TWI784279B - DC-DC conversion circuit and information processing device - Google Patents

DC-DC conversion circuit and information processing device Download PDF

Info

Publication number
TWI784279B
TWI784279B TW109118120A TW109118120A TWI784279B TW I784279 B TWI784279 B TW I784279B TW 109118120 A TW109118120 A TW 109118120A TW 109118120 A TW109118120 A TW 109118120A TW I784279 B TWI784279 B TW I784279B
Authority
TW
Taiwan
Prior art keywords
terminal
voltage
coupled
current
input
Prior art date
Application number
TW109118120A
Other languages
Chinese (zh)
Other versions
TW202145178A (en
Inventor
金寧
Original Assignee
大陸商北京集創北方科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商北京集創北方科技股份有限公司 filed Critical 大陸商北京集創北方科技股份有限公司
Priority to TW109118120A priority Critical patent/TWI784279B/en
Publication of TW202145178A publication Critical patent/TW202145178A/en
Application granted granted Critical
Publication of TWI784279B publication Critical patent/TWI784279B/en

Links

Images

Landscapes

  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一種直流-直流轉換電路,其具有一輸入端以耦接一輸入電壓及一輸出端以提供一輸出電壓,且其包括一電能傳輸單元以依一PWM信號的控制週期性地將該輸入電壓的電能傳輸至該輸出端,及一控制單元以依一回授電壓及一輸入感測電流產生該PWM信號,其中該回授電壓係依該輸出電壓之一比例產生,其特徵在於:該控制單元具有一轉導可控之電壓轉電流單元以產生與該輸入電壓及一負載電流之乘積成正比之一第一感測電流,且該第一感測電流與該輸入感測電流的和等於該電能傳輸單元內之一電感之一第二感測電流,俾以使該控制單元能夠快速地反應輸入電壓及負載電流的變化而即時調整該輸出電壓,從而滿足各種TDMA應用環境的供電品質要求。 A DC-DC conversion circuit, which has an input terminal coupled to an input voltage and an output terminal to provide an output voltage, and it includes a power transmission unit to periodically control the input voltage according to a PWM signal Electric energy is transmitted to the output terminal, and a control unit generates the PWM signal according to a feedback voltage and an input sensing current, wherein the feedback voltage is generated according to a ratio of the output voltage, characterized in that: the control unit A transconductance controllable voltage-to-current unit is provided to generate a first sensing current proportional to the product of the input voltage and a load current, and the sum of the first sensing current and the input sensing current is equal to the A second sensing current of an inductor in the power transmission unit enables the control unit to quickly respond to changes in input voltage and load current and adjust the output voltage in real time, thereby meeting the power supply quality requirements of various TDMA application environments.

Description

直流-直流轉換電路及資訊處理裝置 DC-DC conversion circuit and information processing device

本發明係關於直流-直流轉換電路之有關技術領域,尤指具有快速暫態響應(fast transient response)的一種直流-直流轉換電路。 The present invention relates to the related technical field of DC-DC conversion circuit, especially a DC-DC conversion circuit with fast transient response.

因具有自發光、廣視角、高對比、低耗電及高反應速率等優點,OLED顯示器已廣泛應用於各式電子產品中,其中又可分為PMOLED顯示器和AMOLED顯示器。請參照圖1,其繪示習知的一種AMOLED顯示器的架構圖。如圖1所示,習知的AMOLED顯示器包括:一AMOLED面板1a、一閘極驅動模組2a、一源極驅動模組3a、一顯示控制器4a、以及一供電單元5a。目前的技術已經可以做到將該顯示控制器4a、該閘極驅動模組2a和該源極驅動模組3a整合成單一顯示驅動晶片。於圖1中,該供電單元5a耦接一外部電源,例如由鋰電池所提供的電源,從而提供一工作電壓VDD至該顯示控制器4a、該閘極驅動模組2a和該源極驅動模組3a,且提供一發光工作電壓ELVDD和一接地工作電壓ELVDD至該AMOLED面板1a。 Due to the advantages of self-illumination, wide viewing angle, high contrast, low power consumption and high response rate, OLED displays have been widely used in various electronic products, which can be divided into PMOLED displays and AMOLED displays. Please refer to FIG. 1 , which shows a structure diagram of a conventional AMOLED display. As shown in FIG. 1 , a conventional AMOLED display includes: an AMOLED panel 1a, a gate driver module 2a, a source driver module 3a, a display controller 4a, and a power supply unit 5a. The current technology has been able to integrate the display controller 4a, the gate driver module 2a and the source driver module 3a into a single display driver chip. In FIG. 1, the power supply unit 5a is coupled to an external power supply, such as a power supply provided by a lithium battery, so as to provide an operating voltage VDD to the display controller 4a, the gate driver module 2a and the source driver module. group 3a, and provide a light-emitting working voltage ELVDD and a grounding working voltage ELVDD to the AMOLED panel 1a.

圖2顯示習知的一種供電單元的電路拓樸圖。如圖1所示之供電單元5a為一升壓型(boost)直流-直流轉換器,且包括:一輸入電容Cia、一電感L1a、一第一NMOS元件Q2a、一第一PMOS元件Q1a、一第二PMOS元件Qsa、一第二PMOS元件Qca、一運算放大器A1a、一第一分壓電阻Rf1a、一第二分壓電阻Rf2a、一輸入電容Coa、一誤差放大器A2a、一第一電阻Rra、一第二電阻Rea、一第一電容Cra、一第二電容Cea、一比較器A3a、一電流源Ira、一振盪器51a、一RS正反器52a、以及一驅動單元53a。其中,該第一PMOS元件Q1a為一續流元件,用以保證所述電感L1a的電流電流IL為連續的。 FIG. 2 shows a circuit topology diagram of a conventional power supply unit. The power supply unit 5a shown in Figure 1 is a step-up (boost) DC-DC converter, and includes: an input capacitor Cia, an inductor L1a, a first NMOS element Q2a, a first PMOS element Q1a, a A second PMOS element Qsa, a second PMOS element Qca, an operational amplifier A1a, a first voltage dividing resistor Rf1a, a second voltage dividing resistor Rf2a, an input capacitor Coa, an error amplifier A2a, a first resistor Rra, A second resistor Rea, a first capacitor Cra, a second capacitor Cea, a comparator A3a, a current source Ira, an oscillator 51a, an RS flip-flop 52a, and a driving unit 53a. Wherein, the first PMOS element Q1a is a freewheeling element for ensuring that the current IL of the inductor L1a is continuous.

另一方面,該第一NMOS元件Q2a作為一開關元件,且該第二PMOS元件Qsa作為一電流感測元件。透過該運算放大器A1a與該第二PMOS元件Qca的設置,該第一PMOS元件Q1a和該第二PMOS元件Qsa的四端電壓(即,兩個汲極端 和兩個源極端)會相同。如此設計,由該第二PMOS元件Qsa傳送至開關元件S1a的採樣電流Isense即為IL/m,其中m=WQ1/WQsense。於此WQ1指的是該第一PMOS元件Q1a的通道寬度,而WQsense則為該第二PMOS元件Qsa的通道寬度。 On the other hand, the first NMOS device Q2a functions as a switching device, and the second PMOS device Qsa functions as a current sensing device. Through the arrangement of the operational amplifier A1a and the second PMOS device Qca, the four-terminal voltages (ie, two drain terminals and two source terminals) of the first PMOS device Q1a and the second PMOS device Qsa will be the same. In such a design, the sampling current Isense transmitted from the second PMOS element Qsa to the switching element S1a is I L /m, where m=WQ 1 /WQ sense . Here, WQ1 refers to the channel width of the first PMOS device Q1a, and WQ sense refers to the channel width of the second PMOS device Qsa.

更詳細地說明,參考電壓

Figure 109118120-A0305-02-0004-2
,該誤差放大器A2a 基於該參考電壓VREF和取自該第一分壓電阻Rf1a與該第二分壓電阻Rf2a的一回授電壓VFB而輸出一誤差信號Vea至該比較器A3a的負輸入端。同時,該電流源Ira、該第一電容Cra和該第一電阻Rra提供一鋸齒波電壓信號Vramp至該比較器A3a的正輸入端。如此,基於該鋸齒波電壓信號Vramp和該誤差信號Vea,該比較器A3a輸出一比較信號至該RS正反器52a的一第一輸入端(即,R端),且該振盪器51a提供一時鐘信號CLK至該RS正反器52a的一第二輸入端(即,S端)。最終,該RS正反器52a的輸出端(即,Q端)提供一PWM信號至該驅動單元53a,使該驅動單元53a依據該PWM信號而提供一第一閘極電壓信號至該第一NMOS元件Q2a的閘極端,且同時提供一第二閘極電壓信號至該第一PMOS元件Q1a和該第二PMOS元件Qsa的閘極端。應知道,所述PWM信號的占空比(Duty cycle)由該時鐘信號CLK所決定。 In more detail, the reference voltage
Figure 109118120-A0305-02-0004-2
, the error amplifier A2a outputs an error signal Vea to the negative input of the comparator A3a based on the reference voltage V REF and a feedback voltage V FB obtained from the first voltage dividing resistor Rf1a and the second voltage dividing resistor Rf2a end. At the same time, the current source Ira, the first capacitor Cra and the first resistor Rra provide a sawtooth voltage signal Vramp to the positive input terminal of the comparator A3a. Thus, based on the sawtooth voltage signal Vramp and the error signal Vea, the comparator A3a outputs a comparison signal to a first input terminal (ie, R terminal) of the RS flip-flop 52a, and the oscillator 51a provides a The clock signal CLK is sent to a second input terminal (ie, S terminal) of the RS flip-flop 52a. Finally, the output terminal (ie, Q terminal) of the RS flip-flop 52a provides a PWM signal to the driving unit 53a, so that the driving unit 53a provides a first gate voltage signal to the first NMOS according to the PWM signal. the gate terminal of the device Q2a, and simultaneously provide a second gate voltage signal to the gate terminals of the first PMOS device Q1a and the second PMOS device Qsa. It should be known that the duty cycle of the PWM signal is determined by the clock signal CLK.

隨著智慧型手機、智慧手錶、智慧手環、和運動手錶的熱賣,OLED顯示器也因此獲得廣泛應用。必須知道的是,移動電子裝置需收發的信號多元,包括GSM信號、Wi-Fi信號和藍芽信號,然而無線通訊的頻譜有限,因此無線通訊的頻譜分配非常嚴格,否則相異的無線信號在傳輸時會互相干擾。為了解決前述難題,無線通信工程師研發出各式的多重接取(Multiple Access)技術來擴增頻譜的使用率,例如:分時多工(Time division multiple access,TDMA)、頻分多址(Frequency division multiple access,FDMA)和碼分多址(Code division multiple access,CDMA)。 With the hot sales of smart phones, smart watches, smart bracelets, and sports watches, OLED displays have also been widely used. It must be known that mobile electronic devices need to send and receive multiple signals, including GSM signals, Wi-Fi signals and Bluetooth signals. However, the spectrum of wireless communication is limited, so the spectrum allocation of wireless communication is very strict. Interfering with each other during transmission. In order to solve the aforementioned problems, wireless communication engineers have developed various multiple access (Multiple Access) technologies to increase the utilization rate of spectrum, such as: time division multiple access (TDMA), frequency division multiple access (Frequency division multiple access (FDMA) and code division multiple access (Code division multiple access, CDMA).

請同時參閱圖3,其顯示如圖2所示之習知的供電單元的一輸入電壓信號和一輸出電壓信號的工作時序圖。值得說明的是,在使用TDMA進行無線通信的情況下,移動電子裝置在一送信區間所使用的消耗功率和在一收信區間所使用的消耗功率之間存在有較大差異。即,送信區間中使用的消耗功率相較於收信區間中使用的消耗功率要大很多,從而導致產生一定頻率的TDMA噪音。 實務經驗顯示,TDMA噪音也會對所述穩壓供電單元5a的暫態響應(transient response)造成不良影響。因此,AMOLED顯示器的電源驅動管理被要求必須通過TDMA噪音的有關測試。如圖3所示,TDMA噪音的測試內容如下:輸入電壓信號Vin每隔一段時間會受到干擾,從而在10us內瞬間地向上或是向下跳動500mV,且在向上(或向下)跳動500mV後,維持此電壓準位持續500us。實務經驗顯示,當前述的干擾現象發生時,如圖2所示之升壓型直流-直流轉換器(即,供電單元5a)的輸出電壓信號Vout便會對應地帶有瞬態的下衝突波(undershoot)或上衝突波(overshoot),導致系統不穩定。 Please also refer to FIG. 3 , which shows a working timing diagram of an input voltage signal and an output voltage signal of the conventional power supply unit shown in FIG. 2 . It should be noted that, in the case of using TDMA for wireless communication, there is a large difference between the power consumption of the mobile electronic device in a sending interval and the power consumption in a receiving interval. That is, the power consumption used in the transmission period is much larger than the power consumption used in the reception period, resulting in the generation of TDMA noise of a certain frequency. Practical experience shows that TDMA noise will also have adverse effects on the transient response of the voltage stabilizing power supply unit 5a. Therefore, the power drive management of AMOLED display is required to pass the relevant test of TDMA noise. As shown in Figure 3, the test content of TDMA noise is as follows: the input voltage signal Vin will be disturbed every once in a while, so that it jumps up or down by 500mV instantaneously within 10us, and after jumping up (or down) by 500mV , maintain this voltage level for 500us. Practical experience shows that when the aforementioned interference phenomenon occurs, the output voltage signal Vout of the step-up DC-DC converter (that is, the power supply unit 5a) shown in FIG. 2 will correspondingly have a transient downswing ( undershoot) or overshoot, resulting in system instability.

因此,行業的標準對於應用在移動電子裝置的升壓型直流-直流轉換器提出高的求,其要求前述瞬態下衝突波(undershoot)或上衝突波(overshoot)的擾動在200mA以內的負載情況下必須少於20mV,且在1A以內的負載情況下必須少於60mV。 Therefore, industry standards put forward high requirements for step-up DC-DC converters used in mobile electronic devices, which require the aforementioned transient undershoot (undershoot) or overshoot (overshoot) disturbance within 200mA load It must be less than 20mV under normal conditions, and must be less than 60mV under load conditions within 1A.

如圖2所示,在習知的升壓型直流-直流轉換器(即,供電單元5a)的設計中,所述第二電阻Rea和所述第二電容Cea彼此串聯,且被耦接於該比較器A3a的負輸入端和地端之間,用以補償整個升壓環路(Boost loop)在不同電流負載狀況下的穩定性。可惜的是,如圖2和圖3所示,當輸入電壓信號Vin出現瞬時向上或是向下跳動的情況之時,系統對於輸出電壓信號Vout並無法即時地對應調變。原因在於,該誤差放大器A2a基於所述參考電壓VREF和取自該第一分壓電阻Rf1a與該第二分壓電阻Rf2a的所述回授電壓VFB而輸出一誤差信號Vea至該比較器A3a,使該比較器A3a依據一鋸齒波電壓信號Vramp和所述誤差信號Vea而輸出一比較信號至該RS正反器52a。最終,該RS正反器52a依據所述比較信號和一時鐘信號CLK而輸出一PWM信號至該驅動單元53a,使該驅動單元53a依據該PWM信號控制該第一NMOS元件Q2a的閘極端、第一PMOS元件Q1a以及該第二PMOS元件Qsa,從而調變該輸出電壓信號Vout。 As shown in FIG. 2 , in the design of a conventional step-up DC-DC converter (that is, the power supply unit 5a), the second resistor Rea and the second capacitor Cea are connected in series with each other, and are coupled to Between the negative input terminal of the comparator A3a and the ground terminal, it is used to compensate the stability of the entire boost loop (Boost loop) under different current load conditions. Unfortunately, as shown in FIG. 2 and FIG. 3 , when the input voltage signal Vin jumps up or down instantaneously, the system cannot immediately adjust the output voltage signal Vout correspondingly. The reason is that the error amplifier A2a outputs an error signal Vea to the comparator based on the reference voltage V REF and the feedback voltage V FB obtained from the first voltage dividing resistor Rf1a and the second voltage dividing resistor Rf2a A3a, making the comparator A3a output a comparison signal to the RS flip-flop 52a according to a sawtooth wave voltage signal Vramp and the error signal Vea. Finally, the RS flip-flop 52a outputs a PWM signal to the drive unit 53a according to the comparison signal and a clock signal CLK, so that the drive unit 53a controls the gate terminal of the first NMOS element Q2a, the gate terminal of the first NMOS element Q2a according to the PWM signal. A PMOS device Q1a and the second PMOS device Qsa modulate the output voltage signal Vout.

圖4顯示圖2所示之習知的供電單元的誤差信號Vea、鋸齒波電壓信號Vramp以及輸出電壓信號Vout之實際量測工作時序圖。習知的應用在移動電子裝置的升壓型直流-直流轉換器之升壓補償環路無法依據出現在輸入電壓信號 Vin之瞬時向上或是向下跳動而作出即時的快速暫態響應(fast transient response)。如圖4所示,在輸入電壓信號Vin具有一個瞬時出現的△Vin時,由該誤差放大器A2a所輸出的誤差信號Vea也會有一個△Vea。△Vea的值越大,則系統的升壓環路調整對該RS正反器52a所輸出的PWM信號之占空比(Duty cycle)調整也就越慢,因此出現在輸出電壓信號Vout之上的輸出電壓變化△Vout也就越大。例如,圖4的實際量測資料顯示△Vout的Vpp=130mV。 FIG. 4 shows the timing diagram of the actual measurement operation of the error signal Vea, the sawtooth voltage signal Vramp, and the output voltage signal Vout of the conventional power supply unit shown in FIG. 2 . The conventional step-up DC-DC converter voltage boost compensation loop used in mobile electronic devices cannot Vin jumps up or down instantaneously to make an immediate fast transient response (fast transient response). As shown in FIG. 4, when the input voltage signal Vin has an instantaneous ΔVin, the error signal Vea output by the error amplifier A2a will also have a ΔVea. The larger the value of ΔVea, the slower the adjustment of the duty cycle (Duty cycle) of the PWM signal output by the RS flip-flop 52a in the system's boost loop adjustment, so it appears above the output voltage signal Vout The greater the output voltage change △Vout. For example, the actual measurement data in Figure 4 shows that Vpp of △Vout=130mV.

由上述說明可知,本領域亟需一種新式直流-直流轉換電路。 It can be seen from the above description that there is an urgent need for a new type of DC-DC conversion circuit in this field.

本發明之主要目的在於提供一種直流-直流轉換電路,其基礎上包括一輸入電容、一電感、一電流源、一開關元件、一續流元件、一輸出電容、一電流感測單元、一電壓感測單元、以及一控制單元。特別地,本發明在所述直流-直流轉換電路之中增設一電流下拉單元,使其耦接於電路輸入端,且同時耦接該控制單元和該電流感測單元。如此設計,當輸入電壓信號因受到TDMA噪音的影響而具有一輸入電壓變化量之時,該電流下拉單元的一前饋下拉電流即對應地具有一下拉電流變化量,藉此前饋式地調整由電路輸出端回傳該控制單元的一感測電流的值,使該控制單元能夠立即產生快速暫態響應,從而在電路的回授環路完成對於輸出電壓信號的補償之前,適應性地調整輸出電壓信號,使其滿足各種應用環境下的TDMA測試要求。 The main purpose of the present invention is to provide a DC-DC conversion circuit, which basically includes an input capacitor, an inductor, a current source, a switching element, a freewheeling element, an output capacitor, a current sensing unit, a voltage A sensing unit and a control unit. In particular, in the present invention, a current pull-down unit is added in the DC-DC conversion circuit, which is coupled to the input end of the circuit, and coupled to the control unit and the current sensing unit at the same time. In such a design, when the input voltage signal has an input voltage variation due to the influence of TDMA noise, a feed-forward pull-down current of the current pull-down unit correspondingly has a pull-down current variation, so that the feed-forward adjustment is made by The output terminal of the circuit returns the value of a sensing current of the control unit, so that the control unit can generate a fast transient response immediately, so as to adjust the output adaptively before the feedback loop of the circuit completes the compensation for the output voltage signal Voltage signals to meet the TDMA test requirements in various application environments.

為達成上述目的,本發明提出所述直流-直流轉換電路的一實施例,其包括:一電路輸入端,耦接一輸入電壓信號;一輸入電容,以其一第一端和一第二端分別耦接該電路輸入端和一地端;一電感,以其一第一端耦接該輸入電容的該第一端;一第一NMOS元件,以其一汲極端和一源極端分別耦接該電感的一第二端和該地端; 一第一PMOS元件,以其一汲極端耦接該第一NMOS元件的該汲極端;一輸出電容,以其一第一端和一第二端分別耦接該第一PMOS元件的一源極端和該地端;一電路輸出端,耦接該輸出電容的該第一端,用以傳送一輸出電壓信號;一電流感測單元,具有同時耦接該第一NMOS元件的該汲極端和該第一PMOS元件的該汲極端之一第一端、耦接該第一PMOS元件的一閘極端之一第二端、耦接該第一PMOS元件的該源極端之一第三端、以及一第四端;一電壓感測單元,具有一第一端與一第二端,且該第一端耦接該輸出電容的該第一端與該電流感測單元的該第三端;一控制單元,具有耦接該電壓感測單元的該第二端之一第一端、一第二端、耦接該第一NMOS元件之一閘極端之一第三端、同時耦接該電流感測單元的該第二端以及該第一PMOS元件的該閘極端之一第四端、一第五端、以及一第六端;一電流源,以其一第一端耦接該輸入電容的該第一端與該電感的該第一端,且以其一第二端耦接該控制單元的該第六端;以及一電流下拉單元,具有耦接該電路輸入端與該輸入電容的該第一端之一第一端,且具有同時耦接該控制單元的該第五端與該電壓感測單元的該第二端之一第二端,用以依據該輸入電壓信號而生成一前饋下拉電流;其中,該控制單元以其所述第一端接收該電壓感測單元所傳送的一回授電壓,以其所述第二端接收一參考電壓,以其所述第五端接收該電流感測單元所傳送的一感測電流,且以其所述第六端接收該電流源傳送的一電流信號,從而以其所述第三端傳送一第一閘極電壓信號至該第一NMOS元件的該閘極端,且以其所述第四端傳送一第二閘極電壓信號至該第一PMOS元件的該閘極端和該電流感測單元的該第二端; 其中,當所述輸入電壓信號具有一輸入電壓變化量之時,該前饋下拉電流對應地具有一下拉電流變化量,藉此前饋式地調整該感測電流的值,從而調整該控制單元所輸出的該第一閘極電壓信號和該第二閘極電壓信號,提升該控制單元14的快速暫態響應。 To achieve the above object, the present invention proposes an embodiment of the DC-DC conversion circuit, which includes: a circuit input terminal coupled to an input voltage signal; an input capacitor with a first terminal and a second terminal respectively coupled to the circuit input terminal and a ground terminal; an inductance coupled to the first terminal of the input capacitor with a first terminal; a first NMOS element coupled to a drain terminal and a source terminal respectively a second terminal of the inductor and the ground terminal; A first PMOS element, with a drain end coupled to the drain end of the first NMOS element; an output capacitor, with a first end and a second end respectively coupled to a source end of the first PMOS element and the ground terminal; a circuit output terminal coupled to the first terminal of the output capacitor for transmitting an output voltage signal; a current sensing unit having a drain terminal coupled to the first NMOS element and the A first end of the drain end of the first PMOS element, a second end coupled to a gate end of the first PMOS element, a third end coupled to the source end of the first PMOS element, and a a fourth terminal; a voltage sensing unit having a first terminal and a second terminal, and the first terminal is coupled to the first terminal of the output capacitor and the third terminal of the current sensing unit; a control A unit having a first terminal coupled to the second terminal of the voltage sensing unit, a second terminal, a third terminal coupled to a gate terminal of the first NMOS element, and coupled to the current sensing unit The second terminal of the unit and the fourth terminal, a fifth terminal, and a sixth terminal of the gate terminal of the first PMOS element; a current source, with a first terminal coupled to the input capacitor The first end and the first end of the inductor, and a second end coupled to the sixth end of the control unit; and a current pull-down unit, having the first end coupled to the circuit input end and the input capacitor. a first end of one end, and a second end coupled to the fifth end of the control unit and the second end of the voltage sensing unit at the same time, for generating a feedforward according to the input voltage signal pull-down current; wherein, the control unit receives a feedback voltage transmitted by the voltage sensing unit through the first terminal, receives a reference voltage through the second terminal, and receives the voltage through the fifth terminal. A sense current transmitted by the current sensing unit, and a current signal transmitted by the current source is received by the sixth terminal thereof, so as to transmit a first gate voltage signal to the first gate voltage signal by the third terminal thereof the gate terminal of the NMOS element, and transmit a second gate voltage signal to the gate terminal of the first PMOS element and the second terminal of the current sensing unit through the fourth terminal; Wherein, when the input voltage signal has an input voltage variation, the feed-forward pull-down current correspondingly has a pull-down current variation, so that the value of the sensing current is adjusted in a feed-forward manner, thereby adjusting the The output of the first gate voltage signal and the second gate voltage signal improves the fast transient response of the control unit 14 .

在一實施例中,該電流下拉單元包括一運算轉導放大器(Operational Transconductance Amplifier,OTA),其具有一正輸入端、一負輸入端和一輸出端,其中該正輸入端作為該電流下拉單元的該第一端,該負輸入端耦接該地端,且該輸出端作為該電流下拉單元的該第二端。 In one embodiment, the current pull-down unit includes an operational transconductance amplifier (Operational Transconductance Amplifier, OTA), which has a positive input terminal, a negative input terminal and an output terminal, wherein the positive input terminal serves as the current pull-down unit The first terminal of the negative input terminal is coupled to the ground terminal, and the output terminal serves as the second terminal of the current pull-down unit.

在一實施例中,該電流感測單元包括:一第二PMOS元件,以其一汲極端作為該電流感測單元的該第一端且以其一閘極端作為該電流感測單元的該第二端;一運算放大器,具有一正輸入端、一負輸入端以及一輸出端,其中該正輸入端耦接該第二PMOS元件的一源極端,且該負輸入端作為該電流感測單元的該第三端;以及一第二NMOS元件,以其一汲極端同時耦接該運算放大器的該正輸入端和該第二PMOS元件的該源極端,以其一閘極端耦接該運算放大器的該輸出端,且以其一源極端作為該電流感測單元的該第四端。 In one embodiment, the current sensing unit includes: a second PMOS element, with a drain terminal as the first terminal of the current sensing unit and a gate terminal as the first terminal of the current sensing unit. Two terminals; an operational amplifier having a positive input terminal, a negative input terminal and an output terminal, wherein the positive input terminal is coupled to a source terminal of the second PMOS element, and the negative input terminal is used as the current sensing unit The third terminal of the second NMOS element; and a second NMOS element, which is coupled to the positive input terminal of the operational amplifier and the source terminal of the second PMOS element at the same time with a drain terminal, and is coupled to the operational amplifier with a gate terminal. The output terminal, and a source terminal thereof is used as the fourth terminal of the current sensing unit.

在一實施例中,該電壓感測單元包括:一第一分壓電阻,以其一第一端耦接該輸出電容的該第一端與該電流感測單元的該第三端;一第二分壓電阻,以其一第一端耦接該第一分壓電阻的該第二端,且以其一第二端耦接該地端;其中,該第一分壓電阻的該第一端作為該電壓感測單元的該第一端,且該第一分壓電阻和該第二分壓電阻之間的一共接點係作為該電壓感測單元的該第二端。 In one embodiment, the voltage sensing unit includes: a first voltage dividing resistor, a first end of which is coupled to the first end of the output capacitor and the third end of the current sensing unit; a first end Two voltage-dividing resistors, one first end of which is coupled to the second end of the first voltage-dividing resistor, and one second end of which is coupled to the ground end; wherein, the first of the first voltage-dividing resistor Terminal serves as the first terminal of the voltage sensing unit, and a common point between the first voltage dividing resistor and the second voltage dividing resistor serves as the second terminal of the voltage sensing unit.

在一實施例中,該控制單元包括: 一誤差放大器,具有一正輸入端、一負輸入端和一輸出端;其中,該誤差放大器的該正輸入端與該負輸入端分別作為該控制單元的該第一端與該第二端,從而分別接收所述回授電壓和所述參考電壓,使該誤差放大器依據該回授電壓和該參考電壓而產生一誤差信號;一比較器,具有一正輸入端、一負輸入端和一輸出端;其中,該比較器的該負輸入端耦接該誤差放大器的該輸出端,且該比較器的該正輸入端耦接所述控制單元的該第六端;一第一電容,以其一第一端耦接該比較器的該正輸入端和所述控制單元的該第六端,且以其一第二端耦接所述控制單元的該第五端;一第一電阻,以其一第一端耦接該第一電容的該第二端,且以其一第二端耦接該地端;一開關元件,具有一通道,該通道之一端同時耦接該比較器的該正輸入端、所述控制單元的該第六端以及該第一電容的該第一端,且該通道之另一端耦接該第一電容的該第二端和所述控制單元的該第五端;該開關元件受控於一重置信號而啟用/關閉其所述通道;一第二電阻,以其一第一端同時耦接該誤差放大器的該輸出端以及該比較器的該負輸入端;一第二電容,以其一第一端耦接該第二電阻的一第二端,且其一第二端耦接該地端;一RS正反器,具有一第一輸入端、一第二輸入端以及一輸出端,其中,該第一輸入端耦接該比較器的該輸出端,該第二輸入端耦接傳送自一振盪器的一時鐘信號;以及一驅動單元,具有一輸入端、一第一輸出端以及一第二輸出端,其中,該輸入端耦接該RS正反器的該輸出端,且該第一輸出端和該第二輸出端分別作為該控制單元的該第三端和該第四端。 In one embodiment, the control unit includes: An error amplifier having a positive input terminal, a negative input terminal and an output terminal; wherein, the positive input terminal and the negative input terminal of the error amplifier serve as the first terminal and the second terminal of the control unit respectively, Thereby receiving the feedback voltage and the reference voltage respectively, so that the error amplifier generates an error signal according to the feedback voltage and the reference voltage; a comparator has a positive input terminal, a negative input terminal and an output terminal; wherein, the negative input terminal of the comparator is coupled to the output terminal of the error amplifier, and the positive input terminal of the comparator is coupled to the sixth terminal of the control unit; a first capacitor, with its A first terminal is coupled to the positive input terminal of the comparator and the sixth terminal of the control unit, and a second terminal is coupled to the fifth terminal of the control unit; a first resistor, with A first end of which is coupled to the second end of the first capacitor, and a second end thereof is coupled to the ground end; a switch element has a channel, and one end of the channel is simultaneously coupled to the comparator positive input end, the sixth end of the control unit and the first end of the first capacitor, and the other end of the channel is coupled to the second end of the first capacitor and the fifth end of the control unit terminal; the switching element is controlled by a reset signal to enable/close the channel; a second resistor, with a first terminal thereof coupled to the output terminal of the error amplifier and the negative input of the comparator end; a second capacitor, with a first end coupled to a second end of the second resistor, and a second end coupled to the ground end; an RS flip-flop, with a first input end, a second input terminal and an output terminal, wherein the first input terminal is coupled to the output terminal of the comparator, and the second input terminal is coupled to a clock signal transmitted from an oscillator; and a driving unit having An input terminal, a first output terminal and a second output terminal, wherein the input terminal is coupled to the output terminal of the RS flip-flop, and the first output terminal and the second output terminal are respectively used as the control unit The third end and the fourth end of .

在一實施例中,該電流信號為一鋸齒波電流信號,該第一電容的該第一端依據該電流信號而生成一鋸齒波電壓信號,且該比較器以其所述正輸 入端和所述負輸入端分別接收該鋸齒波電壓信號和該誤差信號,從而以其所述輸出端傳送一比較信號至該RS正反器的該第一輸入端,使該RS正反器以其所述輸出端傳送一PWM信號至該驅動單元。 In one embodiment, the current signal is a sawtooth wave current signal, the first terminal of the first capacitor generates a sawtooth wave voltage signal according to the current signal, and the comparator uses the positive output The input terminal and the negative input terminal receive the sawtooth wave voltage signal and the error signal respectively, so that the output terminal transmits a comparison signal to the first input terminal of the RS flip-flop, so that the RS flip-flop Send a PWM signal to the drive unit through the output terminal.

在一實施例中,該運算轉導放大器(OTA)更包括一數位編程端,且具有一數位可編程功能(digitally programmable)。 In one embodiment, the operational transconductance amplifier (OTA) further includes a digital programming terminal, and has a digitally programmable function (digitally programmable).

在一實施例中,本發明所述之直流-直流轉換電路更包括:一負載電流檢測單元,耦接於該電路輸出端和該電流感測單元的該第三端之間,用以檢測一負載電流,從而對應地產生一負載端電壓;以及一轉導調整單元,具有一第一端和一第二端,其中該第一端耦接由該負載電流檢測單元所傳送的該負載端電壓,且該第二端耦接該運算轉導放大器的該數位編程端;其中,依據該負載端電壓,該轉導調整單元傳送一數位信號至該數位編程端,從而對該運算轉導放大器的一轉導進行調整,藉此方式調整所述下拉電流變化量。 In one embodiment, the DC-DC conversion circuit of the present invention further includes: a load current detection unit, coupled between the output terminal of the circuit and the third terminal of the current sensing unit, for detecting a load current, thereby correspondingly generating a load terminal voltage; and a transconductance adjustment unit having a first terminal and a second terminal, wherein the first terminal is coupled to the load terminal voltage transmitted by the load current detection unit , and the second terminal is coupled to the digital programming terminal of the operational transconductance amplifier; wherein, according to the load terminal voltage, the transconductance adjustment unit transmits a digital signal to the digital programming terminal, so that the operational transconductance amplifier A transconductance is adjusted, thereby adjusting the variation of the pull-down current.

依上述的說明,本發明進一步提出一種直流-直流轉換電路,其具有一輸入端以耦接一輸入電壓及一輸出端以提供一輸出電壓,且其包括一電能傳輸單元以依一PWM信號的控制週期性地將該輸入電壓的電能傳輸至該輸出端,及一控制單元以依一回授電壓及一輸入感測電流產生該PWM信號,其中該回授電壓係依該輸出電壓之一比例產生,其特徵在於:該控制單元具有一轉導可控之電壓轉電流單元以產生與該輸入電壓及一負載電流成正比之一第一感測電流,且該第一感測電流與該輸入感測電流的和等於該電能傳輸單元內之一電感之一第二感測電流。 According to the above description, the present invention further proposes a DC-DC conversion circuit, which has an input end for coupling an input voltage and an output end for providing an output voltage, and it includes an electric energy transmission unit for a PWM signal controlling to transmit the power of the input voltage to the output terminal periodically, and a control unit to generate the PWM signal according to a feedback voltage and an input sense current, wherein the feedback voltage is proportional to the output voltage generation, which is characterized in that: the control unit has a transconductance controllable voltage-to-current unit to generate a first sensing current proportional to the input voltage and a load current, and the first sensing current is proportional to the input The sum of the sensing currents is equal to a second sensing current of an inductor in the power transmission unit.

本發明同時提供一種資訊處理裝置,其具有一中央處理單元以及一平面顯示器,該平面顯示器包括一平面顯示面板、一閘極驅動模組、一源極驅動模組、一顯示控制器、以及一供電單元;其特徵在於,該供電單元包括如前所述本發明之直流-直流轉換電路,且在可能的實施例中,所述資訊處理裝置 可為智能手機、智能手錶、智能手環、平板電腦、筆記型電腦、一體式電腦、或門禁裝置。 The present invention also provides an information processing device, which has a central processing unit and a flat-panel display, and the flat-panel display includes a flat display panel, a gate driver module, a source driver module, a display controller, and a A power supply unit; it is characterized in that the power supply unit includes the DC-DC conversion circuit of the present invention as mentioned above, and in a possible embodiment, the information processing device It can be a smartphone, smart watch, smart bracelet, tablet, laptop, all-in-one computer, or access control device.

1a:AMOLED面板 1a: AMOLED panel

2a:閘極驅動模組 2a: Gate driver module

3a:源極驅動模組 3a: Source driver module

4a:顯示控制器 4a: Display Controller

5a:供電單元 5a: Power supply unit

Cia:輸入電容 Cia: input capacitance

Coa:輸出電容 Coa: output capacitance

Cra:第一電容 Cra: the first capacitance

Cea:第二電容 Cea: second capacitor

L1a:電感 L1a: Inductance

Q2a:第一NMOS元件 Q2a: The first NMOS element

Q1a:第一PMOS元件 Q1a: The first PMOS component

Qca:第二PMOS元件 Qca: the second PMOS element

Qsa:第二PMOS元件 Qsa: the second PMOS element

A1a:運算放大器 A1a: Operational amplifier

A2a:誤差放大器 A2a: Error Amplifier

A3a:比較器 A3a: Comparator

Rf1a:第一分壓電阻 Rf1a: the first voltage divider resistor

Rf2a:第二分壓電阻 Rf2a: the second voltage divider resistor

Rra:第一電阻 Rra: the first resistance

Rea:第二電阻 Rea: the second resistance

Ira:電流源 Ira: current source

S1a:開關元件 S1a: switching element

51a:振盪器 51a: Oscillator

52a:RS正反器 52a: RS flip-flop

53a:驅動單元 53a: Drive unit

1:直流-直流轉換電路 1: DC-DC conversion circuit

10:電路輸入端 10: Circuit input terminal

11:電路輸出端 11: Circuit output terminal

12:電流感測單元 12: Current sensing unit

121:第一端 121: first end

122:第二端 122: second end

123:第三端 123: third end

124:第四端 124: fourth end

13:電壓感測單元 13: Voltage sensing unit

131:第一端 131: first end

132:第二端 132: second end

14:控制單元 14: Control unit

141:第一端 141: first end

142:第二端 142: second end

143:第三端 143: third end

144:第四端 144: fourth end

145:第五端 145: fifth end

146:第六端 146: sixth end

14OC:振盪器 14OC: Oscillator

14RS:RS正反器 14RS: RS flip-flop

14DR:驅動單元 14DR: drive unit

15:電流下拉單元 15: Current pull-down unit

151:第一端 151: first end

152:第二端 152: second end

153:數位編程端 153: Digital programming terminal

16:電流源 16: Current source

17:轉導調整單元 17: Transduction adjustment unit

171:第一端 171: first end

172:第二端 172: second end

19:類負載電流檢測單元 19: Class load current detection unit

Ci:輸入電容 Ci: input capacitance

Co:輸出電容 Co: output capacitance

Cr:第一電容 Cr: first capacitance

Ce:第二電容 Ce: second capacitance

L1:電感 L1: inductance

Q2:第一NMOS元件 Q2: The first NMOS element

Q1:第一PMOS元件 Q1: The first PMOS component

Qc:第二PMOS元件 Qc: the second PMOS element

Qs:第二PMOS元件 Qs: The second PMOS element

Ap:運算轉導放大器 Ap: Operational Transconductance Amplifier

A1:運算放大器 A1: Operational amplifier

A2:誤差放大器 A2: Error amplifier

A3:比較器 A3: Comparator

Rf1:第一分壓電阻 Rf1: the first voltage divider resistor

Rf2:第二分壓電阻 Rf2: the second voltage divider resistor

Rr:第一電阻 Rr: the first resistance

Re:第二電阻 Re: second resistance

S1:開關元件 S1: switching element

圖1為習知的一種AMOLED顯示器的架構圖;圖2為習知的一種供電單元的電路拓樸圖;圖3為如圖2所示之習知的供電單元的一輸入電壓信號和一輸出電壓信號的工作時序圖;圖4為圖2所示之習知的供電單元的誤差信號、鋸齒波電壓信號以及輸出電壓信號之實際量測的工作時序圖;圖5為本發明之一種直流-直流轉換電路的一第一實施例之方塊圖;圖6為本發明之直流-直流轉換電路的第一實施例之電路拓樸結構圖;圖7為圖6所示之本發明之直流-直流轉換電路的第一實施例之誤差信號、鋸齒波電壓信號以及輸出電壓信號之實際量測工作時序圖;圖8為圖6所示之本發明之直流-直流轉換電路的第一實施例在不同負載電流下之輸出電壓信號之實際量測工作時序圖;圖9為本發明之一種直流-直流轉換電路的一第二實施例之方塊圖;圖10為本發明之直流-直流轉換電路的第二實施例之電路拓樸結構圖;以及圖11為圖10所示之本發明之直流-直流轉換電路的第二實施例在不同負載電流下之輸出電壓信號之實際量測工作時序圖。 Fig. 1 is a structural diagram of a known AMOLED display; Fig. 2 is a circuit topology diagram of a known power supply unit; Fig. 3 is an input voltage signal and an output of the known power supply unit shown in Fig. 2 The working timing diagram of voltage signal; Fig. 4 is the working timing diagram of the actual measurement of error signal, sawtooth wave voltage signal and output voltage signal of the conventional power supply unit shown in Fig. 2; Fig. 5 is a kind of DC- A block diagram of a first embodiment of the DC conversion circuit; Fig. 6 is a circuit topology diagram of the first embodiment of the DC-DC conversion circuit of the present invention; Fig. 7 is the DC-DC of the present invention shown in Fig. 6 The actual measurement work timing diagram of the error signal, sawtooth wave voltage signal and output voltage signal of the first embodiment of the conversion circuit; FIG. 8 is the first embodiment of the DC-DC conversion circuit of the present invention shown in FIG. 6 in different The actual measurement work timing diagram of the output voltage signal under the load current; Fig. 9 is a block diagram of a second embodiment of a DC-DC conversion circuit of the present invention; Fig. 10 is the first embodiment of the DC-DC conversion circuit of the present invention The circuit topological structure diagram of the second embodiment; and FIG. 11 is an actual measurement working timing diagram of the output voltage signal of the second embodiment of the DC-DC conversion circuit of the present invention shown in FIG. 10 under different load currents.

為使 貴審查委員能進一步瞭解本發明之結構、特徵、目的、與其優點,茲附以圖式及較佳具體實施例之詳細說明如後。 In order to enable your examiners to further understand the structure, features, purpose, and advantages of the present invention, drawings and detailed descriptions of preferred embodiments are hereby attached.

本發明的直流-直流轉換電路的原理在於:(1)利用一電能傳輸單元依一PWM信號的控制而週期性地將一輸入電壓的電能傳輸至一輸出端; (2)利用一控制單元依一回授電壓及一輸入感測電流產生該PWM信號,其中該回授電壓係依該輸出端之一輸出電壓之一比例產生;以及(3)該控制單元具有一轉導可控之電壓轉電流單元以產生與該輸入電壓及一負載電流成正比之一第一感測電流,且該第一感測電流與該輸入感測電流的和等於該電能傳輸單元內之一電感之一第二感測電流。 The principle of the DC-DC conversion circuit of the present invention is: (1) using a power transmission unit to periodically transmit the power of an input voltage to an output terminal according to the control of a PWM signal; (2) using a control unit to generate the PWM signal according to a feedback voltage and an input sensing current, wherein the feedback voltage is generated in proportion to an output voltage of the output terminal; and (3) the control unit has A transconductance controllable voltage-to-current unit to generate a first sensing current proportional to the input voltage and a load current, and the sum of the first sensing current and the input sensing current is equal to the power transmission unit A second sense current within one inductor.

依此,當該輸入電壓因受TDMA雜訊干擾而產生變化時,例如變高/低時,該第一感測電流會跟著變大/小,從而在該第二感測電流尚未改變前使該輸入感測電流變小/大,以驅使該PWM信號的占空比變小/大而使該控制單元能夠快速產生暫態響應,以確保該輸出電壓的漣波小於一要求值;以及當該負載電流變大/小時,該電感之所述第二感測電流會同時變大/小,且該第一感測電流會跟著變大/小,且由於所述第二感測電流的改變量會大於該第一感測電流的改變量,因此,該輸入感測電流會跟著變大/小,以驅使該PWM信號的占空比變大/小而使該控制單元能夠快速產生暫態響應,以確保該輸出電壓的漣波小於該要求值。 According to this, when the input voltage changes due to TDMA noise interference, for example, when it becomes high/low, the first sensing current will increase/decrease accordingly, so that before the second sensing current has not changed, the The input sensing current becomes smaller/larger, so as to drive the duty cycle of the PWM signal smaller/larger so that the control unit can quickly generate a transient response, so as to ensure that the ripple of the output voltage is smaller than a required value; and when When the load current increases/hour, the second sensing current of the inductor will increase/decrease at the same time, and the first sensing current will increase/decrease accordingly, and due to the change of the second sensing current The amount will be greater than the change amount of the first sensing current, therefore, the input sensing current will increase/decrease accordingly, so as to drive the duty cycle of the PWM signal to increase/decrease so that the control unit can quickly generate a transient state response to ensure that the output voltage ripple is less than the required value.

第一實施例 first embodiment

圖5顯示本發明之一種直流-直流轉換電路的一第一實施例之方塊圖。如圖5所示,本發明之直流-直流轉換電路1為一升壓型(boost)直流-直流轉換電路,其可應用在一移動式電子裝置之中,用以作為一(穩定)供電單元,從而將鋰電池所提供的所提供的輸入電壓轉換成輸出電壓,從而提供至該移動式電子裝置的一平面顯示面板(如AMOLED顯示面板)以及相關電子晶片。由圖5可知,本發明之直流-直流轉換電路1包括:耦接一輸入電壓信號Vin的一電路輸入端10、一輸入電容Ci、一電感L1、作為開關元件的一第一NMOS元件Q2、作為續流元件的一第一PMOS元件Q1、一輸出電容Co、一電路輸出端11、一電流感測單元12、一電壓感測單元13、一控制單元14、一電流源16、以及一電流下拉單元15。 FIG. 5 shows a block diagram of a first embodiment of a DC-DC conversion circuit of the present invention. As shown in Figure 5, the DC-DC conversion circuit 1 of the present invention is a boost DC-DC conversion circuit, which can be used in a mobile electronic device as a (stable) power supply unit , thereby converting the input voltage provided by the lithium battery into an output voltage, thereby providing a flat display panel (such as an AMOLED display panel) and related electronic chips of the mobile electronic device. It can be seen from FIG. 5 that the DC-DC conversion circuit 1 of the present invention includes: a circuit input terminal 10 coupled to an input voltage signal Vin, an input capacitor Ci, an inductor L1, a first NMOS element Q2 as a switching element, A first PMOS element Q1 as a freewheeling element, an output capacitor Co, a circuit output terminal 11, a current sensing unit 12, a voltage sensing unit 13, a control unit 14, a current source 16, and a current Pull down unit 15.

依據本發明之設計,該輸入電容Ci以其一第一端與一第二端分別耦接所述直流-直流轉換電路1的電路輸入端10和一地端,且該電感L1以其一第一端耦接該輸入電容Ci的該第一端。值得說明的是,該第一NMOS元件Q2作為此升 壓型(boost)直流-直流轉換器1的一開關元件,且其一汲極端和一源極端分別耦接該電感L1的一第二端和該地端。另一方面,該第一PMOS元件Q1作為一續流元件,用以保證所述電感L1的電流電流IL為連續的,且其一汲極端耦接該第一NMOS元件Q2的該汲極端。並且,該輸出電容Co以其一第一端和一第二端分別耦接該第一PMOS元件Q1的一源極端和該地端,且所述直流-直流轉換器1之電路輸出端11耦接該輸出電容Co的該第一端,用以傳送一輸出電壓信號Vout。 According to the design of the present invention, the input capacitor Ci is respectively coupled to the circuit input terminal 10 and a ground terminal of the DC-DC conversion circuit 1 with a first terminal and a second terminal thereof, and the inductance L1 is coupled with a first terminal thereof One end is coupled to the first end of the input capacitor Ci. It should be noted that the first NMOS element Q2 is used as a switching element of the boost DC-DC converter 1, and its drain terminal and a source terminal are respectively coupled to a second terminal of the inductor L1 and the end of the land. On the other hand, the first PMOS device Q1 is used as a freewheeling device to ensure that the current IL of the inductor L1 is continuous, and a drain terminal thereof is coupled to the drain terminal of the first NMOS device Q2 . Moreover, a first end and a second end of the output capacitor Co are respectively coupled to a source end of the first PMOS element Q1 and the ground end, and the circuit output end 11 of the DC-DC converter 1 is coupled to The first end of the output capacitor Co is connected to transmit an output voltage signal Vout.

更詳細地說明,該電流感測單元12、該電壓感測單元13和該控制單元14為所述直流-直流轉換電路1之一回授補償系統,其中,該電流感測單元12用以自該電路輸出端11檢測一感測電流Isense從而傳送至該控制單元14,且該電壓感測單元13用以自該電路輸出端11檢測一感測電壓從而傳送一回授電壓VFB至該控制單元14。如圖5所示,該電流感測單元12具有一第一端121、一第二端122、一第三端123、和一第四端124。該第一端121同時耦接該第一NMOS元件Q2的該汲極端和該第一PMOS元件Q1的該汲極端,該第二端122耦接該第一PMOS元件Q1的一閘極端,且該第三端123耦接該第一PMOS元件Q1的該源極端。另一方面,該電壓感測單元13具有一第一端131與一第二端132,其中,該第一端131耦接該輸出電容Co的該第一端與該電流感測單元12的該第三端123。 In more detail, the current sensing unit 12, the voltage sensing unit 13 and the control unit 14 are a feedback compensation system of the DC-DC conversion circuit 1, wherein the current sensing unit 12 is used to automatically The circuit output terminal 11 detects a sensing current Isense and transmits it to the control unit 14, and the voltage sensing unit 13 is used to detect a sensing voltage from the circuit output terminal 11 so as to transmit a feedback voltage V FB to the control unit Unit 14. As shown in FIG. 5 , the current sensing unit 12 has a first terminal 121 , a second terminal 122 , a third terminal 123 , and a fourth terminal 124 . The first terminal 121 is coupled to the drain terminal of the first NMOS device Q2 and the drain terminal of the first PMOS device Q1 at the same time, the second terminal 122 is coupled to a gate terminal of the first PMOS device Q1, and the The third terminal 123 is coupled to the source terminal of the first PMOS device Q1. On the other hand, the voltage sensing unit 13 has a first end 131 and a second end 132, wherein the first end 131 is coupled to the first end of the output capacitor Co and the current sensing unit 12. The third end 123 .

承上述說明,該控制單元14具有一第一端141、一第二端142、一第三端143、一第四端144、一第五端145、以及一第六端146。如圖5所示,且該第一端141耦接該電壓感測單元13的該第二端132,該第三端143耦接該第一NMOS元件Q2之一閘極端,該第四端144耦接該電流感測單元12的該第二端122以及該第一PMOS元件Q1的該閘極端。補充說明的是,該電流源16以其一第一端耦接該輸入電容Ci的該第一端與該電感L1的該第一端,且以其一第二端耦接該控制單元14的該第六端146。於此直流-直流轉換電路1之中,該電流源16傳送一電流信號至該控制單元14的該第六端146,該電流信號為一鋸齒波電流信號Iramp。 According to the above description, the control unit 14 has a first end 141 , a second end 142 , a third end 143 , a fourth end 144 , a fifth end 145 , and a sixth end 146 . As shown in FIG. 5, the first end 141 is coupled to the second end 132 of the voltage sensing unit 13, the third end 143 is coupled to a gate terminal of the first NMOS element Q2, and the fourth end 144 The second terminal 122 of the current sensing unit 12 is coupled to the gate terminal of the first PMOS device Q1. It is supplemented that the current source 16 is coupled to the first terminal of the input capacitor Ci and the first terminal of the inductor L1 with a first terminal thereof, and is coupled to the control unit 14 with a second terminal thereof. The sixth end 146 . In the DC-DC conversion circuit 1 , the current source 16 transmits a current signal to the sixth terminal 146 of the control unit 14 , and the current signal is a sawtooth current signal Iramp.

在移動電子裝置未生成TDMA噪音的情況下,該控制單元14以其所述第一端141接收該電壓感測單元13所傳送的一回授電壓VFB,以其所述第二端142接收一參考電壓VREF,以其所述第五端145接收一輸入感測電流Isense_in,該輸 入感測電流Isense_in係該電流感測單元12所傳送的一感測電流Isense與第一電流下拉單元15所產生之一前饋下拉電流Isink之差值電流,且以其所述第六端146接收該電流源16傳送的一鋸齒波電流信號Iramp,從而以其所述第三端143傳送一第一閘極電壓信號至該第一NMOS元件Q2的該閘極端,且以其所述第四端144傳送一第二閘極電壓信號至該第一PMOS元件Q1的該閘極端和該電流感測單元12的該第二端122,藉此方式對由該電路輸出端11所傳送的一輸出電壓信號Vout進行穩壓調控,使所述直流-直流轉換電路1能夠穩定地供電至該移動式電子裝置的一平面顯示面板(如AMOLED顯示面板)以及相關電子晶片。 In the case that the mobile electronic device does not generate TDMA noise, the control unit 14 receives a feedback voltage V FB transmitted by the voltage sensing unit 13 through its first terminal 141 , and receives a feedback voltage V FB transmitted by its second terminal 142 . A reference voltage V REF receives an input sense current Isense_in through the fifth terminal 145 thereof, the input sense current Isense_in is a sense current Isense transmitted by the current sense unit 12 and the first current pull-down unit 15 The differential current of a generated feed-forward pull-down current Isink, and receives a sawtooth current signal Iramp transmitted by the current source 16 with its sixth end 146, thereby transmitting a first a gate voltage signal to the gate terminal of the first NMOS device Q2, and transmits a second gate voltage signal to the gate terminal of the first PMOS device Q1 and the current sensing unit through the fourth terminal 144 thereof The second terminal 122 of 12 is used to stabilize and regulate an output voltage signal Vout transmitted by the output terminal 11 of the circuit, so that the DC-DC conversion circuit 1 can stably supply power to the mobile electronic device A flat display panel (such as an AMOLED display panel) and related electronic chips.

值得說明的是,在移動電子裝置具有TDMA噪音的情況下,如圖3所示,輸入電壓信號Vin每隔一段時間會受到干擾,從而在10us內瞬間地向上或是向下跳動500mV,且在向上(或向下)跳動500mV後,維持此電壓準位持續500us。當前述的干擾現象發生時,如圖5所示之直流-直流轉換器1的輸出電壓信號Vout便會對應地帶有瞬態的下衝突波(undershoot)或上衝突波(overshoot),導致系統不穩定。 It is worth noting that when the mobile electronic device has TDMA noise, as shown in Figure 3, the input voltage signal Vin will be disturbed every once in a while, so that it jumps up or down by 500mV instantaneously within 10us, and in After jumping up (or down) by 500mV, maintain this voltage level for 500us. When the aforementioned interference phenomenon occurs, the output voltage signal Vout of the DC-DC converter 1 shown in FIG. Stablize.

因此,本發明特別在所述直流-直流轉換電路1之中增設一電流下拉單元15。如圖5所示,該電流下拉單元15具有一第一端151與一第二端152,其中該一第一端151耦接該電路輸入端10與該輸入電容Ci的該第一端,且該一第二端152同時耦接該控制單元14的該第五端145與該電壓感測單元13的該第二端132。於所述直流-直流轉換電路1之中,該第一電流下拉單元15係用以依據該輸入電壓信號Vin生成一第一前饋下拉電流Isink1以影響該輸入感測電流Isense_in的電流值。 Therefore, the present invention adds a current pull-down unit 15 in the DC-DC conversion circuit 1 . As shown in FIG. 5, the current pull-down unit 15 has a first end 151 and a second end 152, wherein the first end 151 is coupled to the circuit input end 10 and the first end of the input capacitor Ci, and The second terminal 152 is coupled to the fifth terminal 145 of the control unit 14 and the second terminal 132 of the voltage sensing unit 13 at the same time. In the DC-DC conversion circuit 1 , the first current pull-down unit 15 is used to generate a first feed-forward pull-down current Isink1 according to the input voltage signal Vin to affect the current value of the input sense current Isense_in.

繼續地參閱圖6,其顯示本發明之直流-直流轉換電路的第一實施例之電路拓樸結構圖。在一實施例中,該電流下拉單元15包括一運算轉導放大器(Operational Transconductance Amplifier,OTA)Ap,其具有一正輸入端、一負輸入端和一輸出端,其中該正輸入端作為所述電流下拉單元15的第一端151,該負輸入端耦接該地端,且該輸出端作為所述電流下拉單元15的第二端152。在移動電子裝置具有TDMA噪音的情況下,所述輸入電壓信號Vin會具有一輸入電壓變化 量△Vin;此時,該前饋下拉電流Isink對應地具有一下拉電流變化量△Isink=gm*△Vin,藉此前饋式地調整該控制單元14透過其第五端145所接收的該感測電流Isense_in的值,從而使該控制單元14調整PWM信號和PWMB信號而產生快速暫態響應,故能在電路的回授環路(回授補償系統)完成對於輸出電壓信號Vout的補償之前,適應性地調整輸出電壓信號Vout。簡單地說,藉由所述電流下拉單元15之設置,該直流-直流轉換電路1之回授環路(回授補償系統)的快速暫態響應(fastline transient response)於是被顯著提升。應知道gm為該運算轉導放大器Ap所具有的轉導值。 Continuing to refer to FIG. 6 , it shows a circuit topology diagram of the first embodiment of the DC-DC conversion circuit of the present invention. In one embodiment, the current pull-down unit 15 includes an operational transconductance amplifier (Operational Transconductance Amplifier, OTA) Ap, which has a positive input terminal, a negative input terminal and an output terminal, wherein the positive input terminal is used as the The negative input end of the first end 151 of the current pull-down unit 15 is coupled to the ground end, and the output end serves as the second end 152 of the current pull-down unit 15 . In case the mobile electronic device has TDMA noise, the input voltage signal Vin will have an input voltage variation ΔVin; at this time, the feed-forward pull-down current Isink correspondingly has a pull-down current variation ΔIsink=gm*ΔVin, so as to adjust the inductance received by the control unit 14 through its fifth terminal 145 in a feed-forward manner. Measure the value of the current Isense_in, so that the control unit 14 adjusts the PWM signal and the PWMB signal to produce a fast transient response, so that before the feedback loop (feedback compensation system) of the circuit completes the compensation for the output voltage signal Vout, Adaptively adjust the output voltage signal Vout. In short, with the configuration of the current pull-down unit 15, the fastline transient response of the feedback loop (feedback compensation system) of the DC-DC conversion circuit 1 is significantly improved. It should be known that gm is the transconductance value of the operational transconductance amplifier Ap.

如圖6所示,在一實施例中,該電流感測單元12包括:一第二PMOS元件Qs、一運算放大器A1以及一第二PMOS元件Qc。其中,該第二PMOS元件Qs以其一汲極端作為所述電流感測單元12的第一端121,且以其一閘極端作為所述電流感測單元12的第二端122。並且,該運算放大器A1具有一正輸入端、一負輸入端以及一輸出端,其中該正輸入端耦接該第二PMOS元件Qs的一源極端,且該負輸入端作為該電流感測單元12的該第三端123。另一方面,該第二PMOS元件Qc以其一汲極端同時耦接該運算放大器A1的該正輸入端和該第二PMOS元件Qs的該源極端,以其一閘極端耦接該運算放大器A1的該輸出端,且以其一源極端作為所述電流感測單元12的第四端124。 As shown in FIG. 6 , in one embodiment, the current sensing unit 12 includes: a second PMOS device Qs, an operational amplifier A1 and a second PMOS device Qc. Wherein, the second PMOS element Qs uses a drain terminal as the first terminal 121 of the current sensing unit 12 , and a gate terminal as the second terminal 122 of the current sensing unit 12 . Moreover, the operational amplifier A1 has a positive input terminal, a negative input terminal and an output terminal, wherein the positive input terminal is coupled to a source terminal of the second PMOS element Qs, and the negative input terminal serves as the current sensing unit The third end 123 of 12. On the other hand, a drain terminal of the second PMOS element Qc is simultaneously coupled to the positive input terminal of the operational amplifier A1 and the source terminal of the second PMOS element Qs, and a gate terminal is coupled to the operational amplifier A1. The output terminal of the current sensing unit 12 uses a source terminal as the fourth terminal 124 of the current sensing unit 12 .

並且,在一實施例中,該電壓感測單元13由一第一分壓電阻Rf1和一第二分壓電阻Rf1組成。如圖6所示,該第一分壓電阻Rf1以其一第一端耦接該輸出電容Co的該第一端與該電流感測單元12的該第三端123。另一方面,該第二分壓電阻Rf2以其一第一端耦接該第一分壓電阻Rf1的該第二端,且以其一第二端耦接該地端。由圖6可知,該第一分壓電阻Rf1的該第一端作為所述電壓感測單元13的第一端131,且該第一分壓電阻Rf1和該第二分壓電阻Rf2之間的一共接點係作為所述電壓感測單元13的第二端132。 Moreover, in an embodiment, the voltage sensing unit 13 is composed of a first voltage dividing resistor Rf1 and a second voltage dividing resistor Rf1. As shown in FIG. 6 , a first end of the first voltage dividing resistor Rf1 is coupled to the first end of the output capacitor Co and the third end 123 of the current sensing unit 12 . On the other hand, a first terminal of the second voltage dividing resistor Rf2 is coupled to the second terminal of the first voltage dividing resistor Rf1, and a second terminal thereof is coupled to the ground terminal. It can be seen from FIG. 6 that the first terminal of the first voltage dividing resistor Rf1 is used as the first terminal 131 of the voltage sensing unit 13, and the connection between the first voltage dividing resistor Rf1 and the second voltage dividing resistor Rf2 is A common contact is used as the second terminal 132 of the voltage sensing unit 13 .

進一步地說明,該控制單元14包括:一誤差放大器A2、一比較器A3、一第一電容Cr、一第一電阻Rr、一開關元件S1、一第二電阻Re、一第二電容Ce、一RS正反器14RS、以及一驅動單元14DR。其中,該誤差放大器A2具有一 正輸入端、一負輸入端和一輸出端。如圖6所示,該誤差放大器A2的該正輸入端與該負輸入端分別作為所述控制單元14的第一端141與第二端142,從而分別接收所述回授電壓VFB和所述參考電壓VREF,使該誤差放大器A2依據該回授電壓VFB和該參考電壓VREF而產生一誤差信號Vea。另一方面,該比較器A3具有一正輸入端、一負輸入端和一輸出端,其中該比較器A3的該負輸入端耦接該誤差放大器A2的該輸出端,且該比較器A3的該正輸入端耦接所述控制單元14的第六端146。 To further illustrate, the control unit 14 includes: an error amplifier A2, a comparator A3, a first capacitor Cr, a first resistor Rr, a switching element S1, a second resistor Re, a second capacitor Ce, a RS flip-flop 14RS, and a driving unit 14DR. Wherein, the error amplifier A2 has a positive input terminal, a negative input terminal and an output terminal. As shown in FIG. 6, the positive input terminal and the negative input terminal of the error amplifier A2 serve as the first terminal 141 and the second terminal 142 of the control unit 14 respectively, so as to respectively receive the feedback voltage V FB and the The reference voltage V REF makes the error amplifier A2 generate an error signal Vea according to the feedback voltage V FB and the reference voltage V REF . On the other hand, the comparator A3 has a positive input terminal, a negative input terminal and an output terminal, wherein the negative input terminal of the comparator A3 is coupled to the output terminal of the error amplifier A2, and the comparator A3 The positive input terminal is coupled to the sixth terminal 146 of the control unit 14 .

並且,該第一電容Cr以其一第一端耦接該比較器A3的正輸入端和所述控制單元14的第六端146,且以其一第二端耦接所述控制單元14的第五端145。另一方面,該第一電阻Rr以其一第一端耦接該第一電容Cr的該第二端,且以其一第二端耦接該地端。如此設計,在該電流源16依據該輸入電壓信號Vin而生成一鋸齒波電流信號Iramp至所述控制單元14的的第六端146之後,該鋸齒波電流信號Iramp即在該第一電容Cr的該第一端形成一鋸齒波電壓信號Vramp,使該比較器A3以其正輸入端和負輸入端分別接收該鋸齒波電壓信號Vramp和該誤差信號Vea。 Moreover, the first capacitor Cr is coupled to the positive input terminal of the comparator A3 and the sixth terminal 146 of the control unit 14 with its first terminal, and is coupled to the control unit 14 with its second terminal. Fifth end 145 . On the other hand, a first end of the first resistor Rr is coupled to the second end of the first capacitor Cr, and a second end is coupled to the ground end. In such a design, after the current source 16 generates a sawtooth current signal Iramp to the sixth terminal 146 of the control unit 14 according to the input voltage signal Vin, the sawtooth current signal Iramp is immediately at the first capacitor Cr. The first terminal forms a sawtooth voltage signal Vramp, so that the comparator A3 receives the sawtooth voltage signal Vramp and the error signal Vea through its positive input terminal and negative input terminal respectively.

承上述說明,該開關元件S1具有一通道,該通道之一端同時耦接該比較器A3的該正輸入端、所述控制單元14的該第六端146以及該第一電容Cr的該第一端,且該通道之另一端耦接該第一電容Cr的該第二端和所述控制單元14的該第五端145:該開關元件S1受控於一重置信號VReset而啟用/關閉其所述通道。並且,如圖6所示,該第二電阻Re以其一第一端同時耦接該誤差放大器A2的該輸出端以及該比較器A3的該負輸入端,而該第二電容Ce以其一第一端耦接該第二電阻Re的一第二端,且其一第二端耦接該地端。 According to the above description, the switch element S1 has a channel, and one end of the channel is simultaneously coupled to the positive input end of the comparator A3, the sixth end 146 of the control unit 14, and the first capacitor Cr. end, and the other end of the channel is coupled to the second end of the first capacitor Cr and the fifth end 145 of the control unit 14: the switching element S1 is controlled by a reset signal V Reset to enable/disable its said channel. And, as shown in FIG. 6 , the second resistor Re is coupled to the output terminal of the error amplifier A2 and the negative input terminal of the comparator A3 through a first terminal thereof, and the second capacitor Ce is coupled to the negative input terminal of the comparator A3 through a first terminal thereof. The first terminal is coupled to a second terminal of the second resistor Re, and a second terminal thereof is coupled to the ground terminal.

進一步地,該RS正反器14RS具有一第一輸入端、一第二輸入端以及一輸出端,其中該第一輸入端耦接該比較器A3的該輸出端,且該第二輸入端耦接傳送自一振盪器14OC的一時鐘信號CLK。再者,該驅動單元14DR具有一輸入端、一第一輸出端以及一第二輸出端,其中該輸入端耦接該RS正反器14RS的該輸出端,且該第一輸出端和該第二輸出端分別作為該控制單元14的該第三端143和該第四端144。 Further, the RS flip-flop 14RS has a first input terminal, a second input terminal and an output terminal, wherein the first input terminal is coupled to the output terminal of the comparator A3, and the second input terminal is coupled to Receive a clock signal CLK from an oscillator 14OC. Furthermore, the driving unit 14DR has an input terminal, a first output terminal and a second output terminal, wherein the input terminal is coupled to the output terminal of the RS flip-flop 14RS, and the first output terminal and the second output terminal The two output terminals serve as the third terminal 143 and the fourth terminal 144 of the control unit 14 respectively.

如圖6所示,基於該鋸齒波電壓信號Vramp和該誤差信號Vea,該比較器A3輸出一比較信號至該14RS正反器52的第一輸入端(即,R端),且該振盪器14OC提供一時鐘信號CLK至該RS正反器14RS的第二輸入端(即,S端)。最終,該RS正反器14RS的輸出端(即,Q端)提供一PWM信號至該驅動單元14DR,其中所述PWM信號的週期由該時鐘信號CLK所決定。進一步地,該驅動單元14DR依據該PWM信號而提供一第一閘極電壓信號(即,PWM信號)至該第一NMOS元件Q2的閘極端,且同時提供一第二閘極電壓信號(即,PWMB信號)至該第一PMOS元件Q1和該第二PMOS元件Qs的閘極端。 As shown in FIG. 6, based on the sawtooth voltage signal Vramp and the error signal Vea, the comparator A3 outputs a comparison signal to the first input terminal (ie, R terminal) of the 14RS flip-flop 52, and the oscillator 14OC provides a clock signal CLK to the second input terminal (ie, S terminal) of the RS flip-flop 14RS. Finally, the output terminal (ie, Q terminal) of the RS flip-flop 14RS provides a PWM signal to the driving unit 14DR, wherein the period of the PWM signal is determined by the clock signal CLK. Further, the driving unit 14DR provides a first gate voltage signal (ie, PWM signal) to the gate terminal of the first NMOS element Q2 according to the PWM signal, and simultaneously provides a second gate voltage signal (ie, PWMB signal) to the gate terminals of the first PMOS element Q1 and the second PMOS element Qs.

圖7顯示圖6所示之本發明之直流-直流轉換電路的誤差信號Vea、鋸齒波電壓信號Vramp以及輸出電壓信號Vout之實際量測工作時序圖。在移動電子裝置具有TDMA噪音的情況下,所述輸入電壓信號Vin會具有一輸入電壓變化量△Vin;此時,該前饋下拉電流Isink對應地具有一下拉電流變化量△Isink=gm*△Vin,使得所述鋸齒波電壓信號Vramp的電平對應地變化了gm*△Vin*R r ,藉此方式保證由該誤差放大器A2所輸出之所述誤差信號Vea盡量沒有變化。因此,在參考電壓VREF維持不變的情況下,所述誤差信號Vea盡量沒有變化的意思即為回授電壓VFB的變化量很小,亦即輸出電壓信號Vout的一輸出電壓變化量△Vout的值即隨之變化很小。圖7的實際量測資料顯示所述輸出電壓變化量△Vout的Vpp=30mV。 FIG. 7 shows the timing diagram of the actual measurement operation of the error signal Vea, the sawtooth voltage signal Vramp and the output voltage signal Vout of the DC-DC conversion circuit of the present invention shown in FIG. 6 . When the mobile electronic device has TDMA noise, the input voltage signal Vin will have an input voltage variation ΔVin; at this time, the feed-forward pull-down current Isink correspondingly has a pull-down current variation ΔIsink=gm*△ Vin makes the level of the sawtooth voltage signal Vramp change correspondingly by gm*ΔVin* R r , thereby ensuring that the error signal Vea output by the error amplifier A2 does not change as much as possible. Therefore, under the condition that the reference voltage V REF remains unchanged, the error signal Vea does not change as much as possible, which means that the change of the feedback voltage V FB is very small, that is, the output voltage signal Vout has an output voltage change Δ The value of Vout changes very little accordingly. The actual measurement data in FIG. 7 shows that Vpp=30mV of the output voltage variation ΔVout.

因此,比較圖7和圖4的量測資料之後,應可理解,在所述直流-直流轉換電路1之中增設一電流下拉單元15,且使其耦接於電路輸入端10,且同時耦接該控制單元14和該電流感測單元13之後,當輸入電壓信號Vin因受到TDMA噪音的影響而具有一輸入電壓變化量△Vin之時,該電流下拉單元15的一前饋下拉電流Isink即對應地具有一下拉電流變化量△Isink,由所述第五端145傳入該控制單元14的一輸入感測電流Isense_in的值,使該控制單元14能夠立即產生快速暫態響應,從而在電路的回授環路(回授補償系統)完成對於輸出電壓信號Vout的補償之前,即適應性地調整輸出電壓信號Vout,有效地保證輸出電壓變化量△Vout小於或等於30mV。 Therefore, after comparing the measurement data of FIG. 7 and FIG. 4, it should be understood that a current pull-down unit 15 is added in the DC-DC conversion circuit 1, and it is coupled to the circuit input terminal 10, and at the same time coupled After connecting the control unit 14 and the current sensing unit 13, when the input voltage signal Vin has an input voltage variation ΔVin due to the influence of TDMA noise, a feed-forward pull-down current Isink of the current pull-down unit 15 is Correspondingly, there is a pull-down current variation ΔIsink, the value of an input sense current Isense_in passed into the control unit 14 from the fifth terminal 145, so that the control unit 14 can immediately generate a fast transient response, so that in the circuit Before the feedback loop (feedback compensation system) completes the compensation for the output voltage signal Vout, the output voltage signal Vout is adaptively adjusted to effectively ensure that the output voltage variation △Vout is less than or equal to 30mV.

第二實施例 second embodiment

由前述說明可知,在所述輸入電壓信號Vin因受到TDMA噪音的影響而出現瞬時的輸入電壓變化量△Vin之時,本發明之直流-直流轉換電路1的第一實施例能夠即時、快速地將輸入電壓的變化量△Vout之控制在30mV以內。然而,必須加以說明的是,前述之快速暫態響應是在本發明之直流-直流轉換電路1操作在固定負載的情況下實現的。更詳細地說明,鋸齒波電壓信號Vramp的電平之變化量gm*△Vin*R r ,是用以保證由該誤差放大器A2所輸出之所述誤差信號Vea盡量沒有變化。但是,當負載狀態變動時,前述之變化量gm*△Vin*R r 不能有效補償負載電流對於誤差信號Vea之值所造成的變化。圖8為圖6所示之本發明之直流-直流轉換電路的第一實施例在不同負載電流下之輸出電壓信號之實際量測工作時序圖。如圖8的實際量測資料顯示,在負載電流為1mA、300mA、以及600mA的情況下,本發明之直流-直流轉換電路1的第一實施例的輸出電壓信號Vout的變化量Vpp也跟著改變(20mV→22mV→50mV)。因此,實際量測資料證實了,當負載狀態變動時,前述之變化量gm*△Vin*R r 不能有效補償負載電流對於誤差信號Vea之值所造成的變化,導致輸出電壓信號Vout的變化量無法被控制在30mV以內。 It can be seen from the above description that when the input voltage signal Vin is affected by TDMA noise and there is an instantaneous input voltage variation ΔVin, the first embodiment of the DC-DC conversion circuit 1 of the present invention can instantly and quickly Control the variation of input voltage △Vout within 30mV. However, it must be noted that the aforesaid fast transient response is realized when the DC-DC conversion circuit 1 of the present invention operates under a fixed load. To explain in more detail, the variation gm*ΔVin* R r of the level of the sawtooth voltage signal Vramp is used to ensure that the error signal Vea output by the error amplifier A2 does not change as much as possible. However, when the load state changes, the aforementioned variation gm*ΔVin* R r cannot effectively compensate the change caused by the load current to the value of the error signal Vea. FIG. 8 is a timing diagram of actual measurement of output voltage signals of the first embodiment of the DC-DC conversion circuit of the present invention shown in FIG. 6 under different load currents. As shown in the actual measurement data in Figure 8, when the load current is 1mA, 300mA, and 600mA, the variation Vpp of the output voltage signal Vout of the first embodiment of the DC-DC conversion circuit 1 of the present invention also changes accordingly. (20mV→22mV→50mV). Therefore, the actual measurement data proves that when the load state changes, the above-mentioned variation gm*△Vin* R r cannot effectively compensate the change caused by the load current to the value of the error signal Vea, resulting in a variation of the output voltage signal Vout Cannot be controlled within 30mV.

基於前述理由,本發明同時提出本發明之一種直流-直流轉換電路的第二實施例。圖9顯示本發明之一種直流-直流轉換電路的一第二實施例之方塊圖。比較圖9與圖5之後,應可輕易地得知,本發明之直流-直流轉換電路1的第二實施例進一步包括:一轉導調整單元17以及一負載電流檢測單元19。圖10為本發明之直流-直流轉換電路的第二實施例之電路拓樸結構圖。於第二實施例中,用以作為所述電流下拉單元15的該運算轉導放大器Ap更包括一數位編程端153,且具有一數位可編程功能(digitally programmable)。換句話說,透過傳送一數位信號至該數位編程端153的方式,係能夠調整該運算轉導放大器Ap之轉導gm的數值。 Based on the aforementioned reasons, the present invention also proposes a second embodiment of a DC-DC conversion circuit of the present invention. FIG. 9 shows a block diagram of a second embodiment of a DC-DC conversion circuit of the present invention. After comparing FIG. 9 with FIG. 5 , it can be easily known that the second embodiment of the DC-DC conversion circuit 1 of the present invention further includes: a transconductance adjustment unit 17 and a load current detection unit 19 . FIG. 10 is a circuit topology diagram of the second embodiment of the DC-DC conversion circuit of the present invention. In the second embodiment, the operational transconductance amplifier Ap used as the current pull-down unit 15 further includes a digital programming terminal 153 and has a digitally programmable function (digitally programmable). In other words, by sending a digital signal to the digital programming terminal 153 , the value of the transconductance gm of the operational transconductance amplifier Ap can be adjusted.

如圖10所示,該負載電流檢測單元19耦接於該電路輸出端11和該電流感測單元12的該第三端123之間,用以檢測一負載電流,從而對應地產生一負載端電壓。另一方面,該轉導調整單元17具有一第一端171和一第二端172,其 中該第一端171耦接由該負載電流檢測單元19所傳送的該負載端電壓,且該第二端172耦接該運算轉導放大器的該數位編程端153。 As shown in FIG. 10 , the load current detection unit 19 is coupled between the circuit output terminal 11 and the third terminal 123 of the current sensing unit 12 to detect a load current, thereby correspondingly generating a load terminal Voltage. On the other hand, the transconductance adjustment unit 17 has a first end 171 and a second end 172, which The first terminal 171 is coupled to the load terminal voltage transmitted by the load current detection unit 19 , and the second terminal 172 is coupled to the digital programming terminal 153 of the operational transconductance amplifier.

依據本發明之設計,所述負載電流檢測單元19的功能是將負載電流ILoad轉換成一負載端電壓VCTRLILoad,而該轉導調整單元17的功能類似一類比/數位轉換器,用以基於所述負載端電壓VCTRL而產生一數位信號DCTRL<X:0>。於第二實施例中,所述電流下拉單元15為具有數位可編程功能(digitally programmable)的一運算轉導放大器(Operational Transconductance Amplifier,OTA)Ap。因此,透過將所述數位信號DCTRL<X:0>傳送至該運算轉導放大器Ap的該數位編程端153,該運算轉導放大器Ap的轉導gm便會對應地被調整,藉此方式調整該前饋下拉電流Isink之下拉電流變化量△Isink=gm*△Vin。如此設計,本發明之直流-直流轉換電路1的第二實施例在負載電流變動的情況下,仍舊可以快速地對輸出電壓信號Vout進行補償,從而有效地控制所述輸出電壓變化量△Vout的值。 According to the design of the present invention, the function of the load current detection unit 19 is to convert the load current I Load into a load terminal voltage V CTRL = α * I Load , and the function of the transconductance adjustment unit 17 is similar to an analog/digital converter , for generating a digital signal D CTRL <X:0> based on the load terminal voltage V CTRL . In the second embodiment, the current pull-down unit 15 is a digitally programmable operational transconductance amplifier (Operational Transconductance Amplifier, OTA) Ap. Therefore, by transmitting the digital signal D CTRL <X: 0> to the digital programming terminal 153 of the operational transconductance amplifier Ap, the transconductance gm of the operational transconductance amplifier Ap will be adjusted correspondingly, in this way Adjust the pull-down current change amount △Isink=gm*△Vin under the feed-forward pull-down current Isink. With such a design, the second embodiment of the DC-DC conversion circuit 1 of the present invention can still quickly compensate the output voltage signal Vout even when the load current fluctuates, thereby effectively controlling the variation of the output voltage ΔVout. value.

圖11為圖10所示之本發明之直流-直流轉換電路的第二實施例在不同負載電流下之輸出電壓信號之實際量測工作時序圖。如圖11的實際量測資料顯示,在負載電流為1mA、300mA、以及600mA的情況下,本發明之直流-直流轉換電路1的第二實施例的輸出電壓信號Vout的變化量Vpp也跟著改變(9mV→15mV→25mV)。值得注意的是,由於第二實施例進一步包括一轉導調整單元17以及一負載電流檢測單元19,因此實際量測資料證實,本發明之直流-直流轉換電路1的第二實施例在負載電流變動的情況下,仍舊可以快速地對輸出電壓信號Vout進行補償,從而有效地控制所述輸出電壓變化量△Vout的值。 FIG. 11 is a timing diagram of actual measurement of output voltage signals of the second embodiment of the DC-DC conversion circuit of the present invention shown in FIG. 10 under different load currents. As shown in the actual measurement data in FIG. 11 , when the load current is 1mA, 300mA, and 600mA, the variation Vpp of the output voltage signal Vout of the second embodiment of the DC-DC conversion circuit 1 of the present invention also changes accordingly. (9mV→15mV→25mV). It is worth noting that since the second embodiment further includes a transconductance adjustment unit 17 and a load current detection unit 19, the actual measurement data proves that the second embodiment of the DC-DC conversion circuit 1 of the present invention has a higher performance than the load current detection unit 19. In the case of fluctuations, the output voltage signal Vout can still be quickly compensated, so as to effectively control the value of the output voltage variation ΔVout.

如此,上述已完整且清楚地說明本發明之一種直流-直流轉換電路;並且,經由上述可得知本發明具有下列優點: Thus, the above has completely and clearly described a DC-DC conversion circuit of the present invention; and, through the above, it can be known that the present invention has the following advantages:

(1)本發明揭示一種直流-直流轉換電路,其基礎上包括一輸入電容、一電感、一電流源、一開關元件、一續流元件、一輸出電容、一電流感測單元、一電壓感測單元、以及一控制單元。特別地,本發明在所述直流-直流轉換電路之中增設一電流下拉單元,使其耦接於電路輸入端,且同時耦接該控制單元和該電流感測單元。如此設計,當輸入電壓信號因受到TDMA噪音的影響而 具有一輸入電壓變化量之時,該電流下拉單元的一前饋下拉電流即對應地具有一下拉電流變化量,藉此前饋式地調整由電路輸出端回傳該控制單元的一感測電流的值,使該控制單元能夠立即產生快速暫態響應,從而在電路的回授環路完成對於輸出電壓信號的補償之前,適應性地調整輸出電壓信號。 (1) The present invention discloses a DC-DC conversion circuit, which basically includes an input capacitor, an inductor, a current source, a switching element, a freewheeling element, an output capacitor, a current sensing unit, and a voltage sensor Measuring unit, and a control unit. In particular, in the present invention, a current pull-down unit is added in the DC-DC conversion circuit, which is coupled to the input end of the circuit, and coupled to the control unit and the current sensing unit at the same time. So designed, when the input voltage signal is affected by TDMA noise When there is a variation of the input voltage, a feed-forward pull-down current of the current pull-down unit has a corresponding variation of the pull-down current, so as to adjust in a feed-forward manner a sensing current sent back from the output end of the circuit to the control unit. value, enabling the control unit to produce a fast transient response immediately, thereby adaptively adjusting the output voltage signal before the feedback loop of the circuit completes compensation for the output voltage signal.

(2)本發明同時揭示一種平面顯示器,其包括一平面顯示面板、一閘極驅動模組、一源極驅動模組、一顯示控制器、以及一供電單元;其特徵在於,該供電單元包括如前所述本發明之直流-直流轉換電路。 (2) The present invention also discloses a flat-panel display, which includes a flat-panel display panel, a gate driver module, a source driver module, a display controller, and a power supply unit; it is characterized in that the power supply unit includes As mentioned above, the DC-DC conversion circuit of the present invention.

(3)本發明同時揭示一種資訊處理裝置,其具有一中央處理單元以及如前所述本發明之平面顯示器。並且,該資訊處理裝置可為智能手機、智能手錶、智能手環、平板電腦、筆記型電腦、一體式電腦、和門禁裝置所組成群組所選擇的一種電子裝置。 (3) The present invention also discloses an information processing device, which has a central processing unit and the flat-panel display of the present invention as described above. Moreover, the information processing device can be an electronic device selected from the group consisting of a smart phone, a smart watch, a smart bracelet, a tablet computer, a notebook computer, an all-in-one computer, and an access control device.

必須加以強調的是,前述本案所揭示者乃為較佳實施例,舉凡局部之變更或修飾而源於本案之技術思想而為熟習該項技藝之人所易於推知者,俱不脫本案之專利權範疇。 It must be emphasized that what is disclosed in the above-mentioned case is a preferred embodiment, and all partial changes or modifications derived from the technical ideas of this case and easily deduced by those familiar with the technology are all inseparable from the patent of this case. category of rights.

綜上所陳,本案無論目的、手段與功效,皆顯示其迥異於習知技術,且其首先發明合於實用,確實符合發明之專利要件,懇請 貴審查委員明察,並早日賜予專利俾嘉惠社會,是為至禱。 To sum up, regardless of the purpose, means and efficacy of this case, it shows that it is very different from the conventional technology, and its first invention is practical, and it does meet the patent requirements of the invention. I implore your review committee to understand it clearly and grant a patent as soon as possible. Society is for the Most Prayer.

1:直流-直流轉換電路 1: DC-DC conversion circuit

10:電路輸入端 10: Circuit input terminal

11:電路輸出端 11: Circuit output terminal

12:電流感測單元 12: Current sensing unit

121:第一端 121: first end

122:第二端 122: second end

123:第三端 123: third end

124:第四端 124: fourth end

13:電壓感測單元 13: Voltage sensing unit

131:第一端 131: first end

132:第二端 132: second end

14:控制單元 14: Control unit

141:第一端 141: first end

142:第二端 142: second end

143:第三端 143: third end

144:第四端 144: fourth end

145:第五端 145: fifth end

146:第六端 146: sixth end

15:電流下拉單元 15: Current pull-down unit

151:第一端 151: first end

152:第二端 152: second end

16:電流源 16: Current source

Ci:輸入電容 Ci: input capacitance

Co:輸出電容 Co: output capacitance

L1:電感 L1: inductance

Q2:第一NMOS元件 Q2: The first NMOS element

Q1:第一PMOS元件 Q1: The first PMOS component

Claims (10)

一種直流-直流轉換電路,包括:一電路輸入端,耦接一輸入電壓信號;一輸入電容,以其一第一端和一第二端分別耦接該電路輸入端和一地端;一電感,以其一第一端耦接該輸入電容的該第一端;一第一NMOS元件,以其一汲極端和一源極端分別耦接該電感的一第二端和該地端;一第一PMOS元件,以其一汲極端耦接該第一NMOS元件的該汲極端;一輸出電容,以其一第一端和一第二端分別耦接該第一PMOS元件的一源極端和該地端;一電路輸出端,耦接該輸出電容的該第一端,用以傳送一輸出電壓信號;一電流感測單元,具有同時耦接該第一NMOS元件的該汲極端和該第一PMOS元件的該汲極端之一第一端、耦接該第一PMOS元件的一閘極端之一第二端、耦接該第一PMOS元件的該源極端之一第三端、以及一第四端;一電壓感測單元,具有一第一端與一第二端,且該第一端耦接該輸出電容的該第一端與該電流感測單元的該第三端;一控制單元,具有耦接該電壓感測單元的該第二端之一第一端、一第二端、耦接該第一NMOS元件之一閘極端之一第三端、同時耦接該電流感測單元的該第二端以及該第一PMOS元件的該閘極端之一第四端、一第五端、以及一第六端;一電流源,以其一第一端耦接該輸入電容的該第一端與該電感的該第一端,且以其一第二端耦接該控制單元的該第六端;以及一電流下拉單元,具有耦接該電路輸入端與該輸入電容的該第一端之一第一端,且具有同時耦接該控制單元的該第五端與該電壓感測單元的該第二端之一第二端,用以依據該輸入電壓信號而生成一前饋下拉電流;其中,該控制單元以其所述第一端接收該電壓感測單元所傳送的一回授電壓,以其所述第二端接收一參考電壓F,以其所述第五端接收該電流感測單元所傳送的一感測電流,且以其所述第六端接收該電流源傳送的一電流信號,從而 以其所述第三端傳送一第一閘極電壓信號至該第一NMOS元件的該閘極端,且以其所述第四端傳送一第二閘極電壓信號至該第一PMOS元件的該閘極端和該電流感測單元的該第二端;其中,當所述輸入電壓信號具有一輸入電壓變化量之時,該前饋下拉電流對應地具有一下拉電流變化量,藉此前饋式地調整該感測電流的值,從而調整該控制單元所輸出的該第一閘極電壓信號和該第二閘極電壓信號,提升該控制單元的快速暫態響應。 A DC-DC conversion circuit, comprising: a circuit input terminal, coupled to an input voltage signal; an input capacitor, with a first terminal and a second terminal respectively coupled to the circuit input terminal and a ground terminal; an inductor , with a first end coupled to the first end of the input capacitor; a first NMOS element, with a drain end and a source end respectively coupled to a second end of the inductor and the ground end; a first NMOS element A PMOS element, with a drain end coupled to the drain end of the first NMOS element; an output capacitor, with a first end and a second end, respectively coupled to a source end of the first PMOS element and the first NMOS element a ground end; a circuit output end coupled to the first end of the output capacitor for transmitting an output voltage signal; a current sensing unit having the drain end coupled to the first NMOS element and the first end at the same time a first end of the drain end of the PMOS element, a second end coupled to a gate end of the first PMOS element, a third end coupled to the source end of the first PMOS element, and a fourth end terminal; a voltage sensing unit having a first terminal and a second terminal, and the first terminal is coupled to the first terminal of the output capacitor and the third terminal of the current sensing unit; a control unit, It has a first terminal coupled to the second terminal of the voltage sensing unit, a second terminal, a third terminal coupled to a gate terminal of the first NMOS element, and coupled to the current sensing unit. The second terminal and a fourth terminal, a fifth terminal, and a sixth terminal of the gate terminal of the first PMOS element; a current source, with a first terminal coupled to the first terminal of the input capacitor end and the first end of the inductor, and a second end coupled to the sixth end of the control unit; and a current pull-down unit, having the first end coupled to the circuit input end and the input capacitor a first end, and has a second end coupled to the fifth end of the control unit and the second end of the voltage sensing unit at the same time, for generating a feed-forward pull-down current according to the input voltage signal ; Wherein, the control unit receives a feedback voltage transmitted by the voltage sensing unit with its first end, receives a reference voltage F with its second end, and receives the current with its fifth end A sensing current transmitted by the sensing unit, and receiving a current signal transmitted by the current source through the sixth end thereof, so as to transmit a first gate voltage signal to the first NMOS through the third end thereof The gate terminal of the element, and transmits a second gate voltage signal to the gate terminal of the first PMOS element and the second terminal of the current sensing unit through the fourth terminal; wherein, when the input When the voltage signal has an input voltage variation, the feed-forward pull-down current correspondingly has a pull-down current variation, whereby the value of the sensing current is adjusted in a feed-forward manner, thereby adjusting the first gate output by the control unit The pole voltage signal and the second gate voltage signal improve the fast transient response of the control unit. 如請求項1所述之直流-直流轉換電路,其中,該電流下拉單元包括一運算轉導放大器,其具有一正輸入端、一負輸入端和一輸出端,其中該正輸入端作為該電流下拉單元的該第一端,該負輸入端耦接該地端,且該輸出端作為該電流下拉單元的該第二端。 The DC-DC conversion circuit as described in Claim 1, wherein the current pull-down unit includes an operational transconductance amplifier having a positive input terminal, a negative input terminal and an output terminal, wherein the positive input terminal serves as the current The first terminal of the pull-down unit, the negative input terminal is coupled to the ground terminal, and the output terminal is used as the second terminal of the current pull-down unit. 如請求項1所述之直流-直流轉換電路,其中,該電流感測單元包括:一第二PMOS元件,以其一汲極端作為該電流感測單元的該第一端,且以其一閘極端作為該電流感測單元的該第二端;一運算放大器,具有一正輸入端、一負輸入端以及一輸出端,其中該正輸入端耦接該第二PMOS元件的一源極端,且該負輸入端作為該電流感測單元的該第三端;以及一第二NMOS元件,以其一汲極端同時耦接該運算放大器的該正輸入端和該第二PMOS元件的該源極端,以其一閘極端耦接該運算放大器的該輸出端,且以其一源極端作為該電流感測單元的該第四端。 The DC-DC conversion circuit as described in claim 1, wherein the current sensing unit includes: a second PMOS element, with a drain end as the first end of the current sensing unit, and a gate The terminal serves as the second terminal of the current sensing unit; an operational amplifier has a positive input terminal, a negative input terminal and an output terminal, wherein the positive input terminal is coupled to a source terminal of the second PMOS element, and The negative input end is used as the third end of the current sensing unit; and a second NMOS element is coupled to the positive input end of the operational amplifier and the source end of the second PMOS element at the same time with a drain end thereof, A gate terminal thereof is coupled to the output terminal of the operational amplifier, and a source terminal thereof is used as the fourth terminal of the current sensing unit. 如請求項1所述之直流-直流轉換電路,其中,該電壓感測單元包括:一第一分壓電阻,以其一第一端耦接該輸出電容的該第一端與該電流感測單元的該第三端;一第二分壓電阻,以其一第一端耦接該第一分壓電阻的該第二端,且以其一第二端耦接該地端; 其中,該第一分壓電阻的該第一端作為該電壓感測單元的該第一端,且該第一分壓電阻和該第二分壓電阻之間的一共接點係作為該電壓感測單元的該第二端。 The DC-DC conversion circuit as described in Claim 1, wherein the voltage sensing unit includes: a first voltage dividing resistor, a first end of which is coupled to the first end of the output capacitor and the current sensing The third terminal of the unit; a second voltage dividing resistor, with a first terminal coupled to the second terminal of the first voltage dividing resistor, and a second terminal coupled to the ground terminal; Wherein, the first end of the first voltage-dividing resistor is used as the first end of the voltage sensing unit, and a common point between the first voltage-dividing resistor and the second voltage-dividing resistor is used as the voltage sense the second end of the measuring unit. 如請求項4所述之直流-直流轉換電路,其中,該控制單元包括:一誤差放大器,具有一正輸入端、一負輸入端和一輸出端;其中,該誤差放大器的該正輸入端與該負輸入端分別作為該控制單元的該第一端與該第二端,從而分別接收所述回授電壓和所述參考電壓,使該誤差放大器依據該回授電壓和該參考電壓而產生一誤差信號;一比較器,具有一正輸入端、一負輸入端和一輸出端;其中,該比較器的該負輸入端耦接該誤差放大器的該輸出端,且該比較器的該正輸入端耦接所述控制單元的該第六端;一第一電容,以其一第一端耦接該比較器的該正輸入端和所述控制單元的該第六端,且以其一第二端耦接所述控制單元的該第五端;一第一電阻,以其一第一端耦接該第一電容的該第二端,且以其一第二端耦接該地端;一開關元件,具有一通道,該通道之一端同時耦接該比較器的該正輸入端、所述控制單元的該第六端以及該第一電容的該第一端,且該通道之另一端耦接該第一電容的該第二端和所述控制單元的該第五端;該開關元件受控於一重置信號而啟用/關閉其所述通道;一第二電阻,以其一第一端同時耦接該誤差放大器的該輸出端以及該比較器的該負輸入端;一第二電容,以其一第一端耦接該第二電阻的一第二端,且其一第二端耦接該地端;一RS正反器,具有一第一輸入端、一第二輸入端以及一輸出端,其中,該第一輸入端耦接該比較器的該輸出端,且該第二輸入端耦接傳送自一振盪器的一時鐘信號;以及 一驅動單元,具有一輸入端、一第一輸出端以及一第二輸出端,其中,該輸入端耦接該RS正反器的該輸出端,且該第一輸出端和該第二輸出端分別作為該控制單元的該第三端和該第四端。 The DC-DC conversion circuit as described in claim 4, wherein the control unit includes: an error amplifier having a positive input terminal, a negative input terminal and an output terminal; wherein, the positive input terminal of the error amplifier is connected to The negative input end serves as the first end and the second end of the control unit respectively, so as to respectively receive the feedback voltage and the reference voltage, so that the error amplifier generates a voltage according to the feedback voltage and the reference voltage. Error signal; a comparator having a positive input terminal, a negative input terminal and an output terminal; wherein, the negative input terminal of the comparator is coupled to the output terminal of the error amplifier, and the positive input terminal of the comparator terminal is coupled to the sixth terminal of the control unit; a first capacitor is coupled to the positive input terminal of the comparator and the sixth terminal of the control unit with its first terminal, and is connected to the sixth terminal of the control unit with its first terminal. Two terminals are coupled to the fifth terminal of the control unit; a first resistor is coupled to the second terminal of the first capacitor with a first terminal, and is coupled to the ground terminal with a second terminal; A switching element, having a channel, one end of the channel is coupled to the positive input end of the comparator, the sixth end of the control unit and the first end of the first capacitor, and the other end of the channel Coupling the second end of the first capacitor and the fifth end of the control unit; the switching element is controlled by a reset signal to enable/close the channel; a second resistor, with a first One end is simultaneously coupled to the output end of the error amplifier and the negative input end of the comparator; a second capacitor is coupled to a second end of the second resistor with a first end thereof, and a second terminal is coupled to the ground terminal; an RS flip-flop has a first input terminal, a second input terminal and an output terminal, wherein the first input terminal is coupled to the output terminal of the comparator, and the first input terminal is coupled to the output terminal of the comparator. Two input terminals are coupled to a clock signal transmitted from an oscillator; and A driving unit having an input terminal, a first output terminal and a second output terminal, wherein the input terminal is coupled to the output terminal of the RS flip-flop, and the first output terminal and the second output terminal as the third terminal and the fourth terminal of the control unit respectively. 如請求項5所述之直流-直流轉換電路,其中,該電流信號為一鋸齒波電流信號,該第一電容的該第一端依據該電流信號而生成一鋸齒波電壓信號,且該比較器以其所述正輸入端和所述負輸入端分別接收該鋸齒波電壓信號和該誤差信號,從而以其所述輸出端傳送一比較信號至該RS正反器的該第一輸入端,使該RS正反器以其所述輸出端傳送一PWM信號至該驅動單元。 The DC-DC conversion circuit as described in Claim 5, wherein the current signal is a sawtooth current signal, the first terminal of the first capacitor generates a sawtooth voltage signal according to the current signal, and the comparator receiving the saw-tooth wave voltage signal and the error signal through the positive input terminal and the negative input terminal, so as to transmit a comparison signal to the first input terminal of the RS flip-flop through the output terminal, so that The RS flip-flop transmits a PWM signal to the driving unit through the output terminal. 如請求項2所述之直流-直流轉換電路,其中,該運算轉導放大器更包括一數位編程端,且具有一數位可編程功能。 The DC-DC conversion circuit as described in Claim 2, wherein the operational transconductance amplifier further includes a digital programming terminal and has a digital programmable function. 如請求項7所述之直流-直流轉換電路,更包括:一負載電流檢測單元,耦接於該電路輸出端和該電流感測單元的該第三端之間,用以檢測一負載電流,從而對應地產生一負載端電壓;以及一轉導調整單元,具有一第一端和一第二端,其中該第一端耦接由該負載電流檢測單元所傳送的該負載端電壓,且該第二端耦接該運算轉導放大器的該數位編程端;其中,依據該負載端電壓,該轉導調整單元傳送一數位信號至該數位編程端,從而對該運算轉導放大器的一轉導進行調整,藉此方式調整所述下拉電流變化量。 The DC-DC conversion circuit as described in Claim 7, further comprising: a load current detection unit coupled between the output terminal of the circuit and the third terminal of the current sensing unit for detecting a load current, Accordingly, a load terminal voltage is correspondingly generated; and a transconductance adjustment unit has a first terminal and a second terminal, wherein the first terminal is coupled to the load terminal voltage transmitted by the load current detection unit, and the The second terminal is coupled to the digital programming terminal of the operational transconductance amplifier; wherein, according to the load terminal voltage, the transconductance adjustment unit transmits a digital signal to the digital programming terminal, thereby a transconductance of the operational transconductance amplifier Adjustment is performed to adjust the variation of the pull-down current. 一種直流-直流轉換電路,具有一輸入端以耦接一輸入電壓及一輸出端以提供一輸出電壓,且其包括一電能傳輸單元以依一PWM信號的控制週期性地將該輸入電壓的電能傳輸至該輸出端,及一控制單元以依一回授電壓及一輸入感測電流產生該PWM信號,其中該回授電壓係依該輸出電壓之一比例產生,其特徵在於:該控制單元具有一轉導可控之電壓轉電流單元以產生與該輸入電壓及一負載電流之乘積成正比之一第一感測電流,且該第一感測電流與該輸入感測電流的和等於該電能傳輸單元內之一電感之一第二感測電流。 A DC-DC conversion circuit has an input terminal for coupling an input voltage and an output terminal for providing an output voltage, and it includes a power transmission unit for periodically controlling the power of the input voltage according to a PWM signal transmitted to the output terminal, and a control unit to generate the PWM signal according to a feedback voltage and an input sensing current, wherein the feedback voltage is generated according to a ratio of the output voltage, characterized in that: the control unit has A transconductance controllable voltage-to-current unit to generate a first sensing current proportional to the product of the input voltage and a load current, and the sum of the first sensing current and the input sensing current is equal to the electric energy A second sensing current of an inductor in the transmission unit. 一種資訊處理裝置,其具有一中央處理單元以及一平面顯示器,該平面顯示器包括一平面顯示面板、一閘極驅動模組、一源極驅動模組、一顯示控制器、以及一供電單元;其特徵在於,該供電單元包括如請求項1至9中任一項所述之直流-直流轉換電路,且所述之資訊處理裝置係由智能手機、智能手錶、智能手環、平板電腦、筆記型電腦、一體式電腦、和門禁裝置所組成群組所選擇的一種電子裝置。 An information processing device, which has a central processing unit and a flat-panel display, the flat-panel display includes a flat display panel, a gate drive module, a source drive module, a display controller, and a power supply unit; It is characterized in that the power supply unit includes the DC-DC conversion circuit described in any one of claims 1 to 9, and the information processing device is composed of a smart phone, a smart watch, a smart bracelet, a tablet computer, a notebook An electronic device selected from a group consisting of a computer, an all-in-one computer, and an access control device.
TW109118120A 2020-05-29 2020-05-29 DC-DC conversion circuit and information processing device TWI784279B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109118120A TWI784279B (en) 2020-05-29 2020-05-29 DC-DC conversion circuit and information processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109118120A TWI784279B (en) 2020-05-29 2020-05-29 DC-DC conversion circuit and information processing device

Publications (2)

Publication Number Publication Date
TW202145178A TW202145178A (en) 2021-12-01
TWI784279B true TWI784279B (en) 2022-11-21

Family

ID=80783659

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109118120A TWI784279B (en) 2020-05-29 2020-05-29 DC-DC conversion circuit and information processing device

Country Status (1)

Country Link
TW (1) TWI784279B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201334381A (en) * 2012-02-02 2013-08-16 Upi Semiconductor Corp DC-DC converter and voltage conversion method thereof
TW201503562A (en) * 2013-07-03 2015-01-16 Anpec Electronics Corp Current mode DC-DC converting device having fast transient response
CN106160467A (en) * 2015-03-25 2016-11-23 展讯通信(上海)有限公司 Strengthen the booster type dc-dc of transient response
CN110661421A (en) * 2018-06-29 2020-01-07 深圳市海美思信息技术有限公司 Load current detection method and circuit thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201334381A (en) * 2012-02-02 2013-08-16 Upi Semiconductor Corp DC-DC converter and voltage conversion method thereof
TW201503562A (en) * 2013-07-03 2015-01-16 Anpec Electronics Corp Current mode DC-DC converting device having fast transient response
CN106160467A (en) * 2015-03-25 2016-11-23 展讯通信(上海)有限公司 Strengthen the booster type dc-dc of transient response
CN110661421A (en) * 2018-06-29 2020-01-07 深圳市海美思信息技术有限公司 Load current detection method and circuit thereof

Also Published As

Publication number Publication date
TW202145178A (en) 2021-12-01

Similar Documents

Publication Publication Date Title
US8207721B2 (en) Switching regulator capable of stable operation and improved frequency characteristics in a broad input and output voltage range and method for controlling operation thereof
US11444537B2 (en) Power converters and compensation circuits thereof
US8841895B2 (en) Electronic device for average current mode DC-DC conversion
US20100308654A1 (en) Mixed mode control for switching regulator with fast transient responses
CN101661301B (en) Low-voltage-drop linear voltage regulator with frequency compensation
US20140021930A1 (en) Voltage regulation method and apparatus
US9698702B1 (en) Switching power supply and a power supply apparatus that incorporates the same
Chen et al. A new fast-response current-mode buck converter with improved $ I^{2} $-controlled techniques
TW201233017A (en) Control circuit for switching regulator, switching regulator and electronic equipment using the control circuit
EP4134778A1 (en) Voltage regulating apparatus, chip, power supply, and electronic device
US10411599B1 (en) Boost and LDO hybrid converter with dual-loop control
CN102412725A (en) Active line terminal compensation circuit and controller with active line terminal compensation
TWI754947B (en) DC-DC conversion circuit and information processing device
EP4102336A1 (en) Voltage adjustment apparatus, chip, power source, and electronic device
TWI784279B (en) DC-DC conversion circuit and information processing device
CN116414173B (en) Method and circuit for reducing LDO output ripple
US10978882B2 (en) Constant-current charging circuit, energy storage power source and constant-current charging method
CN108429455B (en) Voltage conversion circuit and terminal equipment of power
CN218514287U (en) Conduction time control circuit, step-down DC converter, power management chip and wearable bluetooth device
CN113760030B (en) Dynamic bias circuit applied to LDO (low dropout regulator) and LDO using same
CN211857324U (en) Voltage adjusting device, chip, power supply and electronic equipment
Chen et al. A new ultra-fast-response low-transient-voltage boost converter suitable for low-voltage solar cells in wireless sensor networks
CN211508907U (en) Control circuit of switching power supply conversion device
CN102609021A (en) Method for improving voltage identification transient response and voltage regulator
CN107733252B (en) Rectification voltage stabilizing circuit with temperature compensation function