TWI785698B - Method for monitoring abnormalities in injection molding process, electronic device, and storage medium - Google Patents
Method for monitoring abnormalities in injection molding process, electronic device, and storage medium Download PDFInfo
- Publication number
- TWI785698B TWI785698B TW110127430A TW110127430A TWI785698B TW I785698 B TWI785698 B TW I785698B TW 110127430 A TW110127430 A TW 110127430A TW 110127430 A TW110127430 A TW 110127430A TW I785698 B TWI785698 B TW I785698B
- Authority
- TW
- Taiwan
- Prior art keywords
- information
- injection molding
- risk value
- parameter
- mold
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 130
- 238000001746 injection moulding Methods 0.000 title claims abstract description 84
- 230000005856 abnormality Effects 0.000 title claims abstract description 81
- 238000012544 monitoring process Methods 0.000 title claims abstract description 64
- 238000003860 storage Methods 0.000 title claims abstract description 10
- 230000008569 process Effects 0.000 claims abstract description 91
- 230000002159 abnormal effect Effects 0.000 claims abstract description 38
- 238000000465 moulding Methods 0.000 claims abstract description 13
- 238000010586 diagram Methods 0.000 claims description 12
- 238000004590 computer program Methods 0.000 claims description 11
- 230000008859 change Effects 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 7
- 238000004891 communication Methods 0.000 claims description 6
- 230000011218 segmentation Effects 0.000 claims 1
- 230000002950 deficient Effects 0.000 abstract description 3
- 238000012360 testing method Methods 0.000 description 18
- 238000002834 transmittance Methods 0.000 description 13
- 238000012549 training Methods 0.000 description 10
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 238000001816 cooling Methods 0.000 description 7
- 239000004033 plastic Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0631—Resource planning, allocation, distributing or scheduling for enterprises or organisations
- G06Q10/06311—Scheduling, planning or task assignment for a person or group
- G06Q10/063114—Status monitoring or status determination for a person or group
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0635—Risk analysis of enterprise or organisation activities
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/04—Manufacturing
Landscapes
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Engineering & Computer Science (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- Entrepreneurship & Innovation (AREA)
- Tourism & Hospitality (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Educational Administration (AREA)
- Quality & Reliability (AREA)
- Operations Research (AREA)
- Game Theory and Decision Science (AREA)
- Development Economics (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
Description
本申請涉及資訊分析領域,尤其涉及一種注塑成型過程的異常監控方法、電子設備及存儲介質。 The present application relates to the field of information analysis, in particular to an abnormality monitoring method, electronic equipment and a storage medium of an injection molding process.
目前注塑成型的品質監測是透過對成品品質的檢驗來實現的。對於持續生產的注塑生產現場,品質監管人員透過定期檢查或者隨機抽檢的方式對成品的品質進行檢驗。但是這種方式從產品生產到異常品檢出的週期通常較長,在此期間可能有更多的廢品產生。另外,品質監管人員在發現成品品質異常後會通知相關人員進行處理,這個過程需要耗費大量的時間,不能及時的回饋資訊。同時,相關人員需要根據自身經驗進行處理,處理過程嚴重依賴人員能力並且具有很大的不可控性。 At present, the quality monitoring of injection molding is realized through the inspection of the finished product quality. For the continuous production of injection molding production sites, quality supervisors inspect the quality of finished products through regular inspections or random inspections. However, the period from product production to detection of abnormal products in this way is usually longer, and more waste products may be generated during this period. In addition, quality supervisors will notify relevant personnel to deal with abnormalities in the quality of finished products. This process takes a lot of time and cannot provide timely feedback. At the same time, relevant personnel need to handle it according to their own experience, and the processing process relies heavily on personnel capabilities and is highly uncontrollable.
鑒於以上內容,有必要提供一種注塑成型過程的異常監控方法、電子設備及存儲介質,可以及時發現成型過程中的異常情況,從而降低成型品的不良率。 In view of the above, it is necessary to provide a method for monitoring abnormalities in the injection molding process, electronic equipment and storage media, which can detect abnormalities in the molding process in time, thereby reducing the defect rate of molded products.
本申請提供一種注塑成型過程的異常監控方法,所述方法包括:獲取注塑成型過程中多個部件的資訊;調用預先訓練完成的異常監測模型對每個部件的資訊進行異常分析,得到每個部件的製程風險值和至少一個影響參數; 根據所述製程風險值判斷對應的部件是否存在異常;當根據所述製程風險值確定目標部件存在異常時,根據所述目標部件的至少一個影響參數調整所述目標部件的設備參數。 The present application provides an abnormality monitoring method in the injection molding process, the method comprising: obtaining information on multiple components in the injection molding process; calling a pre-trained abnormality monitoring model to perform abnormality analysis on the information of each component, and obtaining the information of each component Process risk value and at least one influencing parameter; Determine whether the corresponding component is abnormal according to the process risk value; when it is determined that the target component is abnormal according to the process risk value, adjust the equipment parameters of the target component according to at least one influencing parameter of the target component.
在一種可能的實現方式中,所述獲取注塑成型過程中多個部件的資訊包括:獲取注塑機的控制器資訊、模具的第一感測器資訊和模溫機的第二感測器資訊。 In a possible implementation manner, the acquiring information of multiple components in the injection molding process includes: acquiring information of a controller of an injection molding machine, information of a first sensor of a mold, and information of a second sensor of a mold temperature controller.
在一種可能的實現方式中,所述獲取注塑機的控制器資訊、模具的第一感測器資訊和模溫機的第二感測器資訊之後,所述方法還包括:根據所述控制器資訊中的工段資訊,對所述控制器資訊進行切分,得到多個工段資訊,不同的工段資訊對應不同的注塑成型過程。 In a possible implementation manner, after acquiring the controller information of the injection molding machine, the first sensor information of the mold, and the second sensor information of the mold temperature machine, the method further includes: according to the controller The section information in the information divides the controller information to obtain multiple section information, and different section information corresponds to different injection molding processes.
在一種可能的實現方式中,所述調用預先訓練完成的異常監測模型對每個部件的資訊進行異常分析,得到每個部件的製程風險值和至少一個影響參數包括:調用預先訓練完成的異常監測模型對所述注塑機的控制器資訊進行異常分析,得到第一製程風險值和至少一個第一影響參數;調用預先訓練完成的異常監測模型對所述模具的第一感測器資訊進行異常分析,得到第二製程風險值和至少一個第二影響參數;調用預先訓練完成的異常監測模型對所述模溫機的第二感測器資訊進行異常分析,得到第三製程風險值和至少一個第三影響參數。 In a possible implementation, the calling the pre-trained abnormality monitoring model to analyze the abnormality of each component information, and obtaining the process risk value and at least one impact parameter of each component includes: calling the pre-trained abnormality monitoring The model performs abnormal analysis on the controller information of the injection molding machine to obtain the first process risk value and at least one first influencing parameter; calls the pre-trained abnormal monitoring model to perform abnormal analysis on the first sensor information of the mold , to obtain the second process risk value and at least one second influencing parameter; call the pre-trained abnormality monitoring model to analyze the abnormality of the second sensor information of the mold temperature machine, and obtain the third process risk value and at least one first Three influence parameters.
在一種可能的實現方式中,在所述調用預先訓練完成的異常監測模型對每個部件的資訊進行異常分析之前,所述方法還包括:設置注塑機的成型工作週期;每隔所述成型工作週期調用預先訓練完成的異常監測模型對每個部件的資訊進行異常分析。 In a possible implementation manner, before calling the pre-trained abnormality monitoring model to perform abnormality analysis on the information of each component, the method further includes: setting the molding work cycle of the injection molding machine; Periodically invoke the pre-trained anomaly monitoring model to analyze the information of each component abnormally.
在一種可能的實現方式中,所述方法還包括:每隔所述成型工作週 期,根據所述至少一個第一影響參數繪製第一參數週期變化狀態圖,根據所述至少一個第二影響參數繪製第二參數週期變化狀態圖,根據所述至少一個第三影響參數繪製第三參數週期變化狀態圖。 In a possible implementation manner, the method further includes: period, draw the first parameter period change state diagram according to the at least one first influence parameter, draw the second parameter period change state diagram according to the at least one second influence parameter, draw the third parameter according to the at least one third influence parameter Parameter cycle change state diagram.
在一種可能的實現方式中,所述根據所述製程風險值判斷對應的部件是否存在異常包括:判斷所述第一製程風險值是否大於預設的第一閾值,當所述第一製程風險值大於所述預設的第一閾值時,輸出第一結果,所述第一結果表明所述注塑機存在異常;判斷所述第二製程風險值是否大於預設的第二閾值,當所述第二製程風險值大於所述預設的第二閾值時,輸出第二結果,所述第二結果所述模具存在異常;判斷所述第三製程風險值是否大於預設的第三閾值,當所述第三製程風險值大於所述預設的第三閾值時,輸出第三結果,所述第三結果所述模溫機存在異常。 In a possible implementation manner, the determining whether the corresponding component is abnormal according to the process risk value includes: determining whether the first process risk value is greater than a preset first threshold, when the first process risk value When it is greater than the preset first threshold, a first result is output, and the first result indicates that there is an abnormality in the injection molding machine; it is judged whether the second process risk value is greater than the preset second threshold, and when the first When the risk value of the second process is greater than the preset second threshold, the second result is output, and the mold is abnormal in the second result; it is judged whether the risk value of the third process is greater than the preset third threshold, and when the second result is abnormal; When the third process risk value is greater than the preset third threshold, a third result is output, and the third result is that the mold temperature controller is abnormal.
在一種可能的實現方式中,所述當根據所述製程風險值確定目標部件存在異常時,根據所述目標部件的至少一個影響參數調整所述目標部件的設備參數包括:當確定所述注塑機出現異常時,將所述控制器資訊和所述至少一個第一影響參數輸入至預先訓練完成的智慧調節模型,所述智慧調節模型輸出所述注塑機的至少一個第一設備參數,根據所述至少一個第一設備參數調整所述注塑機的設備參數;當確定所述模具出現異常時,將所述第一感測器資訊和所述至少一個第二影響參數輸入至預先訓練完成的智慧調節模型,所述智慧調節模型輸出所述模具的至少一個第二設備參數,根據所述至少一個第二設備參數調整所述模具的設備參數;當確定所述模溫機出現異常時,將所述第二感測器資訊和所述至少一個第三影響參數輸入至預先訓練完成的智慧調節模型,所述智慧調節模型輸出所述模溫機的至少一個第三設備參數,根據所述至少一個第三設備參數調整所述模具的設備參數。 In a possible implementation manner, when it is determined according to the process risk value that there is an abnormality in the target component, adjusting the equipment parameter of the target component according to at least one influencing parameter of the target component includes: when determining that the injection molding machine When an abnormality occurs, input the controller information and the at least one first influencing parameter into a pre-trained intelligent adjustment model, and the intelligent adjustment model outputs at least one first equipment parameter of the injection molding machine, according to the At least one first equipment parameter to adjust the equipment parameters of the injection molding machine; when it is determined that the mold is abnormal, input the first sensor information and the at least one second influencing parameter to the pre-trained intelligent adjustment model, the intelligent adjustment model outputs at least one second equipment parameter of the mold, and adjusts the equipment parameter of the mold according to the at least one second equipment parameter; when it is determined that the mold temperature machine is abnormal, the The second sensor information and the at least one third influencing parameter are input to the pre-trained intelligent adjustment model, and the intelligent adjustment model outputs at least one third equipment parameter of the mold temperature controller, according to the at least one first Three Equipment Parameters Adjust the equipment parameters of the mould.
本申請還提供一種電子設備,所述電子設備包括處理器和記憶體,所述處理器用於執行所述記憶體中存儲的電腦程式時實現所述的注塑成型過程的異常監控方法。 The present application also provides an electronic device, the electronic device includes a processor and a memory, and the processor is used to implement the abnormality monitoring method of the injection molding process when executing the computer program stored in the memory.
本申請還提供一種電腦可讀存儲介質,所述電腦可讀存儲介質上存儲有電腦程式,所述電腦程式被處理器執行時實現所述的注塑成型過程的異常監控方法。 The present application also provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the method for monitoring abnormalities in the injection molding process is realized.
本申請公開的注塑成型過程的異常監控方法及相關設備,透過即時採集成型過程資訊,監測異常狀況並及時進行回饋提示,能夠及時的發現系統異常,減少不良品的產生,節省原料,提升注塑成型設備的有效價值時間。 The abnormal monitoring method and related equipment of the injection molding process disclosed in this application can detect system abnormalities in time, reduce the generation of defective products, save raw materials, and improve injection molding by collecting molding process information in real time, monitoring abnormal conditions and giving timely feedback prompts. The effective value time of the device.
S21~S24:步驟 S21~S24: Steps
1:電子設備 1: Electronic equipment
11:記憶體 11: Memory
12:處理器 12: Processor
13:通訊匯流排 13: Communication bus
圖1是本申請實施例提供的一種注塑成型過程的異常監控方法的較佳實施例的電子設備的結構示意圖。 FIG. 1 is a schematic structural diagram of an electronic device in a preferred embodiment of a method for monitoring abnormalities in an injection molding process provided by an embodiment of the present application.
圖2是本申請實施例提供的一種注塑成型過程的異常監控方法的較佳實施例的流程圖。 Fig. 2 is a flow chart of a preferred embodiment of a method for monitoring abnormalities in an injection molding process provided by an embodiment of the present application.
為了使本申請的目的、技術方案和優點更加清楚,下面結合附圖和具體實施例對本申請進行詳細描述。 In order to make the purpose, technical solution and advantages of the present application clearer, the present application will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
請參閱圖1,圖1為本申請一實施例的電子設備的示意圖。參閱圖1所示,所述電子設備1包括,但不僅限於,記憶體11和至少一個處理器12上述元件之間可以透過通訊匯流排13連接,也可以直接連接。
Please refer to FIG. 1 , which is a schematic diagram of an electronic device according to an embodiment of the present application. As shown in FIG. 1 , the
所述電子設備1可以是電腦、手機、平板電腦、個人數位助理(Personal Digital Assistant,PDA)等安裝有應用程式的設備。本領域技術人員可以理解,所述示意圖1僅僅是電子設備1的示例,並不構成對電子設備1的限定,可以
包括比圖示更多或更少的部件,或者組合某些部件,或者不同的部件,例如所述電子設備1還可以包括輸入輸出設備、網路接入設備、匯流排等。
The
如圖2所示,是本申請注塑成型過程的異常監控方法的較佳實施例的流程圖。所述注塑成型過程的異常監控方法應用在所述電子設備1中。根據不同的需求,該流程圖中步驟的順序可以改變,某些步驟可以省略。在本實施方式中,所述注塑成型過程的異常監控方法包括:S21、獲取注塑成型過程中多個部件的資訊。
As shown in FIG. 2 , it is a flowchart of a preferred embodiment of the abnormality monitoring method of the injection molding process of the present application. The abnormality monitoring method of the injection molding process is applied in the
在本申請的一個實施例中,所述獲取注塑成型過程中多個部件的資訊包括: In one embodiment of the present application, the acquisition of information on multiple components in the injection molding process includes:
(1)獲取注塑機的控制器資訊。所述注塑機是將熱塑性塑膠或熱固性塑膠利用模具製成各種形狀的塑膠製品的主要成型設備。其中,所述注塑機能加熱塑膠,對熔融塑膠施加高壓,使其射出而充滿模具型腔。具體實施時,透過可程式設計邏輯控制器(Programmable Logic Controller,PLC)通訊板介面與所述注塑機通訊連接,即時採集PLC資訊,其中所述PLC資訊包括:所述注塑機系統參數、所述注塑機開關狀態和所述注塑機內部資訊。透過所述PLC通訊板介面發送所述PLC資訊至所述電子設備。 (1) Obtain the controller information of the injection molding machine. The injection molding machine is the main molding equipment for making thermoplastic or thermosetting plastic into various shapes of plastic products. Wherein, the injection molding machine can heat the plastic, apply high pressure to the molten plastic, and make it inject to fill the cavity of the mold. During specific implementation, a programmable logic controller (Programmable Logic Controller, PLC) communication board interface communicates with the injection molding machine to collect PLC information in real time, wherein the PLC information includes: the injection molding machine system parameters, the The switch status of the injection molding machine and the internal information of the injection molding machine. Send the PLC information to the electronic device through the PLC communication board interface.
(2)獲取模具的第一感測器資訊。所述模具為注塑成型過程中依據實物的形狀和結構按比例製成的,用壓製或澆灌的方法使材料成為一定形狀的工具。具體實施時,設置溫度感測器,透過所述溫度感測器測量所述模具的溫度資訊,設置距離感測器,透過所述距離感測器測量所述模具的位置資訊和尺寸資訊。將所述模具的溫度資訊、所述模具的位置資訊和所述模具尺寸資訊作為所述第一感測器資訊發送至所述電子設備。 (2) Obtain the information of the first sensor of the mould. The mold is made in proportion according to the shape and structure of the real object in the injection molding process, and the material is made into a tool of a certain shape by pressing or pouring. During specific implementation, a temperature sensor is set to measure the temperature information of the mold through the temperature sensor, and a distance sensor is set to measure the position information and size information of the mold through the distance sensor. Sending the temperature information of the mould, the position information of the mould, and the dimension information of the mould, as the first sensor information, to the electronic device.
(3)獲取模溫機的第二感測器資訊。所述模溫機是一種包含加熱和 冷卻作用的機械設備,用於工業控溫,在注塑城成型過程中用於控制所述模具的溫度。具體實施時,設置距離感測器透過所述距離感測器測量所述模溫機內部迴圈泵的尺寸資訊、加熱管的尺寸資訊和電器配件的尺寸資訊,設置溫度感測器,透過所述溫度感測器測量所述模溫機內部迴圈泵的溫度資訊、加熱管的溫度資訊和電器配件的溫度資訊。將所述迴圈泵的尺寸資訊、所述加熱管的尺寸數據、所述電器配件的尺寸資訊、所述迴圈泵的溫度資訊、所述加熱管的溫度資訊和所述電器配件的溫度資訊作為所述第二感測器資訊發送至所述電子設備。 (3) Obtain the information of the second sensor of the mold temperature controller. The mold temperature controller is a kind of heating and Mechanical equipment for cooling action, used for industrial temperature control, used to control the temperature of the mold during the injection molding process. During specific implementation, the distance sensor is set to measure the size information of the internal circulation pump of the mold temperature controller, the size information of the heating pipe and the size information of the electrical accessories through the distance sensor, and the temperature sensor is set to pass through the distance sensor. The temperature sensor measures the temperature information of the circulation pump inside the mold temperature controller, the temperature information of the heating pipe and the temperature information of the electrical accessories. The size information of the loop pump, the size data of the heating tube, the size information of the electrical accessories, the temperature information of the loop pump, the temperature information of the heating tube, and the temperature information of the electrical accessories sent to the electronic device as the second sensor information.
透過獲取注塑成型過程中各個部件的資訊,可以更全面的對注塑成型過程進行異常分析,從而使得分析結果更加準確。 By obtaining the information of each component in the injection molding process, it is possible to analyze the abnormality of the injection molding process more comprehensively, so that the analysis results are more accurate.
作為一種可選的實施方式,所述步驟S21之後,所述方法還包括:根據所述控制器資訊中的工段資訊,對所述控制器資訊進行切分,得到多個工段資訊,不同的工段資訊對應不同的注塑成型過程。 As an optional implementation manner, after the step S21, the method further includes: segmenting the controller information according to the section information in the controller information to obtain a plurality of section information, different section information The information corresponds to different injection molding processes.
在本申請的一個實施例中,注射成型是一個迴圈的過程,每一個迴圈週期包括:定量加料、熔融塑化、施壓注射、充模冷卻和啟模取件。取出塑件後又再閉模,進行下一個迴圈。根據所述迴圈週期,可以將所述控制器資訊劃分為加料過程資訊、塑化過程資訊、注射過程資訊、冷卻過程資訊和取件過程資訊。 In one embodiment of the present application, injection molding is a cycle process, and each cycle cycle includes: quantitative feeding, melting and plasticizing, pressure injection, mold filling and cooling, and mold opening and taking. After the plastic part is taken out, the mold is closed again, and the next cycle is performed. According to the loop cycle, the controller information can be divided into feeding process information, plasticizing process information, injection process information, cooling process information and pick-up process information.
透過對所述控制器資訊進行劃分,後續對資訊進行異常分析時,可以精準的定位異常資訊所在的過程,從而提高異常監測效率。 By dividing the information of the controller, when performing abnormality analysis on the information, the process where the abnormal information is located can be accurately located, thereby improving the efficiency of abnormality monitoring.
S22、調用預先訓練完成的異常監測模型對每個部件的資訊進行異常分析,得到每個部件的製程風險值和至少一個影響參數。 S22. Invoke the pre-trained abnormality monitoring model to analyze the abnormality of the information of each component, and obtain the process risk value and at least one influencing parameter of each component.
在本申請的一個實施例中,預先訓練異常監測模型,具體實施時, 獲取第一訓練資訊集,所述第一訓練資訊集包括預設第一數量的第一訓練資訊,將所述第一訓練資訊登錄至預先搭建的神經網路框架中進行訓練,得到所述異常監測模型。獲取第一測試資訊集,所述第一測試資訊集包括預設第二數量的第一測試資訊,使用所述第一測試資訊測試所述異常監測模型並獲取第一測試透過率。當所述測試透過率大於預設第一透過率閾值時,將所述異常監測模型作為所述訓練完成的異常監測模型,當所述第一測試透過率小於預設第一透過率閾值時,調整所述異常監測模型的模型參數,直至所述第一測試透過率大於預設第一透過率閾值。 In one embodiment of the present application, the abnormality monitoring model is pre-trained, and during specific implementation, Obtain a first training information set, the first training information set includes a preset first number of first training information, log the first training information into a pre-built neural network framework for training, and obtain the abnormality monitoring model. Obtain a first test information set, the first test information set includes a preset second amount of first test information, use the first test information to test the abnormality monitoring model and obtain a first test penetration rate. When the test transmittance is greater than the preset first transmittance threshold, the abnormality monitoring model is used as the trained abnormality monitor model; when the first test transmittance is less than the preset first transmittance threshold, Adjusting model parameters of the abnormality monitoring model until the first test transmittance is greater than a preset first transmittance threshold.
在本申請的一個實施例中,所述調用預先訓練完成的異常監測模型對每個部件的資訊進行異常分析,得到每個部件的製程風險值和至少一個影響參數包括: In one embodiment of the present application, the calling of the pre-trained anomaly monitoring model to perform anomaly analysis on the information of each component, and obtaining the process risk value and at least one influencing parameter of each component include:
(1)調用所述訓練完成的異常監測模型對所述注塑機的控制器資訊進行異常分析,得到第一製程風險值和至少一個第一影響參數的參數值。具體實施時,輸入所述加料過程資訊至所述訓練完成的異常監測模型,輸出第一加料風險值;輸入所述塑化過程資訊至所述訓練完成的異常監測模型,輸出第一塑化風險值;輸入所述注射過程資訊至所述訓練完成的異常監測模型,輸出第一注射風險值;輸入所述冷卻過程資訊至所述訓練完成的異常監測模型,輸出第一冷卻風險值;輸入所述取件過程資訊至所述訓練完成的異常監測模型,輸出第一取件風險值;根據所述工段的重要性設置每個工段的占比,例如,加料過程占比10%,塑化過程占比30%,注射過程占比20%,冷卻過程占比30%以及取件過程占比10%;根據所述第一加料風險值、所述第一塑化風險值、所述第一注射風險值、所述第一冷卻風險值和所述第一取件風險值,以及所述每個工段的占比得到所述第一製程風險值。其中,所述第一製程風險值越大,表 示所述注塑機存在異常的可能性越高,注塑過程的風險值越大。所述第一影響參數為所述注塑機的設備參數,包括:注射量、注射壓力、注射速率、塑化能力、合模面積、合模力、開合模速度和空迴圈時間。 (1) Invoking the trained abnormality monitoring model to analyze the abnormality of the controller information of the injection molding machine to obtain the first process risk value and the parameter value of at least one first influencing parameter. During specific implementation, input the feeding process information into the trained abnormality monitoring model, and output the first feeding risk value; input the plasticizing process information into the trained abnormality monitoring model, and output the first plasticizing risk value; input the injection process information to the trained abnormal monitoring model, and output the first injection risk value; input the cooling process information to the trained abnormal monitoring model, and output the first cooling risk value; input the Describe the pickup process information to the abnormal monitoring model that has been trained, and output the first pickup risk value; set the proportion of each section according to the importance of the section, for example, the feeding process accounts for 10%, and the plasticizing process accounted for 30%, the injection process accounted for 20%, the cooling process accounted for 30% and the pick-up process accounted for 10%; according to the first feeding risk value, the first plasticizing risk value, the first injection The risk value, the first cooling risk value, the first pick-up risk value, and the proportion of each process section obtain the first process risk value. Wherein, the greater the risk value of the first process, the table The higher the possibility that the injection molding machine is abnormal, the greater the risk value of the injection molding process. The first influencing parameter is the equipment parameter of the injection molding machine, including: injection volume, injection pressure, injection rate, plasticizing capacity, mold clamping area, mold clamping force, mold opening and closing speed, and empty cycle time.
(2)調用所述訓練完成的異常監測模型對所述模具的第一感測器資訊進行異常分析,得到第二製程風險值和至少一個第二影響參數的參數值。其中,所述第二製程風險值越大,表示所述模具存在異常的可能性越高,成型過程的風險值越大。所述第二影響參數為所述模具的設備參數,包括:材料類別,抗拉強度、厚度、毛刺高度、雙面間隙、塌角深度和複磨壽命。 (2) Invoking the trained abnormality monitoring model to analyze the abnormality of the first sensor information of the mold to obtain a second process risk value and a parameter value of at least one second influencing parameter. Wherein, the greater the risk value of the second process, the higher the possibility of abnormality in the mold, and the greater the risk value of the molding process. The second influencing parameter is the equipment parameter of the mold, including: material type, tensile strength, thickness, burr height, double-sided clearance, sag depth and regrinding life.
(3)調用所述訓練完成的異常監測模型對所述模溫機的第二感測器資訊進行異常分析,得到第三製程風險值和至少一個第三影響參數的參數值。其中,所述第三製程風險值越大,表示所述模溫機存在異常的可能性越高,模具製作過程的風險值越大。所述第三影響參數為所述模溫機的設備參數,包括:溫控範圍、溫控精度、傳熱媒體、膨脹箱容量、泵浦功率和泵浦壓力。 (3) Invoking the trained abnormality monitoring model to analyze the abnormality of the second sensor information of the mold temperature controller to obtain a third process risk value and a parameter value of at least one third influencing parameter. Wherein, the greater the risk value of the third process, the higher the possibility of abnormality in the mold temperature controller, and the greater the risk value of the mold making process. The third influencing parameter is the equipment parameter of the mold temperature controller, including: temperature control range, temperature control accuracy, heat transfer medium, expansion tank capacity, pump power and pump pressure.
透過利用預先訓練完成的異常監測模型得到所述注塑機的製程風險值和影響參數、所述模具的製程風險值和影響參數和所述模溫機的製程風險值和影響參數,代替了傳統的人工監測方法,可以提高監測的準確率和效率。 The process risk value and influence parameters of the injection molding machine, the process risk value and influence parameters of the mold, and the process risk value and influence parameters of the mold temperature machine are obtained by using the pre-trained abnormality monitoring model, replacing the traditional Manual monitoring method can improve the accuracy and efficiency of monitoring.
作為一種可選的實施方式,所述步驟S22之前,所述方法還包括:設置注塑機的成型工作週期;每隔所述成型工作週期調用預先訓練完成的異常監測模型對每個部件的資訊進行異常分析。 As an optional implementation manner, before the step S22, the method further includes: setting the molding work cycle of the injection molding machine; calling the pre-trained abnormality monitoring model to monitor the information of each component every time the molding work cycle Exception analysis.
作為一種可選的實施方式,所述步驟S22之後,所述方法還包括:每隔所述成型工作週期,根據所述至少一個第一影響參數繪製第一參數週期變化狀態圖,根據所述至少一個第二影響參數繪製第二參數週期變化狀態圖,根據所述至少一個第三影響參數繪製第三參數週期變化狀態圖。 As an optional implementation manner, after the step S22, the method further includes: drawing a first parameter periodic change state diagram according to the at least one first influencing parameter every working cycle of the molding, according to the at least one A second influencing parameter is used to draw a state diagram of the periodical variation of the second parameter, and a diagram of the periodical variation of the third parameter is drawn according to the at least one third influencing parameter.
S23、根據所述製程風險值判斷對應的部件是否存在異常。 S23. Determine whether the corresponding component is abnormal according to the process risk value.
在本申請的一個實施例中,所述根據所述製程風險值判斷對應的部件是否存在異常包括:判斷所述第一製程風險值是否大於預設的第一閾值,當所述第一製程風險值大於所述預設的第一閾值時,輸出第一結果,所述第一結果表明所述注塑機存在異常;判斷所述第二製程風險值是否大於預設的第二閾值,當所述第二製程風險值大於所述預設的第二閾值時,輸出第二結果,所述第二結果所述模具存在異常;判斷所述第三製程風險值是否大於預設的第三閾值,當所述第三製程風險值大於所述預設的第三閾值時,輸出第三結果,所述第三結果所述模溫機存在異常。 In one embodiment of the present application, the determining whether the corresponding component is abnormal according to the process risk value includes: determining whether the first process risk value is greater than a preset first threshold, when the first process risk value When the value is greater than the preset first threshold, output the first result, the first result indicates that there is an abnormality in the injection molding machine; judge whether the second process risk value is greater than the preset second threshold, when the When the second process risk value is greater than the preset second threshold value, output a second result that the mold is abnormal; determine whether the third process risk value is greater than the preset third threshold value, when When the third process risk value is greater than the preset third threshold, a third result is output, and the third result is that the mold temperature controller is abnormal.
示例性的,設置所述第一閾值為0.3,所述第二閾值為0.6,所述第三閾值為0.5。所述第一製程風險值為0.1,所述第二製程風險值為0.5,所述第三製程風險值為0.7,其中所述第三製程風險值大與所述第三閾值,輸出所述模溫機存在異常的提示。 Exemplarily, the first threshold is set to 0.3, the second threshold is set to 0.6, and the third threshold is set to 0.5. The risk value of the first process is 0.1, the risk value of the second process is 0.5, and the risk value of the third process is 0.7, wherein the risk value of the third process is greater than the third threshold, and the output of the model There is an abnormality prompt in the temperature machine.
透過利用所述製程風險值判斷各個部件是否存在異常,透過即時採集成型過程資訊,監測異常狀況並及時進行回饋提示,能夠及時的發現系統異常,減少不良品的產生,節省原料,提升注塑成型設備的有效價值時間。 By using the process risk value to judge whether there is an abnormality in each component, through real-time collection of molding process information, monitoring of abnormal conditions and timely feedback prompts, it is possible to detect system abnormalities in a timely manner, reduce the occurrence of defective products, save raw materials, and improve injection molding equipment. effective value time.
S24、當根據所述製程風險值確定目標部件存在異常時,根據所述目標部件的至少一個影響參數調整所述目標部件的設備參數。 S24. When it is determined according to the process risk value that there is an abnormality in the target component, adjust an equipment parameter of the target component according to at least one influencing parameter of the target component.
在本申請的一個實施例中,預先訓練智慧調節模型,具體實施時,獲取第二訓練資訊集,所述第二訓練資訊集包括預設第三數量的第二訓練資訊,將所述第二訓練資訊登錄至預先搭建的神經網路框架中進行訓練,得到所述智慧調節模型。獲取第二測試資訊集,所述第二測試資訊集包括預設第四數量的第二測試資訊,使用所述第二測試資訊測試所述智慧調節模型並獲取第二測試 透過率。當所述第二測試透過率大於預設第二透過率閾值時,將所述智慧調節模型作為所述訓練完成的智慧調節模型,當所述第二測試透過率小於預設第二透過率閾值時,調整所述智慧調節模型的模型參數,直至所述第二測試透過率大於預設第二透過率閾值。 In one embodiment of the present application, the intelligent adjustment model is trained in advance. During specific implementation, a second training information set is obtained, the second training information set includes a preset third amount of second training information, and the second The training information is logged into the pre-built neural network framework for training to obtain the intelligent adjustment model. Obtain a second test information set, the second test information set includes a preset fourth amount of second test information, use the second test information to test the smart adjustment model and obtain a second test transmittance. When the second test transmittance is greater than the preset second transmittance threshold, use the intelligent adjustment model as the trained intelligent adjustment model; when the second test transmittance is less than the preset second transmittance threshold , adjusting the model parameters of the smart adjustment model until the second test transmittance is greater than the preset second transmittance threshold.
在本申請的一個實施例中,所述當根據所述製程風險值確定目標部件存在異常時,根據所述目標部件的至少一個影響參數調整所述目標部件的設備參數包括:當確定所述注塑機出現異常時,將所述控制器資訊和所述至少一個第一影響參數的參數值輸入至預先訓練完成的智慧調節模型,所述智慧調節模型輸出所述注塑機的至少一個第一設備參數,根據所述至少一個第一設備參數調整所述注塑機的設備參數;當確定所述模具出現異常時,將所述第一感測器資訊和所述至少一個第二影響參數的參數值輸入至預先訓練完成的智慧調節模型,所述智慧調節模型輸出所述模具的至少一個第二設備參數,根據所述至少一個第二設備參數調整所述模具的設備參數;當確定所述模溫機出現異常時,將所述第二感測器資訊和所述至少一個第三影響參數的參數值輸入至預先訓練完成的智慧調節模型,所述智慧調節模型輸出所述模溫機的至少一個第三設備參數的參數值,根據所述至少一個第三設備參數調整所述模具的設備參數。 In one embodiment of the present application, when it is determined according to the process risk value that there is an abnormality in the target component, adjusting the equipment parameters of the target component according to at least one influencing parameter of the target component includes: when determining that the injection molding When an abnormality occurs in the injection molding machine, input the controller information and the parameter value of the at least one first influencing parameter into a pre-trained intelligent adjustment model, and the intelligent adjustment model outputs at least one first equipment parameter of the injection molding machine , adjusting the equipment parameters of the injection molding machine according to the at least one first equipment parameter; when it is determined that the mold is abnormal, inputting the first sensor information and the parameter value of the at least one second influencing parameter To the pre-trained intelligent adjustment model, the intelligent adjustment model outputs at least one second equipment parameter of the mold, and adjusts the equipment parameter of the mold according to the at least one second equipment parameter; when the mold temperature controller is determined When an abnormality occurs, the second sensor information and the parameter value of the at least one third influencing parameter are input to the pre-trained intelligent adjustment model, and the intelligent adjustment model outputs at least one first parameter value of the mold temperature controller. Three parameter values of equipment parameters, adjusting the equipment parameters of the mold according to the at least one third equipment parameter.
透過利用所述智慧調節模型調整所述注塑機、所述模具和所述模溫機的設備參數,一方面可以實現智慧調節,減少人力物力的浪費,調高設備調節的準確度,另一方面可以為現場人員調試設備提供重要的參考資訊。 By using the intelligent adjustment model to adjust the equipment parameters of the injection molding machine, the mold, and the mold temperature controller, on the one hand, intelligent adjustment can be realized, the waste of manpower and material resources can be reduced, and the accuracy of equipment adjustment can be increased. It can provide important reference information for on-site personnel to debug equipment.
請繼續參閱圖1,本實施例中,所述記憶體11可以是電子設備1的內部記憶體,即內置於所述電子設備1的記憶體。在其他實施例中,所述記憶體11也可以是電子設備1的外部記憶體,即外接於所述電子設備1的記憶體。
Please continue to refer to FIG. 1 , in this embodiment, the
在一些實施例中,所述記憶體11用於存儲程式碼和各種資訊,並在電子設備1的運行過程中實現高速、自動地完成程式或資訊的存取。
In some embodiments, the
所述記憶體11可以包括隨機存取記憶體,還可以包括非易失性記憶體,例如硬碟、記憶體、插接式硬碟、智慧存儲卡(Smart Media Card,SMC)、安全數位(Secure Digital,SD)卡、快閃記憶體卡(Flash Card)、至少一個磁碟記憶體件、快閃記憶體器件、或其他易失性固態記憶體件。
The
在一實施例中,所述處理器12可以是中央處理單元(Central Processing Unit,CPU),還可以是其他通用處理器、數位訊號處理器(Digital Signal Processor,DSP)、專用積體電路(Application Specific Integrated Circuit,ASIC)、現場可程式設計閘陣列(Field-Programmable Gate Array,FPGA)或者其他可程式設計邏輯器件、分立門或者電晶體邏輯器件、分立硬體元件等。通用處理器可以是微處理器或者所述處理器也可以是其它任何常規的處理器等。
In one embodiment, the
所述記憶體11中的程式碼和各種資訊如果以軟體功能單元的形式實現並作為獨立的產品銷售或使用時,可以存儲在一個電腦可讀取存儲介質中。基於這樣的理解,本申請實現上述實施例方法中的全部或部分流程,例如實現注塑成型過程的異常監控方法,也可以透過電腦程式來指令相關的硬體來完成,所述的電腦程式可存儲於一電腦可讀存儲介質中,所述電腦程式在被處理器執行時,可實現上述各個方法實施例的步驟。其中,所述電腦程式包括電腦程式代碼,所述電腦程式代碼可以為原始程式碼形式、物件代碼形式、可執行檔或某些中間形式等。所述電腦可讀介質可以包括:能夠攜帶所述電腦程式代碼的任何實體或裝置、記錄介質、隨身碟、移動硬碟、磁碟、光碟、電腦記憶體、唯讀記憶體(ROM,Read-Only Memory)等。
If the program codes and various information in the
可以理解的是,以上所描述的模組劃分,為一種邏輯功能劃分,實 際實現時可以有另外的劃分方式。另外,在本申請各個實施例中的各功能模組可以集成在相同處理單元中,也可以是各個模組單獨物理存在,也可以兩個或兩個以上模組集成在相同單元中。上述集成的模組既可以採用硬體的形式實現,也可以採用硬體加軟體功能模組的形式實現。 It can be understood that the above-described module division is a logical function division, which implements In actual implementation, there may be another division method. In addition, each functional module in each embodiment of the present application may be integrated into the same processing unit, or each module may exist separately physically, or two or more modules may be integrated into the same unit. The above-mentioned integrated modules can be implemented in the form of hardware, or in the form of hardware plus software function modules.
最後應說明的是,以上實施例僅用以說明本申請的技術方案而非限制,儘管參照較佳實施例對本申請進行了詳細說明,本領域的普通技術人員應當理解,可以對本申請的技術方案進行修改或等同替換,而不脫離本申請技術方案的精神和範圍。 Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present application without limitation. Although the present application has been described in detail with reference to the preferred embodiments, those skilled in the art should understand that the technical solutions of the present application can be Make modifications or equivalent replacements without departing from the spirit and scope of the technical solutions of the present application.
S21~S24:步驟 S21~S24: Steps
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110729853.9A CN115545367A (en) | 2021-06-29 | 2021-06-29 | Abnormality monitoring method in injection molding process, electronic device, and storage medium |
CN202110729853.9 | 2021-06-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI785698B true TWI785698B (en) | 2022-12-01 |
TW202301054A TW202301054A (en) | 2023-01-01 |
Family
ID=84716715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110127430A TWI785698B (en) | 2021-06-29 | 2021-07-26 | Method for monitoring abnormalities in injection molding process, electronic device, and storage medium |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115545367A (en) |
TW (1) | TWI785698B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116127399B (en) * | 2023-04-17 | 2023-06-20 | 威海三元塑胶科技有限公司 | Monitoring and analyzing method and system for injection molding workshop equipment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW567132B (en) * | 2000-06-08 | 2003-12-21 | Mirle Automation Corp | Intelligent control method for injection molding machine |
TW200424052A (en) * | 2003-05-08 | 2004-11-16 | Ming-Shyan Huang | A cavity pressure based quality control method for injection molding process |
TW200635749A (en) * | 2005-04-01 | 2006-10-16 | Nissei Plastics Ind Co | Control apparatus for injection molding machine |
TW201702776A (en) * | 2015-07-03 | 2017-01-16 | 元智大學 桃園市中壢區遠東路 135 號 | Real time monitoring system and method thereof of optical film manufacturing process |
-
2021
- 2021-06-29 CN CN202110729853.9A patent/CN115545367A/en active Pending
- 2021-07-26 TW TW110127430A patent/TWI785698B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW567132B (en) * | 2000-06-08 | 2003-12-21 | Mirle Automation Corp | Intelligent control method for injection molding machine |
TW200424052A (en) * | 2003-05-08 | 2004-11-16 | Ming-Shyan Huang | A cavity pressure based quality control method for injection molding process |
TW200635749A (en) * | 2005-04-01 | 2006-10-16 | Nissei Plastics Ind Co | Control apparatus for injection molding machine |
TW201702776A (en) * | 2015-07-03 | 2017-01-16 | 元智大學 桃園市中壢區遠東路 135 號 | Real time monitoring system and method thereof of optical film manufacturing process |
Also Published As
Publication number | Publication date |
---|---|
CN115545367A (en) | 2022-12-30 |
TW202301054A (en) | 2023-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI785698B (en) | Method for monitoring abnormalities in injection molding process, electronic device, and storage medium | |
CN110978441A (en) | Visual injection molding production process verification method | |
CN109614651A (en) | A kind of high-precision evaluation method of moulding machined parameters and deformation relationship | |
CN106393617A (en) | Injection molding process parameter self-adaptive system | |
KR20140091991A (en) | A Molding Information Extraction Symtem of Emitting Mold Press | |
CN105108986A (en) | System and method for injection molding process monitoring and plastic part on-line quality sorting | |
TWI598841B (en) | Cloud based injection molding system and method thereof | |
JP2023044477A (en) | Failure cause analysis system, failure cause analysis program and failure cause analysis method | |
CN113733506A (en) | Technological parameter optimization method for injection molding product processing based on Internet | |
CN117123640A (en) | Feeding positioning precision detection method and system for die processing equipment | |
CN206633366U (en) | A kind of injection-molded item defect self-cure regulation and control device | |
Su et al. | A real‐time clamping force measurement eigenvalue for prediction, adjustment, and control of injection product quality | |
CN113524605B (en) | Method and device for setting technological parameters of injection molding machine | |
CN113715285A (en) | Control method for injection molding machine after defective products are generated | |
CN203726802U (en) | Plastic extruding machine with material molding detecting device | |
US10882236B2 (en) | Molding system, molding apparatus, inspection apparatus, inspection method, and program | |
CN112692254A (en) | Intelligent cooling water control device for die casting machine and control method thereof | |
CN101259745A (en) | Application of RJG system in injection moulding and forming process | |
CN112776293A (en) | Method and system for improving consistency of molding quality of injection molding process product | |
CN114179320B (en) | Automatic adjusting method for technological parameters of injection molding machine in combination with visual detection | |
CN113762609B (en) | Product quality prediction method and device | |
TWM618522U (en) | Processing parameter production system applied to batch production equipment | |
JPH08156060A (en) | System for optimizing injection molding condition | |
TWM626165U (en) | Process stability monitoring and molding quality prediction system applied to batch production equipment | |
CN118544552B (en) | Intelligent energy consumption management system of injection molding machine |