TWI783901B - 資訊處理系統、資訊處理方法及程式產品 - Google Patents
資訊處理系統、資訊處理方法及程式產品 Download PDFInfo
- Publication number
- TWI783901B TWI783901B TW111116026A TW111116026A TWI783901B TW I783901 B TWI783901 B TW I783901B TW 111116026 A TW111116026 A TW 111116026A TW 111116026 A TW111116026 A TW 111116026A TW I783901 B TWI783901 B TW I783901B
- Authority
- TW
- Taiwan
- Prior art keywords
- designated
- stores
- store
- information processing
- geographical
- Prior art date
Links
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Hardware Redundancy (AREA)
- Debugging And Monitoring (AREA)
Abstract
[課題]以抽出準確度更高的潛在顧客為課題。
[解決手段]資訊處理系統中係具備:設定部(21),係基於指定店舖(DS1)中的行動之履歷係為已被記錄之使用者也就是既有顧客之屬性,而設定指定店舖(DS1)所存在之地理範圍(AR1);和抽出部(22),係將地理範圍(AR1)中所存在之指定外店舖(SH1至SH3)中的行動之履歷係為已被記錄之使用者,視為指定店舖之潛在顧客而予以抽出。
Description
本揭露係有關於,用來抽出潛在顧客所需之技術。
先前,為了促進使用者之購買而將地理資訊予以活用的技術,已有多種被提出(參照專利文獻1至6)。
[先前技術文獻]
[非專利文獻]
[專利文獻1]日本特開2003-241651號公報
[專利文獻2]日本專利6250557號公報
[專利文獻3]日本特開2017-207854號公報
[專利文獻4]日本特開2013-33353號公報
[專利文獻5]日本特開2012-190395號公報
[專利文獻6]日本特開2002-73946號公報
[發明所欲解決之課題]
先前是基於使用者之屬性或地理條件等而進行潛在顧客(預期顧客)之抽出。可是,先前的抽出方法,係僅單純把使用者之屬性或地理條件用於潛在顧客之濾出,忽略了使用者之屬性與地理條件是呈彼此關連之事實,因此所被抽出的潛在顧客之準確度上會存有課題。
本揭露係有鑑於上記問題而研發,其課題在於,抽出準確度更高的潛在顧客。
[用以解決課題之手段]
本揭露之一例係為,一種資訊處理系統,係具備:設定手段,係用以基於已被指定之實體店舖也就是指定店舖中的行動之履歷係為已被記錄之使用者也就是既有顧客之屬性,而設定該指定店舖所存在之地理範圍;和抽出手段,係用以將前記地理範圍中所存在之非前記指定店舖之實體店舖也就是指定外店舖中的行動之履歷係為已被記錄之使用者,視為前記指定店舖之潛在顧客而予以抽出。
本揭露係可作為藉由資訊處理裝置、系統、電腦而被執行的方法或令電腦執行的程式,而加以界定。又,本揭露係也可作為將此種程式記錄至電腦或其他裝置、機械等可讀取之記錄媒體,而加以界定。此處,所謂電腦等可讀取之記錄媒體,係指將資料或程式等之資訊以電性、磁性、光學性、機械性或化學性作用而加以積存,並可從電腦等加以讀取的記錄媒體。
[發明效果]
若依據本揭露,則可抽出準確度更高的潛在顧客。
以下,將本揭露所述之資訊處理系統、資訊處理方法及程式產品的實施形態,基於圖式而加以說明。但是,以下所說明的實施形態,係僅為例示實施形態,本揭露所涉及的資訊處理系統、資訊處理方法及程式產品並非限定於以下所說明的具體構成。在實施之際,可因應實施之態樣而適宜採用具體構成,又,可進行各種的改良或變形。
在本實施形態中是說明,將本揭露所涉及之技術,實施於對使用者配送促銷資訊(優惠券或折扣資訊等)所需之系統中之情況的實施形態。但是,本揭露所涉及之技術,係可廣泛使用於用來抽出滿足所定條件之使用者所需之技術,本揭露的適用對象係不限定於實施形態中所示的例子。
<系統的構成>
圖1係為本實施形態所述之系統的構成的概略圖。本實施形態所述之系統係具備:藉由被連接至網路而可相互通訊的資訊處理裝置1、點數管理伺服器3、使用者資料庫4、店舖資料庫5、地理資訊管理伺服器6、1或複數個使用者終端9。
資訊處理裝置1,係為具備:CPU(Central Processing Unit)11、ROM(Read Only Memory)12、RAM(Random Access Memory)13、EEPROM(Electrically Erasable and Programmable Read Only Memory)或HDD(Hard Disk Drive)等之記憶裝置14、NIC(Network Interface Card)等之通訊單元15等的電腦。但是,關於資訊處理裝置1的具體的硬體構成,係因應實施的態樣而可適宜地省略或置換、追加。又,資訊處理裝置1係不限定於由單一的框體所成的裝置。資訊處理裝置1,係可藉由使用所謂雲端或分散運算之技術等的複數個裝置來加以實現。
點數管理伺服器3,係為本實施形態中所被提供之點數服務的作為提供主體的伺服器。點數管理伺服器3,係為具備CPU、ROM、RAM、記憶裝置、通訊單元、輸入裝置、輸出裝置等(圖示省略)的電腦。但是,關於點數管理伺服器3的具體的硬體構成,係因應實施的態樣而可適宜地省略或置換、追加。又,點數管理伺服器3,係不限定於由單一的框體所成的裝置。點數管理伺服器3,係可藉由使用所謂雲端或分散運算之技術等的複數個裝置來加以實現。
點數管理伺服器3,係隨應於對點數服務進行加盟或合作的店舖中的,接受點數服務的使用者所致之結帳等,而執行點數之賦予/使用。此外,點數之賦予/使用的對象係不限定於結帳,點數亦可基於其他的使用者行動(例如來店並打卡等),而被賦予/使用。一般而言,點數之賦予/使用,係隨應於來自店舖之POS系統的通知或來自使用者終端中所被執行的點數應用程式的通知而被執行,但關於詳細的處理內容係省略說明。
使用者資料庫4係為,將接受點數管理伺服器3所提供之點數服務的使用者的使用者資料加以積存,並進行管理所需之資料庫。又,於使用者資料庫4中,對各使用者資料,係將各使用者於店舖中的行動之履歷(細節將於後述)加以綁定而管理,資訊處理裝置1或使用者資料庫4,係可將各使用者於店舖中的行動之履歷,從管理這些履歷的各種伺服器(亦可為外部伺服器或外部服務)適宜地加以取得。例如,使用者資料庫4,係可對點數管理伺服器3進行存取,以取得對使用者的點數賦予/使用狀況資訊(包含已被賦予/使用的點數量、點數所被賦予/使用的日期時間、點數所被賦予/使用的店舖之店舖ID等)。使用者資料庫4,係為具備CPU、ROM、RAM、記憶裝置、通訊單元、輸入裝置、輸出裝置等(圖示省略)的電腦。但是,關於使用者資料庫4的具體的硬體構成,係因應實施的態樣而可適宜地省略或置換、追加。又,使用者資料庫4係不限定於由單一的框體所成的裝置。使用者資料庫4,係可藉由使用所謂雲端或分散運算之技術等的複數個裝置來加以實現。
於本實施形態中,使用者資料係為,對使用者ID,而將:名稱、地址(可包含:字串所致之地址表示、地址代碼、郵遞區號)、資訊配送目的地(郵件位址、對智慧型手機應用程式的推播通知用的裝置權杖等)、及該當使用者之其他屬性(包含後述的人口統計屬性、心理屬性、行為屬性)予以建立關連而成的資料。
店舖資料庫5係為,將對點數管理伺服器3所提供之點數服務進行加盟或合作的店舖之店舖資料加以積存,並進行管理所需之資料庫。店舖資料庫5,係為具備CPU、ROM、RAM、記憶裝置、通訊單元、輸入裝置、輸出裝置等(圖示省略)的電腦。但是,關於店舖資料庫5的具體的硬體構成,係因應實施的態樣而可適宜地省略或置換、追加。又,店舖資料庫5,係不限定於由單一的框體所成的裝置。店舖資料庫5,係可藉由使用所謂雲端或分散運算之技術等的複數個裝置來加以實現。
於本實施形態中,店舖資料係為,對店舖ID,而將:名稱、地址(可包含:字串所致之地址表示、地址代碼、郵遞區號)、位置資訊、聯絡方式(可為電話號碼或郵件位址等)、群組ID、關連企業、業種、可利用之結帳手段及該當店舖之其他屬性(包含後述的地理屬性)予以建立關連而成的資料。
地理資訊管理伺服器6係為,隨應於查詢,而將可供判定地址或位置資訊與地理範圍之關係的資訊進行提供的伺服器。地理資訊管理伺服器6,係為具備CPU、ROM、RAM、記憶裝置、通訊單元、輸入裝置、輸出裝置等(圖示省略)的電腦。但是,關於地理資訊管理伺服器6的具體的硬體構成,係因應實施的態樣而可適宜地省略或置換、追加。又,地理資訊管理伺服器6,係不限定於由單一的框體所成的裝置。地理資訊管理伺服器6,係可藉由使用所謂雲端或分散運算之技術等的複數個裝置來加以實現。
於本實施形態中,地理資訊管理伺服器6,係隨應於來自資訊處理裝置1、點數管理伺服器3、使用者資料庫4、店舖資料庫5、或使用者終端9的,表示店舖之地址或位置資訊與地理範圍的查詢,而將用來判定查詢所涉及之店舖是否存在於查詢所涉及之地理範圍中所需之資訊,予以回覆。
使用者終端9,係為被使用者所使用的終端裝置。使用者終端9,係為具備CPU、ROM、RAM、記憶裝置、通訊單元、輸入裝置、輸出裝置等(圖示省略)的電腦。但是,關於使用者終端9的具體的硬體構成,係因應實施的態樣而可適宜地省略或置換、追加。又,使用者終端9,係不限定於由單一的框體所成的裝置。使用者終端9,係可藉由使用所謂雲端或分散運算之技術等的複數個裝置來加以實現。使用者,係透過這些使用者終端9,而利用由本實施形態所述之系統所提供的各種服務。
圖2係本實施形態所述之資訊處理系統的機能構成之概略的圖示。資訊處理裝置1,係藉由將記憶裝置14中所被記錄的程式,讀出至RAM13中,並藉由CPU11來加以執行,以控制資訊處理裝置1中所具備的各硬體,藉此而成為具備設定部21、抽出部22、及促銷資訊配送部23的資訊處理裝置而發揮機能。此外,在本實施形態及後述的其他實施形態中,資訊處理裝置1所具備的各機能,係藉由通用處理器也就是CPU11而被執行,但這些機能的部分或全部係亦可藉由1或複數個專用處理器而被執行。
先前,例如從對點數服務進行加盟或合作的店舖所收集到的POS(point of sale)資料,在試圖進行其活用之際,係使用所收集到的POS資料來做市場區隔(segmentation),基於其而進行市場行銷(促銷)。可是,想要貼近沒有利用自家公司店舖但於自家公司店舖之周邊留下了商務交易等之行動履歷(足跡)的顧客,對於如此需求的解決方案,仍有改善的餘地。例如,在點數服務之使用者中,想定會有異於使用者之住址而另有經濟活動蓬勃的地區存在,而於此種地區中的市場區隔,係被需求。於是,本實施形態所述之系統,係將特定地區之店舖中的電子性額值之履歷加以統計,將把該地區當作活動範圍的使用者,視為潛在顧客而予以抽出,進行如此的市場區隔。
設定部21,係基於從潛在顧客抽出服務之利用者而被任意指定的實體店舖(任意之實體店舖。以下稱作「指定店舖」)之既有顧客之屬性,而設定該指定店舖所存在之地理範圍。此處,所謂店舖之既有顧客係為,有對該當店舖的來訪之履歷或在該當店舖中的商品/服務購入等之商務交易所伴隨之履歷等,於該當店舖中的行動之履歷係為已被記錄之使用者。
在本實施形態中,作為店舖中的行動之履歷是使用商務交易之履歷,又,作為商務交易所伴隨之履歷是使用電子性額值之賦予履歷,但商務交易所伴隨之履歷,係只要是能夠確認使用者於該當店舖曾經進行過商品/服務購入等之商務交易的記錄即可。
又,如上述,作為店舖中的行動之履歷,亦可使用來訪之履歷。來訪之履歷係為例如:在具備使用GPS或無線存取點等之位置特定手段的使用者終端9中作動的應用程式,偵測到位於店舖資料庫上之任一店舖的附近或位於店舖內的狀態下,藉由使用者對該當店舖進行打卡操作,而被記錄在伺服器中的打卡之履歷(或伴隨著打卡而被賦予的電子性額值之賦予履歷)。但是,來訪之履歷,係只要是能夠確認使用者曾經造訪過該當店舖的記錄即可。
除此以外,店舖中的行動之履歷係還可使用:電子貨幣/信用卡之結帳履歷或使用到電子性額值的結帳履歷(相當於電子性額值之利用履歷)、優惠券之使用履歷、票券之發券履歷、票券之讀取履歷(認證履歷)、使用到加密貨幣的結帳履歷、內容之賦予履歷等,除了電子性額值之賦予履歷以外的各式各樣的記錄。
在本實施形態中,作為電子性額值,是以在商務交易之際,隨應於交易額等而被賦予給使用者,可交換折扣或其他贈禮的點數為例,來做說明。但是,電子性額值,係只要是伴隨著商務交易而對使用者做電子式賦予的任何額值皆可,並不限定於本實施形態中所例示的點數。又,作為店舖中的行動之履歷是使用內容之賦予履歷的情況下,這裡所被賦予的內容係可為例如:優惠券、票券、音樂/影像資料、應用程式這類各式各樣之種類的內容。
該當指定店舖所存在之地理範圍,係可基於既有顧客之人口統計屬性、心理屬性、行為屬性,或其他的既有顧客之各式各樣的屬性,而被設定。此處,所謂人口統計屬性,係為當作顧客資料之分析指標而被使用的人口統計學上的屬性,例如包含有:顧客的性別、年齡、居住地區、職業、年收、學歷、及家庭組成等。又,所謂心理屬性,係為基於顧客之心理性因素的屬性,例如包含有:生活型態、行動、信念(宗教)、價值觀、個性、購買動機、及商品使用程度等。又,所謂行為屬性,係為基於行動學而被設定的顧客之屬性,例如包含有:商品/服務之購入履歷、資訊取得手段(所使用的搜尋引擎等)、來訪店舖之際的交通手段(徒步、自行車或汽車等)及資訊分享手段(所使用的社群網路服務(SNS)或該當SNS內所屬之群聚等)等。
於本實施形態中,設定部21,作為用來取得既有顧客之屬性所相應之地理範圍之設定條件所需之手法,是使用各屬性與屬性所相應之地理範圍之設定條件是被預先建立關連的資料(在本實施形態中是作為「屬性地圖」來做說明。但是,資料的形式係沒有限定)。設定部21,係在針對指定店舖而被抽出的既有顧客之屬性之中,基於針對該當指定店舖而比率為最高之屬性來參照屬性地圖,藉此而將對應的地理範圍之設定條件,從屬性地圖加以取得。
一旦屬性所相應之地理範圍之設定條件被取得,則設定部21係依照已被取得之設定條件,來設定指定店舖所涉及之地理範圍。此處,地理範圍之設定條件係可舉出例如:以所被指定之地點(例如指定店舖之位置)為起點而在「半徑n公里圈內」、「徒步n分圈內」、「自行車n分圈內」、「汽車n分圈內」、「包含公共交通機關之利用而在n分圈內」等。此外,這些設定條件係亦可像是「半徑n公里圈內且徒步m分圈內」這樣來做組合。
若舉出具體的例子來做說明,則設定部21,係可隨應於指定店舖中的既有顧客之年齡層,來設定地理範圍之寬廣度。在本實施形態中,係把屬性類別之中的在既有顧客中佔有最高比率之屬性,視為針對該當屬性類別的既有顧客之屬性傾向。因此,例如,設定部21,係在既有顧客之比率最高的屬性是年輕族群(既有顧客之屬性傾向是年輕族群)的情況下,則將地理範圍設定成例如從指定店舖起徒步15分圈內之範圍,在既有顧客之比率最高的屬性是高齡者(既有顧客之屬性傾向是高齡者的)情況下,則將地理範圍設定成比年輕族群還窄,例如從指定店舖徒步5分圈內之範圍。
但是,用來取得屬性所相應之地理範圍之設定條件所需之手法,係不限定於上記說明的例子。例如,亦可藉由機器學習而作成用來取得屬性所相應之地理範圍之設定條件所需之模型,並使用該當模型。
若依據機器學習,則可以把能夠掌握既有顧客之行動履歷的資料,例如按照每一使用者而被記錄的於複數店舖中的點數之履歷(點數的賦予日期時間、所被賦予之點數量等),當作學習資料,然後隨應於指定店舖的利用背景(例如若指定店舖是便利商店的情況下則為,既有顧客是在聚餐前逗留,還是為了購入午餐而逗留等),而將既有顧客進行聚類。然後,可將藉由聚類而將既有顧客進行分類所得的群聚,視為既有顧客之屬性。
然後,設定部21,係可將藉由聚類所得到的既有顧客之屬性之中比率最高的屬性,視為既有顧客之屬性傾向,將該當屬性傾向中所屬之既有顧客的指定店舖之利用前後的移動範圍予以算出,隨應於已被算出之移動範圍之寬廣度,而將用來決定地理範圍之寬廣度所需之參數(在上記例子中係為「徒步n分圈內」的「n」),加以決定。此處,既有顧客的指定店舖之利用前後的移動範圍,係藉由參照使用者之行動履歷(於複數店舖中的點數之履歷,或可利用使用者之位置資訊等),向地理資訊管理伺服器6進行查詢,就可算出。又,亦可將根據行動履歷而被算出之既有顧客之移動範圍,直接視為指定店舖所涉及之地理範圍而加以設定。
設定部21,係亦可將指定店舖所存在之地理範圍,基於該當指定店舖之地理屬性而加以設定。此處,所謂地理屬性,係為地理性的屬性,例如包含有:所在地區、地區特有之氣候或文化、人口密度或都市化之程度、人流集中程度等。
若舉出具體的例子來說明,則設定部21,係在指定店舖之地理屬性係為表示指定店舖之所在地是在鬧區的情況、與是在住宅區的情況之間,可將地理範圍之設定方法予以變更。例如,可隨著人口密度之高/低而將地理範圍之寬廣度予以縮小/放大,或可隨著人流之集中程度之高/低而將地理範圍之寬廣度予以縮小/放大。更具體而言,設定部21,係亦可將後述的地理範圍之設定條件(參數),設成相應於人口密度或人流之集中程度的條件,在地理屬性是鬧區(人口密度:高,人流之集中程度:高)的情況下則將地理範圍設定成較窄的範圍(例如「徒步5分圈內」),在地理屬性是住宅區(人口密度:低,人流之集中程度:低)的情況下則將地理範圍設定成較廣的範圍(例如「徒步15分圈內」)。又,表示這些地理屬性的值的高/低、與其所相應之地理範圍之寬廣度之縮小/放大的對應關係並非固定,亦可隨著目的而做相反的設定。
此外,基於既有顧客之屬性的地理範圍之設定條件與基於地理屬性的地理範圍之設定條件,係亦可只使用其中任一方,亦可組合使用。
又,地理範圍之設定條件,係亦可如上述般地像是「半徑n公里圈內且徒步m分圈內」這樣來做組合。此時,被進行了如此條件指定的地理範圍,係可藉由將針對一家指定店舖而依照彼此互異之設定條件所被設定的複數個要素性地理範圍(以下稱作「子區域」)加以組合,而做設定。亦即,設定部21,係將藉由彼此互異之設定條件而被設定的複數個子區域加以組合,以設定為了抽出潛在顧客而最終被使用的地理範圍。此時,最終的地理範圍,係亦可為子區域的和集合,亦可為子區域的共通部分。換言之,設定部21,係亦可藉由算出依照基於既有顧客之屬性的第一設定條件而被設定的第一子區域、與依照基於該當既有顧客之屬性的第二設定條件而被設定的第二子區域的和集合或共通部分,以設定指定店舖所存在之地理範圍。
例如,像是「徒步10分圈內」、和「汽車5分圈內」般地,在依照不同的設定條件(尺度)而被決定的地理範圍彼此間,由於有車子無法通行的道路之存在等之理由,而會有一方並不一定完全包含他方的可能性。即使在如此的情況下,藉由採用將上記的子區域加以組合以設定最終的地理範圍的方法,就可容易設定像是「徒步10分圈內且汽車5分圈內」之地理範圍、或「徒步10分圈內或汽車5分圈內」這類的地理範圍。
抽出部22,係將藉由設定部21而被設定的地理範圍中所存在之,指定店舖以外之實體店舖(其他實體店舖。以下稱作「指定外店舖」)中的行動履歷係為已被記錄的使用者(在本實施形態中係為,商務交易所伴隨之點數是在過去曾經有被賦予過的使用者),視為指定店舖之潛在顧客而予以抽出。此時,曾經利用過指定店舖的使用者(於指定店舖中商務交易所涉及之履歷係為存在的使用者),係可被包含在所被抽出之潛在顧客中,亦可被排除在外。亦即,於本揭露中,「潛在顧客」之定義中亦可包含,在指定店舖中尚未有履歷存在的使用者的此種條件。
亦即,若依據本實施形態所述之系統,則藉由具備如上記說明的設定部21及抽出部22,就可將包含指定店舖之所定之地理範圍內的指定外店舖中點數履歷係為存在的使用者,視為指定店舖之潛在顧客而予以抽出。
促銷資訊配送部23,係對已被抽出之潛在顧客,配送指定店舖所涉及之促銷資訊(例如優惠券或折扣資訊等)。但是,促銷資訊,係只要是對指定店舖之利用(來訪或商務交易)之促進有所幫助的任意資訊即可,並不限定於本實施形態中所例示的優惠券或折扣資訊等。例如,作為促銷資訊亦可使用:附帶使用期限的點數、票券、音樂/影像資料、應用程式這類各式各樣種類之內容。
此外,促銷資訊配送部23,係亦可將隨應於指定店舖之既有顧客之屬性或潛在顧客之屬性而被決定的促銷資訊,予以配送。例如,可以將具有已被判定之屬性之顧客為目標而被設定的商品/服務之優惠券,進行配送,可做如此的應對。又,藉由使用上記的機器學習所致之聚類,亦可將正在對指定店舖所存在之地理範圍來訪的使用者的來訪目的(例如工作、休閒、午餐、聚餐等)予以屬性化,隨應於屬性而變更所要配送的促銷資訊。
<處理的流程>
接著說明,藉由本實施形態所述之資訊處理系統而被執行的處理的流程。此外,以下說明的處理的具體內容及處理順序,係為為了實施本揭露所需之一例。具體的處理內容及處理順序,係可隨著本揭露的實施形態而做適宜選擇。
圖3係為本實施形態所述之潛在顧客抽出處理之流程的流程圖。本流程圖所示的處理,係由資訊處理裝置1,從潛在顧客抽出服務之利用者,受理了潛在顧客之抽出要求為契機,而被執行。
在步驟S101中,潛在顧客之抽出要求、及用來抽出潛在顧客所需之各種條件之指定,係被受理。本實施形態所述之資訊處理裝置1,作為用來抽出潛在顧客所需之條件,係可受理以下之條件。
・指定店舖
・指定外店舖之抽出條件
・既有顧客之抽出條件
・潛在顧客之抽出條件
・地理範圍之設定條件
此處,「指定店舖」,係為由潛在顧客抽出服務之利用者所任意指定的實體店舖,在本實施形態中,該當指定店舖之潛在顧客會被抽出。店舖之指定,係可藉由店舖ID、店舖之名稱、地址、位置資訊、或聯絡方式等來進行,資訊處理裝置1,係基於所被給定的指定店舖之資訊而對店舖資料庫5進行查詢,特定出指定店舖之資料。
在本實施形態中,係於後述的步驟S106中,指定外店舖之顧客,係被視為指定店舖之潛在顧客而被抽出。因此,在本實施形態中,作為「指定外店舖之抽出條件」,是指定指定外店舖之屬性及其他之條件,藉此就可設定想要將何種店舖之顧客視為潛在顧客而抽出。作為指定店舖或指定外店舖等之店舖之屬性係可指定例如:群組ID或關連企業、業種、可利用之結帳手段等。又,作為抽出條件,亦可指定所被抽出的指定外店舖之數量的範圍(上限/下限等),亦可指定欲從抽出對象中排除的條件(指定外店舖之屬性等)。
又,在本實施形態中,可以指定「既有顧客之抽出條件」及/或「潛在顧客之抽出條件」。於本實施形態中,資訊處理裝置1係從使用者資料庫4抽出顧客(使用者),但潛在顧客抽出服務的利用者,係可因應目的而設定使用者之抽出條件。使用者之抽出條件中係可指定例如:每位使用者的郵件電子報、應用程式內通知、廣告郵件等之各種通知的允許狀況或各種通知的確認狀況、促銷活動的參加狀況、店舖之利用期間或利用日期時間、星期幾利用、利用時間帶、利用次數等。又,作為抽出條件,亦可指定所被抽出的使用者之數量的範圍(上限/下限等),亦可指定欲從抽出對象中排除的條件。
甚至,在本實施形態中,還可指定「地理範圍之設定條件」。「地理範圍之設定條件」中係可指定例如:是否把用來決定地理範圍所需之起點設成指定店舖之位置或是其他位置(作為變形例而後述)、還用作為用來決定從起點起算之範圍所需之尺度是要採用「半徑n公里圈內」、「徒步n分圈內」、「自行車n分圈內」、「汽車n分圈內」、「包含公共交通機關之利用而在n分圈內」等之何者等。其後,處理係往步驟S102前進。
在步驟S102中,指定店舖之既有顧客係被抽出。資訊處理裝置1,係將步驟S101中所被指定的指定店舖中的點數履歷係為存在,且符合於步驟S101中所被指定之「既有顧客之抽出條件」的使用者,對使用者資料庫4進行查詢,藉此以抽出指定店舖之既有顧客。其後,處理係往步驟S103前進。
在步驟S103中,既有顧客之屬性傾向係被決定。資訊處理裝置1,係將步驟S102中所被抽出之既有顧客之屬性予以抽出,並做統計。更具體而言,資訊處理裝置1,係按照指定店舖之既有顧客之每一屬性類別而將屬性加以統計,算出屬性類別內的每一屬性之比率。例如,關於屬性類別「年齡」,資訊處理裝置1,係將已被抽出之既有顧客,按照每一年齡層(可以像是例如12歲以下、13歲以上19歲以下、20歲以上29歲以下、30歲以上49歲以下、50歲以上般地來做區分)而做統計,算出在既有顧客全體中各年齡層所佔有之比率。然後,資訊處理裝置1,係按照每一屬性類別,將比率最高的屬性,決定作為指定店舖中的既有顧客之屬性傾向。在本實施形態中,係藉由如此設計,而可掌握指定店舖中的既有顧客之屬性傾向。但是,用來掌握指定店舖中的既有顧客之屬性所需之方法,亦可採用其他的手法。其後,處理係往步驟S104前進。
在步驟S104中,係基於既有顧客之屬性及/或指定店舖之地理屬性,而設定地理範圍。設定部21,係依照步驟S103中所被決定之既有顧客之屬性傾向、及/或從店舖資料庫所被取得之指定店舖之地理屬性,來設定地理範圍。具體而言,設定部21,係使用步驟S103中所被決定之既有顧客之屬性傾向來檢索屬性地圖,將該當屬性傾向所對應之地理範圍之設定條件,加以取得。具體而言,關於屬性類別「年齡」,在屬性傾向是「13歲以上19歲以下」的情況下,則作為地理範圍之設定條件(尺度)「徒步n分圈內」所需之設定條件(參數),係會取得「n=15」。另一方面,關於屬性類別「年齡」,在屬性傾向是「50歲以上」的情況下,則作為地理範圍之設定條件(尺度)「徒步n分圈內」所需之設定條件(參數),係會取得「n=5」。
然後,設定部21係基於,基於既有顧客之屬性傾向而被取得之地理範圍之設定條件(在本流程圖中係為參數),及步驟S101中所被指定之地理範圍之設定條件(在本流程圖之例子中係為尺度),而設定指定店舖所涉及之地理範圍。具體而言,於步驟S101作為地理範圍之設定條件(尺度)是設定「徒步n分圈內」,作為基於既有顧客之屬性傾向而被取得之地理範圍之設定條件(參數)是設定「n=15」的情況下,則設定部21係設定「徒步15分圈內」作為地理範圍。另一方面,作為地理範圍之設定條件(尺度)是設定「徒步n分圈內」,作為基於既有顧客之屬性傾向而被取得之地理範圍之設定條件(參數)是設定「n=5」的情況下,則設定部21係設定「徒步5分圈內」作為地理範圍。其後,處理係往步驟S105前進。
此外,在上記具體例中,雖然說明了,指定店舖所存在之地理範圍是基於既有顧客之屬性來做設定的例子,但如上述,設定部21係亦可基於指定店舖之地理屬性而設定地理範圍。又,基於既有顧客之屬性的地理範圍之設定條件與基於地理屬性的地理範圍之設定條件,係亦可只使用其中任一方,亦可組合使用。
又,藉由上述的子區域之組合來設定地理範圍的情況下,於步驟S104中,設定部,係首先設定必要的子區域,藉由將已被設定之子區域加以組合,以設定為了抽出潛在顧客而最終被使用的地理範圍。此時,子區域之組合方法係可為和集合亦可為共通部分,這是如上述相同。又,在子區域是使用3個以上的情況下,則亦可像是「子區域1與2之共通部分」與「子區域3」的和集合這樣,將和集合所致之設定與共通部分所致之設定加以組合而使用。
又,在本流程圖中雖然說明了,地理範圍之設定條件(尺度)是藉由服務利用者而被指定,地理範圍之設定條件(參數)是依照屬性而被決定的例子,但作為地理範圍之設定條件的尺度及參數,係皆可藉由服務利用者而被指定,亦皆可依照屬性而被決定。例如,亦可依照屬性,來決定地理範圍之設定條件(尺度)(例如在屬性是鬧區的情況下則作為尺度是採用「徒步n分圈內」,在屬性是住宅區的情況下則作為尺度是採用「自行車n分圈內」)。
在步驟S105中,已被設定之地理範圍中所存在之指定外店舖,係被抽出。資訊處理裝置1,係將步驟S104中所被設定之地理範圍中所存在的,指定店舖以外之實體店舖也就是指定外店舖,且為滿足步驟S101中所被指定之指定外店舖之抽出條件的指定外店舖,予以抽出。更具體而言,資訊處理裝置1,係將符合於步驟S104中所被設定之地理範圍及步驟S101中所被指定之指定外店舖之抽出條件的店舖,對地理資訊管理伺服器6及店舖資料庫5進行查詢,藉此以抽出滿足條件的指定外店舖。其後,處理係往步驟S106前進。
在步驟S106中,指定外店舖中的行動之履歷係為存在的使用者,係被視為潛在顧客而抽出。抽出部22,係將步驟S105中所被抽出的指定外店舖中的點數履歷係為存在,且符合於步驟S101中所被指定之「潛在顧客之抽出條件」的使用者,對使用者資料庫4進行查詢,藉此以抽出指定店舖之潛在顧客。此外,指定外店舖中的點數履歷係為存在且符合「潛在顧客之抽出條件」的使用者中,有可能包含曾經利用過指定店舖之使用者,但在能夠特定出此種使用者的情況下,則亦可將從作為潛在顧客之抽出對象中予以排除。
又,抽出部22,係亦可將由於指定外店舖中的點數履歷係為存在而被抽出之使用者,排除了地理範圍中所存在之「所定之店舖」中的點數履歷係為存在的使用者後剩下的使用者,視為潛在顧客而予以抽出。亦即,抽出部22係可將,地理範圍中所存在之指定外店舖中的來訪或商務交易所伴隨之電子性額值是在過去曾經有被賦予,且地理範圍中所存在之所定之店舖中的來訪或商務交易所伴隨之電子性額值是在過去未曾被賦予的使用者,視為潛在顧客而予以抽出。此處,「所定之店舖」,係亦可藉由將店舖做個別地指定而被特定,亦可藉由已被指定之群組ID或關連企業、業種等來檢索店舖資料庫5而被特定。資訊處理裝置1係藉由具備如此的機能,而可例如,將特定之群組中所屬之店舖視為「所定之店舖」而當作排除對象,將該當特定群組之店舖的已利用之使用者,從潛在顧客中予以排除。其後,處理係往步驟S107前進。
在步驟S107中,潛在顧客清單係被生成及輸出。資訊處理裝置1,係將含有步驟S106中所被抽出之潛在顧客之使用者ID及資訊配送目的地的潛在顧客清單,予以生成。亦即,在潛在顧客抽出處理中,藉由步驟S101至步驟S106之處理,成為指定店舖之潛在顧客的使用者之區隔會被決定,該當區隔中所屬之使用者會被抽出而生成潛在顧客清單。此處,資訊配送目的地中,係除了郵件位址以外,還可包含有對智慧型手機應用程式的推播通知用的裝置權杖等。資訊處理裝置1,係將已被生成之潛在顧客清單予以輸出。其後,本流程圖中所示的處理係結束。
圖4係為本實施形態中的潛在顧客抽出之概要的圖示。若依據圖4所示的例子,則設定部21,係基於指定店舖DS1之既有顧客之屬性等,而將指定店舖DS1所存在之地理範圍AR1加以設定。抽出部22,係將地理範圍AR1中所存在之指定外店舖SH1至SH3中的點數履歷係為存在的使用者U1及U2,視為指定店舖DS1之潛在顧客而予以抽出。另一方面,雖然有店舖SH4中的點數履歷,但地理範圍AR1中所存在之指定外店舖SH1至SH3中的點數履歷係為不存在的使用者U3,係不被視為指定店舖DS1之潛在顧客而抽出。
又,在上記流程圖所示而說明的潛在顧客抽出處理中,雖然說明了,基於對1家指定店舖而被設定之1個地理範圍而抽出潛在顧客的例子,但潛在顧客係亦可使用複數個地理範圍之組合而被抽出。
圖5係為本實施形態中的地理範圍重疊型之潛在顧客抽出之概要的圖示。若依據圖5所示的例子,則設定部21,係基於指定店舖DS1b之既有顧客之屬性等,而將指定店舖DS1b所存在之地理範圍AR1b(第一地理範圍)加以設定;基於指定店舖DS2b之既有顧客之屬性等,而將指定店舖DS2b所存在之地理範圍AR2b(第二地理範圍)加以設定。這裡所被設定的複數個地理範圍之各者,係亦可基於彼此互異之設定條件(既有顧客之屬性或指定店舖之屬性等)而被設定,亦可基於在複數個地理範圍之間為共通之設定條件而被設定。亦即,在設定地理範圍AR1b(第一地理範圍)及地理範圍AR2b(第二地理範圍)時,用來設定地理範圍AR1b所需之設定條件、與用來設定地理範圍AR2b所需之設定條件,係亦可為不同,亦可為相同。
抽出部22,係將地理範圍AR1b與地理範圍AR2b之重疊範圍AR3b中所存在之指定外店舖SH3b中的點數履歷係為存在的使用者U1,視為指定店舖DS1b及DS2b之潛在顧客而予以抽出。另一方面,地理範圍AR3b中所存在之指定外店舖SH3b中的點數履歷係為不存在的使用者U2及U3,係不被視為指定店舖DS1b及DS2b之潛在顧客而抽出。亦即,在地理範圍重疊型之潛在顧客抽出處理中,抽出部22,係將第一地理範圍與第二地理範圍之重疊範圍中所存在之指定外店舖中的來訪或商務交易所伴隨之點數是在過去曾經有被賦予過的使用者,視為潛在顧客而予以抽出。在上記說明的地理範圍重疊型之潛在顧客抽出中,作為指定店舖DS1b及DS2b若是指定同一店舖群組(包含加盟店)中所屬之店舖,則可將關於同一店舖群組中所屬之複數個指定店舖的潛在顧客,予以抽出。此外,抽出部22係可構成為,不將地理範圍AR3b中所存在之指定外店舖SH3b中的點數履歷係為不存在的使用者U2視為指定店舖DS2b之潛在顧客而抽出。又,抽出部22係可構成為,不將地理範圍AR3b中所存在之指定外店舖SH3b中的點數履歷係為不存在的使用者U3視為指定店舖DS1b之潛在顧客而抽出。
又,亦可進行地理範圍連接型的潛在顧客抽出。圖5所示的,指定店舖DS1b所存在之地理範圍AR1b(第一地理範圍),及指定店舖DS2b所存在之地理範圍AR2b(第二地理範圍)是已被設定之狀態下,抽出部22,係將地理範圍AR1b與地理範圍AR2b被結合而成的連接範圍中所存在之指定外店舖SH1b至SH3b及SH5b中的點數履歷係為存在的使用者U1至U3,視為指定店舖DS1b及DS2b之潛在顧客而予以抽出。亦即,在地理範圍連接型之潛在顧客抽出處理中,抽出部22,係將第一地理範圍及第二地理範圍之至少任一者中所存在之指定外店舖中的來訪或商務交易所伴隨之點數是在過去曾經有被賦予過的使用者,視為潛在顧客而予以抽出。
圖6係為本實施形態中的地理範圍跨越型之潛在顧客抽出之概要的圖示。若依據圖6所示的例子,則設定部21,係基於指定店舖DS1c之既有顧客之屬性等,而將指定店舖DS1c所存在之地理範圍AR1c(第一地理範圍)加以設定;基於指定店舖DS2c之既有顧客之屬性等,而將指定店舖DS2c所存在之地理範圍AR2c(第二地理範圍)加以設定。抽出部22,係將地理範圍AR1c中所存在之指定外店舖中的點數履歷係為存在,且地理範圍AR2c中所存在之指定外店舖中的點數履歷係為存在的使用者U1,視為指定店舖DS1c及DS2c之潛在顧客而予以抽出。另一方面,地理範圍AR1c中所存在之指定外店舖SH1c至SH3c中的點數履歷係為存在但地理範圍AR2c中所存在之指定外店舖SH5c及SH6c中的點數履歷係為不存在的使用者U2,及地理範圍AR1c中所存在之指定外店舖SH1c至SH3c中的點數履歷係為不存在但地理範圍AR2c中所存在之指定外店舖SH5c及SH6c中的點數履歷係為存在的使用者U3,係不被視為指定店舖DS1c及DS2c之潛在顧客而抽出。亦即,在地理範圍跨越型之潛在顧客抽出處理中,抽出部22,係將第一地理範圍中所存在之指定外店舖中的來訪或商務交易所伴隨之點數是在過去曾經有被賦予,且第二地理範圍中所存在之指定外店舖中的來訪或商務交易所伴隨之點數是在過去曾經有被賦予過的使用者,視為潛在顧客而予以抽出。在上記說明的地理範圍跨越型之潛在顧客抽出中,作為指定店舖DS1c及DS2c若是指定同一店舖群組中所屬之店舖,則可將關於同一店舖群組中所屬之複數個指定店舖的潛在顧客,予以抽出。此外,此時,抽出部22係可構成為,不將使用者U2視為指定店舖DS2c之潛在顧客而抽出。又,此時,抽出部22係亦可構成為,不將使用者U3視為指定店舖DS1c之潛在顧客而抽出。
藉由潛在顧客抽出處理而被輸出的潛在顧客清單,係藉由潛在顧客抽出服務之利用者而被確認/修正。因此,潛在顧客清單,係為了確認清單之內容是否適切,而可含有使用者ID及資訊配送目的地以外之資訊(例如從使用者資料庫4所被抽出之資訊、或從點數管理伺服器3所被取得之點數履歷等)。潛在顧客抽出服務的利用者,係藉由參照潛在顧客清單中的各種資訊以確認清單之內容是否適切,在有不備的情況則將其修正。
藉由潛在顧客抽出服務的利用者而被確認/修正過的潛在顧客清單,係被輸入至促銷資訊配送部23。促銷資訊配送部23,係利用已被輸入之潛在顧客清單中的資訊配送目的地,而將各種促銷資訊(優惠券或折扣資訊等),對清單中所包含的使用者(亦即指定店舖之潛在顧客)進行配送。此處,在藉由上記所說明的地理範圍重疊型、地理範圍連接型或地理範圍跨越型之潛在顧客抽出而抽出了對複數個指定店舖而言為共通的潛在顧客的情況下,則促銷資訊配送部23,係對該當潛在顧客,配送可在這些複數個指定店舖中共通利用的促銷資訊。此外,在本實施形態中雖然說明了,潛在顧客清單一旦被輸出,則在接受了潛在顧客抽出服務之利用者所致之確認/修正後,就被利用於促銷資訊配送的態樣,但潛在顧客清單係亦可在潛在顧客抽出處理所致之生成之後,就自動地被利用於促銷資訊配送。
<變形例>
在上記說明的實施形態中雖然說明了,基於屬性及/或從服務利用者而被指定的條件來設定地理範圍的例子,但地理範圍係亦可隨應於指定店舖之周邊的潛在顧客之數量,而動態地調整其寬廣度。亦即,設定部21,係亦可基於指定店舖之周邊的指定外店舖中的來訪或商務交易所伴隨之點數是在過去曾經有被賦予過的潛在顧客之數量,來設定地理範圍。
藉由如此設計,例如,可調整地理範圍之寬廣度,以使得指定店舖之周邊的潛在顧客之數量會超過所定之閾值。具體而言,例如,作為初期值,地理範圍是被設定成「徒步n分圈內」且「n=10」,在此條件下所被抽出之潛在顧客之數量是未滿所定之閾值(可藉由服務利用者而被指定)的情況下,則藉由增加n而再次抽出潛在顧客,就可抽出閾值以上之潛在顧客。
由於地理範圍係可動態調整,因此例如,作為用來動態調整地理範圍所需之閾值是設定促銷資訊之配送量(配送上限或配送下限),藉此,設定部21係可基於促銷資訊之配送量,來設定地理範圍。具體而言,例如,作為初期值,地理範圍是被設定成「徒步n分圈內」且「n=10」,在此條件下所被抽出之潛在顧客之數量係為,作為優惠券之配送上限而被設定之所定之閾值以上的情況下,則藉由減少n而再次抽出潛在顧客,就可將潛在顧客之數量抑制成未滿閾值(優惠券之配送上限)。
又,在上記說明的實施形態中雖然說明了,作為用來設定地理範圍所需之起點是使用指定店舖之位置的例子,但用來設定地理範圍所需之起點,亦可使用地理上的其他位置。此時,關於地理上的其他位置係可藉由,將表示指定店舖之位置資訊,且位於該當位置資訊周邊的具有所定之屬性的設施資訊,向地理資訊管理伺服器6進行查詢,而加以取得。例如,設定部21亦可以指定店舖之周邊的地標等作為起點,來設定地理範圍。此處,地標係為地理上可當成標誌的特徵物,作為例子,可舉出交通集結點(轉運站等)或公共設施、購物中心等。亦即,起點係為指定店舖的最近的轉運站,地理範圍之設定條件(尺度)係為「徒步n分圈內」的情況下,地理範圍係被設定成「從最近的轉運站起徒步n分圈內」。
圖7係為,於本實施形態中,作為用來設定地理範圍所需之起點是使用指定店舖之周邊的交通集結點之情況的潛在顧客抽出之概要的圖示。若依據圖7所示的例子,則各店舖的位置關係雖然是和圖4所示的例子相同,但以指定店舖DS1之周邊的轉運站ST1為起點來設定地理範圍AR1d的結果,可知會與以指定店舖DS1為起點來設定地理範圍AR1的圖4的例子不同,使用者U1至U3會被視為潛在顧客而被抽出。由於有轉運站或地標等因而使用者的行動範圍是以指定店舖以外之地理位置為起點來決定的此種情況下,藉由採用如圖7所示的地理範圍之設定方法,就可更加提高所被抽出的潛在顧客之準確度。
1:資訊處理裝置
3:點數管理伺服器
4:使用者資料庫
5:店舖資料庫
6:地理資訊管理伺服器
9:使用者終端
11:CPU
12:ROM
13:RAM
14:記憶裝置
15:通訊單元
21:設定部
22:抽出部
23:促銷資訊配送部
AR1,AR1b,AR1c,AR1d,AR2b,AR2c,AR3b:地理範圍
DS1,DS1b,DS1c,DS2b,DS2c:指定店舖
SH1,SH1b,SH1c,SH2,SH3,SH3b,SH3c,SH4,SH5b,SH5c,SH6c:指定外店舖
U1,U2,U3:使用者
ST1:轉運站
[圖1]實施形態所述之資訊處理系統之構成的概略圖。
[圖2]實施形態所述之資訊處理系統的機能構成之概略的圖示。
[圖3]實施形態所述之潛在顧客抽出處理之流程的流程圖。
[圖4]實施形態中的潛在顧客抽出之概要的圖示。
[圖5]實施形態中的地理範圍重疊型之潛在顧客抽出之概要的圖示。
[圖6]實施形態中的地理範圍跨越型之潛在顧客抽出之概要的圖示。
[圖7]於實施形態中,作為用來設定地理範圍所需之起點是使用指定店舖之周邊的交通集結點之情況的潛在顧客抽出之概要的圖示。
AR1:地理範圍
DS1:指定店舖
SH1,SH2,SH3,SH4:指定外店舖
U1,U2,U3:使用者
Claims (18)
- 一種資訊處理系統,係具備: 設定手段,係用以基於已被指定之實體店舖也就是指定店舖中的行動之履歷係為已被記錄之使用者也就是既有顧客之屬性,而設定該指定店舖所存在之地理範圍;和 抽出手段,係用以將前記地理範圍中所存在之非前記指定店舖之實體店舖也就是指定外店舖中的行動之履歷係為已被記錄之使用者,視為前記指定店舖之潛在顧客而予以抽出。
- 如請求項1所記載之資訊處理系統,其中, 前記設定手段,係基於前記既有顧客之人口統計屬性而設定前記地理範圍。
- 如請求項1所記載之資訊處理系統,其中, 前記設定手段,係基於前記既有顧客之心理屬性而設定前記地理範圍。
- 如請求項1所記載之資訊處理系統,其中, 前記設定手段,係基於前記既有顧客之行為屬性而設定前記地理範圍。
- 如請求項1所記載之資訊處理系統,其中, 前記設定手段,係還基於前記指定店舖之地理屬性而設定前記地理範圍。
- 如請求項1所記載之資訊處理系統,其中, 前記設定手段,係還基於前記指定店舖之周邊的前記指定外店舖中的行動之履歷係為已被記錄之前記潛在顧客之數量,而設定前記地理範圍。
- 如請求項1所記載之資訊處理系統,其中, 前記設定手段,係以前記指定店舖之周邊的交通集結點或地標為起點而設定前記地理範圍。
- 如請求項1至7之任一項所記載之資訊處理系統,其中, 前記設定手段,係將第一指定店舖所存在之第一地理範圍、及第二指定店舖所存在之第二地理範圍,加以設定; 前記抽出手段,係基於前記第一地理範圍或前記第二地理範圍中所存在之前記指定外店舖中的行動之履歷,而抽出前記潛在顧客。
- 如請求項8所記載之資訊處理系統,其中, 前記抽出手段,係將前記第一地理範圍與前記第二地理範圍之重疊範圍中所存在之前記指定外店舖中的行動之履歷係為已被記錄之使用者,視為前記潛在顧客而予以抽出。
- 如請求項8所記載之資訊處理系統,其中, 前記抽出手段,係將前記第一地理範圍及前記第二地理範圍之至少任一者中所存在之前記指定外店舖中的行動之履歷係為已被記錄之使用者,視為前記潛在顧客而予以抽出。
- 如請求項8所記載之資訊處理系統,其中, 前記抽出手段,係將前記第一地理範圍中所存在之前記指定外店舖中的行動之履歷係為已被記錄,且前記第二地理範圍中所存在之前記指定外店舖中的行動之履歷係為已被記錄之使用者,視為前記潛在顧客而予以抽出。
- 如請求項1所記載之資訊處理系統,其中, 前記抽出手段,係將前記地理範圍中所存在之前記指定外店舖中的行動之履歷係為已被記錄,且前記地理範圍中所存在之所定之店舖中的行動之履歷尚未被記錄之使用者,視為前記潛在顧客而予以抽出。
- 如請求項1所記載之資訊處理系統,其中, 還具備:促銷資訊配送手段,係用以對已被抽出之前記潛在顧客,配送關於前記指定店舖的促銷資訊。
- 如請求項13所記載之資訊處理系統,其中, 前記設定手段,係基於前記促銷資訊之配送量,而設定前記地理範圍。
- 如請求項1所記載之資訊處理系統,其中, 前記設定手段,係藉由算出依照基於前記既有顧客之屬性的第一條件而被設定的第一子區域、與依照基於該當既有顧客之屬性的第二條件而被設定的第二子區域的和集合或共通部分,以設定前記指定店舖所存在之地理範圍。
- 如請求項1所記載之資訊處理系統,其中, 前記行動之履歷,係為伴隨著來訪或商務交易之履歷。
- 一種資訊處理方法,係由電腦來執行: 設定步驟,係用以基於已被指定之實體店舖也就是指定店舖中的行動之履歷係為已被記錄之使用者也就是既有顧客之屬性,而設定該指定店舖所存在之地理範圍;和 抽出步驟,係用以將前記地理範圍中所存在之非前記指定店舖之實體店舖也就是指定外店舖中的行動之履歷係為已被記錄之使用者,視為前記指定店舖之潛在顧客而予以抽出。
- 一種資訊處理程式產品,係用來使電腦發揮功能而成為: 設定手段,係用以基於已被指定之實體店舖也就是指定店舖中的行動之履歷係為已被記錄之使用者也就是既有顧客之屬性,而設定該指定店舖所存在之地理範圍;和 抽出手段,係用以將前記地理範圍中所存在之非前記指定店舖之實體店舖也就是指定外店舖中的行動之履歷係為已被記錄之使用者,視為前記指定店舖之潛在顧客而予以抽出。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-090805 | 2021-05-31 | ||
JP2021090805A JP7130093B1 (ja) | 2021-05-31 | 2021-05-31 | 情報処理システム、方法及びプログラム |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI783901B true TWI783901B (zh) | 2022-11-11 |
TW202248927A TW202248927A (zh) | 2022-12-16 |
Family
ID=83148922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111116026A TWI783901B (zh) | 2021-05-31 | 2022-04-27 | 資訊處理系統、資訊處理方法及程式產品 |
Country Status (2)
Country | Link |
---|---|
JP (2) | JP7130093B1 (zh) |
TW (1) | TWI783901B (zh) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09120420A (ja) * | 1995-10-26 | 1997-05-06 | Hitachi Ltd | 顧客情報の分析方法 |
JP2003241651A (ja) * | 2002-02-18 | 2003-08-29 | Culture Convenience Club Co Ltd | 地図データを利用した特定情報抽出活用システム |
JP2009116656A (ja) * | 2007-11-07 | 2009-05-28 | Panasonic Corp | コンテンツ配信システム、広告挿入装置、および、端末装置 |
CN102147903A (zh) * | 2010-02-05 | 2011-08-10 | 李久进 | 基于地理位置的互联网信息聚合、推送和交互的方法 |
CN103608830A (zh) * | 2010-12-22 | 2014-02-26 | 脸谱公司 | 基于位置和社交信息为用户提供相关通知 |
TW201717135A (zh) * | 2012-03-27 | 2017-05-16 | 梭奎公司 | 電腦實施方法、非暫時性電腦可讀媒體及經組態系統 |
CN107301563A (zh) * | 2003-01-15 | 2017-10-27 | 优格利有限责任公司 | 空间市场系统 |
WO2018110164A1 (ja) * | 2016-12-15 | 2018-06-21 | 日本電気株式会社 | 情報処理システム、情報処理方法および情報処理プログラム |
CN110969512A (zh) * | 2019-12-02 | 2020-04-07 | 深圳市云积分科技有限公司 | 一种基于用户购买行为的商品推荐方法和装置 |
JP2020091681A (ja) * | 2018-12-06 | 2020-06-11 | クロスロケーションズ株式会社 | データ分析装置、データ分析システム、データ分析方法およびデータ分析プログラム |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5673244B2 (ja) * | 2011-03-14 | 2015-02-18 | オムロン株式会社 | 情報提供システム |
JP6988975B2 (ja) * | 2018-12-11 | 2022-01-05 | 東京電力ホールディングス株式会社 | 情報処理方法、プログラム及び情報処理装置 |
JP6827138B1 (ja) * | 2020-03-31 | 2021-02-10 | 株式会社フューチャースコープ | チラシ受発注仲介サーバ、チラシ発注支援サーバ及びチラシ受発注方法 |
-
2021
- 2021-05-31 JP JP2021090805A patent/JP7130093B1/ja active Active
-
2022
- 2022-04-27 TW TW111116026A patent/TWI783901B/zh active
- 2022-08-23 JP JP2022132469A patent/JP7377322B2/ja active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09120420A (ja) * | 1995-10-26 | 1997-05-06 | Hitachi Ltd | 顧客情報の分析方法 |
JP2003241651A (ja) * | 2002-02-18 | 2003-08-29 | Culture Convenience Club Co Ltd | 地図データを利用した特定情報抽出活用システム |
CN107301563A (zh) * | 2003-01-15 | 2017-10-27 | 优格利有限责任公司 | 空间市场系统 |
JP2009116656A (ja) * | 2007-11-07 | 2009-05-28 | Panasonic Corp | コンテンツ配信システム、広告挿入装置、および、端末装置 |
CN102147903A (zh) * | 2010-02-05 | 2011-08-10 | 李久进 | 基于地理位置的互联网信息聚合、推送和交互的方法 |
CN103608830A (zh) * | 2010-12-22 | 2014-02-26 | 脸谱公司 | 基于位置和社交信息为用户提供相关通知 |
TW201717135A (zh) * | 2012-03-27 | 2017-05-16 | 梭奎公司 | 電腦實施方法、非暫時性電腦可讀媒體及經組態系統 |
WO2018110164A1 (ja) * | 2016-12-15 | 2018-06-21 | 日本電気株式会社 | 情報処理システム、情報処理方法および情報処理プログラム |
JP2020091681A (ja) * | 2018-12-06 | 2020-06-11 | クロスロケーションズ株式会社 | データ分析装置、データ分析システム、データ分析方法およびデータ分析プログラム |
CN110969512A (zh) * | 2019-12-02 | 2020-04-07 | 深圳市云积分科技有限公司 | 一种基于用户购买行为的商品推荐方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
TW202248927A (zh) | 2022-12-16 |
JP7377322B2 (ja) | 2023-11-09 |
JP7130093B1 (ja) | 2022-09-02 |
JP2022183466A (ja) | 2022-12-13 |
JP2022184840A (ja) | 2022-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11972445B2 (en) | Method and systems for distributed signals for use with advertising | |
Almlöf et al. | Who continued travelling by public transport during COVID-19? Socioeconomic factors explaining travel behaviour in Stockholm 2020 based on smart card data | |
JP6865869B2 (ja) | 行動ログ分析システム及びそのプログラム | |
US20130179246A1 (en) | Providing targeted offers based on aggregate demand and aggregate supply | |
US20180260836A1 (en) | Method and system for making payments and receiving rebates | |
Sobolevsky et al. | Cities through the prism of people’s spending behavior | |
US20130046589A1 (en) | Varying offers based on proximity to customer's current location | |
JP6232495B2 (ja) | デジタルレシート経済 | |
Chong et al. | Economic outcomes predicted by diversity in cities | |
US20130054367A1 (en) | Mobile door buster offer transmission based on historical transaction data | |
US20130054369A1 (en) | Mobile door buster offer transmission with mobile user offer acceptance or redemption | |
US20150213465A1 (en) | Systems and Methods for Identity Management | |
US20130204669A1 (en) | Online exchange for personal data | |
US20150170139A1 (en) | System and method for supporting analytics and visualization based on transaction and device data | |
US11263705B2 (en) | Method and system for making a targeted offer to an audience | |
JP5707033B2 (ja) | 行動傾向分析システム及び行動傾向分析方法 | |
US20210035140A1 (en) | Systems and methods to facilitate hyper-personalized micro-markets | |
US20150220983A1 (en) | Systems and Methods of Determining Predictors Based on Transaction Data and Social Network Data | |
US20130054368A1 (en) | Mobile door buster offer transmission with varying offer values | |
US8799064B2 (en) | System for cross-integration of consumer loyalty programs and methods thereof | |
US20150178744A1 (en) | Methods and systems for signals management | |
JP2019114019A (ja) | 情報処理装置、判定方法及びプログラム | |
US20150169692A1 (en) | System and method for acquiring and integrating multi-source information for advanced analystics and visualization | |
TWI783901B (zh) | 資訊處理系統、資訊處理方法及程式產品 | |
Schmale et al. | Buying without using–biases of German BahnCard buyers |