TWI784264B - 生物感測器及光的分辨方法 - Google Patents

生物感測器及光的分辨方法 Download PDF

Info

Publication number
TWI784264B
TWI784264B TW109113770A TW109113770A TWI784264B TW I784264 B TWI784264 B TW I784264B TW 109113770 A TW109113770 A TW 109113770A TW 109113770 A TW109113770 A TW 109113770A TW I784264 B TWI784264 B TW I784264B
Authority
TW
Taiwan
Prior art keywords
signal strength
light
angle
pixel
filter
Prior art date
Application number
TW109113770A
Other languages
English (en)
Other versions
TW202115380A (zh
Inventor
謝馨儀
謝錦全
Original Assignee
采鈺科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 采鈺科技股份有限公司 filed Critical 采鈺科技股份有限公司
Publication of TW202115380A publication Critical patent/TW202115380A/zh
Application granted granted Critical
Publication of TWI784264B publication Critical patent/TWI784264B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • G01N21/6454Individual samples arranged in a regular 2D-array, e.g. multiwell plates using an integrated detector array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14629Reflectors

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Power Engineering (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

提供一種生物感測器。此生物感測器包含基底、第一光電二極體、第二光電二極體、角度敏感濾光片與樣品固定層。第一光電二極體和第二光電二極體設置於基底中且分別定義出第一畫素和第二畫素,其中第一畫素和第二畫素接收光。角度敏感濾光片設置於基底上。樣品固定層設置於角度敏感濾光片上。

Description

生物感測器及光的分辨方法
本揭露實施例係有關於一種生物感測器,特別係有關於使用光譜移位層進行光檢測的一種生物感測器。
最近,CMOS影像感測器也已用於生物或生化檢測。對於這樣的應用,可將生物或生化樣品放置於光電二極體上,且可將生物或生化樣品發射的光,導向光電二極體,並可藉由光電二極體,來檢測和分辨樣品的螢光或化學發光的顏色和強度。不同的螢光分子,受光激發後會產生不同的顏色和強度,因此藉由判斷光電二極體所接受的光的顏色和強度,可用於識別其上生物或生化樣品的交互作用或特性。
光的顏色和強度的一般識別方法是在光電二極體上堆疊有機彩色濾光片和/或介電干涉濾光片,以控制特定顏色波段的穿透率。儘管有機彩色濾光片對角度不敏感,但顏色選擇和穿透光譜的設計自由度較低。因此,介電干涉濾光片和其他角度敏感濾光片變得越來越普遍,以實現對各種顏色識別應用的需求。
當光以大於0度的角度照射角度敏感濾光片時,濾光片的穿透光譜的波長會偏移。此現象稱為光譜偏移。然後,在角度敏感濾光片下,會因為光譜偏移現象,使得檢測器以大的入射角所接收的光頻譜,會不同於檢測器以小的入射角所接收的光頻譜。因此,在許多的應用領域中,例如CMOS影像感測器上細胞行為觀察、基因定序、定量聚合酶連鎖反應和基因 /蛋白質微陣列等,光譜偏移的特性被認為是缺點。
儘管現有之具有光學整合的影像感測器已足以滿足其預期的目的,但它們並非在各個方面皆令人滿意。例如,已經進行了很多努力,在角度敏感濾光片上,包含光角度引導組件來維持小角度光入射濾光片,以減少光譜偏移現象,其導致複雜且昂貴的製造製程。因此,仍然需要一種新穎的生物感測器。
本揭露的實施例所提供的生物感測器利用在先前技術中被認為是缺點之由角度​​敏感濾光片所引起的光譜偏移的特性,來分辨不同的光。因此,本揭露的實施例以新穎的方式成功地利用了光譜偏移的特性。
在一些實施例中,提供一種生物感測器。此生物感測器包含基底、第一光電二極體和第二光電二極體、角度敏感濾光片與樣品固定層。第一光電二極體和第二光電二極體設置於基底中且分別定義出第一畫素和第二畫素,其中第一畫素和第二畫素接收光。角度敏感濾光片設置於基底上。樣品固定層設置於角度敏感濾光片上。
在一些實施例中,提供一種光的分辨方法。此方法包含:放置分析物於前述的生物感測器;使分析物發出光;獲得光的第一部分的第一訊號強度和光的第二部分的第二訊號強度;以及    根據第一訊號強度和第二訊號強度,來分辨光。
在一些實施例中,提供一種光的分辨方法。此方法包含:放置分析物於前述之生物感測器,其中生物感測器更包括第一彩色濾光片設置於鄰近角度敏感濾光片且對應至畫素中的一者,且第一彩色濾光片被光的第三部分照射;使分析物發出光;獲得光的第一部分的第一訊號強度、光的第二部分的第二訊號強度和光的第三部分的第三訊號強度;以及根據第一訊號強度、第二訊號強度和第三訊號強度,來分辨光。
在以下實施例中參考所附圖式給予實施方式。
在以下描述中詳細描述本揭露的生物感測器。在以下的實施方式中,出於解釋的目的,闡述了許多具體細節和實施例以提供對本揭露的透徹理解。闡述以下實施方式中所描述的特定元件和配置,以清楚地描述本揭露。然而,將顯而易見的是,本文所闡述的示例性實施例僅用於說明的目的,且發明概念可以各種形式體現,而不限於那些示例性實施例。此外,不同實施例的圖式可使用相似和/或對應的數字來表示相似和/或對應的元件,以便清楚地描述本揭露。然而,在不同實施​​例的圖式中使用相似和/或對應的數字不暗示不同實施例之間的任何相關性。此外,在本說明書中,例如「設置在第二材料層上/上方的第一材料層」的表達可指第一材料層和第二材料層的直接接觸,或者其可指在第一材料層和第二材料層之間有一或多層中間層的非接觸狀態。在上述情況中,第一材料層可不與第二材料層直接接觸。
此外,在本說明書中,使用相對性的表達。例如「較低」、「底部」、「較高」或「頂部」用於描述一元件相對於另一元件的位置。應理解的是,如果將裝置上下顛倒,則「較低」的元件將變為「較高」的元件。
除非另有定義,否則本文使用的所有技術和科學術語都具有與本發明所屬技術領域中通常知識者一般所理解的相同含義。應理解的是,在各種情況下,在常用字典中定義的術語應被解釋為具有符合本揭露的相對技能和本揭露的背景或上下文的含義,且不應以理想化或過於正式的方式來解釋,除非如此定義。
在敘述中,相對性術語例如「下」、「上」、「水平」、「垂直」、「之下」、「之上」、「頂部」、「底部」等等應被理解為該實施例以及相關圖式中所繪示的方位。此相對性的用語是為了方便說明之用,並不表示所敘述之裝置需以特定方位來製造或運作。此外,關於接合、連接之用語,例如「連接」、「互連」等,除非特別定義,否則可表示兩個結構直接接觸,或者亦可表示兩個結構並非直接接觸,而是有其它結構設置於此兩個結構之間。另外,關於接合、連接之用語,亦可包含兩個結構都可移動,或者兩個結構都固定之實施例。
應理解的是,儘管可在本文中使用術語第一、第二、第三等等,來描述各種元件、組件、區域、膜層、部分和/或區段,但這些元件、組件、區域、膜層、部分和/或區段不應受這些術語所限制。這些術語僅用於區分一元件、組件、區域、膜層、部分或區段與另一元件、組件、區域、膜層、部分或區段。因此,在不脫離本揭露的教示的情況下,以下所討論的第一元件、組件、區域、膜層、部分或區段可被稱為第二元件、組件、區域、膜層、部分或區段。
本揭露的實施例所提供的生物感測器利用在先前技術中被認為是缺點之由角度​​敏感濾光片所引起的光譜偏移的特性,來分辨不同的光。因此,本揭露的實施例以新穎的方式成功地利用了光譜偏移的特性。
此示例性實施例的描述意圖配合所附圖式閱讀,這些圖式被認為是整個書面描述的一部分。這些圖式未按比例繪製。此外,為了簡化圖式,示意性地顯示結構和裝置。
第1圖根據本揭露的一些實施例繪示生物感測器100的俯視圖,而第2A-2J圖根據本揭露的一些實施例,繪示第1圖的生物感測器100沿線A-A’的剖面圖。請參閱第1圖,生物感測器100包含基底102和畫素104。
在本揭露的一些實施例中,基底102是主體半導體基底,例如半導體晶圓。舉例而言,基底102是矽晶圓。基底102可包含矽或其它元素半導體材料例如鍺。在另一些實施例中,基底102包含化合物半導體。化合物半導體可包含砷化鎵、碳化矽、砷化銦、磷化銦、其它合適的材料或前述之組合,但不限於此。
在一些實施例中,基底102包含絕緣體上半導體(semiconductor-on-insulator,SOI)基底。可使用氧佈植分離(separation by implantation of oxygen,SIMOX)製程、晶圓接合製程、其它可應用的方法或前述之組合,來製造SOI基底,但不限於此。在一些實施例中,基底102是未摻雜的基底。
如第2A圖所示,生物感測器100包含光電二極體106、角度敏感濾光片108和樣品固定層110。光電二極體106設置於基底102中,且光電二極體106定義出畫素104。畫素104接收光。角度敏感濾光片108設置於基底102上。樣品固定層110設置於角度敏感濾光片108上。角度敏感濾光片108可為短通濾光片、帶通濾光片、長通濾光片或多帶通濾光片。角度敏感濾光片108可為高和低折射率的介電材料交替沉積的介電干涉濾光片。若折射率在可見光波長大於約1.7,則此折射率被認為是高折射率。具有高折射率的介電材料可包含Nb2 O5 、Ta2 O5 、TiO2 、Si3 N4 、Al2 O3 、SiH或前述之組合。若折射率在可見光波長小於約1.7,則此折射率被認為是低折射率。具有低折射率的介電材料可包含SiO2 、Al2 O3 、有機聚合物、空氣或前述之組合。或者,角度敏感濾光片108可為電漿濾光片或介電超表面結構。
請參閱第2B圖,在一些實施例中,生物感測器100可包含設置於角度敏感濾光片108上的激發光阻擋濾光片112。具體而言,激發光阻擋濾光片112設置於角度敏感濾光片108與樣品固定層110之間。激發光阻擋濾光片112是嵌入有金屬層的干涉濾光片,且簡稱為金屬多層膜。由於金屬層包含在干涉濾光片中,所以金屬多層膜的厚度可比沒有嵌入有金屬層的一般介電干涉濾光片還要薄。金屬多層膜的厚度可為0.1 μm至2 μm,且具有與一般介電干涉濾光片相同等級的光密度(optical density,OD)。金屬層可包含Ag、Au、Al、Cu或前述之組合。
請參閱第2C和2D圖,在一些實施例中,生物感測器100可包含光圈結構114。光圈結構114嵌入於樣品固定層110中。光圈結構114包含開口,如此一來可控制光以照射基底102的某些區域,且可避免串擾。開口對應至一個畫素104。在一些實施例中,開口可不位於一個畫素的中心正上方。應理解的是,開口是根據實際需要而設置的。光圈結構114可包含不透明材料。不透明材料可包含Ag、Al、Au、Cu、Nb、Ni、Ti、W、前述之合金或前述之混合材料。
參閱第2E和2F圖,在一些實施例中,生物感測器100可包含設置於基底102上的遮蔽層116。遮蔽層116圍繞角度敏感濾光片108,以隔離出角度敏感濾光片108的不同區域。舉例而言,遮蔽層116每隔兩個相鄰的畫素104隔離角度敏感濾光片108。遮蔽層116可包含具有高反射率的材料。若遮蔽層可反射大於約50%的光,則遮蔽層的材料或結構被認為具有高反射率。遮蔽層116的材料可包含Ag、Al、Au、Cu、Nb、Ni、Ti、W、Ta2 O5 、Nb2 O5 、Al2 O3 、TiO2 、SiH、Si3 N4 、空氣、真空、前述之合金或前述之混合材料。
請參閱第2G和2H圖,在一些實施例中,生物感測器100可包含波導器118。波導器118嵌入於樣品固定層110中。波導器118對應至一個畫素104。在一些實施例中,波導器118可不位於一個畫素的中心的正上方。應理解的是,波導器是根據實際需要而設置的。在這些實施例中,波導118是線性的,如此一來可控制光以依序照射生物樣品且依序地產生發射光至基底102的某些區域,且可以避免串擾。波導器118包含具有高折射率的材料。若折射率在可見光波長大於約1.5,則此折射率被認為是高折射率。具有高折射率的材料可包含Al2 O3 、Ta2 O5 、Nb2 O5 、TiO2 、Si3 N4 或聚合物。
請參閱第2I和2J圖,在一些實施例中,波導器118可設置於光圈結構114上。具體而言,光圈結構114和波導器118嵌入於樣品固定層110中。在這些實施例中,波導器118是連續層,但光圈結構114侷限了發射光的路徑。因此,亦可避免串擾。
第3圖根據本揭露的一些實施例繪示生物感測器200的俯視圖。第4A-4J圖根據本揭露的一些實施例,繪示第3圖的生物感測器200沿線A-A’的剖面圖。
請參閱第3圖,生物感測器200與生物感測器100之間的差異之一是,生物感測器200更包含設置在基底102上的第一彩色濾光片120a。具體而言,第一彩色濾光片120a設置於鄰近角度敏感濾光片108且對應至一個畫素104。舉例而言,兩個第一彩色濾光片120a由在方向X上覆蓋兩個畫素104的角度敏感濾光片108隔開。兩個第一彩色濾光片120a由在垂直於方向X的方向Y上覆蓋一個畫素104的角度敏感濾光片108隔開。角度敏感濾光片108的覆蓋面積等於或大於第一彩色濾光片120a的覆蓋面積。換句話說,角度敏感濾光片108的投影面積等於或大於第一彩色濾光片120a的投影面積。
請參閱第4A和4B圖,第4A-4B圖和第2A-2B圖之間的差異之一是,第一彩色濾光片120a設置於基底102上。
請參閱第4C和4D圖,第4C-4D圖與第2C-2D圖之間的差異之一是,第一彩色濾光片120a設置於基底102上。光圈結構114的開口對應至角度敏感濾光片108所覆蓋的畫素104。請參閱第4E和4F圖,第4E-4F圖與第2E-2F圖之間的差異之一是,第一彩色濾光片120a設置於基底102上。遮蔽層116圍繞一個第一彩色濾光片120a和一個對應至兩個相鄰的畫素104的角度敏感濾光片108。
請參閱第4G和4H圖,第4G-4H圖和第2G-2H圖之間的差異之一是,第一彩色濾光片120a設置於基底102上。
請參閱第4I和4J圖,第4I-4J圖和第2I-2J圖之間的差異之一是,第一彩色濾光片120a設置於基底102上。
第5圖根據本揭露的一些實施例繪示生物感測器300的俯視圖。第6A-6J圖根據本揭露的一些實施例,繪示第5圖的生物感測器的沿線A-A’的剖面圖。
生物感測器300和生物感測器200之間的差異為,生物感測器300包含設置於基底102上的第二彩色濾光片120b。具體而言,第二彩色濾光片120b設置於鄰近角度敏感濾光片108且對應至畫素104中的一者。舉例而言,角度敏感濾光片108在方向X上夾在第一彩色濾光片120a和第二彩色濾光片120b之間。角度敏感濾光片108在Y方向上夾在兩個第一彩色濾光片120a或兩個第二彩色濾光片120b之間。角度敏感濾光片108的覆蓋面積等於或大於第一彩色濾光片120a或第二彩色濾光片120b的覆蓋面積。換句話說,角度敏感濾光片108的投影面積等於或大於第一彩色濾光片120a或第二彩色濾光片120b的投影面積。
請參閱第6A和6B圖,第6A-6B圖和第4A-4B圖之間的差異之一是,第二彩色濾光片120b設置於基底102上。
請參閱第6C和6D圖,第6C-6D圖和第4C-4D圖之間的差異之一是,第二彩色濾光片120b設置於基底102上。光圈結構114的開口對應至角度敏感濾光片108所覆蓋的畫素104。請參閱第6E和6F圖,第6E-6F圖和第4E-4F圖之間的差異之一是,第二彩色濾光片120b設置於基底102上。在剖面圖中,遮蔽層116設置於一組角度敏感濾光片108和第一彩色濾光片120a與一組角度敏感濾光片108和第二彩色濾光片120b之間。
請參閱第6G和6H圖,第6G-6H圖和第4G-4H圖之間的差異之一是,第二彩色濾光片120b設置於基底102上。
請參閱第6I和6J圖,第6I-6J圖和第4I-4J圖之間的差異之一是,第二彩色濾光片120b設置於基底102上。
請參閱第6K圖,在一些實施例中,第一彩色濾光片120a和第二彩色濾光片120b可具有等於或小於畫素104中的一者的面積。當第一彩色濾光片和第二彩色濾光片小於角度敏感濾光片時,有機濾光片材料可完全地嵌入於周圍的角度敏感濾光片中,以提供強大的化學和機械耐性。再者,有機濾光片的尺寸縮小可確保來自生物樣品的發射光可通過角度敏感濾光片至對角的光電二極體而不會有因第一和第二彩色濾光片而產生的不連續性。
根據濾光片的不同組成,以下將詳細描述本發明概念。
實施態樣1
在此實施態樣中,生物感測器100包含角度敏感濾光片108。第7A圖繪示生物感測器100上的分析物122a的排列。第7B圖繪示第7A圖沿線A-A’的剖面圖。在此實施例中,假設一個分析物所發出的光可到達與此光下方的畫素相距一個畫素的畫素。換句話說,圍繞此光下方的畫素之最接近的八個畫素。舉例而言,如第7A圖所示,畫素1041是在分析物122a1所發射的光之下,且畫素1042-1049是與畫素1041相距僅一個畫素的畫素。分析物122a1發射的光可到達畫素1041-1049。
分析物122a放置於生物感測器100上。一個分析物122a的面積等於或小於一個畫素104的面積。
在螢光的情況下,激發光124照射分析物122a。激發光124可從生物感測器100的一側移動至相對側,如此一來分析物122a將依序而不是同時地被激發且發射光L。舉例而言,激發光124可沿方向X移動。在此實施例中,方向X是在俯視圖中從生物感測器100的左側至右側的方向,如第7A圖所示。
因此,可間隔一個畫素,來將分析物122a放置於生物感測器100上,以避免串擾。換句話說,任何兩個相鄰的分析物122a彼此間隔一個畫素104。
請參閱第7B圖,分析物122a被激發光124激發且發射光L。激發光阻擋濾光片112被設置為阻擋激發光124,如此一來可防止激發光124進入基底102而防止被光電二極體106吸收。
術語「入射角」是指入射光與角度敏感濾光片的法線之間的角度。光L的第一部分L1以第一入射角θ1進入角度敏感濾光片108。接收光L的第一部分L1的畫素是第一畫素104a。第一入射角θ1是從0度至光L的第一部分L1可被第一畫素104a接收到的最大入射角的角度。
光L的第二部分L2以第二入射角θ2進入角度敏感濾光片108。接收光L的第二部分L2的畫素是第二畫素104b。第二入射角θ2是從第一入射角θ1的最大入射角至光L的第二部分L2可被第二畫素104b接收到的最大入射角的角度。第一入射角θ1小於第二入射角θ2。
在一些實施例中,第一入射角θ1為0度至40度,且第二入射角θ2為20度至70度。在一些實施例中,第一入射角θ1為0度至30度,且第二入射角θ2為20度至60度。由於第一入射角θ1小於第二入射角θ2,所以第二部分L2會比第一部分L1更顯著地發生光譜偏移。
第7C圖根據本揭露的另一些實施例繪示第7A圖的剖面圖。第7C和7B圖的實施例之間的差異是,分析物122b的面積大於一個畫素104的面積。分析物122b可為細胞、組織、器官等等。
儘管分析物122b的面積大於一個畫素104的面積,但應理解的是,在閱讀以下的示例性實施例後,第7A和7B圖的實施例中所記載的相同概念亦可適用於第7C圖的實施例,為了簡潔起見將不再重複敘述。再者,前述的排列僅為範例。本發明所屬技術領域中具有通常知識者可根據實際需要來放置分析物。
第7D圖根據本揭露的一些實施例繪示生物感測器100上的分析物122a的排列的俯視圖。第7E和7F圖根據本揭露的一些實施例繪示第7D圖沿線A-A’的剖面圖。第7D和7A圖的實施例之間的差異是分析物122a的排列。
在生物化學發光的情況下,由於分析物122a不需要藉由激發光來激發,所以可省略激發光阻擋濾光片112,如第7E圖所示。由於所有分析物122a同時發射光L,因此可以低於第7A圖的實施例中的密度,來將分析物122a放置在生物感測器100上,以避免串擾。舉例而言,如第7D圖所示,分析物122a沿方向X間隔兩個畫素排列,且在垂直於方向X的方向Y上間隔一個畫素間隔排列。前述的排列僅為範例。本發明所屬技術領域中具有通常知識者可根據實際需要來放置分析物。
儘管分析物122b以不同於第7A和7B圖的間隔排列且光L藉由生物化學發光產生,但應理解的是,在閱讀以下的示例性實施例後,第7A和7B圖的實施例中所記載的亦可適用於第7E圖的實施例,為了簡潔起見將不再重複敘述。再者,前述的排列僅為範例。本發明所屬技術領域中具有通常知識者可根據實際需要來放置分析物。
第7F圖根據本揭露的另一些實施例繪示第7D圖的的剖面圖。第7F和7E圖的實施例之間的差異是,分析物122a藉由螢光產生光L。
在螢光的情況下,由於需要激發光來激發分析物上之螢光分子,所以設置激發光阻擋濾光片112,如第7F圖所示。在此實施例中,由於所有分析物122a皆被激發光124同時激發且同時發射光L,所以可如第7D圖中所示地,將分析物122a放置在生物感測器100上,藉由較低密度的排列,降低樣品間的串擾。
儘管分析物122b以不同於第7A和7B圖的間隔排列,但應理解的是,在閱讀以下的示例性實施例後,第7A和7B圖的實施例中所記載的相同概念亦可適用於第7F圖的實施例,為了簡潔起見將不再重複敘述。再者,前述的排列僅為範例。本發明所屬技術領域中具有通常知識者可根據實際需要來放置分析物。
第7G圖根據本揭露的一些實施例繪示生物感測器100上的分析物122a的排列的俯視圖。第7H和7I圖繪示第7G圖沿線A-A’的剖面圖,其中第7H圖代表生物化學發光的範例,而第7I圖代表螢光的範例。第7G和7A圖的實施例之間的差異是生物感測器100包含光圈結構114且同時發射光L。
如第7G圖所示,光圈結構114包含分別對應至各個分析物122a的複數個開口,如此一來可進一步控制光以僅照射基底102的某些區域。
具體而言,請參閱第7H圖,光圈結構114防止分析物122a1所發射的光L到達畫素1045,且允許與分析物122a1相鄰的分析物122a2所發射的光L到達畫素1045。因此,畫素1045中的光電二極體106僅接收來自分析物122a2的光,從而避免串擾。因此,可間隔一個畫素,來將分析物122a放置在生物感測器100上,以避免串擾。換句話說,任何兩個相鄰的分析物122a彼此間隔一個畫素104。
在一些實施例中,從第7G圖的俯視圖來看,開口的形狀可為矩形、圓形或三角形,但不限於此。
請參閱第7I圖,第7I和7H圖的實施例之間的差異是,第7I圖的生物感測器100更包含激發光阻擋濾光片112。
儘管第7H和7I圖的生物感測器100包含光圈結構114,但應理解的是,在閱讀以下的示例性實施例後,第7A和7B圖的實施例中所記載的相同概念亦可適用於第7H和7I圖的實施例,為了簡潔起見將不再重複敘述。再者,前述的排列僅為範例。本發明所屬技術領域中具有通常知識者可根據實際需要來放置分析物。
第7J圖根據本揭露的一些實施例繪示生物感測器100上的分析物122a的排列的俯視圖。第7K和7L圖繪示第7J圖沿線A-A’的剖面圖,其中第7K圖代表生物化學發光的範例,而第7L圖代表螢光的範例。第7J和7A圖的實施例之間的差異是生物感測器100包含遮蔽層116且同時發射光L。
由於遮蔽層116可反射光L,所以第一畫素104a可接收光L之以第一入射角θ1’進入角度敏感濾光片108的第一部分L1’,其中第一入射角θ1’大於第7A-7I圖中的實施例的第一入射角θ1。第二畫素104b可接收光L之以第二入射角θ2’進入角度敏感濾光片108的第二部分L2’,其中第二入射角θ2’大於第7A-7I圖中的實施例的第二入射角θ2。舉例而言,第一入射角θ1’可為0度至60度,且第二入射角θ2’可為40度至85度。然而,應理解的是,第一入射角θ1’和第二入射角θ2’是根據分析物、遮蔽層和光電二極體的高度來決定。
儘管第7K和7L圖的生物感測器100包含遮蔽層116,但應理解的是,在閱讀以下的示例性實施例後,第7A和7B圖的實施例中所記載的相同概念亦可適用於第7K和7L圖的實施例,為了簡潔起見將不再重複敘述。再者,前述的排列僅為範例。本發明所屬技術領域中具有通常知識者可根據實際需要來放置分析物。
第8A圖係根據本揭露的一些實施例的發射或穿透率對波長的分析圖。104A代表以第一入射角θ1或θ1’進入角度敏感濾光片108且被第一畫素104a接收的光的波長。104B代表以第二入射角θ2或θ2’進入角度敏感濾光片108且被第二畫素104b接收的光的波長。Alexa 568和Alexa 647是兩種發出不同光的螢光分子。從第一畫素104a獲得光L的第一部分L1的第一訊號強度。從第二畫素104b獲得光L的第二部分L2的第二訊號強度。104A的曲線下面積(area under curve,AUC)與Alexa 568的AUC之間的重疊區域代表Alexa 568的第一訊號強度,而104B的AUC和Alexa 568的AUC之間的重疊區域代表Alexa 568的第二訊號強度。
基於相同的概念,Alexa 647具有第一訊號強度和第二訊號強度。可為第一訊號強度設置第一閾值。可為第二訊號強度設置第二閾值。取決於第一訊號強度是高於還是低於第一閾值,來將第一訊號強度定義為Pass或No。舉例而言,當Alexa 568的第一訊號強度高於第一閾值時,Alexa 568的第一訊號強度定義為Pass。當Alexa 568的第一訊號強度低於第一閾值時,Alexa 568的第一訊號強度定義為No。
基於相同的概念,可取決於第二訊號強度是高於還是低於第二閾值,來將第二訊號強度定義為Pass或No。
可根據實際情況來設置第一閾值和第二閾值。以下表1是根據上述和第8A圖所述的概念所製成的,其中第一訊號強度由104a表示,而第二訊號強度由104b表示。 表1
角度敏感濾光片 螢光分子 104a 104b
短通 Alexa 568 Pass Pass
Alexa 647 Pass No
帶通 Alexa 568 No Pass
Alexa 647 Pass No
長通 Alexa 568 No Pass
Alexa 647 Pass Pass
可根據第一訊號強度和第二訊號強度的定義的組合,來分辨這兩種螢光分子。舉例而言,在角度敏感濾光片是短通濾光片的實施例中,Alexa 568的第一訊號強度定義為Pass,Alexa 568的第二訊號強度定義為Pass,而Alexa 647的第一訊號強度定義為Pass,Alexa 647的第二訊號強度定義為No。當第一訊號強度和第二訊號強度的組合為Pass和Pass (或Pass和No)時,可知光為Alexa 568 (或Alexa 647)。
在角度敏感濾光片是帶通濾光片的實施例中,可基於上述相同的概念來分辨光。
在角度敏感濾光片是長通濾光片的實施例中,可基於上述相同的概念來分辨光。
或者,亦可計算第二訊號強度與第一訊號強度的第一訊號強度比值(由104b/104a表示),來分辨兩種不同的螢光分子,即兩種不同的光。取決於第一訊號強度比值是高於還是低於預定比值,來將第一訊號強度比值定義為H或L。舉例而言,當Alexa 568的第一訊號強度比值104b/104a高於預定比值時,Alexa 568的第一訊號強度比值104b/104a定義為H。當Alexa 568的第一訊號強度比值104b/104a低於預定比值時,Alexa 568的第一訊號強度比104b/104a定義為L。
以下表2是根據上述和第8A圖所述的概念所製成的,其中第一訊號強度由104a表示,且第一訊號強度比值由104b / 104a表示。 表2
角度敏感濾光片 螢光分子 104a 104b/104a
短通 Alexa 568 0.62 0.8 (H)
Alexa 647 0.81 0.15 (L)
帶通 Alexa 568 0.2 2.5 (H)
Alexa 647 0.8 0.15 (L)
長通 Alexa 568 0.2 2.7 (H)
Alexa 647 0.91 1 (L)
根據第一訊號強度比值104b/104a的定義,可分別兩種螢光分子。舉例而言,在角度敏感濾光片為短通濾光片的實施例中,Alexa 568的第一訊號強度比值104b/104a高於預定比值,Alexa 568的第一訊號強度比值104b/104a定義為H,而Alexa 647的第一訊號強度比值104b/104a低於預定比值,Alexa 647的第一訊號強度比值104b/104a定義為L。因此,若第一訊號強度比值104b/104a的定義為H,則可知光是由Alexa 568所發射的。若第一訊號強度比值104b/104a的定義為L,則可知光是由Alexa 647所發射的。
在角度敏感濾光片是帶通濾光片的實施例中,可基於上述相同的概念來分辨光。
在角度敏感濾光片是帶通濾光片的實施例中,可基於上述相同的概念來分辨光。
第8B圖係根據本揭露的一些實施例的發射或穿透率對波長的分析圖。104A代表以第一入射角θ1或θ1’進入角度敏感濾光片108且被第一畫素104a接收的光的波長。104B代表以第二入射角θ2或θ2’進入角度敏感濾光片108且被第二畫素104b接收的光的波長。EYFP、PE、FM2-10和eFluor 610是四種發出不同光的螢光分子。
以下表3是根據前述和第8B圖所述的概念所製成的,其中第一訊號強度由104a表示,且第二訊號強度由104b表示。 表3
角度敏感濾光片 螢光分子 104a 104b
帶通 EYFP No No
PE No Pass
FM2-10 Pass Pass
eFluor 610 Pass No
根據第一訊號強度和第二訊號強度的定義的組合,可基於如上所述的相同概念來分辨這四種螢光分子。
或者,亦可計算第二訊號強度與第一訊號強度的第一訊號強度比值(由104b/104a表示),來分辨四種不同的螢光分子,即四種不同的光。第8C圖係根據本揭露的一些實施例的發射或穿透率對波長的分析圖。最左邊的圖是角度敏感濾光片為短通濾光片的實施例。中間的圖是角度敏感濾光片為帶通濾光片的實施例。最右邊的圖是角度敏感濾光片為長通濾光片的實施例。104A代表以第一入射角θ1或θ1’進入角度敏感濾光片108且被第一畫素104a接收的光的波長。104B代表以第二入射角θ2或θ2’進入角度敏感濾光片108且被第二畫素104b接收的光的波長。EYFP、PE、FM2-10和eFluor 610是四種發出不同光的螢光分子。Alexa 568、eFluor 610、Alexa 647和Alexa 680是四種發出不同光的螢光分子。取決於第一訊號強度比值是高於還是低於預定比值,來將第一訊號強度比值104b/104a定義為H或L。然後,在被定義為H的群組中,取決於第一訊號強度是高於還是低於第一閾值,來將第一訊號強度定義為H或L、或者是取決於第二訊號強度是高於或低於第二閾值,來將第二訊號強度定義為H或L。
以下表4是根據上述和第8C圖所述的概念所製成的,其中第一訊號強度由104a表示,第二訊號強度由104b表示,且第一訊號強度比值由104b/104a表示。 表4
角度敏感濾光片 短通 帶通 長通
螢光分子 104a 104b 104b/ 104a 104a 104b 104b/ 104a 104a 104b 104b/ 104a
Alexa 568 0.63 (H) 0.63 1 (H) 0.08 0.4 (H) 5(H) 0.08 0.4 (H) 5(H)
eFluor 610 0.25 (L) 0.25 1 (H) 0.05 0.25 (L) 5(H) 0.05 0.25 (L) 5(H)
Alexa 647 0.9 (H) 0.23 0.25 (L) 0.9 0.9 (H) 1(L) 0.9 0.9 (H) 1(L)
Alexa 680 0.2 (L) 0 0 (L) 0.4 0 (L) 0(L) 0.4 0.4 (L) 1(L)
根據第一訊號強度比值104b / 104a的定義和第一訊號強度或第二訊號強度的定義,可分辨這四種螢光分子。舉例而言,在角度敏感濾光片是短通濾光片的實施例中,Alexa 568的第一訊號強度比值104b/104a和eFluor 610的第一訊號強度比值104b/104a均高於預定比值,而將Alexa 568的第一訊號強度比值104b/104a和eFluor 610的第一訊號強度比值104b/104a定義為H。Alexa 647的第一訊號強度比值104b/104a和Alexa 680的第一訊號強度比值104b/104a均低於預定比值,而將Alexa 647的第一訊號強度比值104b/104a和Alexa 680的第一訊號強度比值104b/104a定義為L。然後在群組H中,Alexa 568的第一訊號強度高於第一閾值,而將Alexa 568的第一訊號強度定義為H。eFluor 610的第一訊號強度低於第一閾值,而將eFluor 610的第一訊號強度eFluor 610定義為L。在群組L中,Alexa 647的第一訊號強度高於另一第一閾值,而將Alexa 647的第一訊號強度定義為H。Alexa680的第一訊號強度低於另一第一閾值,而將Alexa 680的第一訊號強度定義為L。因此,若第一訊號強度比值104b/104a的定義為H,且第一訊號強度的定義為H,則可知光是由Alexa 568所發射的。因此,根據與上述相同的概念來分辨光。
在角度敏感濾光片是帶通濾光片的實施例中,可基於與上述相同的概念來分辨光。
在角度敏感濾光片是長通濾光片的實施例中,可基於與上述相同的概念來分辨光。
因此,一種濾光片足以分辨最多四種不同的光。相反地,現有的生物感測器仍需要不止一種濾光片來分辨不同的光。
實施態樣2
在此實施態樣中,生物感測器200包含角度敏感濾光片108和第一彩色濾光片120a。第9A圖繪示生物感測器200上的分析物122a的排列。第9B圖繪示第9A圖沿線A-A’的剖面圖。在此實施例中,假設一個分析物所發出的光可到達與此光下方的畫素相距一個畫素的畫素。換句話說,圍繞此光下方的畫素之最接近的八個畫素。舉例而言,如第9A圖所示,畫素1041是在分析物122a1所發射的光之下,且畫素1042-1049是與畫素1041相距僅一個畫素的畫素。分析物122a1發射的光可到達畫素1041-1049。
如第9A圖所示,在方向X上第一彩色濾光片120a被角度敏感濾光片108所覆蓋的兩個畫素隔開,且在垂直於方向X的方向Y上,第一彩色濾光片120a被角度敏感濾光片108所覆蓋的一個畫素隔開。
分析物122a放置在生物感測器200上。一個分析物122a的面積等於或小於一個畫素的面積。
在螢光的情況下,激發光124照射分析物122a或122b (未示出)。激發光124可從生物感測器200的一側移動至相對側,如此一來分析物122a將依序而不是同時地被激發且發射光L。舉例而言,激發光124可沿方向X移動。在此實施例中,方向X是在俯視圖中從生物感測器200的左側至右側的方向,如第9A圖所示。
請參閱第9B圖,分析物122a被激發光124激發且發射光L。激發光阻擋濾光片112被設置為阻擋激發光124,如此一來可防止激發光124進入基底102而防止被光電二極體106吸收。光L的第一部分L1以第一入射角θ1進入角度敏感濾光片108。接收光L的第一部分L1的畫素是第一畫素104a。第一入射角θ1是從0度至光L的第一部分L1可被第一畫素104a接收到的最大入射角的角度。
光L的第二部分L2以第二入射角θ2進入角度敏感濾光片108。接收光L的第二部分L2的畫素是第二畫素104b。第二入射角θ2是從第一入射角θ1的最大入射角至光L的第二部分L2可被第二畫素104b接收到的最大入射角的角度。第一入射角θ1小於第二入射角θ2。
光L的第三部分L3以第三入射角θ3進入角度敏感濾光片108。接收光L的第三部分L3的畫素是第三畫素104c。第三入射角θ3是從第一入射角θ1的最大入射角至光L的第三部分L3可被第三畫素104c接收到的最大入射角的角度。
在一些實施例中,第一入射角θ1為0度至40度,第二入射角θ2為20度至70度,並且第三入射角θ3為20度至70度。在一些實施例中,第一入射角θ1為0至30度,第二入射角θ2為20度至60度,並且第三入射角θ3為20度至60度。由於第一入射角θ1小於第二入射角θ2,所以第二部分L2將比第一部分L1,在通過角度敏感濾光片108時,更顯著地發生光譜偏移。
第9C圖根據本揭露的一些實施例繪示生物感測器200上的分析物122a的排列的俯視圖。第9D和9E圖繪示第9C圖沿線A-A’的剖面圖,其中第9D圖代表生物化學發光的範例,而第9E圖代表螢光的範例。第9C和9A圖的實施例之間的差異是生物感測器200包含光圈結構114且同時發射光L。
如第9C圖所示,光圈結構114包含分別對應至各個分析物122a的複數個開口,如此一來可進一步控制光以僅照射基底102的某些區域。
具體而言,請參閱第9D圖,光圈結構114防止與分析物122a1相鄰的分析物122a2所發射的光L到達畫素104b,且允許分析物122a1所發射的光L到達畫素104b。因此,畫素104b中的光電二極體106僅接收來自分析物122a1的光,從而避免串擾。因此,在方向X上可間隔兩個畫素,來將分析物122a放置在生物感測器200上,以避免串擾。光圈結構的開口在方向Y上可小於方向X上,因此在方向Y上可間隔一個畫素,來將分析物122a放置在生物感測器200上,以避免串擾。換句話說,任何兩個相鄰的分析物122a在方向Y彼此間隔一個畫素104且在方向X上彼此間隔兩個畫素104。
在一些實施例中,從第9C圖的俯視圖來看,開口的形狀可為矩形、圓形或三角形,但不限於此。
請參閱第9E圖,第9E和9D圖的實施例之間的差異是,第9E圖的生物感測器200更包含激發光阻擋濾光片112。
儘管第9D和9E圖的生物感測器200包含光圈結構114,但應理解的是,在閱讀以下的示例性實施例後,第9A和9B圖的實施例中所記載的相同概念亦可適用於第9D和9E圖的實施例,為了簡潔起見將不再重複敘述。
第9F圖根據本揭露的一些實施例繪示生物感測器200上的分析物122a的排列的俯視圖。第9G和9H圖繪示第9F圖沿線A-A’的剖面圖,其中第9G圖代表生物化學發光的範例,而第9H圖代表螢光的範例。在此實施例中,假設一個分析物所發出的光可到達與此光下方的畫素相距一個畫素的畫素。舉例而言,如第9F圖所示,畫素1041是在分析物122a1所發射的光L之下,且畫素1042-1049是與畫素1041相距僅一個畫素的畫素。第9F和9A圖的實施例之間的一些差異是生物感測器200包含遮蔽層116且分析物122a同時發射光L。
由於遮蔽層116可反射光L,所以第二畫素104b可接收光L之以第二入射角θ2’進入角度敏感濾光片108的第二部分L2’,其中第二入射角θ2’大於第9A-9E圖中的實施例的第二入射角θ2。第三畫素104c可接收光L之以第三入射角θ3’進入第一彩色濾光片120a的第三部分L3’,其中第三入射角θ3’大於第9A-9E圖中的實施例的第三入射角θ3。舉例而言,第一入射角θ1可為0度至40度。第二入射角θ2’可為40度至85度。第三入射角θ3’可為40度至85度。然而,應理解的是,第一入射角θ1、第二入射角θ2’和第三入射角θ3’是根據分析物、遮蔽層和光電二極體的高度來決定。
第10A圖係根據本揭露的一些實施例的發射或穿透率對波長的分析圖。104A代表以第一入射角θ1或θ1’進入角度敏感濾光片108且被第一畫素104a接收的光的波長。104B代表以第二入射角θ2或θ2’進入角度敏感濾光片108且被第二畫素104b接收的光的波長。104C代表以第三入射角θ3或θ3’進入第一彩色濾光片120a且被第三畫素104c接收的光的波長。Alexa 532、Alexa 568和Alexa 647是三種發出不同光的螢光分子。
基於前述相同的概念,可將訊號強度定義為Pass或No。可根據實際情況設置第一閾值、第二閾值和第三閾值。以下表5是根據上述和第10A圖所述的概念所製成的,其中第一訊號強度由104a表示,第二訊號強度由104b表示,而第三訊號強度由104c表示。 表5
角度敏感濾光片 螢光分子 104a 104b 104c
短通 Alexa 532 Pass Pass Pass
Alexa 568 Pass No Pass
Alexa 647 No No Pass
帶通 Alexa 532 Pass Pass Pass
Alexa 568 Pass No Pass
Alexa 647 No No Pass
長通 Alexa 532 No No Pass
Alexa 568 No Pass Pass
Alexa 647 Pass Pass Pass
如先前所述,可根據第一訊號強度、第二訊號強度和第三訊號強度的定義的組合,來分辨這三種螢光分子。
儘管在此實施例中僅有三種螢光分子,但由於第一訊號強度、第二訊號強度和第三訊號強度的定義有八種組合,所以應理解的是,最多可分辨八種螢光分子。
或者,亦可計算第一訊號強度與第三訊號強度的第一訊號強度比值(以104a/104c表示)和第二訊號強度與第三訊號強度的第二訊號強度比值(以104b/104c表示),來分辨三種不同的螢光分子,即三種不同的光。根據第一訊號強度比值和第二訊號強度比值來繪圖。具體而言,繪製第一訊號強度比值對第二訊號強度比值的群落分佈圖。
舉例而言,第10B圖係根據本揭露的一些實施例之第一訊號強度比值對第二訊號強度比值的分析圖。X軸代表第一訊號強度比值。Y軸代表第二訊號強度比值。Alexa 532以菱形表示。Alexa 568以正方形表示。Alexa 647以三角形表示。
在角度敏感濾光片是短通濾光片的實施例中,Alexa 532、Alexa 568和Alexa 647的資料點分別聚集在圖中的不同位置。因此,若螢光分子位於Alexa 532的資料點聚集的位置,則可知光是由Alexa 532所發射。若螢光分子位於Alexa 568的資料點聚集的位置,則可知光是由Alexa 568所發射。若螢光分子位於Alexa 647的資料點聚集的位置,則可知光是由Alexa 647所發射。
在角度敏感濾光片是帶通濾光片的實施例中,Alexa 532、Alexa 568和Alexa 647的資料點分別聚集在圖中的不同位置。因此,基於上述相同的概念,可根據螢光分子在群落分佈圖中的位置來分辨螢光分子。
在角度敏感濾光片是長通濾光片的實施例中,Alexa 532、Alexa 568和Alexa 647的資料點分別聚集在圖中的不同位置。因此,基於上述相同的概念,可根據螢光分子在群落分佈圖中的位置來分辨螢光分子。
儘管實施例中僅有三種螢光分子,但應理解的是,可分辨超過三種螢光分子。
實施態樣3
在此實施態樣中,生物感測器300包含角度敏感濾光片108、第一彩色濾光片120a和第二彩色濾光片120b。第11A圖繪示生物感測器300上的分析物122a的排列。第11B圖繪示第11A圖沿線A-A’的剖面圖。第11C圖繪示第11A圖沿線B-B’的剖面圖。第11D圖繪示第11A圖沿線C-C’的剖面圖。在此實施例中,假設一個分析物所發出的光可到達與此光下方的畫素相距一個畫素的畫素。換句話說,圍繞此光下方的畫素之最接近的八個畫素。舉例而言,如第11A圖所示,畫素1041是在分析物122a1所發射的光之下,且畫素1042-1049是與畫素1041相距僅一個畫素的畫素。分析物122a1發射的光可到達畫素1041-1049。
如第11A圖所示,在方向X上以第一彩色濾光片/角度敏感濾光片/第二彩色濾光片/角度敏感濾光片的順序,將第一彩色濾光片120a、角度敏感濾光片108、第二彩色濾光片120b設置於基底102上。在垂直於方向X的方向Y上,第一彩色濾光片120a被角度敏感濾光片108所覆蓋的一個畫素隔開。第二彩色濾光片120b被角度敏感濾光片108所覆蓋的一個畫素隔開。換句話說,在方向Y上以第一彩色濾光片/角度敏感濾光片的順序,將第一彩色濾光片120a設置在基底102上,或在方向Y上以第二彩色濾光片/角度敏感濾光片的順序,將第二彩色濾光片120b設置在基底102上。一組畫素S,其包含被第一彩色濾光片120a所覆蓋的一個畫素、被第二彩色濾光片120b所覆蓋的一個畫素以及被角度敏感濾光片108所覆蓋的兩個畫素。被角度敏感濾光片所覆蓋的兩個畫素不被第一彩色濾光片120a或第二彩色濾光片120b隔開。
分析物122a放置在生物感測器300上。一個分析物122a的面積等於或小於一個畫素的面積。
在螢光的情況下,激發光124照射分析物122a或122b (未示出)。激發光124從生物感測器300的一側移動至相對側,如此一來分析物122a將依序而不是同時地被激發且發射光L。舉例而言,激發光124可沿方向X移動。在此實施例中,方向X是在俯視圖中從生物感測器300的左側至右側的方向,如第11A圖所示。
請參閱第11B-11D圖,分析物122a被激發光124激發且發射光L。激發光阻擋濾光片112被設置為阻擋激發光124,如此一來可防止激發光124進入基底102而防止被光電二極體106吸收。如第11D圖所示,光L的第一部分L1以第一入射角θ1進入角度敏感濾光片108。
接收光L的第一部分L1的畫素是第一畫素104a。第一入射角θ1是從0度至光L的第一部分L1可被第一畫素104a接收到的最大入射角的角度。
光L的第二部分L2以第二入射角θ2進入角度敏感濾光片108。接收光L的第二部分L2的畫素是第二畫素104b。第二入射角θ2是從第一入射角θ1的最大入射角至光L的第二部分L2可被第二畫素104b接收到的最大入射角的角度。第一入射角θ1小於第二入射角θ2。
如第11B圖所示,光L的第三部分L3以第三入射角θ3進入角度敏感濾光片108。接收光L的第三部分L3的畫素是第三畫素104c。第三入射角θ3是從第一入射角θ1的最大入射角至光L的第三部分L3可被第三畫素104c接收到的最大入射角的角度。
如第11C圖所示,光L的第四部分L4以第四入射角θ4進入角度敏感濾光片108。接收光L的第四部分L4的畫素是第四畫素104d。第四入射角θ4是從第一入射角θ1的最大入射角至光L的第四部分L4可被第四畫素104d接收到的最大入射角的角度。
在一些實施例中,第一入射角θ1為0度至40度,第二入射角θ2為20度至70度,第三入射角θ3為20度至70度,且第四入射角θ4為20度至70度。在一些實施例中,第一入射角θ1為0至30度,第二入射角θ2為20度至60度,第三入射角θ3為20度至60度,且第四入射角θ4為20度至60度。由於第一入射角θ1小於第二入射角θ2,所以第二部分L2將比第一部分L1,在通過角度敏感濾光片108時,更顯著地發生光譜偏移。
第11E圖根據本揭露的一些實施例繪示生物感測器300上的分析物122a的排列的俯視圖。第11F和11I圖繪示第11E圖沿線A-A’的剖面圖。第11G和11J圖繪示第11E圖沿線B-B’的剖面圖。第11H和11K圖繪示第11A圖沿線C-C’的剖面圖。第11F-11H圖代表生物化學發光的範例,而第11I-11K圖代表螢光的範例。第11E圖和第11A圖的實施例之間的一些差異是,生物感測器300包含光圈結構114,且分析物122a同時發射光L。
如第11E圖所示,光圈結構114包含分別對應至各個分析物122a的複數個開口,如此一來可進一步控制光以僅照射基底102的某些區域。
具體而言,請參閱第11F圖,光圈結構114防止分析物122a1所發射的光L到達畫素1045。請參閱第11G圖,光圈結構114防止分析物122a1所發射的光L到達畫素1047。請參閱第11H圖,光圈結構114防止分析物122a1所發射的光L到達畫素1046。因此,可避免串擾。因此,可間隔一個畫素,來將分析物122a放置在生物感測器300上,以避免串擾。換句話說,任何兩個相鄰的分析物122a彼此間隔一個畫素104。
在一些實施例中,從第11E圖的俯視圖來看,開口的形狀可為矩形、圓形或三角形,但不限於此。
請參閱第11I-11K圖,第11I-11K和11F-11H圖的實施例之間的差異是,生物感測器300更包含激發光阻擋濾光片112。
儘管第11F-11H和11I-11K圖的生物感測器300包含光圈結構114,但應理解的是,在閱讀以下的示例性實施例後,第11A-11D圖的實施例中所記載的相同概念亦可適用於第11F-11H和11I-11K圖的實施例,為了簡潔起見將不再重複敘述。
第11L圖根據本揭露的一些實施例繪示生物感測器300上的分析物122a的排列的俯視圖。第11M和11P圖繪示第11L圖沿線A-A’的剖面圖。第11N和11Q圖繪示第11L圖沿線B-B’的剖面圖。第11O和11R圖繪示第11A圖沿線C-C’的剖面圖。第11M-11O圖代表生物化學發光的範例,而第11P-11R圖代表螢光的範例。第11L圖和第11A圖的實施例之間的一些差異是,生物感測器300包含遮蔽層116,且分析物122a同時發射光L。
由於遮蔽層116可反射光L,所以第一畫素104a可接收光L之以第一入射角θ1’進入角度敏感濾光片108的第一部分L1’ (如第11O和11R圖所示),其中第一入射角θ1’大於第11A-11K圖中的實施例的第一入射角θ1。第二畫素104b亦可接收光L之以第二入射角θ2’進入角度敏感濾光片108的第二部分L2’ (如第11O和11R圖所示),其中第二入射角θ2’大於第11A-11K圖中的實施例的第二入射角θ2。第三畫素104c亦可接收光L之以第三入射角θ3’進入第一彩色濾光片120a的第三部分L3’ (如第11M和11P圖所示),其中第三入射角θ3’大於第11A-11K圖中的實施例的第三入射角θ3。第四畫素104d亦可接收光L之以第四入射角θ4’進入第二彩色濾光片120b的第四部分L4’ (如第11N和11Q圖所示),其中第四入射角θ4’大於第11A-11K圖中的實施例的第四入射角θ4。舉例而言,第一入射角θ1’可為0度至60度。第二入射角θ2’可為40度至85度。第三入射角θ3’可為40度至85度。第四入射角θ4’可為40度至85度。然而,應理解的是,第一入射角θ1’、第二入射角θ2’、第三入射角θ3’和第四入射角θ4’是根據分析物、遮蔽層和光電二極體的高度來決定。
第12A圖係根據本揭露的一些實施例的發射或穿透率對波長的分析圖。104A代表以第一入射角θ1或θ1’進入角度敏感濾光片108且被第一畫素104a接收的光的波長。104B代表以第二入射角θ2或θ2’進入角度敏感濾光片108且被第二畫素104b接收的光的波長。104C代表以第三入射角θ3或θ3’進入第一彩色濾光片120a且被第三畫素104c接收的光的波長。104D代表以第四入射角θ4或θ4’進入第二彩色濾光片120b且被第四畫素104d接收的光的波長。Alexa 488、Alexa 532、eFluor 610和Alexa 647是四種發出不同光的螢光分子。從第一畫素104a獲得光L的第一部分L1或L1’的第一訊號強度。從第二畫素104b獲得光L的第二部分L2或L2’的第二訊號強度。從第三畫素104c獲得光L的第三部分L3或L3’的第三訊號強度。從第四畫素104d獲得光L的第四部分L4或L4’的第四訊號強度。104A的曲線下面積(area under curve,AUC)與Alexa 488的AUC之間的重疊區域代表Alexa 488的第一訊號強度,104B的AUC和Alexa 488的AUC之間的重疊區域代表Alexa 488的第二訊號強度,104C的AUC和Alexa 488的AUC之間的重疊區域代表Alexa 488的第三訊號強度,而104D的AUC和Alexa 488的AUC之間的重疊區域代表Alexa 488的第四訊號強度。基於相同的概念,Alexa 532、eFluor 610和Alexa 647具有第一訊號強度、第二訊號強度、第三訊號強度和第四訊號強度。
基於前述相同的概念,可將訊號強度定義為Pass或No。以下表6是根據上述和第12A圖所述的概念所製成的,其中第一訊號強度由104a表示,第二訊號強度由104b表示,第三訊號強度由104c表示,而第四訊號強度由104d表示。 表6
角度敏感濾光片 螢光分子 104a 104b 104c 104d
短通 Alexa 488 Pass Pass No Pass
Alexa 532 Pass Pass Pass Pass
eFluor 610 Pass No Pass Pass
Alexa 647 No No Pass Pass
帶通 Alexa 488 No Pass No Pass
Alexa 532 Pass Pass Pass Pass
eFluor 610 Pass No Pass Pass
Alexa 647 No No Pass Pass
長通 Alexa 488 No No No Pass
Alexa 532 No No Pass Pass
eFluor 610 No Pass Pass Pass
Alexa 647 Pass Pass Pass Pass
如先前所述,可根據第一訊號強度、第二訊號強度、第三訊號強度和第四訊號強度的定義的組合,來分辨這四種螢光分子。
儘管在此實施例中僅有四種螢光分子,但由於第一訊號強度、第二訊號強度、第三訊號強度和第四訊號強度的定義有十六種組合,所以應理解的是,最多可分辨十六種螢光分子。
或者,亦可計算第一訊號強度與第四訊號強度的第一訊號強度比值(以104a/104d表示)、第二訊號強度與第四訊號強度的第二訊號強度比值(以104b/104d表示)和第三訊號強度與第四訊號強度的第三訊號強度比值(以104c/104d表示),來分辨四種不同的螢光分子,即三種不同的光。根據第一訊號強度比值、第二訊號強度比值和第三訊號強度比值來繪圖。具體而言,繪製第一訊號強度比值對第二訊號強度比值對第三訊號強度比值的群落分佈圖。
舉例而言,第12B圖係根據本揭露的一些實施例之第一訊號強度比值對第二訊號強度比值對第三訊號強度比值的分析圖。X軸代表第一訊號強度比值。Y軸代表第三訊號強度比值。Z軸代表第二訊號強度比值。Alexa 488以五角形表示。Alexa 532以三角形表示。eFluor 610以正方形表示。Alexa 647以星形表示。
在角度敏感濾光片是短通濾光片的實施例中,Alexa 488、Alexa 532、eFluor 610和Alexa 647的資料點分別聚集在圖中的不同位置。因此,可取決於螢光分子於群落分佈圖中的位置,來分辨螢光分子。
在角度敏感濾光片是帶通濾光片的實施例中,Alexa 488、Alexa 532、eFluor 610和Alexa 647的資料點分別聚集在圖中的不同位置。因此,可取決於螢光分子於群落分佈圖中的位置,來分辨螢光分子。
在角度敏感濾光片是長通濾光片的實施例中,Alexa 488、Alexa 532、eFluor 610和Alexa 647的資料點分別聚集在圖中的不同位置。因此,可取決於螢光分子於群落分佈圖中的位置,來分辨螢光分子。
儘管實施例中只有四種螢光分子,但應理解的是,可分辨超過四種螢光分子。
儘管在圖式中未繪示出分析物122b的實施例,但可理解的是,分析物122b可放置在本案實施例所提供的生物感測器上。
綜上所述,本揭露的實施例提供的生物感測器及光的分辨方法的優點至少包含以下一或多個: (1)本案的生物感測器利用了在先前技術中被認為是缺點的由角度​​敏感濾光片所引起的光譜偏移的特性,來分辨不同的光。 (2)藉由設置波導器、光圈結構或遮蔽層,可更好地避免串擾。 (3)由於第一彩色濾光片和第二彩色濾光片的面積小於或等於一個畫素的面積,有機濾光片材料可完全地嵌入於周圍的角度敏感濾光片中,以提供強大的化學和機械耐性。再者,有機濾光片的尺寸縮小可確保來自生物樣品的發射光可通過角度敏感濾光片至對角的光電二極體而不會有因第一和第二彩色濾光片而產生的不連續性。
雖然本發明的實施例及其優點已揭露如上,但應該瞭解的是,本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作更動、替代與潤飾。此外,本發明之保護範圍並未侷限於說明書內所述特定實施例中的製程、機器、製造、物質組成、裝置、方法及步驟,本發明所屬技術領域中具有通常知識者可從本發明實施例內容中理解,現行或未來所發展出的製程、機器、製造、物質組成、裝置、方法及步驟,只要可以與在此處所述實施例中實現大抵相同功能或獲得大抵相同結果者皆可根據本發明實施例使用。因此,本發明之保護範圍包括上述製程、機器、製造、物質組成、裝置、方法及步驟。此外,本發明之保護範圍當視後附之申請專利範圍所界定為準。
100,200,300:生物感測器 102:基底 104,1041-1049:畫素 104a:第一畫素 104b:第二畫素 104c:第三畫素 104d:第四畫素 106:光電二極體 108:角度敏感濾光片 110:樣品固定層 112:激發光阻擋濾光片 114:光圈結構 116:遮蔽層 118:波導器 120a:第一彩色濾光片 120b:第二彩色濾光片 122a,122a1,122a2,122b:分析物 θ1,θ1’:第一入射角 θ2,θ2’:第二入射角 θ3,θ3’:第三入射角 θ4,θ4’:第四入射角 A-A’,B-B’,C-C’:線 L1,L1’:第一部分 L2,L2’:第二部分 L3,L3’:第三部分 L4,L4’:第四部分 S:畫素組 X,Y:方向
藉由閱讀後續的實施方式和範例並參考所附圖式,可更完全地理解本發明,其中: 第1圖根據本揭露的一些實施例繪示生物感測器的俯視圖。 第2A-2J圖根據本揭露的一些實施例繪示第1圖的生物感測器的剖面圖。 第3圖根據本揭露的一些實施例繪示生物感測器的俯視圖。 第4A-4J圖根據本揭露的一些實施例繪示第3圖的生物感測器的剖面圖。 第5圖根據本揭露的一些實施例繪示生物感測器的俯視圖。 第6A-6J圖根據本揭露的一些實施例繪示第5圖的生物感測器的剖面圖。 第6K圖根據本揭露的一些實施例繪示生物感測器的俯視圖。 第7A圖根據本揭露的一些實施例繪示生物感測器的俯視圖。 第7B圖根據本揭露的一些實施例繪示第7A圖的生物感測器的剖面圖。 第7C圖根據本揭露的另一些實施例繪示第7A圖的生物感測器的剖面圖。 第7D圖根據本揭露的一些實施例繪示生物感測器的俯視圖。 第7E-7F圖根據本揭露的一些實施例繪示第7D圖的生物感測器的剖面圖。 第7G圖根據本揭露的一些實施例繪示生物感測器的俯視圖。 第7H-7I圖根據本揭露的一些實施例繪示第7G圖的生物感測器的剖面圖。 第7J圖根據本揭露的一些實施例繪示生物感測器的俯視圖。 第7K-7L圖根據本揭露的一些實施例繪示第7J圖的生物感測器的剖面圖。 第8A-8C圖係根據本揭露的一些實施例的發射或穿透率對波長的分析圖。 第9A圖根據本揭露的一些實施例繪示生物感測器的俯視圖。 第9B圖根據本揭露的一些實施例繪示第9A圖的生物感測器的剖面圖。 第9C圖根據本揭露的一些實施例繪示生物感測器的俯視圖。 第9D-9E圖根據本揭露的一些實施例繪示第9C圖的生物感測器的剖面圖。 第9F圖根據本揭露的一些實施例繪示生物感測器的俯視圖。 第9G-9H圖根據本揭露的一些實施例繪示第9F圖的生物感測器的剖面圖。 第10A圖係根據本揭露的一些實施例的發射或穿透率對波長的分析圖。 第10B圖係根據本揭露的一些實施例的一比值對另一者的分析圖。 第11A圖根據本揭露的一些實施例繪示生物感測器的俯視圖。 第11B-11D圖根據本揭露的一些實施例繪示第11A圖的生物感測器的剖面圖。 第11E圖根據本揭露的一些實施例繪示生物感測器的俯視圖。 第11F-11H圖根據本揭露的一些實施例繪示第11E圖的生物感測器的剖面圖。 第11I-11K圖根據本揭露的一些實施例繪示第11E圖的生物感測器的剖面圖。 第11L圖根據本揭露的一些實施例繪示生物感測器的俯視圖。 第11M-11O圖根據本揭露的一些實施例繪示第11L圖的生物感測器的剖面圖。 第11P-11R圖根據本揭露的另一些實施例繪示第11L圖的生物感測器的剖面圖。 第12A圖係根據本揭露的一些實施例的發射或穿透率對波長的分析圖。 第12B圖係根據本揭露的一些實施例的三個比值對彼此的分析圖。
102:基底
104:畫素
106:光電二極體
108:角度敏感濾光層
110:樣品固定層
A-A’:線

Claims (15)

  1. 一種生物感測器,包括:一基底;一第一光電二極體和一第二光電二極體,設置於該基底中且分別定義出一第一畫素和一第二畫素,其中該第一畫素和該第二畫素接收一分析物所發出的一光,且其中該分析物對應固定於該第一畫素正上方;一角度敏感濾光片,設置於該基底上;一樣品固定層,設置於該角度敏感濾光片上;以及一光圈結構,嵌入於該樣品固定層中。
  2. 如請求項1所述之生物感測器,其中該第一畫素接收該光的一第一部分且該第二畫素接收該光的一第二部分,且其中該第一部分以一第一入射角進入該角度敏感濾光片,該第二部分以一第二入射角進入該角度敏感濾光片,且該第一入射角小於該第二入射角。
  3. 如請求項2所述之生物感測器,其中該第一入射角為0度至60度,且該第二入射角為等於或小於85度。
  4. 如請求項1所述之生物感測器,更包括一激發光阻擋濾光片,設置於該角度敏感濾光片上。
  5. 如請求項1所述之生物感測器,更包括一波導器,設置於該光圈結構上。
  6. 如請求項1所述之生物感測器,其中該角度敏感濾光片為高和低折射率的介電材料交替沉積的一介電干涉濾光片、一電漿濾光片或一介電超表面結構,且其中該角度敏感濾光片為一短 通濾光片、一帶通濾光片、一長通濾光片或一多帶通濾光片。
  7. 如請求項2所述之生物感測器,更包括:一第三光電二極體,設置於該基底中且定義出一第三畫素;以及一第一彩色濾光片,設置於鄰近該角度敏感濾光片且對應至該第三畫素。
  8. 如請求項7所述之生物感測器,更包括:一第四光電二極體,設置於該基底中且定義出一第四畫素;以及一第二彩色濾光片,設置於鄰近該角度敏感濾光片且對應至該第四畫素。
  9. 如請求項1所述之生物感測器,更包括一遮蔽層,圍繞該角度敏感濾光片,其中該第一畫素接收該光的一第一部分且該第二畫素接收該光的一第二部分,且其中該遮蔽層包括一具有高反射率的材料。
  10. 一種光的分辨方法,包括:放置一分析物於請求項2所述之生物感測器;使該分析物發出該光;獲得該光的該第一部分的一第一訊號強度和該光的該第二部分的一第二訊號強度;以及根據該第一訊號強度和該第二訊號強度,來分辨該光。
  11. 如請求項10所述之光的分辨方法,其中根據該第一訊號強度和該第二訊號強度,來分辨該光的該步驟包括:取決於該第一訊號強度是否高於或低於一第一閾值,來將該第一訊號強度定義為Pass或No;取決於該第二訊號強度是否高於或低於一第二閾值,來將該第二 訊號強度定義為Pass或No;以及根據該第一訊號強度和該第二訊號強度的該些定義的一組合,來分辨該光。
  12. 如請求項10所述之光的分辨方法,其中根據該第一訊號強度和該第二訊號強度,來分辨該光的該步驟包括:計算該第二訊號強度和該第一訊號強度的一第一訊號強度比值;取決於該第一訊號強度比值是否高於或低於一預定比值,來將該第一訊號強度比值定義為H或L;根據該第一訊號強度比值的該定義,來分辨該光。
  13. 一種光的分辨方法,包括:放置一分析物於請求項7所述之生物感測器,其中該第一彩色濾光片被該光的一第三部分照射,且該第三畫素接收該光的該第三部分,該光的該第三部分以一第三入射角進入該彩色濾光片,該第三入射角與該第一入射角不同;使該分析物發出該光;獲得該光的該第一部分的一第一訊號強度、該光的該第二部分的一第二訊號強度和該光的該第三部分的一第三訊號強度;以及根據該第一訊號強度、該第二訊號強度和該第三訊號強度其本身大小或其中二者的比值,來分辨該光。
  14. 如請求項13所述之光的分辨方法,其中根據該第一訊號強度、該第二訊號強度和該第三訊號強度,來分辨該光的該步驟包括:取決於該些訊號強度是否分別高於或低於各自的一閾值,來將該些訊號強度分別定義為Pass或No; 根據該第一訊號強度、該第二訊號強度和該第三訊號強度的該些定義的一組合,來分辨該光。
  15. 如請求項13所述之光的分辨方法,其中根據該第一訊號強度、該第二訊號強度和該第三訊號強度,來分辨該光的該步驟包括:計算該第一訊號強度和該第三訊號強度的一第一訊號強度比值與該第二訊號強度和該第三訊號強度的一第二訊號強度比值;繪製該一訊號強度比值和該第二訊號強度比值的一群落分佈圖;以及根據該群落分佈圖,來分辨該光。
TW109113770A 2019-10-10 2020-04-24 生物感測器及光的分辨方法 TWI784264B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/598,576 2019-10-10
US16/598,576 US11705472B2 (en) 2019-10-10 2019-10-10 Biosensor and method of distinguishing a light

Publications (2)

Publication Number Publication Date
TW202115380A TW202115380A (zh) 2021-04-16
TWI784264B true TWI784264B (zh) 2022-11-21

Family

ID=68653382

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109113770A TWI784264B (zh) 2019-10-10 2020-04-24 生物感測器及光的分辨方法

Country Status (5)

Country Link
US (1) US11705472B2 (zh)
EP (1) EP3805738A1 (zh)
JP (1) JP7079802B2 (zh)
CN (1) CN112649365A (zh)
TW (1) TWI784264B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11703445B2 (en) * 2021-05-28 2023-07-18 Visera Technologies Company Limited Biosensor with grating array
CN114488525B (zh) * 2022-04-15 2022-08-23 中国科学院光电技术研究所 一种超构表面成像系统、设计方法和探测器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040234417A1 (en) * 2001-09-17 2004-11-25 Infineon Technologies Ag Fluorescence biosensor chip and fluorescence biosensor chip arrangement
US8637436B2 (en) * 2006-08-24 2014-01-28 California Institute Of Technology Integrated semiconductor bioarray
CN107533005A (zh) * 2015-04-22 2018-01-02 深圳源光科技有限公司 生物感测器

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0244394B1 (de) 1986-04-23 1992-06-17 AVL Medical Instruments AG Sensorelement zur Bestimmung von Stoffkonzentrationen
US5606633A (en) 1995-06-26 1997-02-25 American Research Corporation Of Virginia Chemical detector employing surface plasmon resonance excited using an optical waveguide configured as an asymmetric waveguide coupler
JP4534352B2 (ja) 2000-12-27 2010-09-01 株式会社ニコン 有機分子検出用半導体素子、有機分子検出用半導体装置及びこれを用いた有機分子の測定方法
JP2002350347A (ja) 2001-05-22 2002-12-04 Matsushita Electric Ind Co Ltd 蛍光検出装置
JP2004361256A (ja) 2003-06-05 2004-12-24 Aisin Seiki Co Ltd 表面プラズモン共鳴センサー及び表面プラズモン共鳴測定装置
JP4802508B2 (ja) 2004-06-18 2011-10-26 カシオ計算機株式会社 撮像装置、生体高分子分析チップ及び分析支援装置
FR2892196B1 (fr) 2005-10-18 2008-06-20 Genewave Soc Par Actions Simpl Procede de fabrication d'un biocapteur a detection integree
JP4909656B2 (ja) 2006-06-26 2012-04-04 富士フイルム株式会社 Dna解析用デバイス、dna解析装置
US20100055666A1 (en) 2007-02-08 2010-03-04 Koninklijke Philips Electronics N.V. Biosensor with evanescent waveguide and integrated sensor
WO2009063408A1 (en) * 2007-11-16 2009-05-22 Nxp B.V. A biosensor device and a method of manufacturing the same
JP2009204486A (ja) 2008-02-28 2009-09-10 Fujifilm Corp センシング装置及び物質検出方法
JP2009222583A (ja) 2008-03-17 2009-10-01 Casio Comput Co Ltd 撮像装置、生体高分子分析チップ及び分析方法
KR101065077B1 (ko) 2008-11-05 2011-09-15 삼성전자주식회사 시료 검출용 기판, 이를 채용한 바이오칩, 시료 검출용 기판의 제조방법 및 바이오 물질 검출장치
US20100122904A1 (en) 2008-11-17 2010-05-20 Board Of Regents, The University Of Texas System Incorporating cmos integrated circuits in the design of affinity-based biosensor systems
JP4798232B2 (ja) 2009-02-10 2011-10-19 ソニー株式会社 固体撮像装置とその製造方法、及び電子機器
JP5310373B2 (ja) 2009-05-14 2013-10-09 ソニー株式会社 光学的検出装置
US8330840B2 (en) * 2009-08-06 2012-12-11 Aptina Imaging Corporation Image sensor with multilayer interference filters
US8026559B2 (en) * 2009-11-27 2011-09-27 Visera Technologies Company Limited Biosensor devices and method for fabricating the same
JP6299058B2 (ja) 2011-03-02 2018-03-28 ソニー株式会社 固体撮像装置、固体撮像装置の製造方法及び電子機器
JP2013088378A (ja) 2011-10-21 2013-05-13 Sony Corp ケミカルセンサ、ケミカルセンサモジュール、生体分子検出装置及び生体分子検出方法
JP2013092393A (ja) 2011-10-24 2013-05-16 Sony Corp ケミカルセンサ、生体分子検出装置及び生体分子検出方法
JP6011544B2 (ja) 2011-11-30 2016-10-19 ソニー株式会社 ケミカルセンサ、ケミカルセンサモジュール、化学物質検出装置及び化学物質検出方法
EP3974814A1 (en) 2013-11-17 2022-03-30 Quantum-si Incorporated Integrated device with external light source for probing detecting and analyzing molecules
CN110411998B (zh) * 2013-12-10 2022-06-07 伊鲁米那股份有限公司 用于生物或化学分析的生物传感器及其制造方法
KR102209097B1 (ko) 2014-02-27 2021-01-28 삼성전자주식회사 이미지 센서 및 이의 제조 방법
US10119915B2 (en) 2015-04-09 2018-11-06 Visera Technologies Company Limited Detection device for specimens
US9968927B2 (en) * 2015-05-22 2018-05-15 Taiwan Semiconductor Manufacturing Co., Ltd. Optical biosensor device
US10436711B2 (en) 2015-07-21 2019-10-08 Ecole Polytechnique Federale De Lausanne (Epfl) Plasmonic nanohole arrays on hybrid substrate for highly sensitive label-free biosensing
EP3387414A4 (en) * 2015-12-07 2019-07-10 Shenzhen Genorivision Technology Co., Ltd. BIOSENSOR
JP2017183388A (ja) 2016-03-29 2017-10-05 ソニー株式会社 固体撮像装置
TWI826089B (zh) 2016-11-03 2023-12-11 大陸商深圳華大智造科技有限公司 用於生物或化學分析的生物感測器以及製造其的方法
CN110506336B (zh) 2017-03-20 2024-02-02 深圳华大智造科技股份有限公司 用于生物或化学分析的生物传感器及其制造方法
US10670784B2 (en) * 2017-05-17 2020-06-02 Visera Technologies Company Limited Light filter structure and image sensor
US10451783B2 (en) * 2017-05-22 2019-10-22 Viavi Solutions Inc. Induced transmission filter having plural groups of alternating layers of dielectric material for filtering light with less than a threshold angle shift
KR20200028474A (ko) 2017-07-24 2020-03-16 퀀텀-에스아이 인코포레이티드 광학 거부 광자 구조체들
EP3460456B1 (en) 2017-09-20 2020-08-26 IMEC vzw A biosensor system for detecting supercritical angle fluorescent light
SG10201800240YA (en) * 2018-01-10 2019-08-27 Delta Electronics Int’L Singapore Pte Ltd Multi-color fluorescence detection device
FR3082322B1 (fr) * 2018-06-08 2020-07-31 Commissariat A L Energie Atomique Et Aux Energies Alternatives Capteurs d'images comprenant une matrice de filtres interferentiels
KR20210028808A (ko) * 2019-09-04 2021-03-15 삼성전자주식회사 이미지 센서 및 이를 포함하는 촬상 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040234417A1 (en) * 2001-09-17 2004-11-25 Infineon Technologies Ag Fluorescence biosensor chip and fluorescence biosensor chip arrangement
US8637436B2 (en) * 2006-08-24 2014-01-28 California Institute Of Technology Integrated semiconductor bioarray
CN107533005A (zh) * 2015-04-22 2018-01-02 深圳源光科技有限公司 生物感测器

Also Published As

Publication number Publication date
EP3805738A1 (en) 2021-04-14
CN112649365A (zh) 2021-04-13
US20210111216A1 (en) 2021-04-15
JP2021063792A (ja) 2021-04-22
US11705472B2 (en) 2023-07-18
JP7079802B2 (ja) 2022-06-02
TW202115380A (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
US20230175060A1 (en) Optics Collection and Detection System and Method
US11467089B2 (en) Arrays of integrated analytical devices
US9410887B2 (en) Optical sensor for analyte detection
TWI784264B (zh) 生物感測器及光的分辨方法
WO2013061529A1 (ja) ケミカルセンサ、生体分子検出装置及び生体分子検出方法
TWI775256B (zh) 生物晶片、生物偵測系統及生物偵測方法
TWI747277B (zh) 感測器裝置及其製造方法
TWI751715B (zh) 生物感測器及其形成方法
TWI796556B (zh) 生物感測器
EP4095516B1 (en) Biosensor with grating array
US20170122939A1 (en) Optical sensor for analyte detection
Hsieh et al. Biosensor