JPH08156060A - System for optimizing injection molding condition - Google Patents

System for optimizing injection molding condition

Info

Publication number
JPH08156060A
JPH08156060A JP30195994A JP30195994A JPH08156060A JP H08156060 A JPH08156060 A JP H08156060A JP 30195994 A JP30195994 A JP 30195994A JP 30195994 A JP30195994 A JP 30195994A JP H08156060 A JPH08156060 A JP H08156060A
Authority
JP
Japan
Prior art keywords
setting
molding
data
injection molding
conditions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30195994A
Other languages
Japanese (ja)
Inventor
Hideo Kuroda
英夫 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP30195994A priority Critical patent/JPH08156060A/en
Publication of JPH08156060A publication Critical patent/JPH08156060A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To contrive to reduce labour at a molding site and to cut down molding cost through the improvement of running conditions a method wherein an optimization calculating device, which calculates and sets optimum conditions by multiple-regression-analysing data so as to transmit resultant data to a setting panel, is equipped in a controller. CONSTITUTION: This system is equipped with a controller having a setting panel 3, which automatically changes several setting condition variables such as the rotational frequency of a plasticizing screw, injection speed, dwell pressure and the like within a predetermined range during the molding operation of an injection molder 1 to the injection molder 1. Further, the system is equipped with a measuring device 5, which automatically measures molding estimation items of molding under the setting conditions such as resin temperature, cycle time, electric power consumption and the like. In addition, the system is equipped with an optimization calculating device 4, which calculates and sets optimum conditions by multiple-regression-analysing data accumulated by repeating the change of setting condition variables by the predetermined number of cases and then transmits resultant data to the setting panel 3, in the controller 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はプラスチック等の射出成
形機において、成形運転中に自動的に運転条件を最適化
するシステムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for automatically optimizing operating conditions of a plastic injection molding machine during a molding operation.

【0002】[0002]

【従来の技術】従来の射出成形機においては、ベテラン
の成形作業者が成形品質を見ながら運転条件を変更して
いくという試行錯誤の方法で条件出しを実施していた。
その場合、しばしば成形品の不良を解決するのに多大な
時間を要したり、或いは不良を解決できないこともあっ
た。また成形品質以外に成形コストに大きく影響するサ
イクル時間や消費電力量などを総合して運転条件を最適
化することは非常に困難であった。1つの従来例として
射出成形機の条件設定システム構成を図7に示す。同図
において、射出成形機101は制御装置102との間で
回線110により各種データを送受信する。制御装置1
02には設定パネル103が設けられ、成形作業者10
4が同パネルにより成形機の運転条件を設定・変更す
る。成形機の運転条件は成形品毎に異なるので、各成形
品毎に成形作業者104が条件出しを行う。その作業フ
ローを図8に示す。図8において、で1ショット成形
した後に、で成形結果の評価を行い、その評価に基づ
いてで運転条件の変更を行い、この乃至までの作
業を成形結果に満足がいくまで繰り返す。この,は
成形作業者104が実施する。従って条件出しの良否は
成形作業者104の能力によっており、ベテラン作業者
でないと成功することは少なかった。また、ベテラン作
業者といえども、成形不良を解決するための条件出しが
困難であるため、多大な時間を要するのみならずサイク
ル時間や消費電力量などの評価項目を総合して運転条件
を最適化することは困難であった。さらに成形品の生産
運転中は運転条件を変更することがなく、生産運転中に
成形機が自動的に運転条件を改善していくことは全く考
えられなかった。
2. Description of the Related Art In a conventional injection molding machine, condition setting is carried out by a trial and error method in which an experienced molding operator changes operating conditions while checking molding quality.
In that case, it often takes a lot of time to solve the defect of the molded product, or the defect cannot be solved in some cases. In addition to the molding quality, it is very difficult to optimize the operating conditions by comprehensively considering the cycle time and the power consumption that greatly affect the molding cost. FIG. 7 shows a condition setting system configuration of an injection molding machine as one conventional example. In the figure, the injection molding machine 101 transmits and receives various data to and from the control device 102 through a line 110. Control device 1
02 is provided with a setting panel 103, and the molding operator 10
4 sets / changes the operating conditions of the molding machine using the same panel. Since the operating conditions of the molding machine are different for each molded product, the molding operator 104 determines the condition for each molded product. The work flow is shown in FIG. In FIG. 8, after performing one shot molding with, the molding result is evaluated with, the operating condition is changed based on the evaluation, and the operations up to this are repeated until the molding result is satisfied. This is performed by the molding operator 104. Therefore, the quality of the condition setting depends on the ability of the molding operator 104, and if the operator is not an experienced operator, the success is rare. In addition, even veteran workers find it difficult to set conditions to solve molding defects, so not only does it take a lot of time, but the operating conditions are optimized by comprehensively evaluating evaluation items such as cycle time and power consumption. It was difficult to realize. Furthermore, the operating conditions were not changed during the production operation of the molded product, and it was completely unthinkable that the molding machine would automatically improve the operating conditions during the production operation.

【0003】[0003]

【発明が解決しようとする課題】前記のように従来の技
術では、射出成形の条件出しにおいてベテランの成形作
業者が必要で、かつ条件出しの作業に多大の時間を要
し、さらに成形品質以外の評価項目を総合した運転条件
の最適化は困難であった。本発明は前記従来の課題を解
決して、特定の評価項目については成形機が自動的に条
件出しを行うようにし、更に生産運転中においても成形
機が自動的に運転条件を改善するようにし、これにより
成形現場における条件出しの手間を大幅に低減し、かつ
運転条件改善による成形コストの低減を達成する射出成
形条件最適化システムを提供しようとするものである。
As described above, in the conventional technique, a veteran molding operator is required to set the conditions for injection molding, and a great deal of time is required for setting the conditions. It was difficult to optimize the operating conditions by integrating the evaluation items of. The present invention solves the above-mentioned conventional problems so that the molding machine automatically performs condition setting for specific evaluation items, and further, the molding machine automatically improves operating conditions even during production operation. Accordingly, the present invention intends to provide an injection molding condition optimizing system that significantly reduces the time and effort required for condition setting at the molding site and achieves reduction of molding cost by improving operating conditions.

【0004】[0004]

【課題を解決するための手段】このため本発明は、射出
成形機の成形運転中に、同射出成形機に対して自動的に
いくつかの設定条件変数(可塑化スクリュ回転数,射出
速度,射出保持圧力など)を所定範囲内で変更する設定
パネルを有する制御装置と、前記設定条件で成形した時
の成形の成形評価項目(樹脂温度,サイクル時間,消費
電力量など)を自動計測する計測装置と、前記設定条件
変数の変更を所定ケース数だけ繰り返してデータを蓄積
し、そのデータを重回帰分析して最適条件を算出・設定
して前記設定パネルにデータを送信する前記制御装置内
の最適化計算装置とからなるもので、これを課題解決の
ための手段とするものである。また本発明は、射出成形
機の可塑化試験において、同射出成形機に対して自動的
にいくつかの設定条件変数(シリンダ温度,計量ストロ
ーク,可塑化スクリュ回転数など)を所定範囲内で変更
する設定パネルを有する制御装置と、前記設定条件で可
塑化した時の可塑化評価項目(樹脂温度,可塑化時間,
消費電力量など)を自動計測する計測装置と、前記設定
条件変数の変更を所定ケース数だけ繰り返してデータを
蓄積し、そのデータを重回帰分析して可塑化の最適条件
を算出・設定して前記設定パネルにデータを送信する前
記制御装置内の最適化計算装置とからなるもので、これ
を課題解決のための手段とするものである。
Therefore, according to the present invention, during the molding operation of the injection molding machine, some setting condition variables (plasticizing screw rotation speed, injection speed, A control device that has a setting panel that changes the injection holding pressure, etc.) within a predetermined range, and a measurement that automatically measures the molding evaluation items (resin temperature, cycle time, power consumption, etc.) of molding when molding under the above-mentioned setting conditions. In the control device, the device and the setting condition variable are repeatedly changed for a predetermined number of cases to accumulate data, and the data is subjected to multiple regression analysis to calculate and set optimum conditions and to transmit the data to the setting panel. It is composed of an optimizing calculation device, and is a means for solving the problem. Further, in the plasticizing test of the injection molding machine, the present invention automatically changes some setting condition variables (cylinder temperature, measuring stroke, plasticizing screw rotation speed, etc.) for the injection molding machine within a predetermined range. And a control device having a setting panel, and plasticizing evaluation items (resin temperature, plasticizing time,
(E.g., power consumption) and a measuring device that automatically measures the setting condition variables for a predetermined number of cases to accumulate data, and multiple regression analysis of that data is performed to calculate and set the optimum conditions for plasticization. An optimization calculation device in the control device for transmitting data to the setting panel, which serves as means for solving the problem.

【0005】[0005]

【作用】射出成形機1の成形運転中に、同射出成形機1
に対して制御装置2内の設定パネル3が自動的にいくつ
かの設定条件変数(可塑化スクリュ回転数,射出速度,
射出保持圧力など)を所定範囲内で変更し、前記設定条
件で成形した時の成形評価項目(樹脂温度,サイクル時
間,消費電力量など)を計測装置5により自動計測する
ことにより、成形作業者が操作することなしに能率的に
成形試験ができる。また前記計測装置5からのデータを
受けて制御装置2内の最適化計算装置4は、成形試験を
所定ケース数だけ繰り返してデータを蓄積し、そのデー
タを重回帰分析して最適条件を算出・設定することによ
り、ベテラン成形作業者なしに最適な運転条件を得るこ
とができる。更に、射出成形機1において各成形品の条
件出しを行う前に、予め射出成形機1の可塑化試験にお
いて、前記同様に自動的にいくつかの設定条件変数(シ
リンダ温度,計量ストローク,可塑化スクリュ回転数な
ど)を所定範囲内で変更し、その条件で可塑化した時の
可塑化評価項目(樹脂温度,可塑化時間,消費電力量な
ど)を自動計測し、その所定ケース数分のデータを重回
帰分析して可塑化の最適条件を算出・設定することによ
り、面倒な可塑化の条件出しをベテラン作業者なしに遂
行でき、かつ成形時の条件出しにおいてパラメーター変
数を少なくして所要時間を大幅に低減できる。
Operation: During the molding operation of the injection molding machine 1, the injection molding machine 1
In response to this, the setting panel 3 in the control device 2 automatically sets several setting condition variables (plasticizing screw rotation speed, injection speed,
By changing the injection holding pressure, etc.) within a predetermined range and automatically measuring the molding evaluation items (resin temperature, cycle time, power consumption, etc.) when molding under the above-mentioned setting conditions, the molding operator A molding test can be efficiently performed without operating the. Upon receiving the data from the measuring device 5, the optimization calculation device 4 in the control device 2 repeats the molding test for a predetermined number of cases, accumulates the data, and multiple regression analyzes the data to calculate the optimum conditions. By setting, optimal operating conditions can be obtained without the need for experienced molding operators. In addition, before setting the conditions of each molded product in the injection molding machine 1, in a plasticization test of the injection molding machine 1, several setting condition variables (cylinder temperature, measuring stroke, plasticization Change the screw rotation speed, etc.) within a predetermined range, and automatically measure the plasticization evaluation items (resin temperature, plasticization time, power consumption, etc.) when plasticizing under the conditions, and data for the predetermined number of cases By calculating and setting the optimum conditions for plasticization by multiple regression analysis, it is possible to perform troublesome conditions for plasticization without an experienced worker, and to reduce the number of parameter variables when setting conditions during molding Can be significantly reduced.

【0006】[0006]

【実施例】以下本発明の実施例を図面について説明する
と、図1〜図6に本発明の実施例を示す。図1は本実施
例の条件最適化システムの基本構成図である。同図で射
出成形機1と制御装置2は回線10で接続され、同回線
10を通じて運転条件データが送受信される。制御装置
2には、従来と同様の設定パネル3の他に、最適化計算
装置4が組み込まれている。設定パネル3では、成形機
の運転条件を成形作業者が設定し、また運転条件データ
が最適化計算装置4から送られた時には、パネル表示の
運転条件を同装置4から送信されたデータに変更する。
また射出成形機1には後述の評価項目を計測する計測装
置5が組み込まれ、成形機運転時に計測されたデータは
回線11を通じて制御装置2内の最適化計算装置4へ送
信される。本システムにおいて成形運転時に条件出しの
試験を行う場合、成形作業者が設定パネル3で運転条件
を変更・設定することは不要である。
Embodiments of the present invention will now be described with reference to the drawings. FIGS. 1 to 6 show the embodiments of the present invention. FIG. 1 is a basic configuration diagram of the condition optimization system of this embodiment. In the figure, the injection molding machine 1 and the control device 2 are connected by a line 10, and operating condition data is transmitted and received through the line 10. The control device 2 incorporates an optimization calculation device 4 in addition to the setting panel 3 similar to the conventional one. On the setting panel 3, the molding operator sets the operating conditions of the molding machine, and when the operating condition data is sent from the optimization calculation device 4, the operating conditions on the panel display are changed to the data sent from the device 4. To do.
Further, the injection molding machine 1 is equipped with a measuring device 5 for measuring the evaluation items described later, and the data measured during the molding machine operation is transmitted to the optimization calculation device 4 in the control device 2 through the line 11. In the case where the condition setting test is performed during the molding operation in this system, it is not necessary for the molding operator to change and set the operation conditions on the setting panel 3.

【0007】図2は射出成形機1の可塑化装置の断面を
示す。同図においてシリンダ26はスクリュ25を内蔵
し、また外周には各部の加熱ヒータ20,21,22,
23を設置してある。シリンダ26の先端のノズル27
には樹脂圧力センサ28と樹脂温度センサ29を組み込
んである。樹脂原料30はホッパー24に投入され、ス
クリュ25の回転により図の右方から左方へ送られるに
従って溶融し、左端のシリンダ頭部に貯えられる。その
貯えられた溶融樹脂は、成形時にノズル27から図示せ
ぬ金型へ射出された成形品となる。
FIG. 2 shows a cross section of the plasticizing device of the injection molding machine 1. In the figure, the cylinder 26 has a screw 25 built-in, and the heaters 20, 21, 22 of each part are provided on the outer periphery.
23 is installed. Nozzle 27 at the tip of cylinder 26
A resin pressure sensor 28 and a resin temperature sensor 29 are incorporated in the. The resin raw material 30 is put into the hopper 24, melted as it is sent from the right side to the left side in the drawing by the rotation of the screw 25, and is stored in the cylinder head at the left end. The stored molten resin becomes a molded product which is injected from the nozzle 27 into a mold (not shown) at the time of molding.

【0008】図3に成形運転時の自動最適化のフローを
示す。このフロー図の各項目は、本システムのコンピュ
ータにより順次実行される。同図において、先ずで試
験する条件因子や評価項目を設定し、で所要ケース数
の試験計画を自動作成し、でその試験計測に沿い成形
試験を自動的に実行し、かつ評価項目を計測し、で試
験データの重回帰分析を行い、で重回帰式を利用して
最適化計算を行い、で計算結果の最適条件に自動変更
する。図3のでの設定は予め成形作業者が設定パネル
3によって入力しておく。その条件因子の例を表1に、
評価項目の例を表2に示す。
FIG. 3 shows a flow of automatic optimization during the molding operation. Each item in this flow chart is sequentially executed by the computer of this system. In the figure, first, set the condition factors and evaluation items to be tested, automatically create a test plan for the number of required cases with, automatically execute the molding test according to the test measurement, and measure the evaluation items. Multiple regression analysis of test data is performed with and, optimization calculation is performed using multiple regression equation with, and the optimum condition of the calculation result is automatically changed with. The settings shown in FIG. 3 are entered in advance by the molding operator using the setting panel 3. An example of the condition factors is shown in Table 1,
Table 2 shows examples of evaluation items.

【表1】条件因子のリスト [Table 1] List of conditional factors

【表2】 これらは例であって、この一部だけを採用してもよい
し、これ以外のものを加えてもよい。また各条件因子に
ついては、その変域幅を規定するため上限値と下限値を
成形作業者が設定しておく。表1のX1乃至X4の各シ
リンダ温度は、図2のヒーター20乃至23の各部分の
温度に対応する。X5の計量ストロークは、図2のスク
リュ25により可塑化した場合に同スクリュが後退する
全長である。X6乃至X8のスクリュ回転数は計量スト
ロークの3等分区間での回転数n,X9乃至X11のスク
リュ背圧は可塑化の混練作用を高めるためにスクリュ後
退の抵抗を付加する圧力である。またX12乃至X19及び
X20乃至X25は射出及び射出保圧工程の設定変数であ
る。これら射出,射出保圧及び前記可塑化の各変数の設
定パターンを図5に例示する。他方、表2のY1の最大
樹脂温度差及びY2のショット間樹脂温度差は、図2の
樹脂温度センサ29で計測される樹脂温度Tを統計処理
したものである。Y3のサイクル時間は1ショット成形
する毎に射出成形機で計測される所要時間である。Y4
の消費電力は射出成形機の入力電源部に一般の電力計を
取付けて1ショット分の平均電力として計測される。Y
5の最大樹脂圧力及びY6のショット間樹脂圧力差は、
図2の樹脂圧力センサ28で計測される樹脂圧力pを統
計処理したものである。このようにY1乃至Y6の評価
項目は、人手を介さずに成形機上の計測装置5により計
測・処理される。またY1乃至Y6はいずれも小さい値
の方が評価が良い。図3の「試験計画の自動作成」で
は、各条件因子についてそれぞれの変域内でランダムに
変数値を設定してそれらを組合せたものを1ケースと
し、所要ケース数だけの試験計画を立てる。ここで試験
の所要ケース数は通常10乃至20ケースとし試験結果
により追加することもある。図3の「試験の自動実
行」をさらに詳しいフローで示すと図4のようになる。
図4のでは試験1ケース毎に試験計画の運転条件に自
動変更し、で1ショット成形運転かつ自動計測を行
い、で1ケース分の試験データを取込み蓄積し、これ
ら乃至を所定ケース分繰り返す。なお、前記のは
運転条件変更後に成形機各部の状態が安定してから実施
する。図3の乃至は全て人手を介さずに成形運転中
に本システムが自動的に実行するが、重回帰分析と最適
化計算の手法は本発明者が先に出願した特願平4−96
613号と同様である。図6に最適化の概念図を示す。
同図に示すように、最適化は下記の総合評価値Gを最大
にすることである。
[Table 2] These are examples, and only a part of them may be adopted or other parts may be added. For each condition factor, the molding operator sets the upper limit value and the lower limit value in order to define the range of variation. Each cylinder temperature of X1 to X4 in Table 1 corresponds to the temperature of each part of the heaters 20 to 23 in FIG. The measuring stroke of X5 is the total length of the screw 25 retracted when plasticized by the screw 25 of FIG. The screw rotational speeds of X6 to X8 are rotational speeds n in three equal intervals of the measuring stroke, and the screw back pressures of X9 to X11 are pressures that add resistance to screw retreat in order to enhance the kneading effect of plasticization. Further, X12 to X19 and X20 to X25 are setting variables for the injection and injection pressure-holding steps. The setting patterns of these variables of injection, injection holding pressure and the plasticization are illustrated in FIG. On the other hand, the maximum resin temperature difference of Y1 and the resin temperature difference between shots of Y2 in Table 2 are obtained by statistically processing the resin temperature T measured by the resin temperature sensor 29 of FIG. The cycle time of Y3 is a required time measured by the injection molding machine every time one shot is molded. Y4
The power consumption is measured as an average power for one shot by attaching a general power meter to the input power source of the injection molding machine. Y
The maximum resin pressure of 5 and the resin pressure difference between shots of Y6 are
The resin pressure p measured by the resin pressure sensor 28 of FIG. 2 is statistically processed. In this way, the evaluation items Y1 to Y6 are measured and processed by the measuring device 5 on the molding machine without human intervention. Further, the smaller the values of Y1 to Y6, the better the evaluation. In the “automatic creation of test plan” in FIG. 3, variable values are randomly set for each condition factor within each domain, and a combination of these is set as one case, and a test plan for the required number of cases is prepared. Here, the required number of cases for the test is usually 10 to 20 and may be added depending on the test results. A more detailed flow of the "automatic test execution" of FIG. 3 is as shown in FIG.
In FIG. 4, the operating conditions of the test plan are automatically changed for each case of the test, the one-shot molding operation and the automatic measurement are performed with, the test data for one case is captured and accumulated, and these processes are repeated for a predetermined number of cases. It should be noted that the above is carried out after the state of each part of the molding machine becomes stable after changing the operating conditions. The system of FIG. 3 and all of FIG. 3 is automatically executed during the molding operation without human intervention, but the method of multiple regression analysis and optimization calculation is applied by the present inventor to Japanese Patent Application No. 4-96.
Similar to No. 613. FIG. 6 shows a conceptual diagram of optimization.
As shown in the figure, the optimization is to maximize the following comprehensive evaluation value G.

【数1】 但し、 L:評価項目の数 Wk :各評価項目の重み(1〜5) 重視する項目ほど大きな重みとする。 YkR:各評価項目の評価ランク(重回帰式により予測) 複数の評価項目を総合した最適化を行うため、各評価項
目の計測値を10点満点のランクに置き換えたものであ
る。 以上により、本システムで成形運転中に自動的に成形試
験及び最適化計算を行い、最適な成形条件に自動変更す
ることができる。
[Equation 1] However, L: number of evaluation items W k : weight of each evaluation item (1 to 5) The more important items are, the larger the weight is. Y kR : Evaluation rank of each evaluation item (predicted by multiple regression equation) In order to perform optimization by integrating a plurality of evaluation items, the measured value of each evaluation item is replaced with a rank of 10 points. As described above, the molding test and the optimization calculation are automatically performed during the molding operation in this system, and the optimum molding conditions can be automatically changed.

【0009】別の実施例として、前記実施例の成形試験
のかわりに可塑化試験のみを行うものがある。即ち、表
1の条件因子のX1乃至X11のみ、及び表2のY1乃至
Y4のみを使用する。可塑化試験の際は、可塑化により
図2のスクリュ25の前方に貯えられた樹脂は一定の射
出速度vでノズル27から空中へ排出する。これ以外の
手順は前記の実施例と同様である。従来可塑化試験では
可塑化された樹脂の品質評価が面倒なため、種々の条件
因子の設定値を変化させて最適な可塑化条件を検索する
とは殆ど実施されなかった。本実施例では前記のように
システムが自動的に樹脂温度などの品質評価を行うの
で、容易に可塑化の最適条件を算出できる。また表1の
X5の計量ストロークをいろいろな水準に変化させて可
塑化試験することにより、任意の計量ストロークに対す
る可塑化の最適条件を成形前に見つけておくことができ
る。従って本システムにより、1つの樹脂のグレード原
料について可塑化試験を実施すれば、同じ樹脂グレード
で射出樹脂量の異なる種々の成形品に対しても最適な可
塑化条件を成形前に準備しておくことができる。
As another embodiment, instead of the molding test of the above embodiment, only a plasticization test is conducted. That is, only the conditional factors X1 to X11 in Table 1 and only Y1 to Y4 in Table 2 are used. In the plasticizing test, the resin stored in front of the screw 25 in FIG. 2 by the plasticizing is discharged from the nozzle 27 into the air at a constant injection speed v. The other procedures are the same as those in the above-mentioned embodiment. In the conventional plasticization test, since the quality evaluation of the plasticized resin is troublesome, the optimum plasticization conditions were hardly searched by changing the set values of various condition factors. In this embodiment, the system automatically evaluates the quality of the resin such as the temperature as described above, so that the optimum conditions for plasticization can be easily calculated. Further, by changing the X5 measuring stroke in Table 1 to various levels and performing a plasticization test, the optimum conditions for plasticizing for an arbitrary measuring stroke can be found before molding. Therefore, if a plasticization test is performed on one resin grade raw material by this system, the optimum plasticization conditions are prepared before molding for various molded products with the same resin grade but different injection resin amounts. be able to.

【0010】[0010]

【発明の効果】以上詳細に説明した如く本発明によれ
ば、成形運転中に成形作業者が介在することなしに、成
形機の運転条件を自動変更し、かつ成形状況を自動計測
して成形試験を行い、その試験データを重回帰分析さら
に最適化計算して最適条件を自動設定するので、自動的
に運転条件が改善され、条件出しの時間を大幅に低減で
きる。さらに成形品質,生産速度等も向上し、成形コス
トや消費電力量を低減できる。また同様に特定の樹脂に
ついて、成形作業者が介在することなく自動的に可塑化
試験を行って最適条件を見出すことができるので、同樹
脂を使用する成形品の条件出しの時間を大幅に低減し、
かつ従来よりも良い運転条件により成形コストを低減で
きる。
As described in detail above, according to the present invention, the operating conditions of the molding machine are automatically changed and the molding condition is automatically measured and molded without the intervention of the molding operator during the molding operation. Since the test is performed and the test data is subjected to the multiple regression analysis and the optimization calculation is performed to automatically set the optimum condition, the operating condition is automatically improved, and the condition setting time can be significantly reduced. In addition, molding quality, production speed, etc. are improved, and molding cost and power consumption can be reduced. Similarly, for a specific resin, it is possible to automatically perform a plasticization test without the intervention of a molding operator to find the optimum conditions, so the time taken to condition the molded products using the same resin is greatly reduced. Then
In addition, the molding cost can be reduced by better operating conditions than before.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の条件最適化システムの基本構
成図である。
FIG. 1 is a basic configuration diagram of a condition optimization system according to an embodiment of the present invention.

【図2】図1の射出成形機の可塑化装置の断面図であ
る。
2 is a cross-sectional view of a plasticizing device of the injection molding machine of FIG.

【図3】本実施例の自動最適化のフロー図である。FIG. 3 is a flow chart of automatic optimization according to the present embodiment.

【図4】図3の「試験に自動実行」の詳細フロー図で
ある。
FIG. 4 is a detailed flow chart of “automatic execution for test” of FIG.

【図5】本実施例の射出・可塑化条件変数の設定パター
ン図である。
FIG. 5 is a setting pattern diagram of injection / plasticization condition variables according to the present embodiment.

【図6】本実施例の最適化の概念図である。FIG. 6 is a conceptual diagram of optimization in this embodiment.

【図7】従来例の条件設定システム構成図である。FIG. 7 is a block diagram of a conventional condition setting system.

【図8】従来例の条件出しの作業フロー図である。FIG. 8 is a work flow diagram for condition setting in a conventional example.

【符号の説明】[Explanation of symbols]

1 射出成形機 2 制御装置 3 設定パネル 4 最適化計算装置 5 計測装置 20〜23 シリンダのヒータ 25 スクリュ 26 シリンダ 27 ノズル 28 樹脂圧力センサ 29 樹脂温度センサ 1 Injection Molding Machine 2 Control Device 3 Setting Panel 4 Optimization Calculation Device 5 Measuring Device 20-23 Cylinder Heater 25 Screw 26 Cylinder 27 Nozzle 28 Resin Pressure Sensor 29 Resin Temperature Sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 射出成形機の成形運転中に、同射出成形
機に対して自動的にいくつかの設定条件変数(可塑化ス
クリュ回転数,射出速度,射出保持圧力など)を所定範
囲内で変更する設定パネルを有する制御装置と、前記設
定条件で成形した時の成形の成形評価項目(樹脂温度,
サイクル時間,消費電力量など)を自動計測する計測装
置と、前記設定条件変数の変更を所定ケース数だけ繰り
返してデータを蓄積し、そのデータを重回帰分析して最
適条件を算出・設定して前記設定パネルにデータを送信
する前記制御装置内の最適化計算装置とからなることを
特徴とする射出成形の条件最適化システム。
1. During the molding operation of the injection molding machine, some setting condition variables (plasticizing screw rotation speed, injection speed, injection holding pressure, etc.) are automatically set within a predetermined range for the injection molding machine. A control device having a setting panel to be changed, and molding evaluation items (resin temperature,
Cycle time, power consumption, etc.) and a measuring device that automatically changes the setting condition variables for a specified number of cases to accumulate data, and multiple regression analysis is performed on the data to calculate and set optimal conditions. A condition optimization system for injection molding, comprising an optimization calculation device in the control device for transmitting data to the setting panel.
【請求項2】 射出成形機の可塑化試験において、同射
出成形機に対して自動的にいくつかの設定条件変数(シ
リンダ温度,計量ストローク,可塑化スクリュ回転数な
ど)を所定範囲内で変更する設定パネルを有する制御装
置と、前記設定条件で可塑化した時の可塑化評価項目
(樹脂温度,可塑化時間,消費電力量など)を自動計測
する計測装置と、前記設定条件変数の変更を所定ケース
数だけ繰り返してデータを蓄積し、そのデータを重回帰
分析して可塑化の最適条件を算出・設定して前記設定パ
ネルにデータを送信する前記制御装置内の最適化計算装
置とからなることを特徴とする射出成形の条件最適化シ
ステム。
2. In a plasticizing test of an injection molding machine, some setting condition variables (cylinder temperature, measuring stroke, plasticizing screw rotation speed, etc.) are automatically changed for the injection molding machine within a predetermined range. A control device having a setting panel, a measuring device for automatically measuring plasticization evaluation items (resin temperature, plasticizing time, power consumption, etc.) when plasticized under the setting conditions, and changing the setting condition variables. Data is repeatedly accumulated for a predetermined number of cases, the data is subjected to multiple regression analysis to calculate and set optimum conditions for plasticization, and the data is sent to the setting panel. A condition optimization system for injection molding characterized by the following.
JP30195994A 1994-12-06 1994-12-06 System for optimizing injection molding condition Withdrawn JPH08156060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30195994A JPH08156060A (en) 1994-12-06 1994-12-06 System for optimizing injection molding condition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30195994A JPH08156060A (en) 1994-12-06 1994-12-06 System for optimizing injection molding condition

Publications (1)

Publication Number Publication Date
JPH08156060A true JPH08156060A (en) 1996-06-18

Family

ID=17903185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30195994A Withdrawn JPH08156060A (en) 1994-12-06 1994-12-06 System for optimizing injection molding condition

Country Status (1)

Country Link
JP (1) JPH08156060A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997029898A1 (en) * 1996-02-15 1997-08-21 Fanuc Ltd Method of collecting molding data for injection molding machines and method of obtaining molding condition
JP2008194861A (en) * 2007-02-09 2008-08-28 Japan Steel Works Ltd:The Method and device for setting temperature of cylinder of injection molding machine
US7447561B2 (en) 2005-04-18 2008-11-04 Fanuc Ltd Display apparatus for injection molding machine
WO2018155230A1 (en) * 2017-02-23 2018-08-30 東洋機械金属株式会社 Injection molding system
JP2020522388A (en) * 2017-06-08 2020-07-30 アーエスカー ケミカルズ ゲーエムベーハーAsk Chemicals Gmbh Method for three-dimensionally manufacturing additive manufacturing body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997029898A1 (en) * 1996-02-15 1997-08-21 Fanuc Ltd Method of collecting molding data for injection molding machines and method of obtaining molding condition
US6051170A (en) * 1996-02-15 2000-04-18 Fanuc Ltd. Method of collecting molding data and obtaining molding condition for injection molding machine
US7447561B2 (en) 2005-04-18 2008-11-04 Fanuc Ltd Display apparatus for injection molding machine
JP2008194861A (en) * 2007-02-09 2008-08-28 Japan Steel Works Ltd:The Method and device for setting temperature of cylinder of injection molding machine
WO2018155230A1 (en) * 2017-02-23 2018-08-30 東洋機械金属株式会社 Injection molding system
JPWO2018155230A1 (en) * 2017-02-23 2019-12-12 東洋機械金属株式会社 Injection molding system
JP2020522388A (en) * 2017-06-08 2020-07-30 アーエスカー ケミカルズ ゲーエムベーハーAsk Chemicals Gmbh Method for three-dimensionally manufacturing additive manufacturing body

Similar Documents

Publication Publication Date Title
EP1091842B1 (en) Automated molding technology for thermoplastic injection molding
KR960013063B1 (en) Optimum molding condition setting system for injection molding machine
JP6479771B2 (en) How to run a machine that processes plastic
JP3161921B2 (en) Product quality influence factor analysis method and equipment, molding condition adjustment method, product quality judgment item selection method
US6546311B2 (en) Injection moulding system and method that determine optimum injection moulding conditions
US11358317B2 (en) Systems and methods for controlling injection molding using predicted cavity pressure
US5173223A (en) Product acceptance/rejection judgment method in an injection molding machine
JPH08156060A (en) System for optimizing injection molding condition
JP2545465B2 (en) Method for automatically setting upper and lower limits of molding conditions of molding machine
JP2002248665A (en) Method and device for controlling injection molding machine
US20010030375A1 (en) Method for determining molding characteristic and injection molding machine
JPH10272663A (en) Optimizing method of molding condition of injection molding machine
JPH1148300A (en) Method for setting molding condition of injection molder
JPH0976320A (en) Automatic setting method for injection molding speed condition of injection mold machine
JPH0653380B2 (en) How to set molding conditions for injection molding machine
CN101259745A (en) Application of RJG system in injection moulding and forming process
JP3395542B2 (en) Injection molding machine molding condition setting method
JP4210099B2 (en) Injection molding machine
WO2022085580A1 (en) Molding-condition-setting device and molding-condition-setting method
JP2006056261A (en) Monitoring display device and display method
JPH03266622A (en) Automatically inspecting method for product in molding machine
WO2024057461A1 (en) Determination device and determination method
JP2001113575A (en) Injection molding machine
JPH04209004A (en) Control method for injection molding machine
JPS63111025A (en) Monitoring method of injection condition

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020305