TWI784865B - Resonant converter - Google Patents

Resonant converter Download PDF

Info

Publication number
TWI784865B
TWI784865B TW111101384A TW111101384A TWI784865B TW I784865 B TWI784865 B TW I784865B TW 111101384 A TW111101384 A TW 111101384A TW 111101384 A TW111101384 A TW 111101384A TW I784865 B TWI784865 B TW I784865B
Authority
TW
Taiwan
Prior art keywords
inductor
coupled
switch
discharge
rectifier
Prior art date
Application number
TW111101384A
Other languages
Chinese (zh)
Other versions
TW202329587A (en
Inventor
詹子增
Original Assignee
宏碁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宏碁股份有限公司 filed Critical 宏碁股份有限公司
Priority to TW111101384A priority Critical patent/TWI784865B/en
Application granted granted Critical
Publication of TWI784865B publication Critical patent/TWI784865B/en
Publication of TW202329587A publication Critical patent/TW202329587A/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Folding Of Thin Sheet-Like Materials, Special Discharging Devices, And Others (AREA)

Abstract

A resonant converter is provided. The resonant converter includes a transformer, a resonant circuit, a coupling circuit and a rectifier. The transformer includes a primary side winding and a secondary side winding. The resonant circuit is coupled to the primary side winding. The coupling circuit includes an excitation inductor. The excitation inductor is coupled in parallel to the secondary side winding. The excitation inductor couples energy of the secondary side winding to provide a sensing voltage. The rectifier rectifies the sensing voltage to generate an output power. The coupling circuit provides discharging loops to consume energy stored in the excitation inductor. Formations of the discharging loops are related to switching sequences of various power switches.

Description

諧振轉換器resonant converter

本發明是有關於一種諧振轉換器,特別是關於一種能夠降低諧振能量震盪的諧振轉換器。The invention relates to a resonant converter, in particular to a resonant converter capable of reducing resonance energy oscillation.

現行的電源供應裝置可透過諧振轉換器來進行電壓切換操作以轉換電能。一般而言,當負載裝置(例如,電競用的電腦)所需的電能功率較大時,諧振轉換器中的激磁電感器會被設計成具有較大的電感值。然而,具有較大電感值的激磁電感器在電壓切換操作時所產生的諧振能量也較大,而使諧振轉換器不穩定。Existing power supply devices can perform voltage switching operations through resonant converters to convert electrical energy. Generally speaking, when the electrical power required by the load device (for example, a computer for gaming) is large, the magnetizing inductor in the resonant converter is designed to have a large inductance value. However, a magnetizing inductor with a larger inductance value also generates larger resonance energy during voltage switching operation, making the resonant converter unstable.

本發明實施例提供一種諧振轉換器,能夠降低諧振能量震盪。An embodiment of the present invention provides a resonant converter capable of reducing resonance energy oscillations.

本發明實施例的諧振轉換器包括變壓器、第一功率開關、第二功率開關、諧振電路、耦合電路以及整流器。變壓器包括初級側繞組以及次級側繞組。第一功率開關耦接於輸入電源與連接節點之間。第二功率開關耦接於連接節點與第一接地端之間。諧振電路耦接於連接節點與初級側繞組之間。耦合電路包括激磁電感器。激磁電感器並聯耦接於次級側繞組。激磁電感器將次級側繞組的能量進行耦合以提供感應電壓。整流器耦接於耦合電路。整流器對感應電壓進行整流以產生輸出電源。耦合電路提供多個放電迴路以消耗儲存於激磁電感器的能量。所述多個放電迴路的形成分別關聯於第一功率開關以及第二功率開關的切換時序。The resonant converter in the embodiment of the present invention includes a transformer, a first power switch, a second power switch, a resonant circuit, a coupling circuit and a rectifier. A transformer includes a primary side winding as well as a secondary side winding. The first power switch is coupled between the input power and the connection node. The second power switch is coupled between the connection node and the first ground terminal. The resonant circuit is coupled between the connection node and the primary winding. The coupling circuit includes a magnetizing inductor. The magnetizing inductor is coupled in parallel with the secondary winding. The magnetizing inductor couples the energy from the secondary winding to provide an induced voltage. The rectifier is coupled to the coupling circuit. The rectifier rectifies the induced voltage to generate output power. The coupling circuit provides multiple discharge circuits to dissipate the energy stored in the magnetizing inductor. The formation of the plurality of discharge loops is respectively associated with switching timings of the first power switch and the second power switch.

基於上述,本發明實施例的諧振轉換器的激磁電感器是並聯耦接於次級側繞組。諧振能量能夠透過激磁電感器來被耦合。此外,激磁電感器的諧振能量能夠經由多個放電迴路來被適度地消耗,以穩定諧振轉換器。Based on the above, the magnetizing inductor of the resonant converter of the embodiment of the present invention is coupled in parallel to the secondary winding. Resonant energy can be coupled through the magnetizing inductor. In addition, the resonance energy of the magnetizing inductor can be moderately dissipated via multiple discharge loops to stabilize the resonant converter.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail together with the accompanying drawings.

本發明的部份實施例接下來將會配合附圖來詳細描述,以下的描述所引用的元件符號,當不同附圖出現相同的元件符號將視為相同或相似的元件。這些實施例只是本發明的一部份,並未揭示所有本發明的可實施方式。更確切的說,這些實施例只是本發明的專利申請範圍中的範例。Parts of the embodiments of the present invention will be described in detail with reference to the accompanying drawings. For the referenced reference symbols in the following description, when the same reference symbols appear in different drawings, they will be regarded as the same or similar components. These embodiments are only a part of the present invention, and do not reveal all possible implementation modes of the present invention. Rather, these embodiments are only examples within the scope of the patent application of the present invention.

請參考圖1,圖1是依據本發明一實施例所繪示的諧振轉換器的方塊圖。在本實施例中,諧振轉換器100包括變壓器110、功率開關Q1~Q2、諧振電路120、耦合電路130以及整流器140。變壓器110包括初級側繞組NP以及次級側繞組NS。功率開關Q1耦接於輸入電源VIN與連接節點ND之間。功率開關Q2耦接於連接節點ND與接地端GND之間。諧振電路120耦接於連接節點ND與初級側繞組NP之間。Please refer to FIG. 1 , which is a block diagram of a resonant converter according to an embodiment of the present invention. In this embodiment, the resonant converter 100 includes a transformer 110 , power switches Q1 - Q2 , a resonant circuit 120 , a coupling circuit 130 and a rectifier 140 . The transformer 110 includes a primary winding NP and a secondary winding NS. The power switch Q1 is coupled between the input power VIN and the connection node ND. The power switch Q2 is coupled between the connection node ND and the ground terminal GND. The resonant circuit 120 is coupled between the connection node ND and the primary winding NP.

在本實施例中,耦合電路130包括激磁電感器LM。激磁電感器LM並聯耦接於次級側繞組NS。激磁電感器LM將次級側繞組NS的能量進行耦合以提供感應電壓VS。整流器140耦接於耦合電路130。整流器140對感應電壓VS進行整流以產生輸出電源VO。In this embodiment, the coupling circuit 130 includes a magnetizing inductor LM. The magnetizing inductor LM is coupled in parallel to the secondary winding NS. The magnetizing inductor LM couples the energy of the secondary winding NS to provide an induced voltage VS. The rectifier 140 is coupled to the coupling circuit 130 . The rectifier 140 rectifies the induced voltage VS to generate an output power VO.

應注意的是,激磁電感器LM並聯耦接於次級側繞組NS,而非耦接於初級側繞組NP。次級側繞組NS的能量能夠高效率地被耦合且被轉換為輸出電源VO。因此,諧振轉換器100的效能能夠被提高。It should be noted that the magnetizing inductor LM is coupled in parallel to the secondary winding NS, but not to the primary winding NP. The energy of the secondary side winding NS can be efficiently coupled and converted into the output power supply VO. Therefore, the performance of the resonant converter 100 can be improved.

在本實施例中,耦合電路130提供放電迴路LP1、LP2以適度地消耗儲存於激磁電感器LM的能量。放電迴路LP1、LP2的形成分別關聯於功率開關Q1以及功率開關Q2的切換時序。也就是,反應於被導通或被斷開的功率開關Q1、Q2,放電迴路LP1、LP2不會同時被形成。In this embodiment, the coupling circuit 130 provides discharge circuits LP1 and LP2 to properly consume the energy stored in the magnetizing inductor LM. The formation of the discharge loops LP1 and LP2 is related to the switching timing of the power switch Q1 and the power switch Q2 respectively. That is, in response to the power switches Q1 , Q2 being turned on or turned off, the discharge loops LP1 , LP2 are not formed at the same time.

在此值得一提的是,即使激磁電感器LM的電感值被設計為很大時,激磁電感器LM所耦合的能量能夠經由多個放電迴路來被適度地消耗。因此,由激磁電感器LM所引起的諧振能量震盪能夠被降低,以穩定諧振轉換器100。It is worth mentioning here that even if the inductance of the magnetizing inductor LM is designed to be large, the energy coupled to the magnetizing inductor LM can be moderately consumed through multiple discharge circuits. Therefore, resonance energy oscillations caused by the magnetizing inductor LM can be reduced to stabilize the resonant converter 100 .

在本實施例中,功率開關Q1、Q2分別是以電晶體來被實現。具體來說,功率開關Q1的第一端耦接於輸入電源VIN。功率開關Q1的第二端耦接於連接節點ND。功率開關Q1的控制端接收控制訊號GD1。功率開關Q1反應於控制訊號GD1而進行切換操作。功率開關Q2的第一端耦接於連接節點ND。功率開關Q2的第二端耦接於接地端GND。功率開關Q2的控制端接收控制訊號GD2。功率開關Q2反應於控制訊號GD2而進行切換操作。控制訊號GD1反向於控制訊號GD2。In this embodiment, the power switches Q1 and Q2 are respectively implemented with transistors. Specifically, the first end of the power switch Q1 is coupled to the input power VIN. The second end of the power switch Q1 is coupled to the connection node ND. The control terminal of the power switch Q1 receives the control signal GD1. The power switch Q1 performs a switching operation in response to the control signal GD1. The first end of the power switch Q2 is coupled to the connection node ND. The second terminal of the power switch Q2 is coupled to the ground terminal GND. The control terminal of the power switch Q2 receives the control signal GD2. The power switch Q2 performs a switching operation in response to the control signal GD2. The control signal GD1 is opposite to the control signal GD2.

在本實施例中,當功率開關Q1被導通時,耦合電路130提供放電迴路LP1以消耗儲存於激磁電感器LM的能量。在另一方面,當功率開關Q2被導通時,耦合電路130提供放電迴路LP2以消耗儲存於激磁電感器LM的能量。本實施例中的放電迴路LP1、LP2的數量僅為範例。In this embodiment, when the power switch Q1 is turned on, the coupling circuit 130 provides a discharge loop LP1 to consume the energy stored in the magnetizing inductor LM. On the other hand, when the power switch Q2 is turned on, the coupling circuit 130 provides a discharge loop LP2 to consume the energy stored in the magnetizing inductor LM. The numbers of the discharge loops LP1 and LP2 in this embodiment are just examples.

應注意的是,當功率開關Q1被導通時,功率開關Q2受控於控制訊號GD1的反向(即,控制訊號GD2)而被斷開。此時,放電迴路LP1被形成,且放電迴路LP2則不被形成。在另一方面,當功率開關Q2被導通時,功率開關Q1被斷開。此時,放電迴路LP2被形成,且放電迴路LP1則不被形成。放電迴路LP1、LP2交替式地被形成,並以交替式地降低儲存於激磁電感器LM的能量。激磁電感器LM在電壓切換操作時所產生的諧振能量被降低。諧振轉換器100不會發生因諧振能量過大所造成的諧振能量震盪。如此一來,諧振轉換器100的運作能夠更穩定。It should be noted that when the power switch Q1 is turned on, the power switch Q2 is turned off under the control of the reverse direction of the control signal GD1 (ie, the control signal GD2 ). At this time, the discharge loop LP1 is formed, and the discharge loop LP2 is not formed. On the other hand, when the power switch Q2 is turned on, the power switch Q1 is turned off. At this time, the discharge loop LP2 is formed, and the discharge loop LP1 is not formed. The discharge circuits LP1 and LP2 are formed alternately, and alternately reduce the energy stored in the exciting inductor LM. The resonance energy generated by the exciting inductor LM at the time of voltage switching operation is reduced. In the resonant converter 100 , there will be no resonant energy oscillation caused by excessive resonant energy. In this way, the operation of the resonant converter 100 can be more stable.

請參考圖2,圖2是依據本發明另一實施例所繪示的諧振轉換器的電路圖。在本實施例中,諧振轉換器200包括變壓器210、功率開關Q1、Q2、諧振電路220、耦合電路230以及整流器240。在本實施例中,諧振轉換器200是以LLC諧振轉換器來被實現。具體來說,諧振電路220包括諧振電容器CR以及諧振電感器LR。諧振電容器CR的第一端耦接於連接節點ND。諧振電容器CR的第二端耦接於諧振電感器LR的第一端。諧振電感器LR的第二端耦接於初級側繞組NP的第一端。初級側繞組NP的第二端以及功率開關Q2的第二端耦接於接地端GND1。Please refer to FIG. 2 , which is a circuit diagram of a resonant converter according to another embodiment of the present invention. In this embodiment, the resonant converter 200 includes a transformer 210 , power switches Q1 , Q2 , a resonant circuit 220 , a coupling circuit 230 and a rectifier 240 . In this embodiment, the resonant converter 200 is implemented as an LLC resonant converter. Specifically, the resonant circuit 220 includes a resonant capacitor CR and a resonant inductor LR. The first end of the resonant capacitor CR is coupled to the connection node ND. The second end of the resonant capacitor CR is coupled to the first end of the resonant inductor LR. The second terminal of the resonant inductor LR is coupled to the first terminal of the primary winding NP. The second terminal of the primary winding NP and the second terminal of the power switch Q2 are coupled to the ground terminal GND1.

在本實施例中,整流器240包括橋式電路241以及輸出電容器CO。橋式電路241並聯耦接於輸出電容器CO。橋式電路241依據控制訊號GD1、GD2來對感應電壓VS進行整流。輸出電容器CO依據經整流的感應電壓VS來輸出輸出電源VO。In this embodiment, the rectifier 240 includes a bridge circuit 241 and an output capacitor CO. The bridge circuit 241 is coupled in parallel to the output capacitor CO. The bridge circuit 241 rectifies the induced voltage VS according to the control signals GD1 and GD2 . The output capacitor CO outputs the output power VO according to the rectified induced voltage VS.

具體來說,在本實施例中,橋式電路241包括整流開關Q3、Q4以及整流二極體D1、D2。輸出電容器CO的第一端耦接於整流開關Q3的第一端。輸出電容器CO的第一端以及整流開關Q3的第一端作為整流器240的輸出端。輸出電容器CO的第二端耦接於接地端GND2。整流開關Q3的第二端耦接於激磁電感器LM的第一端。整流開關Q3的控制端接收控制訊號GD1。整流二極體D1的陽極耦接於激磁電感器LM的第二端。整流二極體D1的陰極耦接於整流開關Q3的第一端。整流開關Q4的第一端耦接於整流開關Q3的第二端。整流開關Q4的第二端耦接於接地端GND2。整流開關Q4的控制端接收控制訊號GD2。整流二極體D2的陽極耦接於接地端GND2。整流二極體D2的陰極耦接於激磁電感器LM的第二端。在其他實施利中,整流開關Q3、Q4可以是以二極體來被實現。Specifically, in this embodiment, the bridge circuit 241 includes rectification switches Q3, Q4 and rectification diodes D1, D2. The first end of the output capacitor CO is coupled to the first end of the rectifier switch Q3. The first terminal of the output capacitor CO and the first terminal of the rectifier switch Q3 serve as the output terminal of the rectifier 240 . The second terminal of the output capacitor CO is coupled to the ground terminal GND2. The second end of the rectifier switch Q3 is coupled to the first end of the magnetizing inductor LM. The control terminal of the rectifier switch Q3 receives the control signal GD1. The anode of the rectifying diode D1 is coupled to the second end of the magnetizing inductor LM. The cathode of the rectifier diode D1 is coupled to the first terminal of the rectifier switch Q3. The first end of the rectification switch Q4 is coupled to the second end of the rectification switch Q3. The second terminal of the rectifier switch Q4 is coupled to the ground terminal GND2. The control terminal of the rectifier switch Q4 receives the control signal GD2. The anode of the rectifier diode D2 is coupled to the ground terminal GND2. The cathode of the rectifying diode D2 is coupled to the second end of the magnetizing inductor LM. In other implementations, the rectifier switches Q3 and Q4 may be implemented as diodes.

應注意的是,橋式電路241是以橋式整流的操作方式,而非中心抽頭式整流的操作方式來對進行整流。也就是,整流開關Q3與整流二極體D2為第一組,且整流開關Q4與整流二極體D1為第二組。第一組與第二組分別反應於控制訊號GD1、GD2而交互地被導通以進行整流。It should be noted that the bridge circuit 241 rectifies the voltage by means of bridge rectification instead of center-tapped rectification. That is, the rectifier switch Q3 and the rectifier diode D2 are in the first group, and the rectifier switch Q4 and the rectifier diode D1 are in the second group. The first group and the second group are respectively turned on alternately in response to the control signals GD1 and GD2 for rectification.

在本實施例中,耦合電路230還包括電感器LX1、放電電容器C1以及輔助開關QX1。電感器LX1與激磁電感器LM進行電感耦合。電感器LX1依據控制訊號GD1來將儲存於激磁電感器LM的能量進行耦合以提供第一消耗電能。放電電容器C1的第一端耦接於電感器LX1的第一端。放電電容器C1的第二端耦接於輔助開關QX1的第一端。輔助開關QX1的第二端耦接於電感器LX1的第二端。輔助開關QX1的控制端接收控制訊號GD1。輔助開關QX1根據控制訊號GD1來進行開關操作。In this embodiment, the coupling circuit 230 further includes an inductor LX1, a discharge capacitor C1, and an auxiliary switch QX1. The inductor LX1 is inductively coupled to the magnetizing inductor LM. The inductor LX1 couples the energy stored in the magnetizing inductor LM according to the control signal GD1 to provide the first power consumption. A first end of the discharge capacitor C1 is coupled to a first end of the inductor LX1. The second end of the discharge capacitor C1 is coupled to the first end of the auxiliary switch QX1. The second end of the auxiliary switch QX1 is coupled to the second end of the inductor LX1. The control terminal of the auxiliary switch QX1 receives the control signal GD1. The auxiliary switch QX1 performs switching operations according to the control signal GD1.

在本實施例中,當輔助開關QX1反應於控制訊號GD1而被導通時,電感器LX1以及放電電容器C1共同形成放電迴路(如圖1所示的放電迴路LP1)。此時,電感器LX1將第一消耗電能對放電電容器C1充電。換言之,放電電容器C1會吸收電感器LX1的第一消耗電能。因此,當控制訊號GD1處於高電壓準位時,電感器LX1的第一消耗電能被消耗,進而透過耦合方式來適度地降低儲存於激磁電感器LM的能量。In this embodiment, when the auxiliary switch QX1 is turned on in response to the control signal GD1 , the inductor LX1 and the discharge capacitor C1 together form a discharge loop (the discharge loop LP1 shown in FIG. 1 ). At this time, the inductor LX1 charges the discharge capacitor C1 with the first power consumption. In other words, the discharge capacitor C1 absorbs the first power consumption of the inductor LX1. Therefore, when the control signal GD1 is at a high voltage level, the first power consumption of the inductor LX1 is consumed, and then the energy stored in the exciting inductor LM is moderately reduced through coupling.

在本實施例中,耦合電路230還包括電感器LX2、放電電容器C2以及輔助開關QX2。電感器LX2與激磁電感器LM進行電感耦合。電感器LX2依據控制訊號GD2來將儲存於激磁電感器LM的能量進行耦合以提供第二消耗電能。放電電容器C2的第一端耦接於電感器LX2的第一端。放電電容器C2的第二端耦接於輔助開關QX2的第一端。輔助開關QX2的第二端耦接於電感器LX2的第二端。輔助開關QX2的控制端接收控制訊號GD2。輔助開關QX2根據控制訊號GD2來進行開關操作。In this embodiment, the coupling circuit 230 further includes an inductor LX2, a discharging capacitor C2, and an auxiliary switch QX2. The inductor LX2 is inductively coupled to the magnetizing inductor LM. The inductor LX2 couples the energy stored in the magnetizing inductor LM according to the control signal GD2 to provide the second power consumption. A first end of the discharge capacitor C2 is coupled to a first end of the inductor LX2. The second end of the discharge capacitor C2 is coupled to the first end of the auxiliary switch QX2. The second end of the auxiliary switch QX2 is coupled to the second end of the inductor LX2. The control terminal of the auxiliary switch QX2 receives the control signal GD2. The auxiliary switch QX2 performs switching operations according to the control signal GD2.

在本實施例中,當輔助開關QX2反應於控制訊號GD2而被導通時,電感器LX2以及放電電容器C2共同形成放電迴路(如圖1所示的放電迴路LP2)。此時,電感器LX2將第二消耗電能對放電電容器C2充電。換言之,放電電容器C2會吸收電感器LX2的第二消耗電能。因此,當控制訊號GD2處於高電壓準位時,電感器LX2的第二消耗電能被消耗,進而透過耦合方式來適度地降低儲存於激磁電感器LM的能量。In this embodiment, when the auxiliary switch QX2 is turned on in response to the control signal GD2 , the inductor LX2 and the discharge capacitor C2 jointly form a discharge loop (the discharge loop LP2 shown in FIG. 1 ). At this time, the inductor LX2 charges the discharge capacitor C2 with the second power consumption. In other words, the discharging capacitor C2 will absorb the second power consumption of the inductor LX2. Therefore, when the control signal GD2 is at a high voltage level, the second power consumption of the inductor LX2 is consumed, and then the energy stored in the exciting inductor LM is moderately reduced through coupling.

在本實施例中,激磁電感器LM以及電感器LX1、LX2分別可以是配置在同一個耦合電感器中的不同繞組。如此一來,次級側的體積得以被縮小。In this embodiment, the exciting inductor LM and the inductors LX1 and LX2 may be different windings arranged in the same coupled inductor. In this way, the volume of the secondary side can be reduced.

請同時參考圖2、圖3A以及圖3B,圖3A、圖3B是依據本發明圖2實施例所繪示的諧振轉換器的動作示意圖。在本實施例中,在圖3A、3B中,橫軸為諧振轉換器200的操作時間,縱軸為電壓值。圖3A繪示了控制訊號GD1以及電感器LX1兩端的電壓訊號VLX1。在另一方面,圖3B繪示了控制訊號GD2以及電感器LX2兩端的電壓訊號VLX2。在本實施例中,電壓訊號VLX1關聯於第一消耗電能。電壓訊號VLX2關聯於第二消耗電能。Please refer to FIG. 2 , FIG. 3A and FIG. 3B at the same time. FIG. 3A and FIG. 3B are schematic diagrams of the operation of the resonant converter shown in FIG. 2 according to the embodiment of the present invention. In this embodiment, in FIGS. 3A and 3B , the horizontal axis represents the operating time of the resonant converter 200 , and the vertical axis represents the voltage value. FIG. 3A shows the control signal GD1 and the voltage signal VLX1 across the inductor LX1. On the other hand, FIG. 3B shows the control signal GD2 and the voltage signal VLX2 across the inductor LX2. In this embodiment, the voltage signal VLX1 is related to the first power consumption. The voltage signal VLX2 is related to the second power consumption.

在本實施例中,功率開關Q1、Q2分別受控於控制訊號GD1、GD2而被導通或被斷開。功率開關Q1、Q2的開關操作狀態與耦合電路230以及整流器240所對應的動作狀態如表(1)所示。請一併參考圖2、圖3A、圖3B以及表(1)。In this embodiment, the power switches Q1, Q2 are controlled by the control signals GD1, GD2 to be turned on or turned off respectively. The switching operation states of the power switches Q1 and Q2 and the corresponding action states of the coupling circuit 230 and the rectifier 240 are shown in Table (1). Please refer to Figure 2, Figure 3A, Figure 3B and Table (1) together.

表(1): 功率開關Q1、Q2的開關操作狀態 耦合電路230 整流器240 放電迴路LP1 放電迴路LP2 整流開關Q3、整流二極體D2 整流開關Q4、整流二極體D1 Q1被導通、 Q2被斷開 被形成 不被形成 被導通 被斷開 Q1被斷開、 Q2被導通 不被形成 被形成 被斷開 被導通 Table 1): Switching state of power switches Q1, Q2 coupling circuit 230 Rectifier 240 Discharge circuit LP1 Discharge circuit LP2 Rectifier switch Q3, rectifier diode D2 Rectifier switch Q4, rectifier diode D1 Q1 is turned on, Q2 is turned off was formed not formed turned on disconnected Q1 is turned off, Q2 is turned on not formed was formed disconnected turned on

在本實施例中,在時間點0T至時間點0.5T的期間內,控制訊號GD1具有邏輯高準位,如圖3A所示。因此,功率開關Q1被導通。輔助開關QX1也反應於控制訊號GD1而被導通。放電迴路LP1被形成。在此期間內,電感器LX1所提供的第一消耗電能透過放電迴路LP1被消耗,而使電感器LX1兩端的電壓訊號呈弦波。同時,整流開關Q3也反應於控制訊號GD1而被導通,因此整流二極體D2被導通。In this embodiment, during the period from the time point 0T to the time point 0.5T, the control signal GD1 has a logic high level, as shown in FIG. 3A . Therefore, the power switch Q1 is turned on. The auxiliary switch QX1 is also turned on in response to the control signal GD1. A discharge loop LP1 is formed. During this period, the first power consumption provided by the inductor LX1 is consumed through the discharge loop LP1 , so that the voltage signal at both ends of the inductor LX1 presents a sinusoidal wave. At the same time, the rectifier switch Q3 is also turned on in response to the control signal GD1 , so the rectifier diode D2 is turned on.

在時間點0T至時間點0.5T的期間內,控制訊號GD2具有邏輯低準位,如圖3B所示。因此,功率開關Q2被斷開。輔助開關QX2也反應於控制訊號GD2而被斷開。放電迴路LP2不被形成。因此,電感器LX2兩端不具電壓差。同時,整流開關Q4也反應於控制訊號GD2而被斷開,因此整流二極體D1被斷開。During the period from the time point 0T to the time point 0.5T, the control signal GD2 has a logic low level, as shown in FIG. 3B . Therefore, the power switch Q2 is turned off. The auxiliary switch QX2 is also turned off in response to the control signal GD2. The discharge loop LP2 is not formed. Therefore, there is no voltage difference across the inductor LX2. At the same time, the rectifier switch Q4 is also turned off in response to the control signal GD2, so the rectifier diode D1 is turned off.

在本實施例中,在時間點0.5T至時間點1T的期間內,控制訊號GD1具有邏輯低準位,如圖3A所示。因此,功率開關Q1被斷開。輔助開關QX1也反應於控制訊號GD1而被斷開。放電迴路LP1不被形成。因此,電感器LX1兩端不具電壓差。同時,整流開關Q3也反應於控制訊號GD1而被斷開,因此整流二極體D2被斷開。In this embodiment, during the period from the time point 0.5T to the time point 1T, the control signal GD1 has a logic low level, as shown in FIG. 3A . Therefore, the power switch Q1 is turned off. The auxiliary switch QX1 is also turned off in response to the control signal GD1. The discharge loop LP1 is not formed. Therefore, there is no voltage difference across the inductor LX1. At the same time, the rectifier switch Q3 is also turned off in response to the control signal GD1 , so the rectifier diode D2 is turned off.

在時間點0.5T至時間點1T的期間內,控制訊號GD2具有邏輯高準位,如圖3B所示。因此,功率開關Q2被導通。輔助開關QX2也反應於控制訊號GD2而被導通。放電迴路LP2被形成。在此期間內,電感器LX2所提供的第二消耗電能透過放電迴路LP2被消耗,而使電感器LX2兩端的電壓訊號呈弦波。同時,整流開關Q4也反應於控制訊號GD2而被導通,因此整流二極體D1被導通。During the period from the time point 0.5T to the time point 1T, the control signal GD2 has a logic high level, as shown in FIG. 3B . Therefore, the power switch Q2 is turned on. The auxiliary switch QX2 is also turned on in response to the control signal GD2. A discharge loop LP2 is formed. During this period, the second power consumption provided by the inductor LX2 is consumed through the discharge loop LP2 , so that the voltage signal at both ends of the inductor LX2 presents a sinusoidal wave. At the same time, the rectifier switch Q4 is also turned on in response to the control signal GD2 , so the rectifier diode D1 is turned on.

圖3A至圖3B實施例中的時間點0T至時間點1T的各期間長度的配置僅為範例。The configurations of the durations from the time point 0T to the time point 1T in the embodiments of FIGS. 3A to 3B are just examples.

應注意的是,放電迴路LP1、LP2會交替地被形成以消耗儲存於激磁電感器LM的能量。同時,整流開關Q3、Q4與整流二極體D2、D1會交替地被導通以互補式地進行整流。It should be noted that the discharge loops LP1 and LP2 are alternately formed to dissipate the energy stored in the magnetizing inductor LM. At the same time, the rectifier switches Q3 and Q4 and the rectifier diodes D2 and D1 are turned on alternately to perform rectification in a complementary manner.

綜上所述,本發明實施例的諧振轉換器中的激磁電感器是並聯耦接於次級側繞組,而使諧振轉換器的效能被提高。此外,位於激磁電感器的諧振能量能夠經由多個放電迴路來被消耗,而使諧振能量震盪被降低以穩定諧振轉換器。在部分實施例中,橋式電路與多個放電迴路對應於第一功率開關以及第二功率開關的被致能的期間來交替式地執行相應的操作。To sum up, the magnetizing inductor in the resonant converter of the embodiment of the present invention is coupled in parallel to the secondary winding, so that the performance of the resonant converter is improved. In addition, the resonant energy located in the magnetizing inductor can be dissipated via multiple discharge loops, so that the resonant energy oscillation is reduced to stabilize the resonant converter. In some embodiments, the bridge circuit and the plurality of discharge circuits alternately perform corresponding operations corresponding to the enabled periods of the first power switch and the second power switch.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above with the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field may make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention should be defined by the scope of the appended patent application.

100、200:諧振轉換器 110、210:變壓器 120、220:諧振電路 130、230:耦合電路 140、240:整流器 241:橋式電路 0T、0.5T、1T:時間點 C1、C2:放電電容器 CO:輸出電容器 CR:諧振電容器 D1、D2:整流二極體 GD1、GD2:控制訊號 GND、GND1、GND2:接地端 LM:激磁電感器 LP1、LP2:放電迴路 LR:諧振電感器 LX1、LX2:電感器 ND:連接節點 NP:初級側繞組 NS:次級側繞組 Q1、Q2:功率開關 Q3、Q4:整流開關 QX1、QX2:輔助開關 VIN:輸入電源 VLX1、VLX2:電壓訊號 VO:輸出電源 VS:感應電壓100, 200: resonant converter 110, 210: transformer 120, 220: resonant circuit 130, 230: coupling circuit 140, 240: rectifier 241: bridge circuit 0T, 0.5T, 1T: time point C1, C2: discharge capacitor CO: output capacitor CR: resonant capacitor D1, D2: Rectifier diodes GD1, GD2: control signal GND, GND1, GND2: ground terminal LM: Exciting inductor LP1, LP2: discharge circuit LR: Resonant inductor LX1, LX2: Inductor ND: connect node NP: Primary side winding NS: Secondary side winding Q1, Q2: Power switch Q3, Q4: rectifier switch QX1, QX2: Auxiliary switch VIN: input power VLX1, VLX2: voltage signal VO: output power VS: induced voltage

圖1是依據本發明一實施例所繪示的諧振轉換器的方塊圖。 圖2是依據本發明另一實施例所繪示的諧振轉換器的電路圖。 圖3A、圖3B是依據本發明圖2實施例所繪示的諧振轉換器的動作示意圖。 FIG. 1 is a block diagram of a resonant converter according to an embodiment of the invention. FIG. 2 is a circuit diagram of a resonant converter according to another embodiment of the invention. FIG. 3A and FIG. 3B are schematic diagrams of the operation of the resonant converter shown in the embodiment shown in FIG. 2 according to the present invention.

100:諧振轉換器 100: Resonant Converter

110:變壓器 110: Transformer

120:諧振電路 120: Resonant circuit

130:耦合電路 130:Coupling circuit

140:整流器 140: rectifier

GD1、GD2:控制訊號 GD1, GD2: control signal

GND:接地端 GND: ground terminal

LM:激磁電感器 LM: Exciting inductor

LP1、LP2:放電迴路 LP1, LP2: discharge circuit

ND:連接節點 ND: connect node

NP:初級側繞組 NP: Primary side winding

NS:次級側繞組 NS: Secondary side winding

Q1、Q2:功率開關 Q1, Q2: Power switch

VIN:輸入電源 VIN: input power

VO:輸出電源 VO: output power

VS:感應電壓 VS: induced voltage

Claims (10)

一種諧振轉換器,包括: 一變壓器,包括一初級側繞組以及一次級側繞組; 一第一功率開關,耦接於一輸入電源與一連接節點之間; 一第二功率開關,耦接於該連接節點與一第一接地端之間; 一諧振電路,耦接於該連接節點與該初級側繞組之間; 一耦合電路,包括一激磁電感器,其中該激磁電感器並聯耦接於該次級側繞組,該激磁電感器經配置以將該次級側繞組的能量進行耦合以提供一感應電壓;以及 一整流器,耦接於該耦合電路,經配置以對該感應電壓進行整流以產生一輸出電源, 其中該耦合電路提供多個放電迴路以消耗儲存於該激磁電感器的能量,其中該些放電迴路的形成分別關聯於該第一功率開關以及該第二功率開關的切換時序。 A resonant converter comprising: A transformer, including a primary side winding and a secondary side winding; a first power switch, coupled between an input power source and a connection node; a second power switch coupled between the connection node and a first ground terminal; a resonant circuit coupled between the connection node and the primary side winding; a coupling circuit comprising a magnetizing inductor, wherein the magnetizing inductor is coupled in parallel to the secondary side winding, the magnetizing inductor being configured to couple energy of the secondary side winding to provide an induced voltage; and a rectifier, coupled to the coupling circuit, configured to rectify the induced voltage to generate an output power, The coupling circuit provides a plurality of discharge loops to consume the energy stored in the magnetizing inductor, wherein the formation of the discharge loops is respectively related to the switching timing of the first power switch and the second power switch. 如請求項1所述的諧振轉換器,其中該第一功率開關反應於一第一控制訊號而進行一第一切換操作,其中該第二功率開關反應於一第二控制訊號而進行一第二切換操作,其中該第二控制訊號反向於該第一控制訊號。The resonant converter as claimed in item 1, wherein the first power switch performs a first switching operation in response to a first control signal, and wherein the second power switch performs a second switching operation in response to a second control signal Switching operation, wherein the second control signal is opposite to the first control signal. 如請求項2所述的諧振轉換器,其中該些放電迴路包括一第一放電迴路以及一第二放電迴路,其中當該第一功率開關導通時,該耦合電路提供該第一放電迴路以消耗儲存於該激磁電感器的能量。The resonant converter as claimed in item 2, wherein the discharge circuits include a first discharge circuit and a second discharge circuit, wherein when the first power switch is turned on, the coupling circuit provides the first discharge circuit to consume The energy stored in the magnetizing inductor. 如請求項3所述的諧振轉換器,其中當該第二功率開關導通時,該耦合電路提供該第二放電迴路以消耗儲存於該激磁電感器的能量。The resonant converter as claimed in claim 3, wherein when the second power switch is turned on, the coupling circuit provides the second discharge circuit to consume the energy stored in the magnetizing inductor. 如請求項2所述的諧振轉換器,其中該整流器包括: 一橋式電路,經配置以依據該第一控制訊號以及該第二控制訊號來對該感應電壓進行整流。 The resonant converter as claimed in claim 2, wherein the rectifier comprises: A bridge circuit configured to rectify the induced voltage according to the first control signal and the second control signal. 如請求項5所述的諧振轉換器,其中該橋式電路包括: 一第一整流開關,該第一整流開關的第一端作為該整流器的輸出端,該第一整流開關的第二端耦接於該激磁電感器的第一端,該第一整流開關的控制端接收該第一控制訊號; 一第一整流二極體,該第一整流二極體的陽極耦接於該激磁電感器的第二端,該第一整流二極體的陰極耦接於該第一整流開關的第一端; 一第二整流開關,該第二整流開關的第一端耦接於該第一整流開關的第二端,該第二整流開關的第二端耦接於一第二接地端,該第二整流開關的控制端接收該第二控制訊號;以及 一第二整流二極體,該第二整流二極體的陽極耦接於該第二接地端,該第二整流二極體的陰極耦接於該激磁電感器的第二端。 The resonant converter as claimed in item 5, wherein the bridge circuit comprises: A first rectification switch, the first end of the first rectification switch is used as the output end of the rectifier, the second end of the first rectification switch is coupled to the first end of the exciting inductor, the control of the first rectification switch receiving the first control signal at the terminal; a first rectifier diode, the anode of the first rectifier diode is coupled to the second end of the magnetizing inductor, and the cathode of the first rectifier diode is coupled to the first end of the first rectifier switch ; A second rectifier switch, the first terminal of the second rectifier switch is coupled to the second terminal of the first rectifier switch, the second terminal of the second rectifier switch is coupled to a second ground terminal, the second rectifier switch The control terminal of the switch receives the second control signal; and A second rectifier diode, the anode of the second rectifier diode is coupled to the second ground terminal, and the cathode of the second rectifier diode is coupled to the second end of the exciting inductor. 如請求項5所述的諧振轉換器,其中該耦合電路還包括: 一第一電感器,經配置以依據該第一控制訊號來將儲存於該激磁電感器的能量進行耦合以提供一第一消耗電能; 一第一放電電容器,該第一放電電容器的第一端耦接於該第一電感器的第一端;以及 一第一輔助開關,該第一輔助開關的第一端耦接於該第一放電電容器的第二端,該第一輔助開關的第二端耦接於該第一電感器的第二端,該第一輔助開關的控制端接收該第一控制訊號, 其中當該第一輔助開關被導通時,該第一電感器以及該第一放電電容器共同形成該第一放電迴路。 The resonant converter as claimed in item 5, wherein the coupling circuit further includes: a first inductor configured to couple energy stored in the magnetizing inductor according to the first control signal to provide a first power consumption; a first discharge capacitor, the first terminal of the first discharge capacitor is coupled to the first terminal of the first inductor; and a first auxiliary switch, the first end of the first auxiliary switch is coupled to the second end of the first discharge capacitor, the second end of the first auxiliary switch is coupled to the second end of the first inductor, the control terminal of the first auxiliary switch receives the first control signal, Wherein when the first auxiliary switch is turned on, the first inductor and the first discharge capacitor jointly form the first discharge loop. 如請求項7所述的諧振轉換器,其中該耦合電路還包括: 一第二電感器,經配置以依據該第二控制訊號來將儲存於該激磁電感器的能量進行耦合以提供一第二消耗電能; 一第二放電電容器,該第二放電電容器的第一端耦接於該第二電感器的第一端;以及 一第二輔助開關,該第二輔助開關的第一端耦接於該第二放電電容器的第二端,該第二輔助開關的第二端耦接於該第二電感器的第二端,該第二輔助開關的控制端接收該第二控制訊號, 其中當該第二輔助開關被導通時,該第二電感器以及該第二放電電容器共同形成該第二放電迴路。 The resonant converter as claimed in item 7, wherein the coupling circuit further comprises: a second inductor configured to couple the energy stored in the magnetizing inductor according to the second control signal to provide a second power consumption; a second discharge capacitor, the first terminal of the second discharge capacitor is coupled to the first terminal of the second inductor; and a second auxiliary switch, the first end of the second auxiliary switch is coupled to the second end of the second discharge capacitor, the second end of the second auxiliary switch is coupled to the second end of the second inductor, the control terminal of the second auxiliary switch receives the second control signal, Wherein when the second auxiliary switch is turned on, the second inductor and the second discharge capacitor jointly form the second discharge loop. 如請求項8所述的諧振轉換器,其中該第一電感器經配置以透過該第一放電迴路消耗該第一消耗電能,且該第二電感器經配置以透過該第二放電迴路消耗該第二消耗電能。The resonant converter as claimed in claim 8, wherein the first inductor is configured to consume the first power consumption through the first discharge circuit, and the second inductor is configured to consume the first power consumption through the second discharge circuit The second consumes electric energy. 如請求項1所述的諧振轉換器,其中該諧振電路包括: 一諧振電容器,該諧振電容器的第一端耦接於該連接節點;以及 一諧振電感器,該諧振電感器的第一端耦接於該諧振電容器的第二端,該諧振電感器的第二端耦接於該初級側繞組的第一端。 The resonant converter as claimed in claim 1, wherein the resonant circuit comprises: a resonant capacitor, the first terminal of the resonant capacitor is coupled to the connection node; and A resonant inductor, the first end of the resonant inductor is coupled to the second end of the resonant capacitor, and the second end of the resonant inductor is coupled to the first end of the primary winding.
TW111101384A 2022-01-13 2022-01-13 Resonant converter TWI784865B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111101384A TWI784865B (en) 2022-01-13 2022-01-13 Resonant converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111101384A TWI784865B (en) 2022-01-13 2022-01-13 Resonant converter

Publications (2)

Publication Number Publication Date
TWI784865B true TWI784865B (en) 2022-11-21
TW202329587A TW202329587A (en) 2023-07-16

Family

ID=85794697

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111101384A TWI784865B (en) 2022-01-13 2022-01-13 Resonant converter

Country Status (1)

Country Link
TW (1) TWI784865B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200633594A (en) * 2005-02-01 2006-09-16 Sanken Electric Co Ltd Discharge lamp lighting apparatus
TW200826463A (en) * 2006-12-14 2008-06-16 Tungnan Inst Of Technology Resonant converter and synchronous rectification driving circuit thereof
US20100254163A1 (en) * 2007-12-07 2010-10-07 Osram Gesellschaft Mit Beschraenkter Haftung Resonant power converter with current doubler rectifier and related method
CN103312207A (en) * 2013-07-08 2013-09-18 南京航空航天大学 Passive lossless soft-switch forward inverter
CN113489330A (en) * 2021-06-25 2021-10-08 浙江大学 Efficiency optimal modal control method of modular rectification structure resonant converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200633594A (en) * 2005-02-01 2006-09-16 Sanken Electric Co Ltd Discharge lamp lighting apparatus
TW200826463A (en) * 2006-12-14 2008-06-16 Tungnan Inst Of Technology Resonant converter and synchronous rectification driving circuit thereof
US20100254163A1 (en) * 2007-12-07 2010-10-07 Osram Gesellschaft Mit Beschraenkter Haftung Resonant power converter with current doubler rectifier and related method
CN103312207A (en) * 2013-07-08 2013-09-18 南京航空航天大学 Passive lossless soft-switch forward inverter
CN113489330A (en) * 2021-06-25 2021-10-08 浙江大学 Efficiency optimal modal control method of modular rectification structure resonant converter

Also Published As

Publication number Publication date
TW202329587A (en) 2023-07-16

Similar Documents

Publication Publication Date Title
US10554136B1 (en) Control of secondary switches based on secondary winding voltage in a power converter
EP0989662B1 (en) Completely integrated switch-on control-loop of a high voltage power transistor of a quasi resonant flyback converter
US6714428B2 (en) Combined transformer-inductor device for application to DC-to-DC converter with synchronous rectifier
US20150098250A1 (en) Method of controlling phase-shift full-bridge converter in light load operation
US5963436A (en) Switching power supply apparatus and controlling method for the same
US20140043863A1 (en) Novel control method to reduce switching loss on mosfet
TW201929404A (en) Adjustable frequency curve for flyback converter at green mode
TWI556554B (en) A system and method for adjusting a power converter
JP2004536543A (en) Isolated drive circuit used in switch mode power converter
US20120294047A1 (en) Resonant Converter
KR20080101674A (en) Dc-dc converter
JP2007336794A (en) Half-bridge resonance converter
TWI732581B (en) Conversion device with oscillation reduction control and method of operation of oscillation reduction control the same
TW202201891A (en) Resonant half-bridge flyback power converter and primary controller circuit and control method thereof
JP3221185B2 (en) Switching power supply
JP4716813B2 (en) Resonant type converter
TWI784865B (en) Resonant converter
JP2513381B2 (en) Power supply circuit
JP2019146359A (en) Switching power supply device
TW202203565A (en) Power supply device for eliminating ringing effect
US20230155510A1 (en) Switching power supply circuit
US20230155477A1 (en) Resonance conversion device
KR20130014972A (en) Llc resonant converter
US8665622B2 (en) Power supply unit supplying standby power by sharing switch of main converter
CN110690824A (en) Flyback converter and electronic equipment