes: determining whether the first process risk value is greater than a preset first threshold, when the first process risk value When the value is greater than the preset first threshold, output the first result, the first result indicates that there is an abnormality in the injection molding machine; judge whether the second process risk value is greater than the preset second threshold, when the When the second process risk value is greater than the preset second threshold value, output a second result that the mold is abnormal; determine whether the third process risk value is greater than the preset third threshold value, when When the third process risk value is greater than the preset third threshold, a third result is output, and the third result is that the mold temperature controller is abnormal.

示例性的,設置所述第一閾值為0.3,所述第二閾值為0.6,所述第三閾值為0.5。所述第一製程風險值為0.1,所述第二製程風險值為0.5,所述第三製程風險值為0.7,其中所述第三製程風險值大與所述第三閾值,輸出所述模溫機存在異常的提示。 Exemplarily, the first threshold is set to 0.3, the second threshold is set to 0.6, and the third threshold is set to 0.5. The risk value of the first process is 0.1, the risk value of the second process is 0.5, and the risk value of the third process is 0.7, wherein the risk value of the third process is greater than the third threshold, and the output of the model There is an abnormality prompt in the temperature machine.

透過利用所述製程風險值判斷各個部件是否存在異常,透過即時採集成型過程資訊,監測異常狀況並及時進行回饋提示,能夠及時的發現系統異常,減少不良品的產生,節省原料,提升注塑成型設備的有效價值時間。 By using the process risk value to judge whether there is an abnormality in each component, through real-time collection of molding process information, monitoring of abnormal conditions and timely feedback prompts, it is possible to detect system abnormalities in a timely manner, reduce the occurrence of defective products, save raw materials, and improve injection molding equipment. effective value time.

S24、當根據所述製程風險值確定目標部件存在異常時,根據所述目標部件的至少一個影響參數調整所述目標部件的設備參數。 S24. When it is determined according to the process risk value that there is an abnormality in the target component, adjust an equipment parameter of the target component according to at least one influencing parameter of the target component.

在本申請的一個實施例中,預先訓練智慧調節模型,具體實施時,獲取第二訓練資訊集,所述第二訓練資訊集包括預設第三數量的第二訓練資訊,將所述第二訓練資訊登錄至預先搭建的神經網路框架中進行訓練,得到所述智慧調節模型。獲取第二測試資訊集,所述第二測試資訊集包括預設第四數量的第二測試資訊,使用所述第二測試資訊測試所述智慧調節模型並獲取第二測試 透過率。當所述第二測試透過率大於預設第二透過率閾值時,將所述智慧調節模型作為所述訓練完成的智慧調節模型,當所述第二測試透過率小於預設第二透過率閾值時,調整所述智慧調節模型的模型參數,直至所述第二測試透過率大於預設第二透過率閾值。 In one embodiment of the present application, the intelligent adjustment model is trained in advance. During specific implementation, a second training information set is obtained, the second training information set includes a preset third amount of second training information, and the second The training information is logged into the pre-built neural network framework for training to obtain the intelligent adjustment model. Obtain a second test information set, the second test information set includes a preset fourth amount of second test information, use the second test information to test the smart adjustment model and obtain a second test transmittance. When the second test transmittance is greater than the preset second transmittance threshold, use the intelligent adjustment model as the trained intelligent adjustment model; when the second test transmittance is less than the preset second transmittance threshold , adjusting the model parameters of the smart adjustment model until the second test transmittance is greater than the preset second transmittance threshold.

在本申請的一個實施例中,所述當根據所述製程風險值確定目標部件存在異常時,根據所述目標部件的至少一個影響參數調整所述目標部件的設備參數包括:當確定所述注塑機出現異常時,將所述控制器資訊和所述至少一個第一影響參數的參數值輸入至預先訓練完成的智慧調節模型,所述智慧調節模型輸出所述注塑機的至少一個第一設備參數,根據所述至少一個第一設備參數調整所述注塑機的設備參數;當確定所述模具出現異常時,將所述第一感測器資訊和所述至少一個第二影響參數的參數值輸入至預先訓練完成的智慧調節模型,所述智慧調節模型輸出所述模具的至少一個第二設備參數,根據所述至少一個第二設備參數調整所述模具的設備參數;當確定所述模溫機出現異常時,將所述第二感測器資訊和所述至少一個第三影響參數的參數值輸入至預先訓練完成的智慧調節模型,所述智慧調節模型輸出所述模溫機的至少一個第三設備參數的參數值,根據所述至少一個第三設備參數調整所述模具的設備參數。 In one embodiment of the present application, when it is determined according to the process risk value that there is an abnormality in the target component, adjusting the equipment parameters of the target component according to at least one influencing parameter of the target component includes: when determining that the injection molding When an abnormality occurs in the injection molding machine, input the controller information and the parameter value of the at least one first influencing parameter into a pre-trained intelligent adjustment model, and the intelligent adjustment model outputs at least one first equipment parameter of the injection molding machine , adjusting the equipment parameters of the injection molding machine according to the at least one first equipment parameter; when it is determined that the mold is abnormal, inputting the first sensor information and the parameter value of the at least one second influencing parameter To the pre-trained intelligent adjustment model, the intelligent adjustment model outputs at least one second equipment parameter of the mold, and adjusts the equipment parameter of the mold according to the at least one second equipment parameter; when the mold temperature controller is determined When an abnormality occurs, the second sensor information and the parameter value of the at least one third influencing parameter are input to the pre-trained intelligent adjustment model, and the intelligent adjustment model outputs at least one first parameter value of the mold temperature controller. Three parameter values of equipment parameters, adjusting the equipment parameters of the mold according to the at least one third equipment parameter.

透過利用所述智慧調節模型調整所述注塑機、所述模具和所述模溫機的設備參數,一方面可以實現智慧調節,減少人力物力的浪費,調高設備調節的準確度,另一方面可以為現場人員調試設備提供重要的參考資訊。 By using the intelligent adjustment model to adjust the equipment parameters of the injection molding machine, the mold, and the mold temperature controller, on the one hand, intelligent adjustment can be realized, the waste of manpower and material resources can be reduced, and the accuracy of equipment adjustment can be increased. It can provide important reference information for on-site personnel to debug equipment.

請繼續參閱圖1,本實施例中,所述記憶體11可以是電子設備1的內部記憶體,即內置於所述電子設備1的記憶體。在其他實施例中,所述記憶體11也可以是電子設備1的外部記憶體,即外接於所述電子設備1的記憶體。 Please continue to refer to FIG. 1 , in this embodiment, the memory 11 may be an internal memory of the electronic device 1 , that is, a memory built in the electronic device 1 . In other embodiments, the memory 11 may also be an external memory of the electronic device 1 , that is, a memory externally connected to the electronic device 1 .

在一些實施例中,所述記憶體11用於存儲程式碼和各種資訊,並在電子設備1的運行過程中實現高速、自動地完成程式或資訊的存取。 In some embodiments, the memory 11 is used to store program codes and various information, and realize high-speed and automatic access to programs or information during the operation of the electronic device 1 .

所述記憶體11可以包括隨機存取記憶體,還可以包括非易失性記憶體,例如硬碟、記憶體、插接式硬碟、智慧存儲卡(Smart Media Card,SMC)、安全數位(Secure Digital,SD)卡、快閃記憶體卡(Flash Card)、至少一個磁碟記憶體件、快閃記憶體器件、或其他易失性固態記憶體件。 The memory 11 may include a random access memory, and may also include a non-volatile memory, such as a hard disk, a memory, a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital ( Secure Digital (SD) card, flash memory card (Flash Card), at least one disk memory device, flash memory device, or other volatile solid state memory devices.

在一實施例中,所述處理器12可以是中央處理單元(Central Processing Unit,CPU),還可以是其他通用處理器、數位訊號處理器(Digital Signal Processor,DSP)、專用積體電路(Application Specific Integrated Circuit,ASIC)、現場可程式設計閘陣列(Field-Programmable Gate Array,FPGA)或者其他可程式設計邏輯器件、分立門或者電晶體邏輯器件、分立硬體元件等。通用處理器可以是微處理器或者所述處理器也可以是其它任何常規的處理器等。 In one embodiment, the processor 12 may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc. The general-purpose processor may be a microprocessor, or the processor may be any other conventional processor and the like.

所述記憶體11中的程式碼和各種資訊如果以軟體功能單元的形式實現並作為獨立的產品銷售或使用時,可以存儲在一個電腦可讀取存儲介質中。基於這樣的理解,本申請實現上述實施例方法中的全部或部分流程,例如實現注塑成型過程的異常監控方法,也可以透過電腦程式來指令相關的硬體來完成,所述的電腦程式可存儲於一電腦可讀存儲介質中,所述電腦程式在被處理器執行時,可實現上述各個方法實施例的步驟。其中,所述電腦程式包括電腦程式代碼,所述電腦程式代碼可以為原始程式碼形式、物件代碼形式、可執行檔或某些中間形式等。所述電腦可讀介質可以包括:能夠攜帶所述電腦程式代碼的任何實體或裝置、記錄介質、隨身碟、移動硬碟、磁碟、光碟、電腦記憶體、唯讀記憶體(ROM,Read-Only Memory)等。 If the program codes and various information in the memory 11 are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium. Based on this understanding, the present application implements all or part of the processes in the methods of the above-mentioned embodiments, such as realizing the abnormality monitoring method of the injection molding process, which can also be completed by instructing related hardware through computer programs, and the computer programs can be stored In a computer-readable storage medium, when the computer program is executed by a processor, the steps of the above-mentioned various method embodiments can be realized. Wherein, the computer program includes computer program code, and the computer program code may be in the form of original code, object code, executable file or some intermediate form. The computer-readable medium may include: any entity or device capable of carrying the computer program code, recording medium, flash drive, mobile hard disk, magnetic disk, optical disk, computer memory, read-only memory (ROM, Read- Only Memory) etc.

可以理解的是,以上所描述的模組劃分,為一種邏輯功能劃分,實 際實現時可以有另外的劃分方式。另外,在本申請各個實施例中的各功能模組可以集成在相同處理單元中,也可以是各個模組單獨物理存在,也可以兩個或兩個以上模組集成在相同單元中。上述集成的模組既可以採用硬體的形式實現,也可以採用硬體加軟體功能模組的形式實現。 It can be understood that the above-described module division is a logical function division, which implements In actual implementation, there may be another division method. In addition, each functional module in each embodiment of the present application may be integrated into the same processing unit, or each module may exist separately physically, or two or more modules may be integrated into the same unit. The above-mentioned integrated modules can be implemented in the form of hardware, or in the form of hardware plus software function modules.

最後應說明的是,以上實施例僅用以說明本申請的技術方案而非限制,儘管參照較佳實施例對本申請進行了詳細說明,本領域的普通技術人員應當理解,可以對本申請的技術方案進行修改或等同替換,而不脫離本申請技術方案的精神和範圍。 Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present application without limitation. Although the present application has been described in detail with reference to the preferred embodiments, those skilled in the art should understand that the technical solutions of the present application can be Make modifications or equivalent replacements without departing from the spirit and scope of the technical solutions of the present application.

S21~S24:步驟 S21~S24: Steps

Claims (10)

一種注塑成型過程的異常監控方法,其中,所述注塑成型過程的異常監控方法包括:獲取注塑成型過程中多個部件的資訊,包括:獲取注塑機的控制器資訊;對所述控制器資訊進行切分,得到多個工段資訊,不同的工段資訊對應不同的注塑成型過程;調用預先訓練完成的異常監測模型對每個部件的資訊進行異常分析,得到每個部件的製程風險值和至少一個影響參數,包括:調用所述訓練完成的異常監測模型對所述注塑機的控制器資訊進行異常分析,得到第一製程風險值和至少一個第一影響參數的參數值,包括:將所述多個工段資訊分別輸入所述訓練完成的異常監測模型得到對應的風險值;根據每個工段的重要性設置每個工段的占比;根據與所述多個工段資訊分別對應的風險值,以及所述每個工段的占比得到所述第一製程風險值;根據所述製程風險值判斷對應的部件是否存在異常;當根據所述製程風險值確定目標部件存在異常時,根據所述目標部件的至少一個影響參數調整所述目標部件的設備參數。 A method for monitoring abnormalities in an injection molding process, wherein the method for monitoring abnormalities in an injection molding process includes: obtaining information on multiple components in the injection molding process, including: obtaining controller information of an injection molding machine; Segmentation to obtain information on multiple sections, and information on different sections corresponds to different injection molding processes; call the pre-trained anomaly monitoring model to analyze the information of each component abnormally, and obtain the process risk value and at least one impact of each component Parameters, including: calling the trained abnormality monitoring model to analyze the abnormality of the controller information of the injection molding machine, and obtaining the first process risk value and the parameter value of at least one first influencing parameter, including: combining the multiple The section information is respectively input into the abnormality monitoring model that has been trained to obtain the corresponding risk value; the proportion of each section is set according to the importance of each section; according to the risk values corresponding to the multiple section information, and the According to the proportion of each process section, the first process risk value is obtained; according to the process risk value, it is judged whether the corresponding component is abnormal; An influencing parameter adjusts a device parameter of the target component. 如請求項1所述的注塑成型過程的異常監控方法,其中,所述獲取注塑成型過程中多個部件的資訊還包括:模具的第一感測器資訊和模溫機的第二感測器資訊;所述獲取注塑機的控制器資訊包括:透過可程式設計邏輯控制器通訊板介面與所述注塑機通訊連接,即時採集所述注塑機的控制器資訊,包括:所述注塑機系統參數、所述注塑機開關狀態和所述注塑機內部資訊;及從所述可程式設計邏輯控制器通訊板介面獲得所述注塑機的控制器資訊。 The abnormality monitoring method of the injection molding process as described in claim 1, wherein the acquisition of information of multiple components in the injection molding process further includes: information of the first sensor of the mold and the second sensor of the mold temperature machine information; the acquisition of the controller information of the injection molding machine includes: communicating with the injection molding machine through the programmable logic controller communication board interface, and collecting the controller information of the injection molding machine in real time, including: the injection molding machine system parameters , the switching state of the injection molding machine and the internal information of the injection molding machine; and obtaining the controller information of the injection molding machine from the PLC communication board interface. 如請求項2所述的注塑成型過程的異常監控方法,其中,所述模具的第一感測器資訊包括:透過溫度感測器所測量獲得的所述模具的溫度資訊、透過距離感測器所測量獲得的所述模具的位置資訊和尺寸資訊;所述模溫機的第二感測器資訊包括:透過距離感測器所感測獲得的所述模溫機內部迴圈泵的尺寸資訊、加熱管的尺寸資訊和電器配件的尺寸資訊,透過溫度感測器所感測獲得的所述模溫機內部迴圈泵的溫度資訊、加熱管的溫度資訊和電器配件的溫度資訊。 The abnormality monitoring method of the injection molding process according to claim 2, wherein the first sensor information of the mold includes: the temperature information of the mold measured by the temperature sensor, the distance sensor The measured position information and size information of the mold; the second sensor information of the mold temperature controller includes: the size information of the internal circulation pump of the mold temperature controller sensed by the distance sensor, The size information of the heating tube and the size information of the electrical accessories, the temperature information of the internal circulation pump of the mold temperature controller, the temperature information of the heating tube and the temperature information of the electrical accessories are sensed by the temperature sensor. 如請求項2或請求項3所述的注塑成型過程的異常監控方法,其中,所述調用預先訓練完成的異常監測模型對每個部件的資訊進行異常分析,得到每個部件的製程風險值和至少一個影響參數還包括:調用預先訓練完成的異常監測模型對所述模具的第一感測器資訊進行異常分析,得到第二製程風險值和至少一個第二影響參數;調用預先訓練完成的異常監測模型對所述模溫機的第二感測器資訊進行異常分析,得到第三製程風險值和至少一個第三影響參數。 The abnormality monitoring method of the injection molding process as described in claim 2 or claim 3, wherein, the abnormality analysis is performed on the information of each component by calling the pre-trained abnormality monitoring model, and the process risk value and the process risk value of each component are obtained. The at least one influencing parameter further includes: calling the pre-trained abnormal monitoring model to analyze the abnormality of the first sensor information of the mold to obtain the second process risk value and at least one second influencing parameter; calling the pre-trained abnormal The monitoring model performs anomaly analysis on the information of the second sensor of the mold temperature controller to obtain a third process risk value and at least one third influencing parameter. 如請求項4所述的注塑成型過程的異常監控方法,其中,在所述調用預先訓練完成的異常監測模型對每個部件的資訊進行異常分析之前,所述方法還包括:設置注塑機的成型工作週期;每隔所述成型工作週期調用預先訓練完成的異常監測模型對每個部件的資訊進行異常分析。 The abnormality monitoring method of the injection molding process as described in claim 4, wherein, before calling the pre-trained abnormality monitoring model to perform abnormality analysis on the information of each component, the method further includes: setting the molding of the injection molding machine Working cycle: calling the pre-trained abnormality monitoring model to analyze the abnormality of the information of each component every said molding working cycle. 如請求項5所述的注塑成型過程的異常監控方法,其中,所述方法還包括: 每隔所述成型工作週期,根據所述至少一個第一影響參數繪製第一參數週期變化狀態圖,根據所述至少一個第二影響參數繪製第二參數週期變化狀態圖,根據所述至少一個第三影響參數繪製第三參數週期變化狀態圖。 The abnormality monitoring method of the injection molding process as claimed in item 5, wherein the method further includes: Every molding working cycle, according to the at least one first influencing parameter, draw a first parameter periodical change state diagram, according to the at least one second influencing parameter, draw a second parameter periodical change state diagram, according to the at least one first influencing parameter Three influence parameters Draw the state diagram of the period change of the third parameter. 如請求項6所述的注塑成型過程的異常監控方法,其中,所述根據所述製程風險值判斷對應的部件是否存在異常包括:判斷所述第一製程風險值是否大於預設的第一閾值,當所述第一製程風險值大於所述預設的第一閾值時,輸出第一結果,所述第一結果表明所述注塑機存在異常;判斷所述第二製程風險值是否大於預設的第二閾值,當所述第二製程風險值大於所述預設的第二閾值時,輸出第二結果,所述第二結果所述模具存在異常;判斷所述第三製程風險值是否大於預設的第三閾值,當所述第三製程風險值大於所述預設的第三閾值時,輸出第三結果,所述第三結果所述模溫機存在異常。 The abnormality monitoring method of the injection molding process according to claim 6, wherein the determining whether the corresponding component is abnormal according to the process risk value includes: determining whether the first process risk value is greater than a preset first threshold , when the first process risk value is greater than the preset first threshold, output a first result, the first result indicates that there is an abnormality in the injection molding machine; judge whether the second process risk value is greater than a preset The second threshold of the second process, when the second process risk value is greater than the preset second threshold, output the second result, the second result is abnormal in the mold; judge whether the third process risk value is greater than A preset third threshold, when the third process risk value is greater than the preset third threshold, a third result is output, and the third result is that the mold temperature controller is abnormal. 如請求項7所述的注塑成型過程的異常監控方法,其中,所述當根據所述製程風險值確定目標部件存在異常時,根據所述目標部件的至少一個影響參數調整所述目標部件的設備參數包括:當確定所述注塑機出現異常時,將所述控制器資訊和所述至少一個第一影響參數輸入至預先訓練完成的智慧調節模型,所述智慧調節模型輸出所述注塑機的至少一個第一設備參數,根據所述至少一個第一設備參數調整所述注塑機的設備參數;當確定所述模具出現異常時,將所述第一感測器資訊和所述至少一個第二影響參數輸入至預先訓練完成的智慧調節模型,所述智慧調節模型輸出所述模 具的至少一個第二設備參數,根據所述至少一個第二設備參數調整所述模具的設備參數;當確定所述模溫機出現異常時,將所述第二感測器資訊和所述至少一個第三影響參數輸入至預先訓練完成的智慧調節模型,所述智慧調節模型輸出所述模溫機的至少一個第三設備參數,根據所述至少一個第三設備參數調整所述模具的設備參數。 The abnormality monitoring method of the injection molding process according to claim 7, wherein, when it is determined according to the process risk value that there is an abnormality in the target component, the equipment for the target component is adjusted according to at least one influencing parameter of the target component The parameters include: when it is determined that the injection molding machine is abnormal, input the controller information and the at least one first influencing parameter into a pre-trained intelligent adjustment model, and the intelligent adjustment model outputs at least A first equipment parameter, adjusting the equipment parameters of the injection molding machine according to the at least one first equipment parameter; when it is determined that the mold is abnormal, the first sensor information and the at least one second influence The parameters are input to the pre-trained intelligent adjustment model, and the intelligent adjustment model outputs the model at least one second equipment parameter of the tool, and adjust the equipment parameter of the mold according to the at least one second equipment parameter; when it is determined that the mold temperature machine is abnormal, the information of the second sensor and the at least A third influencing parameter is input to the pre-trained intelligent adjustment model, the intelligent adjustment model outputs at least one third equipment parameter of the mold temperature controller, and the equipment parameter of the mold is adjusted according to the at least one third equipment parameter . 一種電子設備,其中,所述電子設備包括處理器和記憶體,所述處理器用於執行記憶體中儲存的電腦程式以實現如請求項1至請求項8中任意一項所述的注塑成型過程的異常監控方法。 An electronic device, wherein the electronic device includes a processor and a memory, and the processor is used to execute a computer program stored in the memory to realize the injection molding process as described in any one of claim 1 to claim 8 exception monitoring method. 一種電腦可讀儲存介質,其中,所述電腦可讀儲存介質儲存有至少一個指令,所述至少一個指令被處理器執行時實現如請求項1至請求項8中任意一項所述的注塑成型過程的異常監控方法。 A computer-readable storage medium, wherein the computer-readable storage medium stores at least one instruction, and when the at least one instruction is executed by a processor, the injection molding as described in any one of claim 1 to claim 8 is realized An exception monitoring method for the process.
TW110127430A 2021-06-29 2021-07-26 Method for monitoring abnormalities in injection molding process, electronic device, and storage medium TWI785698B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110729853.9A CN115545367A (en) 2021-06-29 2021-06-29 Abnormality monitoring method in injection molding process, electronic device, and storage medium
CN202110729853.9 2021-06-29

Publications (2)

Publication Number Publication Date
TWI785698B true TWI785698B (en) 2022-12-01
TW202301054A TW202301054A (en) 2023-01-01

Family

ID=84716715

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110127430A TWI785698B (en) 2021-06-29 2021-07-26 Method for monitoring abnormalities in injection molding process, electronic device, and storage medium

Country Status (2)

Country Link
CN (1) CN115545367A (en)
TW (1) TWI785698B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116127399B (en) * 2023-04-17 2023-06-20 威海三元塑胶科技有限公司 Monitoring and analyzing method and system for injection molding workshop equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW567132B (en) * 2000-06-08 2003-12-21 Mirle Automation Corp Intelligent control method for injection molding machine
TW200424052A (en) * 2003-05-08 2004-11-16 Ming-Shyan Huang A cavity pressure based quality control method for injection molding process
TW200635749A (en) * 2005-04-01 2006-10-16 Nissei Plastics Ind Co Control apparatus for injection molding machine
TW201702776A (en) * 2015-07-03 2017-01-16 元智大學 桃園市中壢區遠東路 135 號 Real time monitoring system and method thereof of optical film manufacturing process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW567132B (en) * 2000-06-08 2003-12-21 Mirle Automation Corp Intelligent control method for injection molding machine
TW200424052A (en) * 2003-05-08 2004-11-16 Ming-Shyan Huang A cavity pressure based quality control method for injection molding process
TW200635749A (en) * 2005-04-01 2006-10-16 Nissei Plastics Ind Co Control apparatus for injection molding machine
TW201702776A (en) * 2015-07-03 2017-01-16 元智大學 桃園市中壢區遠東路 135 號 Real time monitoring system and method thereof of optical film manufacturing process

Also Published As

Publication number Publication date
CN115545367A (en) 2022-12-30
TW202301054A (en) 2023-01-01

Similar Documents

Publication Publication Date Title
TWI785698B (en) Method for monitoring abnormalities in injection molding process, electronic device, and storage medium
CN110978441A (en) Visual injection molding production process verification method
CN109614651A (en) A kind of high-precision evaluation method of moulding machined parameters and deformation relationship
CN106393617A (en) Injection molding process parameter self-adaptive system
KR20140091991A (en) A Molding Information Extraction Symtem of Emitting Mold Press
CN105108986A (en) System and method for injection molding process monitoring and plastic part on-line quality sorting
TWI598841B (en) Cloud based injection molding system and method thereof
JP2023044477A (en) Failure cause analysis system, failure cause analysis program and failure cause analysis method
CN113733506A (en) Technological parameter optimization method for injection molding product processing based on Internet
CN117123640A (en) Feeding positioning precision detection method and system for die processing equipment
CN206633366U (en) A kind of injection-molded item defect self-cure regulation and control device
Su et al. A real‐time clamping force measurement eigenvalue for prediction, adjustment, and control of injection product quality
CN113524605B (en) Method and device for setting technological parameters of injection molding machine
CN113715285A (en) Control method for injection molding machine after defective products are generated
CN203726802U (en) Plastic extruding machine with material molding detecting device
US10882236B2 (en) Molding system, molding apparatus, inspection apparatus, inspection method, and program
CN112692254A (en) Intelligent cooling water control device for die casting machine and control method thereof
CN101259745A (en) Application of RJG system in injection moulding and forming process
CN112776293A (en) Method and system for improving consistency of molding quality of injection molding process product
CN114179320B (en) Automatic adjusting method for technological parameters of injection molding machine in combination with visual detection
CN113762609B (en) Product quality prediction method and device
TWM618522U (en) Processing parameter production system applied to batch production equipment
JPH08156060A (en) System for optimizing injection molding condition
TWM626165U (en) Process stability monitoring and molding quality prediction system applied to batch production equipment
CN118544552B (en) Intelligent energy consumption management system of injection molding machine