TWI782133B - Plasma processing apparatus, temperature control method, and temperature control program - Google Patents

Plasma processing apparatus, temperature control method, and temperature control program Download PDF

Info

Publication number
TWI782133B
TWI782133B TW107139592A TW107139592A TWI782133B TW I782133 B TWI782133 B TW I782133B TW 107139592 A TW107139592 A TW 107139592A TW 107139592 A TW107139592 A TW 107139592A TW I782133 B TWI782133 B TW I782133B
Authority
TW
Taiwan
Prior art keywords
heater
temperature
plasma
heat
thermal resistance
Prior art date
Application number
TW107139592A
Other languages
Chinese (zh)
Other versions
TW201933472A (en
Inventor
岡信介
Original Assignee
日商東京威力科創股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東京威力科創股份有限公司 filed Critical 日商東京威力科創股份有限公司
Publication of TW201933472A publication Critical patent/TW201933472A/en
Application granted granted Critical
Publication of TWI782133B publication Critical patent/TWI782133B/en

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Control Of Temperature (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

A heater controller controls power supplied to a heater capable of adjusting the temperature of a placement surface such that the heater reaches a set temperature. A temperature monitor measures the power supplied in the non-ignited state where the plasma is not ignited and in the transient state where the power supplied to the heater decreases after the plasma is ignited, while the power is controlled such that the temperature of the heater becomes constant. A parameter calculator calculates a heat input amount and the thermal resistance by using the power supplied in the non-ignited state and in the transient state to perform a fitting on a calculation model for calculating the power supplied in the transient state. A set temperature calculator calculates the set temperature of the heater at which the wafer reaches the target temperature, using the heat input amount and thermal resistance.

Description

電漿處理裝置、溫度控制方法及溫度控制程式Plasma treatment device, temperature control method and temperature control program

本發明各種樣態及實施形態係關於電漿處理裝置、溫度控制方法及溫度控制程式。Various aspects and embodiments of the present invention relate to a plasma treatment device, a temperature control method, and a temperature control program.

以往,普知有一種電漿處理裝置,針對半導體晶圓(以下亦稱作「晶圓」)等被處理體,使用電漿,來進行蝕刻等電漿處理。就此電漿處理裝置而言,於蝕刻製程之中,晶圓的溫度係一個重要參數。Conventionally, a plasma processing apparatus is generally known, which uses plasma to perform plasma processing such as etching on an object to be processed such as a semiconductor wafer (hereinafter also referred to as a “wafer”). As far as the plasma processing apparatus is concerned, the temperature of the wafer is an important parameter in the etching process.

於是,就電漿處理裝置而言,吾人提案有一種將可進行溫度控制的加熱器埋入至載置晶圓之載置台內,並藉由加熱器控制晶圓的溫度之方法。又,吾人提案有將由加熱器加熱之晶圓的溫度加以預測之方法。 〔先前技術文獻〕 〔專利文獻〕Therefore, as far as the plasma processing apparatus is concerned, we propose a method of embedding a temperature-controllable heater into a mounting table on which a wafer is placed, and controlling the temperature of the wafer by the heater. Also, we propose a method of predicting the temperature of a wafer heated by a heater. [Prior Technical Literature] 〔Patent Document〕

〔專利文獻1〕:日本特開2016-001688號公報 〔專利文獻2〕:日本特開2009-302390號公報 〔專利文獻3〕:日本特開2017-011169號公報[Patent Document 1]: Japanese Unexamined Patent Publication No. 2016-001688 [Patent Document 2]: Japanese Unexamined Patent Publication No. 2009-302390 [Patent Document 3]: Japanese Patent Laid-Open No. 2017-011169

〔發明所欲解決之問題〕[Problem to be solved by the invention]

然而,電漿處理之中,從電漿朝往晶圓,具有入熱。因此,電漿處理裝置會有無法將電漿處理中之晶圓的溫度精度良好控制為目標溫度之情形。 〔解決問題之方式〕However, in plasma processing, there is heat input from the plasma towards the wafer. Therefore, the plasma processing apparatus may not be able to accurately control the temperature of the wafer being plasma processed to the target temperature. [How to solve the problem]

本說明書揭示之電漿處理裝置,於一實施態樣,具備載置台、加熱器控制部、量測部、參數計算部、設定溫度計算部。載置台設有:加熱器,可對作為電漿處理的對象之被處理體加以載置之載置面的溫度進行調整。加熱器控制部將往加熱器之供給電力控制為加熱器成為所設定之設定溫度。量測部,由加熱器控制部將往加熱器之供給電力控制為加熱器的溫度係成為固定,而量測未點燃電漿之未點燃狀態與自點燃電漿後往加熱器之供給電力降低之過渡狀態之供給電力。參數計算部,對於以來自電漿之入熱量、及被處理體與加熱器間的熱阻作為參數並將過渡狀態之供給電力加以計算之計算模式,使用由量測部所量測之未點燃狀態與過渡狀態之供給電力進行擬合,來計算入熱量及熱阻。設定溫度計算部使用由參數計算部所計算之入熱量及熱阻,來計算使被處理體成為目標溫度之加熱器的設定溫度。 〔發明之效果〕In one embodiment, the plasma processing device disclosed in this specification includes a mounting table, a heater control unit, a measurement unit, a parameter calculation unit, and a set temperature calculation unit. The mounting table is provided with a heater capable of adjusting the temperature of the mounting surface on which the object to be processed, which is the target of the plasma treatment, is mounted. The heater control unit controls the electric power supplied to the heater so that the heater becomes the set temperature. In the measurement part, the heater control part controls the power supply to the heater so that the temperature of the heater becomes constant, and the unignited state of the unignited plasma is measured and the power supply to the heater decreases after the plasma is ignited. The power supply in the transition state. The parameter calculation unit uses the non-ignition measured by the measurement unit for the calculation model that uses the heat input from the plasma and the thermal resistance between the object to be processed and the heater as parameters and calculates the power supply in the transition state. The power supply in the state and transition state is fitted to calculate the heat and thermal resistance. The set temperature calculation unit calculates the set temperature of the heater to bring the object to be processed to a target temperature using the heat input and thermal resistance calculated by the parameter calculation unit. [Effect of the invention]

依據本說明書揭示之電漿處理裝置的一態樣,則發揮可將電漿處理中之被處理體的溫度精度良好控制成目標溫度之效果。According to one aspect of the plasma processing apparatus disclosed in this specification, the effect that the temperature precision of the object to be processed during plasma processing can be controlled well to the target temperature is exhibited.

〔實施發明之較佳形態〕[Preferable form of implementing the invention]

以下,參照圖式詳細說明本申請案揭示之電漿處理裝置、溫度控制方法及溫度控制程式的實施形態。此外,各圖式之中,針對同一或相當的部分標註同一符號。又,所揭示之發明不由實施形態所限定。各實施形態可於不使處理內容矛盾之範圍下適宜組合。Hereinafter, embodiments of the plasma treatment device, temperature control method, and temperature control program disclosed in this application will be described in detail with reference to the drawings. In addition, in each drawing, the same code|symbol is attached|subjected to the same or equivalent part. In addition, the disclosed invention is not limited by embodiment. The respective embodiments can be appropriately combined within a range that does not cause conflicts in processing contents.

(第一實施形態) 〔電漿處理裝置的構成〕 首先,說明實施形態之電漿處理裝置10的構成。圖1概略性顯示第一實施形態之電漿處理裝置。圖1概略性顯示有第一實施形態之電漿處理裝置10的縱剖面中的構造。圖1所示之電漿處理裝置10係電容耦合型平行平板電漿蝕刻裝置。此電漿處理裝置10具備略圓筒狀的處理容器12。處理容器12例如由鋁構成。又,處理容器12的表面施行有陽極氧化處理。(first embodiment) 〔Configuration of plasma processing equipment〕 First, the configuration of the plasma processing apparatus 10 of the embodiment will be described. Fig. 1 schematically shows a plasma treatment apparatus according to a first embodiment. FIG. 1 schematically shows the structure in longitudinal section of a plasma processing apparatus 10 according to a first embodiment. The plasma processing device 10 shown in FIG. 1 is a capacitively coupled parallel plate plasma etching device. This plasma processing apparatus 10 includes a substantially cylindrical processing container 12 . The processing container 12 is made of aluminum, for example. In addition, the surface of the processing container 12 is anodized.

處理容器12內設置有載置台16。載置台16含有靜電夾盤18及基台20。將靜電夾盤18的上表面定為作為電漿處理的對象之被處理體加以載置之載置面。本實施形態之中,晶圓W作為被處理體而載置在靜電夾盤18的上表面。基台20具有略圓盤形狀,且在其主部,例如由鋁之類的導電性金屬構成。此基台20構成下部電極。基台20係由支持部14支持。支持部14係自處理容器12的底部延伸之圓筒狀的構件。A mounting table 16 is provided in the processing container 12 . The stage 16 includes an electrostatic chuck 18 and a base 20 . The upper surface of the electrostatic chuck 18 is defined as a loading surface on which an object to be processed, which is a target of plasma processing, is placed. In the present embodiment, the wafer W is placed on the upper surface of the electrostatic chuck 18 as an object to be processed. The base 20 has a substantially disc shape, and its main part is made of, for example, a conductive metal such as aluminum. This submount 20 constitutes a lower electrode. The base station 20 is supported by the support unit 14 . The support portion 14 is a cylindrical member extending from the bottom of the processing container 12 .

基台20經由匹配器MU1而電性連接有第一射頻電源HFS。第一射頻電源HFS用以產生電漿生成用之射頻電力,且產生27~100MHz的頻率,一例之中產生40MHz的射頻電力。藉此,在基台20正上產生電漿。匹配器MU1具有用以使第一射頻電源HFS的輸出阻抗與負載側(基台20側)的輸入阻抗進行匹配之電路。The base station 20 is electrically connected to the first radio frequency power source HFS via the matching unit MU1. The first radio frequency power supply HFS is used to generate radio frequency power for plasma generation, and generates a frequency of 27-100 MHz, and in one example generates radio frequency power of 40 MHz. Thereby, plasma is generated directly on the submount 20 . The matching unit MU1 has a circuit for matching the output impedance of the first radio frequency power source HFS with the input impedance of the load side (base station 20 side).

又,基台20經由匹配器MU2而電性連接有第二射頻電源LFS。第二射頻電源LFS產生用以將離子拉入至晶圓W之射頻電力(射頻偏壓電力),並將該射頻偏壓電力供給至基台20。藉此,在基台20產生偏壓電位。射頻偏壓電力的頻率係400kHz~13.56MHz範圍內的頻率,一例之中係3MHz。匹配器MU2具有用以使第二射頻電源LFS的輸出阻抗與負載側(基台20側)的輸入阻抗進行匹配之電路。Moreover, the base station 20 is electrically connected to the second radio frequency power supply LFS via the matching unit MU2. The second RF power source LFS generates RF power (RF bias power) for pulling ions into the wafer W, and supplies the RF bias power to the base 20 . Thereby, a bias potential is generated on the base 20 . The frequency of the radio frequency bias power is a frequency in the range of 400 kHz to 13.56 MHz, and in one example, it is 3 MHz. The matching unit MU2 has a circuit for matching the output impedance of the second radio frequency power supply LFS with the input impedance of the load side (base station 20 side).

基台20上設置有靜電夾盤18。靜電夾盤18藉由庫侖力等靜電力而吸附晶圓W,並固持該晶圓W。靜電夾盤18在陶瓷製的本體部內具有靜電吸附用的電極E1。電極E1經由開關SW1而電性連接有直流電源22。將晶圓W加以固持之吸附力取決於由直流電源22施加之直流電壓的值。An electrostatic chuck 18 is disposed on the base 20 . The electrostatic chuck 18 attracts the wafer W by electrostatic force such as Coulomb force, and holds the wafer W. The electrostatic chuck 18 has an electrode E1 for electrostatic adsorption in a main body made of ceramics. The electrode E1 is electrically connected to the DC power source 22 through the switch SW1. The suction force for holding the wafer W depends on the value of the DC voltage applied from the DC power supply 22 .

在係基台20的上表面之上、且係靜電夾盤18的周圍,設置有聚焦環FR。聚焦環FR係用以提昇電漿處理的均勻性而設置。聚焦環FR係由因應於待執行之電漿處理而適宜選擇之材料所構成,例如可由矽或石英構成。A focus ring FR is provided on the upper surface of the base 20 and around the electrostatic chuck 18 . The focus ring FR is set to improve the uniformity of plasma treatment. The focus ring FR is made of a material suitably chosen for the plasma treatment to be performed, for example silicon or quartz.

基台20的內部形成有冷媒流道24。從設置在處理容器12的外部之急冷單元經由配管26a而將冷媒供給至冷媒流道24。供給至冷媒流道24之冷媒經由配管26b而返回急冷單元。此外,將此基台20及靜電夾盤18加以包含之載置台16的細節將後述。A refrigerant channel 24 is formed inside the base 20 . The refrigerant is supplied to the refrigerant flow path 24 from a quenching unit provided outside the processing container 12 through a pipe 26 a. The refrigerant supplied to the refrigerant flow path 24 returns to the quenching unit through the pipe 26b. In addition, details of the stage 16 including the base 20 and the electrostatic chuck 18 will be described later.

處理容器12內設置有上部電極30。此上部電極30在載置台16的上方與基台20相向配置,且基台20與上部電極30設置為相互約略平行。An upper electrode 30 is provided in the processing container 12 . The upper electrode 30 is arranged to face the base 20 above the mounting table 16 , and the base 20 and the upper electrode 30 are arranged approximately parallel to each other.

上部電極30經由絕緣性遮蔽構件32而由處理容器12的上部所支持。上部電極30可包含電極板34及電極支持體36。電極板34朝向處理空間S,提供複數之氣體噴吐孔34a。此電極板34可由焦耳熱少之低電阻的導電體或半導體所構成。The upper electrode 30 is supported by the upper portion of the processing chamber 12 via an insulating shielding member 32 . The upper electrode 30 may include an electrode plate 34 and an electrode support 36 . The electrode plate 34 faces the processing space S and provides a plurality of gas ejection holes 34a. The electrode plate 34 can be made of a low-resistance conductor or semiconductor with little Joule heat.

電極支持體36將電極板34支持成自由裝卸,例如可由鋁之類的導電性材料所構成。此電極支持體36可具有水冷構造。電極支持體36的內部設置有氣體擴散室36a。自此氣體擴散室36a而往下方延伸有連通至氣體噴吐孔34a之複數之氣體通流孔36b。又,電極支持體36形成有將處理氣體導引至氣體擴散室36a之氣體導入口36c,且此氣體導入口36c連接有氣體供給管38。The electrode support 36 supports the electrode plate 34 in a detachable manner, and may be made of a conductive material such as aluminum, for example. This electrode support 36 may have a water-cooled structure. A gas diffusion chamber 36 a is provided inside the electrode support 36 . Extending downward from the gas diffusion chamber 36a are a plurality of gas flow holes 36b communicating with the gas injection holes 34a. In addition, the electrode support 36 is formed with a gas introduction port 36c for introducing a process gas into the gas diffusion chamber 36a, and a gas supply pipe 38 is connected to the gas introduction port 36c.

氣體供給管38經由閥群42及流量控制器群44而連接有氣體源群40。閥群42具有複數之開閉閥,流量控制器群44具有質流控制器之類的複數之流量控制器。又,氣體源群40具有電漿處理所須之複數種氣體用的氣體源。氣體源群40的複數之氣體源經由對應的開閉閥及對應的質流控制器而連接至氣體供給管38。The gas supply pipe 38 is connected to a gas source group 40 via a valve group 42 and a flow controller group 44 . The valve group 42 has a plurality of on-off valves, and the flow controller group 44 has a plurality of flow controllers such as mass flow controllers. In addition, the gas source group 40 has gas sources for plural types of gases necessary for plasma processing. A plurality of gas sources of the gas source group 40 are connected to the gas supply pipe 38 through corresponding on-off valves and corresponding mass flow controllers.

電漿處理裝置10之中,將來自氣體源群40的複數之氣體源中之所選擇之一以上的氣體源之一以上的氣體,供給至氣體供給管38。供給至氣體供給管38之氣體到達氣體擴散室36a,並經由氣體通流孔36b及氣體噴吐孔34a而噴吐至處理空間S。In the plasma processing apparatus 10 , one or more gases from one or more gas sources selected from among the plurality of gas sources in the gas source group 40 are supplied to the gas supply pipe 38 . The gas supplied to the gas supply pipe 38 reaches the gas diffusion chamber 36a, and is discharged into the processing space S through the gas flow hole 36b and the gas discharge hole 34a.

又,如圖1所示,電漿處理裝置10可更具備接地導體12a。接地導體12a係略圓筒狀的接地導體,且設置成自處理容器12的側壁延伸至比上部電極30的高度位置更上方。Moreover, as shown in FIG. 1 , the plasma processing apparatus 10 may further include a ground conductor 12a. The ground conductor 12 a is a substantially cylindrical ground conductor, and is provided to extend from the side wall of the processing container 12 to a position higher than the height of the upper electrode 30 .

又,電漿處理裝置10之中,沿著處理容器12的內壁而自由裝卸設置有沉積物屏障46。又,沉積物屏障46亦設置在支持部14的外周。沉積物屏障46防止蝕刻副產物(沉積物)附著至處理容器12,且可藉由在鋁材被覆Y2 O3 等陶瓷而構成。In addition, in the plasma processing apparatus 10 , a deposit barrier 46 is detachably provided along the inner wall of the processing container 12 . In addition, a deposit barrier 46 is also provided on the outer periphery of the support portion 14 . The deposit barrier 46 prevents etching by-products (deposits) from adhering to the processing container 12, and can be formed by coating ceramics such as Y 2 O 3 on an aluminum material.

處理容器12的底部側,在支持部14與處理容器12的內壁之間設置有排氣板48。排氣板48例如可藉由在鋁材被覆Y2 O3 等陶瓷而構成。在此排氣板48的下方,處理容器12設置有排氣口12e。排氣口12e經由排氣管52而連接有排氣裝置50。排氣裝置50具有渦輪分子泵等真空泵,可將處理容器12內減壓至期望的真空度。又,處理容器12的側壁設有晶圓W的搬入搬出口12g,此搬入搬出口12g可藉由閘閥54而開閉。On the bottom side of the processing container 12 , an exhaust plate 48 is provided between the support portion 14 and the inner wall of the processing container 12 . The exhaust plate 48 can be formed by coating an aluminum material with ceramics such as Y 2 O 3 , for example. Below this exhaust plate 48, the processing container 12 is provided with an exhaust port 12e. An exhaust device 50 is connected to the exhaust port 12e via an exhaust pipe 52 . The exhaust device 50 has a vacuum pump such as a turbomolecular pump, and can depressurize the inside of the processing container 12 to a desired vacuum degree. Furthermore, a loading and unloading port 12 g for the wafer W is provided on the side wall of the processing container 12 , and the loading and unloading port 12 g can be opened and closed by a gate valve 54 .

如上述構成之電漿處理裝置10,係藉由控制部100而將其運作總括控制。此控制部100例如係電腦,且控制電漿處理裝置10的各部分。電漿處理裝置10藉由控制部100而將其運作總括控制。The operation of the plasma processing apparatus 10 configured as described above is generally controlled by the control unit 100 . The control unit 100 is, for example, a computer, and controls various parts of the plasma processing apparatus 10 . The operation of the plasma processing apparatus 10 is generally controlled by the control unit 100 .

〔載置台的構成〕 其次,詳細說明載置台16。圖2係將第一實施形態之載置台加以顯示之俯視圖。如同上述,載置台16具有靜電夾盤18及基台20。靜電夾盤18具有陶瓷製的本體部18m。本體部18m具有略圓盤形狀。本體部18m提供載置區域18a及外周區域18b。載置區域18a係於俯視下略圓形的區域。在此載置區域18a的上表面上載置晶圓W。亦即,載置區域18a的上表面係作為載置晶圓W之載置面而發揮功能。載置區域18a的直徑係與晶圓W約略同一的直徑、或比晶圓W的直徑稍微小。外周區域18b係將此載置區域18a加以圍繞之區域,並延展成約略環狀。本實施形態之中,外周區域18b的上表面位在比載置區域18a的上表面更低的位置。〔Configuration of the mounting table〕 Next, the mounting table 16 will be described in detail. Fig. 2 is a plan view showing the mounting table of the first embodiment. As mentioned above, the stage 16 has the electrostatic chuck 18 and the base 20 . The electrostatic chuck 18 has a body part 18m made of ceramics. The body portion 18m has a substantially disc shape. The main body portion 18m provides a mounting area 18a and an outer peripheral area 18b. The loading area 18a is a substantially circular area in plan view. Wafer W is placed on the upper surface of this loading region 18 a. That is, the upper surface of the mounting region 18 a functions as a mounting surface on which the wafer W is mounted. The diameter of the mounting area 18 a is substantially the same as the diameter of the wafer W or slightly smaller than the diameter of the wafer W. The outer peripheral area 18b is an area surrounding the mounting area 18a, and extends in a roughly ring shape. In this embodiment, the upper surface of the outer peripheral region 18b is positioned lower than the upper surface of the mounting region 18a.

如圖2所示,靜電夾盤18在載置區域18a內具有靜電吸附用的電極E1。此電極E1如同上述,經由開關SW1而連接至直流電源22。As shown in FIG. 2 , the electrostatic chuck 18 has an electrode E1 for electrostatic adsorption in a mounting region 18 a. This electrode E1 is connected to the DC power supply 22 through the switch SW1 as described above.

又,在係載置區域18a內、且係電極E1的下方,設置有複數之加熱器HT。本實施形態之中,將載置區域18a分割成複數之分割區域,且各個分割區域設置有加熱器HT。例如圖2所示,載置區域18a的中央的圓形區域內、及將該圓形區域加以圍繞之同心狀的複數之環狀區域,設置有複數之加熱器HT。又,複數之環狀區域各者沿周向配置排列有複數之加熱器HT。此外,圖2所示之分割區域的分割方法係一例,並不限定於此。載置區域18a亦可分割成更多分割區域。例如,載置區域18a亦可分割成越靠近外周則角度範圍越小、且徑向的寬度越窄之分割區域。加熱器HT經由基台20的外周部分所設之未圖示的配線而個別連接至圖1所示之加熱器電源HP。加熱器電源HP基於由控制部100控制,而將個別調整之電力供給至各加熱器HT。藉此,個別控制各加熱器HT所產生的熱,且個別調整載置區域18a內的複數之分割區域的溫度。In addition, a plurality of heaters HT are provided in the mounting region 18a and below the electrode E1. In this embodiment, the mounting area 18a is divided into a plurality of divided areas, and heaters HT are provided in each divided area. For example, as shown in FIG. 2 , a plurality of heaters HT are provided in a circular area at the center of the mounting area 18 a and a plurality of concentric annular areas surrounding the circular area. In addition, a plurality of heaters HT are arranged and arranged in the circumferential direction in each of the plurality of ring-shaped regions. In addition, the division method of the division area shown in FIG. 2 is an example, and it is not limited to this. The loading area 18a can also be divided into more divided areas. For example, the mounting area 18a may be divided into divisional areas whose angular range becomes smaller and radial width becomes narrower as it gets closer to the outer periphery. The heaters HT are individually connected to heater power supplies HP shown in FIG. 1 via unillustrated wiring provided on the outer peripheral portion of the base 20 . The heater power supply HP supplies individually adjusted electric power to each heater HT based on the control of the control unit 100 . Thereby, the heat generated by each heater HT is individually controlled, and the temperatures of the plurality of divided regions in the mounting region 18 a are individually adjusted.

加熱器電源HP設置有將往各加熱器HT供給之供給電力加以偵知之電力偵知部PD。此外,電力偵知部PD亦可與加熱器電源HP有別地設置在自加熱器電源HP往各加熱器HT之電力所流動的配線。電力偵知部PD將供給至各加熱器HT之供給電力加以偵知。例如,電力偵知部PD將往各加熱器HT供給之供給電力偵知為電功率〔W〕。加熱器HT因應於電力而發熱。因此,往加熱器HT供給之電力表示加熱器電力。電力偵知部PD將所偵知之往各加熱器HT之供給電力加以顯示之電力資料通知予控制部100。The heater power supply HP is provided with a power detection part PD which detects the power supplied to each heater HT. Moreover, the electric power detection part PD may be provided in the wiring which flows the electric power from heater power supply HP to each heater HT separately from heater power supply HP. The electric power detection part PD detects the electric power supplied to each heater HT. For example, the electric power detection part PD detects the electric power supplied to each heater HT as electric power [W]. The heater HT generates heat in response to electric power. Therefore, the electric power supplied to the heater HT represents heater electric power. The power detection part PD notifies the control part 100 of power data which detects and displays the power supplied to each heater HT.

又,載置台16在載置區域18a的各分割區域設置有可分別偵知加熱器HT的溫度之未圖示的溫度感測器。溫度感測器亦可係與加熱器HT有別而能將溫度加以測量之元件。又,溫度感測器亦可配置在往加熱器HT之電力流動之配線,且利用主要金屬的電阻係與溫度上昇成比例增大之特性,由測量加熱器HT之電壓、電流而求取的電阻值來偵知溫度。將由各溫度感測器偵知之感測器值傳送至溫度測量器TD。溫度測量器TD由各感測器值測量載置區域18a的各分割區域的溫度。溫度測量器TD將表示載置區域18a的各分割區域的溫度之溫度資料通知予控制部100。Moreover, the mounting table 16 is provided with a temperature sensor (not shown) which can respectively detect the temperature of the heater HT in each divided area of the mounting area 18a. The temperature sensor can also be an element that is different from the heater HT and can measure the temperature. In addition, the temperature sensor can also be arranged on the wiring for the electric power flowing to the heater HT, and it can be obtained by measuring the voltage and current of the heater HT by using the characteristic that the resistance of the main metal increases in proportion to the temperature rise. Resistance value to detect temperature. The sensor values detected by each temperature sensor are sent to the temperature measuring device TD. The temperature measuring device TD measures the temperature of each division|segmentation area|region of the mounting area 18a from each sensor value. The temperature measuring device TD notifies the control unit 100 of temperature data indicating the temperature of each divided area of the mounting area 18a.

再者,亦可藉由未圖示之傳熱氣體供給機構及氣體供給線而將傳熱氣體例如He氣體供給至靜電夾盤18的上表面與晶圓W的背面之間。Furthermore, a heat transfer gas such as He gas may be supplied between the upper surface of the electrostatic chuck 18 and the back surface of the wafer W through a heat transfer gas supply mechanism and a gas supply line not shown.

〔控制部的構成〕 其次,詳細說明控制部100。圖3係將控制第一實施形態之電漿處理裝置之控制部的概略構成加以顯示之方塊圖。控制部100設置有外部介面101、製程控制器102、使用者介面103、記憶部104。[Configuration of the control unit] Next, the control unit 100 will be described in detail. Fig. 3 is a block diagram showing a schematic configuration of a control unit for controlling the plasma processing apparatus according to the first embodiment. The control unit 100 is provided with an external interface 101 , a process controller 102 , a user interface 103 , and a memory unit 104 .

外部介面101可與電漿處理裝置10的各部分進行通信,將各種資料輸入輸出。例如,外部介面101由電力偵知部PD而輸入顯示往各加熱器HT之供給電力之電力資料。又,外部介面101由溫度測量器TD而輸入顯示載置區域18a的各分割區域的溫度之溫度資料。又,外部介面101將控制往各加熱器HT供給之供給電力之控制資料輸出至加熱器電源HP。The external interface 101 can communicate with various parts of the plasma processing apparatus 10 to input and output various data. For example, the external interface 101 receives power data showing power supplied to each heater HT from the power detection part PD. Moreover, the external interface 101 inputs the temperature data which shows the temperature of each divided area|region of the mounting area 18a from the temperature measuring device TD. Moreover, the external interface 101 outputs control data for controlling the supply power supplied to each heater HT to the heater power supply HP.

製程控制器102具備CPU(Central Processing Unit,中央處理單元)並控制電漿處理裝置10的各部分。The process controller 102 has a CPU (Central Processing Unit, central processing unit) and controls each part of the plasma processing apparatus 10 .

使用者介面103係由程序管理者為了管理電漿處理裝置10而將指令的輸入操作加以進行之鍵盤、將電漿處理裝置10的工作狀況加以可見化表示之顯示器等所構成。The user interface 103 is composed of a keyboard for the program manager to input commands for managing the plasma processing apparatus 10, a display for visually displaying the working status of the plasma processing apparatus 10, and the like.

記憶部104收納有利用製程控制器102之控制而將電漿處理裝置10執行之各種處理加以實現之控制程式(軟體)、記憶有處理條件資料等之配方、進行電漿處理所必要之有關裝置及製程之參數等。此外,控制程式或處理條件資料等配方可使用係收納在電腦可讀取之電腦記錄媒體(例如硬碟、DVD等光碟、軟碟、半導體記憶體等)等之狀態者、或從其他裝置例如經由專用線路隨時傳輸而連線使用。The memory unit 104 stores control programs (software) for realizing various processes performed by the plasma processing device 10 under the control of the process controller 102, formulas storing processing condition data, etc., and related devices necessary for plasma processing and process parameters, etc. In addition, recipes such as control programs and processing condition data can be stored in computer-readable computer recording media (such as hard disks, DVDs, etc., floppy disks, semiconductor memories, etc.), or from other devices such as It can be connected and used by transmission at any time through a dedicated line.

製程控制器102具有用以收納程式或資料之內部記憶體,讀出記憶於記憶部104之控制程式,並執行所讀出之控制程式的處理。製程控制器102藉由控制程式運作而作為各種處理部發揮功能。例如,製程控制器102具有加熱器控制部102a、量測部102b、參數計算部102c、設定溫度計算部102d、警示部102e的功能。此外,本實施形態之電漿處理裝置10之中,以製程控制器102具有加熱器控制部102a、量測部102b、參數計算部102c、設定溫度計算部102d、及警示部102e的功能之情形為例說明,但亦可使加熱器控制部102a、量測部102b、參數計算部102c、設定溫度計算部102d、及警示部102e的功能在複數之控制器分散實現。The process controller 102 has an internal memory for storing programs or data, reads the control program stored in the memory unit 104, and executes the processing of the read control program. The process controller 102 functions as various processing units by controlling program operation. For example, the process controller 102 has the functions of a heater control unit 102a, a measurement unit 102b, a parameter calculation unit 102c, a set temperature calculation unit 102d, and a warning unit 102e. In addition, in the plasma processing apparatus 10 of this embodiment, the process controller 102 has the functions of a heater control unit 102a, a measurement unit 102b, a parameter calculation unit 102c, a set temperature calculation unit 102d, and a warning unit 102e. It is described as an example, but the functions of heater control unit 102a, measurement unit 102b, parameter calculation unit 102c, set temperature calculation unit 102d, and warning unit 102e can also be distributed among multiple controllers.

然而,電漿處理之中,因晶圓W的溫度而導致處理之進行產生變化。例如,電漿蝕刻之中,因晶圓W的溫度而導致蝕刻的進行速度產生變化。於是,就電漿處理裝置10而言,宜考慮藉由各加熱器HT而將晶圓W的溫度控制為目標溫度。However, in the plasma processing, the progress of the processing varies depending on the temperature of the wafer W. For example, during plasma etching, the etching progress rate varies depending on the temperature of the wafer W. Therefore, in the plasma processing apparatus 10, it is preferable to control the temperature of the wafer W to a target temperature by each heater HT.

但是,電漿處理之中,自電漿朝向晶圓W具有入熱。因此,電漿處理裝置10會有無法將電漿處理中之晶圓W的溫度精度良好控制為目標溫度之情形。However, in the plasma processing, heat is absorbed from the plasma toward the wafer W. As shown in FIG. Therefore, the plasma processing apparatus 10 may not be able to accurately control the temperature of the wafer W being plasma processed to the target temperature.

說明影響晶圓W的溫度之能量的流動。圖4示意性顯示影響晶圓的溫度之能量的流動。圖4簡略顯示有晶圓W、含有靜電夾盤(ESC)18之載置台16。圖4的例顯示有就靜電夾盤18的載置區域18a之一分割區域而言影響晶圓W的溫度之能量的流動。載置台16具有靜電夾盤18及基台20。靜電夾盤18與基台20係由黏接層19黏接。靜電夾盤18的載置區域18a的內部設有加熱器HT。基台20的內部形成有冷媒所流動之冷媒流道24。The flow of energy affecting the temperature of the wafer W will be described. Figure 4 schematically shows the flow of energy affecting the temperature of the wafer. FIG. 4 schematically shows a wafer W, a stage 16 including an electrostatic chuck (ESC) 18 . The example of FIG. 4 shows the flow of energy that affects the temperature of the wafer W in one of the divided regions of the mounting region 18 a of the electrostatic chuck 18 . The mounting table 16 has an electrostatic chuck 18 and a base 20 . The electrostatic chuck 18 and the base 20 are bonded by an adhesive layer 19 . A heater HT is provided inside the mounting area 18 a of the electrostatic chuck 18 . A refrigerant channel 24 through which the refrigerant flows is formed inside the base 20 .

加熱器HT因應於自加熱器電源HP供給之供給電力而發熱,使溫度上昇。圖4將往加熱器HT供給之供給電力顯示為加熱器功率Ph 。又,加熱器HT產生將加熱器功率Ph 除以靜電夾盤18的加熱器HT設置之區域的面積A而成之每一單位面積的發熱量(熱通量)qhThe heater HT generates heat in response to the electric power supplied from the heater power supply HP, and raises its temperature. FIG. 4 shows the electric power supplied to the heater HT as heater power Ph . Also, the heater HT generates a calorific value (heat flux) q h per unit area obtained by dividing the heater power Ph h by the area A of the area where the heater HT is installed in the electrostatic chuck 18 .

又,進行電漿處理之情形下,晶圓W因來自電漿的入熱而導致溫度上昇。圖4顯示將從電漿往晶圓W之入熱量除以晶圓W的面積之每一單位面積而成之來自電漿的熱通量qpAlso, when plasma processing is performed, the temperature of the wafer W rises due to heat from the plasma. FIG. 4 shows the heat flux q p from the plasma obtained by dividing the heat input from the plasma into the wafer W by the area of the wafer W per unit area.

普知來自電漿的入熱主要係與下者的乘積成比例:往晶圓W照射之電漿中的離子的量;以及用以將電漿中的離子拉入至晶圓W之偏壓電位。往晶圓W照射之電漿中的離子的量係與電漿的電子密度成比例。電漿的電子密度係與來自電漿生成中施加之第一射頻電源HFS的射頻電力HFS的功率成比例。又,電漿的電子密度取決於處理容器12內的壓力。用以將電漿中的離子拉入至晶圓W之偏壓電位係與來自產生偏壓電位中施加之第二射頻電源LFS的射頻電力LFS的功率成比例。又,用以將電漿中的離子拉入至晶圓W之偏壓電位取決於處理容器12內的壓力。此外,射頻電力LFS未施加於載置台12之情形下,藉由電漿生成時產生之電漿的電位(Plasma Potential)與載置台12之電位差而將離子拉入至載置台。It is well known that the heat input from the plasma is primarily proportional to the product of: the amount of ions in the plasma impinging on the wafer W; and the bias voltage used to pull the ions in the plasma into the wafer W potential. The amount of ions in the plasma irradiated to the wafer W is proportional to the electron density of the plasma. The electron density of the plasma is proportional to the power of the RF power HFS from the first RF power source HFS applied during plasma generation. Also, the electron density of the plasma depends on the pressure in the processing chamber 12 . The bias potential for pulling ions in the plasma into the wafer W is proportional to the power of the RF power LFS from the second RF power LFS applied in generating the bias potential. Also, the bias potential used to pull ions in the plasma into the wafer W depends on the pressure in the processing vessel 12 . In addition, when the radio frequency power LFS is not applied to the mounting table 12 , ions are pulled into the mounting table by the potential difference between the plasma potential (Plasma Potential) generated during plasma generation and the mounting table 12 .

又,來自電漿的入熱包含電漿發光所成之加熱、電漿中的電子或自由基所行之往晶圓W之照射、離子與自由基所成之晶圓W上的表面反應等。此等成分亦取決於交流電力的功率或壓力。來自電漿之入熱,還取決於有關電漿生成之裝置參數,例如載置台16與上部電極30之間隔距離、供給至處理空間S之氣體種類。In addition, the heat input from plasma includes heating caused by plasma luminescence, irradiation of wafer W by electrons or free radicals in plasma, surface reaction on wafer W caused by ions and free radicals, etc. . These components also depend on the power or pressure of the AC power. The heat input from the plasma also depends on device parameters related to plasma generation, such as the distance between the mounting table 16 and the upper electrode 30 , and the type of gas supplied to the processing space S.

傳達至晶圓W之熱,傳達至靜電夾盤18。在此,晶圓W的熱非全傳達至靜電夾盤18,而係因應於晶圓W與靜電夾盤18之接觸程度等熱的傳達難度,而將熱傳達至靜電夾盤18。熱的傳達難度亦即熱阻係與對著熱的傳熱方向之剖面積成反比例。因此,圖4將從晶圓W往靜電夾盤18的表面之熱的傳達難度顯示為晶圓W與靜電夾盤18的表面間的每一單位面積的熱阻Rth ・A。此外,A係加熱器HT設置之區域的面積。Rth 係加熱器HT設置之區域全體的熱阻。又,圖4將自晶圓W往靜電夾盤18表面之入熱量顯示為自晶圓W往靜電夾盤18表面之每一單位面積的熱通量q。此外,晶圓W與靜電夾盤18的表面間的每一單位面積的熱阻Rth ・A取決於靜電夾盤18的表面狀態、為了固持晶圓W而由直流電源22施加之直流電壓的值、及供給至靜電夾盤18的上表面與晶圓W的背面之間之傳熱氣體的壓力。又,熱阻Rth ・A還取決於有關熱阻或熱傳導率之裝置參數。The heat transmitted to the wafer W is transmitted to the electrostatic chuck 18 . Here, not all the heat of the wafer W is transmitted to the electrostatic chuck 18 , but the heat is transmitted to the electrostatic chuck 18 according to the difficulty of heat transmission such as the degree of contact between the wafer W and the electrostatic chuck 18 . The difficulty of heat transfer, that is, the thermal resistance, is inversely proportional to the cross-sectional area facing the heat transfer direction. Therefore, FIG. 4 shows the heat transfer difficulty from the wafer W to the surface of the electrostatic chuck 18 as the thermal resistance R th ·A per unit area between the wafer W and the surface of the electrostatic chuck 18 . In addition, A is the area of the area where the heater HT is provided. R th is the thermal resistance of the entire area where the heater HT is installed. Moreover, FIG. 4 shows the heat input from the wafer W to the surface of the electrostatic chuck 18 as the heat flux q per unit area from the wafer W to the surface of the electrostatic chuck 18 . In addition, the thermal resistance R th ·A per unit area between the wafer W and the surface of the electrostatic chuck 18 depends on the surface state of the electrostatic chuck 18 and the DC voltage applied from the DC power supply 22 to hold the wafer W. value, and the pressure of the heat transfer gas supplied between the upper surface of the electrostatic chuck 18 and the back surface of the wafer W. In addition, the thermal resistance R th ·A also depends on device parameters related to thermal resistance or thermal conductivity.

傳達至靜電夾盤18的表面之熱,使靜電夾盤18的溫度上昇,且更傳達至加熱器HT。圖4將自靜電夾盤18表面往加熱器HT之入熱量顯示為自靜電夾盤18表面往加熱器HT之每一單位面積的熱通量qcThe heat transmitted to the surface of the electrostatic chuck 18 increases the temperature of the electrostatic chuck 18 and is further transmitted to the heater HT. FIG. 4 shows the heat input from the surface of the electrostatic chuck 18 to the heater HT as the heat flux q c per unit area from the surface of the electrostatic chuck 18 to the heater HT.

另一方面,基台20係由流動在冷媒流道24之冷媒進行冷卻,且冷卻所接觸之靜電夾盤18。此時,圖4將通過黏接層19而自靜電夾盤18的背面往基台20之散熱量顯示為自靜電夾盤18的背面往基台20之每一單位面積的熱通量qsus 。藉此,加熱器HT藉由散熱而冷卻,且溫度降低。On the other hand, the base 20 is cooled by the refrigerant flowing in the refrigerant channel 24 and cools the electrostatic chuck 18 that it contacts. At this time, FIG. 4 shows the heat dissipation from the back of the electrostatic chuck 18 to the base 20 through the adhesive layer 19 as the heat flux q sus per unit area from the back of the electrostatic chuck 18 to the base 20 . Thereby, the heater HT is cooled by radiating heat, and the temperature is lowered.

將加熱器HT的溫度控制為固定之情形下,加熱器HT之中,下者係相等的狀態:傳達至加熱器HT之熱的入熱量及在加熱器HT產生之發熱量的加總;以及自加熱器HT散熱之散熱量。例如,未點燃電漿之未點燃狀態之中,在加熱器HT產生之發熱量係與自加熱器HT散熱之散熱量相等的狀態。圖5A示意性顯示未點燃狀態之能量的流動。圖5A的例之中,從基台20藉由冷卻,而將「100」之熱量自加熱器HT散熱。例如,將加熱器HT的溫度控制為固定之情形下,加熱器HT從加熱器電源HP由於加熱器功率Ph 而產生「100」之熱量。When the temperature of the heater HT is controlled to be constant, among the heaters HT, the following is an equal state: the sum of the heat input amount transmitted to the heater HT and the heat generation amount generated in the heater HT; and The amount of heat dissipated from the heater HT. For example, in the unignited state of the unignited plasma, the amount of heat generated in the heater HT is equal to the amount of heat released from the heater HT. Figure 5A schematically shows the flow of energy in the unignited state. In the example of FIG. 5A , the heat of “100” is dissipated from the heater HT by cooling the base 20 . For example, when the temperature of the heater HT is controlled to be constant, the heater HT generates heat of "100" from the heater power supply HP due to the heater power Ph .

另一方面,例如於點燃電漿之點燃狀態下,入熱至加熱器HT之熱量及在加熱器HT產生之熱量的加總,係與自加熱器HT散熱之散熱量相等的狀態。圖5B示意性顯示點燃狀態之能量的流動。在此,點燃狀態具有過渡狀態與穩定狀態。過渡狀態係例如對於晶圓W或靜電夾盤18而言之入熱量多於散熱量、且晶圓W或靜電夾盤18有溫度隨時間經過上昇趨勢之狀態。穩定狀態係晶圓W或靜電夾盤18的入熱量與散熱量相等、且晶圓W或靜電夾盤18之溫度隨時間經過上昇趨勢消失、溫度係約略固定之狀態。On the other hand, for example, in the ignited state of the ignited plasma, the sum of the heat absorbed into the heater HT and the heat generated in the heater HT is equal to the amount of heat released from the heater HT. Figure 5B schematically shows the flow of energy in the ignited state. Here, the ignition state has a transition state and a steady state. The transition state is, for example, a state in which the heat input to the wafer W or the electrostatic chuck 18 is greater than the heat dissipation, and the temperature of the wafer W or the electrostatic chuck 18 tends to increase with time. The stable state is a state in which the heat input and heat dissipation of the wafer W or the electrostatic chuck 18 are equal, and the temperature of the wafer W or the electrostatic chuck 18 disappears over time, and the temperature is approximately constant.

圖5B的例之中,亦從基台20藉由冷卻,而將「100」之熱量自加熱器HT散熱。點燃狀態之情形下,晶圓W至成為穩定狀態為止,因來自電漿的入熱而溫度上昇。經由靜電夾盤18而從晶圓W將熱傳達至加熱器HT。如同上述,將加熱器HT的溫度控制為固定之情形下,入熱至加熱器HT的熱量與自加熱器HT散熱的熱量係相等狀態。加熱器HT為了將加熱器HT的溫度維持為固定而需要的熱量降低。因此,往加熱器HT之供給電力降低。In the example of FIG. 5B , the heat of “100” is also dissipated from the heater HT by cooling the base 20 . In the ignited state, the temperature of the wafer W rises due to the heat from the plasma until the wafer W reaches a stable state. Heat is transferred from the wafer W to the heater HT via the electrostatic chuck 18 . As described above, when the temperature of the heater HT is controlled to be constant, the amount of heat entering the heater HT and the amount of heat dissipating from the heater HT are in an equal state. The amount of heat required by the heater HT to maintain a constant temperature of the heater HT is reduced. Therefore, the electric power supplied to the heater HT is reduced.

例如,圖5B之中定為「過渡狀態」之例,自電漿往晶圓W傳達「80」之熱量。傳達至晶圓W的熱,傳達至靜電夾盤18。又,晶圓W的溫度非穩定狀態之情形下,傳達至晶圓W的熱,其一部分作用於晶圓W的溫度之上昇。作用於晶圓W的溫度上昇之熱量,取決於晶圓W的熱容量。因此,自電漿傳達至晶圓W之「80」之熱量中之「60」之熱量自晶圓W傳達至靜電夾盤18的表面。傳達至靜電夾盤18的表面之熱,傳達至加熱器HT。又,靜電夾盤18的溫度非穩定狀態之情形下,傳達至靜電夾盤18的表面之熱,其一部分作用於靜電夾盤18的溫度之上昇。作用於靜電夾盤18的溫度上昇之熱量,取決於靜電夾盤18的熱容量。因此,傳達至靜電夾盤18的表面之「60」之熱量中之「40」之熱量傳達至加熱器HT。因此,將加熱器HT的溫度控制為固定之情形下,從加熱器電源HP由於加熱器功率Ph 而將「60」之熱量供給至加熱器HT。For example, in FIG. 5B , it is defined as an example of "transition state", and heat of "80" is transmitted from the plasma to the wafer W. The heat transmitted to the wafer W is transmitted to the electrostatic chuck 18 . In addition, when the temperature of the wafer W is not in a steady state, a part of the heat transmitted to the wafer W contributes to an increase in the temperature of the wafer W. The amount of heat to increase the temperature of the wafer W depends on the heat capacity of the wafer W. Therefore, “60” of the “80” heat transferred from the plasma to the wafer W is transferred from the wafer W to the surface of the electrostatic chuck 18 . The heat transmitted to the surface of the electrostatic chuck 18 is transmitted to the heater HT. In addition, when the temperature of the electrostatic chuck 18 is in an unstable state, part of the heat transmitted to the surface of the electrostatic chuck 18 acts on an increase in the temperature of the electrostatic chuck 18 . The heat of temperature increase acting on the electrostatic chuck 18 depends on the heat capacity of the electrostatic chuck 18 . Therefore, "40" of the heat "60" transmitted to the surface of the electrostatic chuck 18 is transmitted to the heater HT. Therefore, when the temperature of the heater HT is controlled to be constant, the heat of "60" is supplied to the heater HT from the heater power supply HP by the heater power Ph .

又,圖5B之中,於「穩定狀態」,自電漿至晶圓W傳達「80」之熱量。傳達至晶圓W的熱,傳達至靜電夾盤18。又,晶圓W的溫度係穩定狀態之情形下,晶圓W係入熱量與出熱量相等之狀態。因此,自電漿傳達至晶圓W之「80」之熱量,自晶圓W傳達至靜電夾盤18的表面。傳達至靜電夾盤18的表面之熱,傳達至加熱器HT。靜電夾盤18的溫度係穩定狀態之情形下,靜電夾盤18係入熱量與出熱量相等。因此,傳達至靜電夾盤18的表面之「80」之熱量,傳達至加熱器HT。因此,將加熱器HT的溫度控制為固定之情形下,從加熱器電源HP由於加熱器功率Ph 而將「20」之熱量供給至加熱器HT。Also, in FIG. 5B, in the "steady state", heat of "80" is transmitted from the plasma to the wafer W. The heat transmitted to the wafer W is transmitted to the electrostatic chuck 18 . In addition, when the temperature of the wafer W is in a stable state, the amount of heat entering the wafer W is equal to the heat output. Therefore, the heat transferred from the plasma to "80" of the wafer W is transferred from the wafer W to the surface of the electrostatic chuck 18 . The heat transmitted to the surface of the electrostatic chuck 18 is transmitted to the heater HT. When the temperature of the electrostatic chuck 18 is in a steady state, the heat input and output heat of the electrostatic chuck 18 are equal. Therefore, the heat transferred to "80" on the surface of the electrostatic chuck 18 is transferred to the heater HT. Therefore, when the temperature of the heater HT is controlled to be constant, the heat of "20" is supplied to the heater HT from the heater power supply HP by the heater power Ph .

如圖5A及圖5B所示,就往加熱器HT之供給電力而言,相較於未點燃狀態,點燃狀態更降低。又,點燃狀態之中,往加熱器HT之供給電力降低至成為穩定狀態為止。As shown in FIG. 5A and FIG. 5B , the power supplied to the heater HT is lower in the lit state than in the unlit state. In addition, in the ignition state, the electric power supplied to the heater HT is reduced until a steady state is reached.

圖6顯示晶圓W的溫度與往加熱器HT之供給電力的變化的一例。圖6(A)顯示有晶圓W的溫度的變化。圖6(B)顯示有往加熱器HT之供給電力的變化。圖6的例顯示以下結果:控制成加熱器HT的溫度成為固定,自未點燃電漿之未點燃狀態點燃電漿,測量晶圓W的溫度與往加熱器HT之供給電力。晶圓W的溫度係使用由科磊(KLA-Tencor)公司販賣之Etch Temp等溫度量測用的晶圓而量測。此溫度量測用的晶圓係昂貴。因此,於量產工作現場,若將溫度量測用的晶圓使用於電漿處理裝置10的各加熱器HT的溫度之調整,則成本變高。又,於量產工作現場,若將溫度量測用的晶圓使用於電漿處理裝置10的各加熱器HT的溫度之調整,則生產效率降低。FIG. 6 shows an example of changes in the temperature of the wafer W and the power supplied to the heater HT. FIG. 6(A) shows that there is a change in the temperature of the wafer W. FIG. 6(B) shows changes in the electric power supplied to the heater HT. The example in FIG. 6 shows the results of controlling the temperature of the heater HT to be constant, igniting the plasma from the unignited state of the unignited plasma, and measuring the temperature of the wafer W and the power supplied to the heater HT. The temperature of the wafer W is measured using a wafer for temperature measurement such as Etch Temp sold by KLA-Tencor. The wafers used for this temperature measurement are expensive. Therefore, at the mass production site, if the wafer for temperature measurement is used to adjust the temperature of each heater HT of the plasma processing apparatus 10, the cost will increase. In addition, at the mass production site, if the wafer for temperature measurement is used to adjust the temperature of each heater HT of the plasma processing apparatus 10, the production efficiency will decrease.

圖6的期間T1係未點燃電漿之未點燃狀態。期間T1之中,往加熱器HT之供給電力係固定。圖6的期間T2係已點燃電漿之點燃狀態,且係過渡狀態。期間T2之中,往加熱器HT之供給電力降低。又,期間T2之中,晶圓W的溫度上昇至固定的溫度。圖6的期間T3係已點燃電漿之點燃狀態。期間T3之中,晶圓W的溫度係固定,且係穩定狀態。當靜電夾盤18亦係穩定狀態時,則往加熱器HT之供給電力約略固定,降低趨勢之變動穩定。圖6的期間T4係熄滅電漿之未點燃狀態。期間T4之中,自電漿至晶圓W之入熱消失,因此晶圓W的溫度降低,往加熱器HT之供給電力增加。The period T1 in FIG. 6 is the unignited state of the unignited plasma. During the period T1, the electric power supplied to the heater HT is constant. The period T2 in FIG. 6 is the ignited state of the ignited plasma, and is a transitional state. During the period T2, the electric power supplied to the heater HT is reduced. Also, during the period T2, the temperature of the wafer W rises to a constant temperature. The period T3 in FIG. 6 is the ignited state of the ignited plasma. During the period T3, the temperature of the wafer W is constant and in a steady state. When the electrostatic chuck 18 is also in a stable state, the electric power supplied to the heater HT is approximately constant, and the variation of the downward trend is stable. The period T4 in FIG. 6 is an unignited state in which the plasma is extinguished. During the period T4, since the heat input from the plasma to the wafer W disappears, the temperature of the wafer W decreases, and the power supplied to the heater HT increases.

圖6的期間T2所示之過渡狀態中往加熱器HT之供給電力之降低趨勢,因自電漿往晶圓W之入熱量、晶圓W與靜電夾盤18的表面間的熱阻等而變化。The decreasing tendency of the electric power supplied to the heater HT in the transitional state shown in the period T2 of FIG. Variety.

圖7示意性顯示點燃狀態之能量的流動。此外,圖7皆係過渡狀態的例。例如,圖7定為「入熱量:小、熱阻:小」之例之中,自電漿往晶圓W傳達「80」之熱量。自電漿傳達至晶圓W之「80」之熱量中之「60」之熱量自晶圓W往靜電夾盤18的表面傳達。而且,傳達至靜電夾盤18的表面之「60」之熱量中之「40」之熱量傳達至加熱器HT。例如,將加熱器HT的溫度控制為固定之情形下,從加熱器電源HP由於加熱器功率Ph 而將「60」之熱量供給至加熱器HT。Figure 7 schematically shows the flow of energy in the ignited state. In addition, FIG. 7 is an example of a transition state. For example, in FIG. 7 , in the example of "input heat: small, thermal resistance: small", heat of "80" is transmitted from the plasma to the wafer W. "60" of the "80" of heat transferred from the plasma to the wafer W is transferred from the wafer W to the surface of the electrostatic chuck 18 . And, the heat of "40" among the heat of "60" transmitted to the surface of the electrostatic chuck 18 is transmitted to the heater HT. For example, when the temperature of the heater HT is controlled to be constant, the heat of "60" is supplied to the heater HT by the heater power Ph from the heater power supply HP.

又,圖7定為「入熱量:大、熱阻:小」之例之中,自電漿往晶圓W傳達「100」之熱量。自電漿傳達至晶圓W之「100」之熱量中之「80」之熱量自晶圓W往靜電夾盤18的表面傳達。而且,傳達至靜電夾盤18的表面之「80」之熱量中之「60」之熱量傳達至加熱器HT。例如,將加熱器HT的溫度控制為固定之情形下,從加熱器電源HP由於加熱器功率Ph 而將「40」之熱量供給至加熱器HT。In addition, in FIG. 7 , in the example of "input heat: large, thermal resistance: small", heat of "100" is transmitted from the plasma to the wafer W. "80" of the "100" heat transferred from the plasma to the wafer W is transferred from the wafer W to the surface of the electrostatic chuck 18 . And, "60" of the heat of "80" transmitted to the surface of the electrostatic chuck 18 is transmitted to the heater HT. For example, when the temperature of the heater HT is controlled to be constant, the heat of "40" is supplied to the heater HT by the heater power Ph from the heater power supply HP.

又,圖7定為「入熱量:小、熱阻:大」之例之中,自電漿往晶圓W傳達「80」之熱量。自電漿傳達至晶圓W之「80」之熱量中之「40」之熱量自晶圓W往靜電夾盤18的表面傳達。傳達至靜電夾盤18的表面之「40」之熱量中之「20」之熱量傳達至加熱器HT。例如,將加熱器HT的溫度控制為固定之情形下,從加熱器電源HP由於加熱器功率Ph 而將「80」之熱量供給至加熱器HT。In addition, in FIG. 7, in the example of "heat input: small, thermal resistance: large", heat of "80" is transmitted from the plasma to the wafer W. "40" of the "80" heat transferred from the plasma to the wafer W is transferred from the wafer W to the surface of the electrostatic chuck 18 . The heat of "20" among the heat of "40" transmitted to the surface of the electrostatic chuck 18 is transmitted to the heater HT. For example, when the temperature of the heater HT is controlled to be constant, the heat of "80" is supplied to the heater HT from the heater power supply HP by the heater power Ph .

如上所述,將加熱器HT的溫度控制為固定之情形下,加熱器功率Ph 因自電漿往晶圓W之入熱量、晶圓W與靜電夾盤18的表面間的熱阻而變化。故,圖6(B)所示之期間T2之往加熱器HT之供給電力的降低趨勢因自電漿往晶圓W之入熱量、晶圓W與靜電夾盤18的表面間的熱阻等而變化。因此,就期間T2之往加熱器HT之供給電力的圖表而言,可將自電漿往晶圓W之入熱量、晶圓W與靜電夾盤18的表面間的熱阻作為參數而模式化。亦即,就期間T2之往加熱器HT之供給電力的變化而言,可將自電漿往晶圓W之入熱量、晶圓W與靜電夾盤18的表面間的熱阻作為參數而利用運算式來模式化。As described above, when the temperature of the heater HT is controlled to be constant, the heater power Ph changes due to the heat input from the plasma to the wafer W and the thermal resistance between the wafer W and the surface of the electrostatic chuck 18. . Therefore, the decreasing tendency of the electric power supplied to the heater HT during the period T2 shown in FIG. And change. Therefore, in the graph of the electric power supplied to the heater HT during the period T2, the heat input from the plasma to the wafer W and the thermal resistance between the wafer W and the surface of the electrostatic chuck 18 can be modeled as parameters. . That is, in terms of the change of the electric power supplied to the heater HT during the period T2, the amount of heat input from the plasma to the wafer W and the thermal resistance between the wafer W and the surface of the electrostatic chuck 18 can be used as parameters. Expression to model.

本實施形態將圖6(B)所示之期間T2之往加熱器HT之供給電力的變化模式化為每一單位面積的算式。例如,利用如以下算式(2)-(4)而表示具有來自電漿之熱通量時之每一單位面積的來自加熱器HT之發熱量qh 、不具來自電漿之熱通量時之穩定狀態中之每一單位面積的來自加熱器HT之發熱量qh0 、靜電夾盤18的表面與加熱器間之每一單位面積的熱阻Rthc ・A。將自電漿往晶圓W之每一單位面積的熱通量qp 、及晶圓W與靜電夾盤18的表面間之每一單位面積的熱阻Rth ・A作為參數、並利用如以下算式(5)-(11)而表示a1 、a2 、a3 、λ1 、λ2 、τ1 、τ2 之情形下,具有來自電漿之熱通量時之每一單位面積的來自加熱器HT之發熱量qh 可表示成以下算式(1)。In this embodiment, the variation of the electric power supplied to the heater HT during the period T2 shown in FIG. 6(B) is modeled as a formula per unit area. For example, the calorific value q h per unit area from the heater HT when there is heat flux from the plasma is represented by the following formulas (2)-(4), and when there is no heat flux from the plasma The calorific value q h0 per unit area from the heater HT in the steady state, and the thermal resistance R thc ·A per unit area between the surface of the electrostatic chuck 18 and the heater. The heat flux q p per unit area from the plasma to the wafer W, and the thermal resistance R th ·A per unit area between the wafer W and the surface of the electrostatic chuck 18 are used as parameters, and using In the case of a 1 , a 2 , a 3 , λ 1 , λ 2 , τ 1 , τ 2 expressed by the following formulas (5)-(11), the heat flux from the plasma per unit area The calorific value q h from the heater HT can be represented by the following formula (1).

〔算式1〕

Figure 02_image001
[Equation 1]
Figure 02_image001

在此, Ph 係具有來自電漿之熱通量時之加熱器功率〔W〕。 Ph0 係不具來自電漿之熱通量時之穩定狀態中之加熱器功率〔W〕。 qh 係具有來自電漿之熱通量時之每一單位面積的來自加熱器HT的發熱量〔W/m2 〕。 qh0 係不具來自電漿之熱通量時之穩定狀態中之每一單位面積的來自加熱器HT的發熱量〔W/m2 〕。 qp 係自電漿往晶圓W之每一單位面積的熱通量〔W/m2 〕。 Rth ・A係晶圓W與靜電夾盤18的表面間之每一單位面積的熱阻〔K・m2 /W〕。 Rthc ・A係靜電夾盤18的表面與加熱器間之每一單位面積的熱阻〔K・m2 /W〕。 A係加熱器設置區域的面積〔m2 〕。 ρw 係晶圓W的密度〔kg/m3 〕。 Cw 係晶圓W之每一單位面積的熱容量〔J/K・m2 〕。 zw 係晶圓W的厚度〔m〕。 ρc 係將靜電夾盤18加以構成之陶瓷的密度〔kg/m3 〕。 Cc 係將靜電夾盤18加以構成之陶瓷之每一單位面積的熱容量〔J/K・m2 〕。 zc 係自靜電夾盤18的表面起算至加熱器HT為止的距離〔m〕。 κc 係將靜電夾盤18加以構成之陶瓷的熱傳導率〔W/K・m〕。 t係自點燃電漿起算之經過時間〔sec〕。Here, Ph is the heater power [W] when there is a heat flux from the plasma. P h0 is the heater power [W] in the steady state without heat flux from the plasma. q h is the calorific value [W/m 2 ] of the heater HT per unit area when there is a heat flux from the plasma. q h0 is the calorific value [W/m 2 ] of the heater HT per unit area in the steady state when there is no heat flux from the plasma. q p is the heat flux [W/m 2 ] per unit area from the plasma to the wafer W. R th ·A is the thermal resistance [K·m 2 /W] per unit area between the wafer W and the surface of the electrostatic chuck 18 . R thc ·A is the thermal resistance [K·m 2 /W] per unit area between the surface of the electrostatic chuck 18 and the heater. A is the area [m 2 ] of the area where the heater is installed. ρ w is the density of the wafer W [kg/m 3 ]. C w is the heat capacity per unit area of wafer W [J/K·m 2 ]. z w is the thickness [m] of the wafer W. ρ c is the density [kg/m 3 ] of the ceramics in which the electrostatic chuck 18 is formed. C c is the heat capacity per unit area [J/K·m 2 ] of the ceramics made of the electrostatic chuck 18 . z c is the distance [m] from the surface of the electrostatic chuck 18 to the heater HT. κ c is the thermal conductivity [W/K·m] of the ceramic made of the electrostatic chuck 18 . t is the elapsed time [sec] from the time when the plasma is ignited.

就算式(5)所示之a1 而言,1/a1 係將晶圓W的溫熱難度加以顯示之時間常數。又,就算式(6)所示之a2 而言,1/a2 係將靜電夾盤18的進熱難度、溫熱難度加以顯示之時間常數。又,就算式(7)所示之a3 而言,1/a3 係將靜電夾盤18的熱滲透難度、溫熱難度加以顯示之時間常數。Even for a 1 shown in Equation (5), 1/a 1 is a time constant that shows the difficulty of heating the wafer W. Furthermore, even for a 2 shown in the formula (6), 1/a 2 is a time constant indicating the difficulty of heating and warming the electrostatic chuck 18 . Also, for a 3 shown in Equation (7), 1/a 3 is a time constant indicating the difficulty of heat penetration and warming of the electrostatic chuck 18 .

由晶圓W或電漿處理裝置10的實際構成,來分別預先決定加熱器HT的面積A、晶圓W的密度ρw 、晶圓W之每一單位面積的熱容量Cw 、晶圓W的厚度zw 、將靜電夾盤18加以構成之陶瓷的密度ρc 、將靜電夾盤18加以構成之陶瓷之每一單位面積的熱容量Cc 、自靜電夾盤18的表面起算至加熱器HT為止的距離zc 、及將靜電夾盤18加以構成之陶瓷的熱傳導κc 。Rthc ・A係由熱傳導κc 、距離zc 而利用算式(4)預先決定。The area A of the heater HT, the density ρ w of the wafer W, the heat capacity C w per unit area of the wafer W, and the Thickness z w , density ρ c of the ceramic made of the electrostatic chuck 18 , heat capacity C c per unit area of the ceramic made of the electrostatic chuck 18 , calculated from the surface of the electrostatic chuck 18 to the heater HT The distance z c , and the thermal conduction κ c of the ceramic that will constitute the electrostatic chuck 18 . R thc・A is determined in advance by the formula (4) from the heat conduction κ c and the distance z c .

可使用電漿處理裝置10進行量測藉以求取每一自點燃電漿起算之經過時間t之具有來自電漿之熱通量時之加熱器功率Ph 、及不具來自電漿之熱通量時之穩定狀態中的加熱器功率Ph0 。而且,如算式(2)及(3)所示,將所求取之加熱器功率Ph 、及加熱器功率Ph0 各者除以加熱器HT的面積A,可藉以求取具有來自電漿之熱通量時之每一單位面積的來自加熱器HT的發熱量qh 、及不具來自電漿之熱通量時之穩定狀態中之每一單位面積的來自加熱器HT的發熱量qh0The plasma processing device 10 can be used to measure the heater power P h with the heat flux from the plasma and without the heat flux from the plasma for each elapsed time t counted from the ignition of the plasma The heater power P h0 in the steady state of the time. Moreover, as shown in formulas (2) and (3), dividing each of the obtained heater power Ph and heater power P h0 by the area A of the heater HT can be used to obtain the The calorific value q h per unit area from the heater HT at the time of the heat flux, and the calorific value q h0 per unit area from the heater HT in the steady state when there is no heat flux from the plasma .

而且,可使用量測結果而進行算式(1)的擬合,藉以求取自電漿往晶圓W之每一單位面積的熱通量qp 及晶圓W與靜電夾盤18的表面間之每一單位面積的熱阻Rth ・A。Moreover, the measurement results can be used to fit the formula (1), so as to obtain the heat flux q p per unit area from the plasma to the wafer W and the distance between the wafer W and the surface of the electrostatic chuck 18 The thermal resistance R th ·A per unit area.

又,就圖6(A)所示之期間T2之晶圓W的溫度的圖表而言,亦可將自電漿往晶圓W之入熱量、晶圓W與靜電夾盤18的表面間的熱阻作為參數而模式化。本實施形態之中,將期間T2之晶圓W的溫度的變化加以模式化為每一單位面積的算式。例如,於將自電漿往晶圓W之每一單位面積的熱通量qp 、晶圓W與靜電夾盤18之表面間之每一單位面積的熱阻Rth ・A作為參數、並使用算式(5)-(11)所示之a1 、a2 、a3 、λ1 、λ2 、τ1 、τ2 之情形下,晶圓W的溫度TW [℃]可表示為如下算式(12)。In addition, regarding the graph of the temperature of the wafer W during the period T2 shown in FIG. Thermal resistance is modeled as a parameter. In this embodiment, the change in the temperature of the wafer W during the period T2 is modeled into a formula per unit area. For example, when the heat flux q p per unit area from the plasma to the wafer W, the thermal resistance R th ·A per unit area between the wafer W and the surface of the electrostatic chuck 18 are used as parameters, and When a 1 , a 2 , a 3 , λ 1 , λ 2 , τ 1 , τ 2 shown in formulas (5)-(11) are used, the temperature T W [°C] of the wafer W can be expressed as follows Formula (12).

〔算式2〕

Figure 02_image003
[Equation 2]
Figure 02_image003

在此, TW 係晶圓W的溫度[℃]。 Th 係控制為固定之加熱器HT的溫度[℃]。Here, T W is the temperature [° C.] of the wafer W. Th is controlled as the temperature [°C] of the fixed heater HT.

可由實際上將晶圓W的溫度控制為固定之際的條件來求取加熱器的溫度ThThe temperature Th of the heater can be obtained from the conditions when the temperature of the wafer W is actually controlled to be constant.

使用量測結果而進行算式(1)式之擬合,藉以求取熱通量qp 、熱阻Rth ・A之情形下,晶圓W的溫度TW 可由算式(12)來計算。Using the measurement results to fit the formula (1) to obtain the heat flux q p and the thermal resistance R th ·A, the temperature T W of the wafer W can be calculated by the formula (12).

經過時間t相較於由算式(10)、(11)表示之時間常數τ1 、τ2 更充分長之情形下,亦即在計算圖6之從期間T2之過渡狀態起轉移至期間T3之穩定狀態後之晶圓W的溫度TW 會成為目標溫度之加熱器HT的溫度Th 之情形下,算式(12)可省略如以下算式(13)。In the case where the elapsed time t is sufficiently longer than the time constants τ 1 and τ 2 represented by the formulas (10) and (11), that is, when calculating the transition from the transition state of the period T2 to the period T3 in Fig. 6 In the case where the temperature T W of the wafer W after the steady state becomes the temperature Th of the heater HT at the target temperature, the formula (12) can be omitted as in the following formula (13).

〔算式3〕

Figure 02_image005
[Equation 3]
Figure 02_image005

例如,可藉由算式(13)而由加熱器的溫度Th 、熱通量qp 、熱阻Rth ・A、Rthc ・A求取晶圓W的溫度TWFor example, the temperature T W of the wafer W can be obtained from the temperature Th of the heater, the heat flux q p , the thermal resistances R th ·A, and R thc ·A by the formula (13).

返回圖3。加熱器控制部102a控制各加熱器HT的溫度。例如,加熱器控制部102a將指示往各加熱器HT之供給電力之控制資料輸出至加熱器電源HP,來控制自加熱器電源HP往各加熱器HT供給之供給電力,藉以控制各加熱器HT的溫度。Return to Figure 3. The heater control unit 102a controls the temperature of each heater HT. For example, the heater control unit 102a outputs control data indicating the power supply to each heater HT to the heater power supply HP to control the power supply from the heater power supply HP to each heater HT, thereby controlling each heater HT temperature.

電漿處理之際,加熱器控制部102a設定有各加熱器HT的定為目標之設定溫度。例如,加熱器控制部102a,在每一載置區域18a的各分割區域,將作為目標之晶圓W的溫度設定為該分割區域的加熱器HT的設定溫度。此作為目標之晶圓W的溫度例如係對於晶圓W而言之電漿蝕刻的精度最佳之溫度。At the time of plasma processing, the heater control part 102a sets the target set temperature of each heater HT. For example, the heater control unit 102a sets the temperature of the target wafer W to the set temperature of the heater HT in each divided area of each loading area 18a. The target temperature of the wafer W is, for example, the temperature at which the accuracy of plasma etching for the wafer W is optimal.

加熱器控制部102a,於電漿處理之際,將往各加熱器HT之供給電力控制為各加熱器HT成為所設定之設定溫度。例如,加熱器控制部102a將輸入至外部介面101之溫度資料所顯示之載置區域18a的各分割區域的溫度,依每一分割區域而與該分割區域的設定溫度進行比較,來分別特定出相對於設定溫度而言溫度低的分割區域、及相對於設定溫度而言溫度高的分割區域。加熱器控制部102a將控制資料輸出至加熱器電源HP,前述控制資料使往相對於設定溫度而言溫度低的分割區域之供給電力增加、並使往相對於設定溫度而言溫度高的分割區域之供給電力減少。The heater control part 102a controls the electric power supplied to each heater HT so that each heater HT becomes the set temperature which was set at the time of plasma processing. For example, the heater control unit 102a compares the temperature of each divided area of the mounting area 18a displayed in the temperature data input to the external interface 101 with the set temperature of the divided area for each divided area, and specifies the temperature of each divided area. A divided area with a lower temperature than the set temperature, and a divided area with a higher temperature than the set temperature. The heater control unit 102a outputs to the heater power supply HP control data that increases the power supply to the divisional area with a lower temperature than the set temperature and increases the power supply to the divisional area with a higher temperature than the set temperature. The power supply is reduced.

量測部102b使用輸入至外部介面101之電力資料所顯示之往各加熱器HT之供給電力,來量測往各加熱器HT之供給電力。例如,量測部102b,由加熱器控制部102a將往各加熱器HT之供給電力控制為各加熱器HT的溫度成為固定,而量測未點燃電漿之未點燃狀態、及自點燃電漿起算至往各加熱器HT之供給電力降低趨勢的變動係穩定之過渡狀態中之往各加熱器HT之供給電力。The measurement part 102b measures the power supplied to each heater HT using the power supplied to each heater HT displayed by the power data input to the external interface 101 . For example, the measurement unit 102b controls the power supplied to each heater HT by the heater control unit 102a so that the temperature of each heater HT becomes constant, and measures the unignited state of the unignited plasma and the self-ignited plasma. The change from the start to the decreasing trend of the power supply to each heater HT is the power supply to each heater HT in a stable transient state.

加熱器控制部102a,於電漿處理之際,將往各加熱器HT之供給電力控制為使各加熱器HT成為固定的設定溫度。量測部102b,於加熱器控制部102a將往各加熱器HT之供給電力控制成使各加熱器HT的溫度成為固定的設定溫度之狀態下,量測電漿處理開始前之電漿未點燃狀態中之往各加熱器HT之供給電力。又,量測部102b量測自點燃電漿起算至往各加熱器HT之供給電力降低趨勢之變動係穩定之過渡狀態中之往各加熱器HT之供給電力。未點燃狀態中之往各加熱器HT之供給電力只要於各加熱器HT量測至少一個即可,亦可量測複數次而將平均值作為未點燃狀態的供給電力。過渡狀態中之往各加熱器HT之供給電力只要量測二次以上即可。量測供給電力之量測時機宜係供給電力降低趨勢大的時機。又,於量測次數少之情形下,量測時機宜間隔預定期間以上。本實施形態之中,量測部102b,於電漿處理期間中以預定周期(例如,0.1秒周期)量測往各加熱器HT之供給電力。藉此,量測多次過渡狀態中的往各加熱器HT之供給電力。The heater control part 102a controls the electric power supplied to each heater HT so that each heater HT may become a fixed set temperature at the time of plasma processing. The measurement unit 102b measures the plasma non-ignition before the start of the plasma treatment when the heater control unit 102a controls the power supply to each heater HT so that the temperature of each heater HT becomes a fixed set temperature. Power supply to each heater HT in the state. In addition, the measurement unit 102b measures the power supply to each heater HT in a transitional state in which the fluctuation of the power supply to each heater HT is stable since the plasma is ignited. The electric power supplied to each heater HT in the non-ignited state may be measured at least one in each heater HT, and may be measured a plurality of times, and an average value may be used as the electric power supplied in the non-lit state. The electric power supplied to each heater HT in the transient state may be measured twice or more. The timing of measuring the power supply is suitable for the time when the power supply has a great downward trend. Also, in the case of a small number of measurements, it is appropriate to measure at intervals of more than a predetermined period. In this embodiment, the measuring part 102b measures the electric power supplied to each heater HT at a predetermined cycle (for example, 0.1-second cycle) during a plasma processing period. Thereby, the electric power supplied to each heater HT in a plurality of transient states is measured.

量測部102b以預定循環量測未點燃狀態與過渡狀態之往各加熱器HT之供給電力。例如,量測部102b,於毎次更換晶圓W、且將已更換之晶圓W載置於載置台16進行電漿處理之際,量測未點燃狀態與過渡狀態之往各加熱器HT之供給電力。此外,例如,參數計算部102c亦可於每次電漿處理,量測未點燃狀態與過渡狀態之往各加熱器HT之供給電力。The measurement part 102b measures the electric power supplied to each heater HT in the non-ignition state and the transition state in a predetermined cycle. For example, the measurement unit 102b measures the temperature of each heater HT in the unignited state and the transition state each time the wafer W is replaced and the replaced wafer W is placed on the mounting table 16 for plasma processing. to supply electricity. In addition, for example, the parameter calculation unit 102c may also measure the power supplied to each heater HT in the unignited state and the transition state for each plasma treatment.

參數計算部102c,依每一加熱器HT,對於以來自電漿之入熱量及晶圓W與加熱器HT間的熱阻作為參數並將過渡狀態之供給電力加以計算之計算模式,使用由量測部102b量測之未點燃狀態與過渡狀態之供給電力進行擬合,來計算入熱量及熱阻。The parameter calculation unit 102c uses the quantity of heat supplied by the quantity The unignited state measured by the measuring part 102b is fitted with the power supply in the transition state to calculate the heat and thermal resistance.

例如,參數計算部102c,依每一加熱器HT,求取每一經過時間t之未點燃狀態的加熱器功率Ph0 。又,參數計算部102c,依每一加熱器HT,求取每一經過時間t之過渡狀態的加熱器功率Ph 。而且,參數計算部102c將所求取之加熱器功率Ph 及加熱器功率Ph0 各者除以每一加熱器HT的面積,藉以求取每一經過時間t之未點燃狀態之每一單位面積的來自加熱器HT的發熱量qh0 、及每一經過時間t之過渡狀態之每一單位面積的來自加熱器HT的發熱量qhFor example, the parameter calculation unit 102c obtains the heater power P h0 in the non-ignited state for each elapsed time t for each heater HT. Furthermore, the parameter calculation unit 102c obtains the heater power Ph in the transition state for each elapsed time t for each heater HT. Furthermore, the parameter calculation unit 102c divides each of the obtained heater power Ph and heater power P h0 by the area of each heater HT to obtain each unit of the non-ignited state for each elapsed time t. The calorific value q h0 from the heater HT per area, and the calorific value q h per unit area from the heater HT in the transition state per elapsed time t.

而且,參數計算部102c將上述算式(1)-(11)作為計算模式使用,而依每一加熱器HT,進行每一經過時間t之每一單位面積的來自加熱器HT的發熱量qh 、及每一單位面積的來自加熱器HT的發熱量qh0 之擬合,來計算誤差係最小之熱通量qp 及熱阻Rth ・A。Then, the parameter calculation unit 102c uses the above-mentioned formulas (1)-(11) as a calculation model, and calculates the calorific value q h from the heater HT per unit area per elapsed time t for each heater HT. , and the fitting of the calorific value q h0 from the heater HT per unit area to calculate the heat flux q p and thermal resistance R th ·A with the smallest error.

參數計算部102c,以預定循環使用所測量之未點燃狀態與過渡狀態之供給電力,來計算熱通量qp 及熱阻Rth ・A。例如,參數計算部102c,於每次更換晶圓W,使用將該晶圓W載置在載置台16之狀態下測量之未點燃狀態與過渡狀態之供給電力,來計算熱通量qp 及熱阻Rth ・A。此外,例如,參數計算部102c亦可於每次電漿處理,使用未點燃狀態與過渡狀態之供給電力,來計算熱通量qp 及熱阻Rth ・A。The parameter calculation unit 102c calculates the heat flux q p and the thermal resistance R th ·A by using the measured power supply in the unignited state and the transition state in a predetermined cycle. For example, the parameter calculation unit 102c calculates the heat flux qp and Thermal resistance R th ·A. In addition, for example, the parameter calculation unit 102c may calculate the heat flux q p and the thermal resistance R th ·A by using the power supplied in the unignited state and the transition state for each plasma treatment.

設定溫度計算部102d,依每一加熱器HT,使用所計算之入熱量及熱阻,來計算使晶圓W成為目標溫度之加熱器HT的設定溫度。例如,設定溫度計算部102d,依每一加熱器HT,將所計算之熱通量qp 及熱阻Rth ・A代入至算式(5)、(6)、(12),並使用算式(5)-(11)所示之a1 、a2 、a3 、λ1 、λ2 、τ1 、τ2 ,由算式(12)來計算使晶圓W的溫度TW 成為目標溫度之加熱器HT的溫度Th 。例如,設定溫度計算部102d將經過時間t定為可視為穩定狀態之程度的較大預定值,來計算使晶圓W的溫度TW成為目標溫度之加熱器HT的溫度Th 。所計算之加熱器HT的溫度Th 係使晶圓W的溫度成為目標溫度之加熱器HT的溫度。此外,使晶圓W的溫度成為目標溫度之加熱器HT的溫度Th 亦可由算式(13)求取。The set temperature calculation unit 102d calculates the set temperature of the heater HT to bring the wafer W to the target temperature by using the calculated heat input and thermal resistance for each heater HT. For example, the set temperature calculation unit 102d substitutes the calculated heat flux q p and thermal resistance R th ·A into formulas (5), (6) and (12) for each heater HT, and uses the formula ( 5) A 1 , a 2 , a 3 , λ 1 , λ 2 , τ 1 , τ 2 shown in - (11) are calculated by formula (12) to make the temperature T W of the wafer W the target temperature. The temperature T h of the device HT. For example, the set temperature calculation unit 102d sets the elapsed time t to a large predetermined value that can be regarded as a steady state, and calculates the temperature Th of the heater HT that makes the temperature TW of the wafer W the target temperature. The calculated temperature Th of the heater HT is the temperature of the heater HT that makes the temperature of the wafer W the target temperature. In addition, the temperature Th h of the heater HT that makes the temperature of the wafer W the target temperature can also be obtained from Equation (13).

此外,設定溫度計算部102d亦可由算式(12)來計算現在之加熱器HT的溫度Th 中之晶圓W的溫度TW 。例如,設定溫度計算部102d利用現在之加熱器HT的溫度Th ,而計算將經過時間t定為可視為穩定狀態之程度的較大預定值之情形下之晶圓W的溫度TW 。其次,設定溫度計算部102d將所計算之溫度TW 與目標溫度之差異ΔTW 加以計算。而且,設定溫度計算部102d亦可將由現在之加熱器HT的溫度Th 減去差異ΔTW 而得之溫度,計算作為使晶圓W的溫度成為目標溫度之加熱器HT的溫度。In addition, the set temperature calculation unit 102d can also calculate the temperature T W of the wafer W in the current temperature T h of the heater HT according to the formula (12). For example, the set temperature calculation unit 102d calculates the temperature T W of the wafer W when the elapsed time t is a large predetermined value that can be regarded as a steady state, using the current temperature Th of the heater HT. Next, the set temperature calculation unit 102d calculates the difference ΔT W between the calculated temperature T W and the target temperature. Furthermore, the set temperature calculation unit 102d may calculate the temperature obtained by subtracting the difference ΔT W from the current temperature Th of the heater HT as the temperature of the heater HT for making the temperature of the wafer W the target temperature.

設定溫度計算部102d將加熱器控制部102a的各加熱器HT的設定溫度修正為使晶圓W的溫度成為目標溫度之加熱器HT的溫度。The set temperature calculation unit 102d corrects the set temperature of each heater HT of the heater control unit 102a to the temperature of the heater HT that makes the temperature of the wafer W the target temperature.

設定溫度計算部102d以預定循環計算使晶圓W的溫度成為目標溫度之加熱器HT的溫度,並修正各加熱器HT的設定溫度。例如,設定溫度計算部102d,於每次更換晶圓W,計算使晶圓W的溫度成為目標溫度之加熱器HT的溫度,並修正各加熱器HT的設定溫度。此外,例如,設定溫度計算部102d,亦可於每次電漿處理,計算使晶圓W的溫度成為目標溫度之加熱器HT的溫度,並修正各加熱器HT的設定溫度。The set temperature calculation unit 102d calculates the temperature of the heaters HT for bringing the temperature of the wafer W to the target temperature in a predetermined cycle, and corrects the set temperature of each heater HT. For example, the set temperature calculation unit 102d calculates the temperature of the heaters HT to make the temperature of the wafer W the target temperature every time the wafer W is exchanged, and corrects the set temperature of each heater HT. In addition, for example, the set temperature calculation unit 102d may calculate the temperature of the heater HT for making the temperature of the wafer W to the target temperature every time the plasma processing is performed, and correct the set temperature of each heater HT.

藉此,本實施形態之電漿處理裝置10可將電漿處理中之晶圓W的溫度精度良好控制為目標溫度。Thereby, the plasma processing apparatus 10 of this embodiment can control the temperature accuracy of the wafer W during plasma processing to a target temperature with good accuracy.

然而,電漿處理裝置10,有時依每一裝置而處理容器12內之特性具有差異。因此,有時電漿處理裝置10即使使用其他電漿處理裝置10中使晶圓W成為目標溫度之各加熱器HT的設定溫度,亦無法將電漿處理中之晶圓W的溫度精度良好控制為目標溫度。However, in the plasma processing apparatus 10, the characteristics in the processing container 12 may vary for each apparatus. Therefore, even if the plasma processing apparatus 10 uses the set temperature of each heater HT that makes the wafer W reach the target temperature in other plasma processing apparatuses 10, it may not be possible to control the temperature accuracy of the wafer W being plasma processed. is the target temperature.

於是,本實施形態之電漿處理裝置10計算因應於裝置本身的處理容器12內的特性之熱通量qp 及熱阻Rth ・A。藉此,本實施形態之電漿處理裝置10,即使於依每一裝置而處理容器12內的特性具有差異之情形下,亦可將電漿處理中之晶圓W的溫度精度良好控制為目標溫度。Therefore, the plasma processing apparatus 10 of the present embodiment calculates the heat flux q p and the thermal resistance R th ·A according to the characteristics of the processing chamber 12 of the apparatus itself. Thereby, the plasma processing apparatus 10 of this embodiment can control the temperature accuracy of the wafer W during the plasma processing well, even when the characteristics in the processing chamber 12 vary from one apparatus to another. temperature.

又,電漿處理裝置10有時因靜電夾盤18之消耗等,而導致載置台16的熱特性隨時間經過變化。In addition, in the plasma processing apparatus 10, the thermal characteristics of the mounting table 16 may change over time due to consumption of the electrostatic chuck 18 or the like.

於是,本實施形態之電漿處理裝置10以預定循環計算使晶圓W的溫度成為目標溫度之加熱器HT的溫度,並修正各加熱器HT的設定溫度。藉此,本實施形態之電漿處理裝置10,即使於載置台16的熱特性隨時間經過變化之情形下,亦可將電漿處理中之晶圓W的溫度精度良好控制為目標溫度。Then, the plasma processing apparatus 10 of the present embodiment calculates the temperature of the heater HT for making the temperature of the wafer W to the target temperature in a predetermined cycle, and corrects the set temperature of each heater HT. Thus, the plasma processing apparatus 10 of the present embodiment can control the temperature of the wafer W during plasma processing to the target temperature with good accuracy even when the thermal characteristics of the mounting table 16 change with time.

又,電漿處理裝置10因靜電夾盤18之大幅消耗或沉積物之附著等,而導致處理容器12內的特性產生變化而成為不適合電漿處理之異常狀態。又,會有異常晶圓W搬入至電漿處理裝置10之情形。In addition, the plasma processing apparatus 10 is in an abnormal state unsuitable for plasma processing due to a large consumption of the electrostatic chuck 18 or adhesion of deposits, etc., resulting in changes in the characteristics of the processing container 12 . In addition, there may be cases where abnormal wafers W are loaded into the plasma processing apparatus 10 .

於是,警示部102e基於由參數計算部102c以預定循環計算之入熱量及熱阻中之至少一者的變化,進行警示。例如,於依每一加熱器HT以預定循環而由參數計算部102c計算之熱通量qp 及熱阻Rth ・A,熱通量qp 及熱阻Rth ・A的至少一者變化成預定容許值以上之情形下,警示部102e進行警示。又,於以預定循環而由參數計算部102c計算之熱通量qp 及熱阻Rth ・A的至少一者偏離預定許容範圍之情形下,警示部102e進行警示。警示只要能將異常報告予程序管理者或電漿處理裝置10的管理者等,則可使用任何方法。例如,警示部102e將報告異常之訊息表示於使用者介面103。Then, the warning unit 102e gives a warning based on a change in at least one of the heat input and the thermal resistance calculated by the parameter calculation unit 102c in a predetermined cycle. For example, at least one of the heat flux q p and the thermal resistance R th ·A is changed in the heat flux q p and the thermal resistance R th ·A calculated by the parameter calculation unit 102 c at a predetermined cycle for each heater HT. When it exceeds a predetermined allowable value, the warning unit 102e gives a warning. In addition, when at least one of the heat flux qp and the thermal resistance R th ·A calculated by the parameter calculation unit 102c deviates from a predetermined allowable range in a predetermined cycle, the warning unit 102e issues a warning. For the warning, any method may be used as long as the abnormality can be reported to the program manager or the manager of the plasma processing apparatus 10 . For example, the warning unit 102e displays a message reporting an abnormality on the user interface 103 .

藉此,本實施形態之電漿處理裝置10可於處理容器12內的特性係異常狀態之情形、或搬入異常晶圓W之情形下,報告異常的產生。Thereby, the plasma processing apparatus 10 of this embodiment can report the occurrence of an abnormality when the characteristics in the processing container 12 are in an abnormal state, or when an abnormal wafer W is loaded.

〔溫度控制的流程〕 其次,說明使用本實施形態之電漿處理裝置10之溫度控制方法。圖8係將第一實施形態之溫度控制方法的流程的一例加以顯示之流程圖。此溫度控制方法係於預定時機例如開始電漿處理之時機執行。〔Flow of temperature control〕 Next, a temperature control method using the plasma processing apparatus 10 of this embodiment will be described. Fig. 8 is a flowchart showing an example of the flow of the temperature control method of the first embodiment. The temperature control method is performed at a predetermined timing, such as when plasma treatment is started.

加熱器控制部102a將往各加熱器HT之供給電力控制為各加熱器HT成為設定溫度(步驟S10)。The heater control part 102a controls the power supply to each heater HT so that each heater HT becomes a set temperature (step S10).

於加熱器控制部102a將往各加熱器HT之供給電力控制為各加熱器HT的溫度成為固定的設定溫度之狀態下,量測部102b量測未點燃狀態與過渡狀態中的往各加熱器HT之供給電力(步驟S11)。In the state where the heater control unit 102a controls the power supply to each heater HT so that the temperature of each heater HT becomes a fixed set temperature, the measurement unit 102b measures the electric power supplied to each heater in the non-ignited state and the transition state. Power supply to HT (step S11).

參數計算部102c,依每一加熱器HT,對於計算模式,使用藉由將所量測之未點燃狀態與過渡狀態之供給電力除以加熱器HT的面積而求取之每一單位面積的來自加熱器HT之發熱量,進行擬合,來計算入熱量及熱阻(步驟S12)。例如,參數計算部102c將上述算式(1)-(11)作為計算模式使用,而依每一加熱器HT,進行依每一經過時間t之每一單位面積的來自加熱器HT的發熱量qh 、及每一單位面積之來自加熱器HT的發熱量qh0 之擬合,計算誤差係最小之熱通量qp 及熱阻Rth ・A。The parameter calculating section 102c uses, for each heater HT, the calculated pattern by dividing the measured supply power of the unignited state and the transition state by the area of the heater HT. The calorific value of the heater HT is fitted to calculate the calorific value and thermal resistance (step S12 ). For example, the parameter calculation part 102c uses the above-mentioned formulas (1)-(11) as a calculation mode, and calculates the calorific value q from the heater HT per unit area per elapsed time t for each heater HT. h , and the fitting of heat generation q h0 from the heater HT per unit area, the calculation error is the minimum heat flux q p and thermal resistance R th ·A.

設定溫度計算部102d,依每一加熱器HT,使用所計算之入熱量及熱阻,計算使晶圓W成為目標溫度之加熱器HT的溫度(步驟S13)。例如,設定溫度計算部102d依每一加熱器HT,將所計算之熱通量qp 及熱阻Rth ・A代入至算式(5)、(6)、(12),並使用算式(5)-(11)所示之a1 、a2 、a3 、λ1 、λ2 、τ1 、τ2 ,而由算式(12)計算使晶圓W的溫度TW 成為目標溫度之加熱器HT的溫度Th 。此外,使晶圓W的溫度成為目標溫度之加熱器HT的溫度Th 亦可由算式(13)求取。The set temperature calculation unit 102d calculates the temperature of the heater HT to bring the wafer W to the target temperature using the calculated heat input and thermal resistance for each heater HT (step S13 ). For example, the set temperature calculation unit 102d substitutes the calculated heat flux q p and thermal resistance R th ·A into formulas (5), (6), and (12) for each heater HT, and uses formula (5 ) - a 1 , a 2 , a 3 , λ 1 , λ 2 , τ 1 , τ 2 shown in (11), and calculated by formula (12) so that the temperature T W of the wafer W becomes the heater of the target temperature The temperature T h of HT. In addition, the temperature Th h of the heater HT that makes the temperature of the wafer W the target temperature can also be obtained from Equation (13).

設定溫度計算部102d將加熱器控制部102a的各加熱器HT的設定溫度修正為使晶圓W的溫度成為目標溫度之加熱器HT的溫度(步驟S14),結束處理。亦即,使晶圓W的溫度成為目標溫度之加熱器HT的溫度,背離將往各加熱器HT之供給電力加以控制之程序(步驟S10)中之各加熱器HT的設定溫度時,加熱器控制部102a重新將往各加熱器HT之供給電力控制為使晶圓W的溫度成為目標溫度之加熱器HT的溫度。又,不背離之情形下,則將設定溫度維持原樣進行控制。The set temperature calculation unit 102d corrects the set temperature of each heater HT of the heater control unit 102a to the temperature of the heater HT that makes the temperature of the wafer W the target temperature (step S14 ), and ends the process. That is, when the temperature of the heater HT that makes the temperature of the wafer W the target temperature deviates from the set temperature of each heater HT in the program (step S10 ) for controlling the power supply to each heater HT, the heater The control unit 102a re-controls the power supply to each heater HT to the temperature of the heater HT that makes the temperature of the wafer W the target temperature. Also, if there is no deviation, the set temperature is controlled as it is.

如上所述,本實施形態之電漿處理裝置10具備載置台16、加熱器控制部102a、量測部102b、參數計算部102c、設定溫度計算部102d。載置台16設置有可將載置晶圓W之載置面的溫度加以調整之加熱器HT。加熱器控制部102a將往加熱器HT之供給電力控制成加熱器HT設定之設定溫度。量測部102b,由加熱器控制部102a將往加熱器HT之供給電力控制為加熱器HT的溫度成為固定,而量測未點燃電漿之未點燃狀態、及點燃電漿後往加熱器HT之供給電力降低之過渡狀態中之供給電力。參數計算部102c,對於以來自電漿之入熱量及晶圓W與加熱器HT間的熱阻定為參數並將過渡狀態之供給電力加以計算之計算模式,使用由量測部102b量測之未點燃狀態與過渡狀態之供給電力進行擬合,來計算入熱量及前述熱阻。設定溫度計算部102d使用由參數計算部102c計算之入熱量及熱阻,來計算使晶圓W成為目標溫度之加熱器HT的設定溫度。藉此,電漿處理裝置10將電漿處理中之晶圓W的溫度精度良好控制為目標溫度。As mentioned above, the plasma processing apparatus 10 of this embodiment is provided with the mounting table 16, the heater control part 102a, the measurement part 102b, the parameter calculation part 102c, and the set temperature calculation part 102d. The mounting table 16 is provided with a heater HT capable of adjusting the temperature of the mounting surface on which the wafer W is mounted. The heater control unit 102a controls the electric power supplied to the heater HT to the set temperature set by the heater HT. The measurement unit 102b controls the power supplied to the heater HT by the heater control unit 102a so that the temperature of the heater HT becomes constant, and measures the unignited state of the unignited plasma and the power supplied to the heater HT after the plasma is ignited. The power supply in the transition state in which the power supply is reduced. The parameter calculation unit 102c uses the input power from the plasma and the thermal resistance between the wafer W and the heater HT as parameters and calculates the supply power in the transition state, using the value measured by the measurement unit 102b. The power supply in the unignited state and the transition state is fitted to calculate the heat and the aforementioned thermal resistance. The set temperature calculation unit 102d calculates the set temperature of the heater HT to bring the wafer W to a target temperature using the input heat and thermal resistance calculated by the parameter calculation unit 102c. Thereby, the plasma processing apparatus 10 can control the temperature accuracy of the wafer W during the plasma processing to the target temperature with good accuracy.

又,本實施形態之電漿處理裝置10之中,載置台16在將載置面加以分割之每一區域個別設置有加熱器HT。加熱器控制部102a,依每一加熱器HT將供給電力控制成使每一區域設置之加熱器HT成為每一區域設定之設定溫度。量測部102b,由加熱器控制部102a將供給電力控制為於每一加熱器HT溫度係成為固定,而依每一加熱器HT量測未點燃狀態與過渡狀態之供給電力。參數計算部102c,依每一加熱器HT,對於計算模式,使用由量測部102b量測之未點燃狀態與過渡狀態之供給電力進行擬合,並依每一加熱器HT計算入熱量及熱阻。設定溫度計算部102d,依每一加熱器HT,使用由參數計算部102c計算之入熱量及熱阻,來計算使晶圓W成為目標溫度之設定溫度。藉此,電漿處理裝置10即使於將載置面加以分割之每一區域個別設置有加熱器HT來控制晶圓W的溫度之情形下,亦可依每一區域而將電漿處理中之晶圓W的溫度精度良好控制為目標溫度。Moreover, in the plasma processing apparatus 10 of the present embodiment, the mounting table 16 is individually provided with a heater HT for each region that divides the mounting surface. The heater control unit 102a controls the power supply for each heater HT so that the heater HT installed for each area becomes the set temperature set for each area. The measurement unit 102b controls the power supply by the heater control unit 102a so that the temperature of each heater HT becomes constant, and measures the power supply in the non-ignited state and the transition state for each heater HT. The parameter calculation part 102c, according to each heater HT, uses the supply power of the unignited state and the transition state measured by the measurement part 102b to perform fitting for the calculation mode, and calculates the heat and thermal energy according to each heater HT resistance. The set temperature calculation unit 102d calculates the set temperature at which the wafer W becomes the target temperature for each heater HT using the heat input and thermal resistance calculated by the parameter calculation unit 102c. Thereby, even if the plasma processing apparatus 10 is provided with heaters HT for controlling the temperature of the wafer W individually in each area where the mounting surface is divided, the wafer W being plasma processed can be processed for each area. The temperature accuracy of the wafer W is well controlled to be the target temperature.

將各加熱器HT的設定溫度修正為使晶圓W的溫度成為目標溫度之加熱器HT的溫度之程序(步驟S14),亦可接續將已點燃電漿之點燃狀態下往各加熱器HT之供給電力加以量測之程序(步驟S11的一部分),而於已點燃電漿之點燃狀態直接進行。藉此,將製程處理之每一晶圓W以固定溫度執行製程。The process of correcting the set temperature of each heater HT to the temperature of the heater HT that makes the temperature of the wafer W the target temperature (step S14) may be followed by sending the ignited plasma to each heater HT in the ignited state. The procedure of supplying electric power to be measured (part of step S11) is directly carried out in the ignited state of the ignited plasma. In this way, each wafer W processed by the process is processed at a fixed temperature.

又,所計算之使晶圓W成為目標溫度之加熱器HT的設定溫度,亦可於結束電漿處理而替換晶圓W時,使用於將往各加熱器HT之供給電力加以控制之程序(步驟S10)中之各加熱器HT的設定溫度。亦即,將各加熱器HT的設定溫度修正為使晶圓W的溫度成為目標溫度之加熱器HT的溫度之程序(步驟S14),係與對於替換後之下一個晶圓W之處理中之將往各加熱器HT之供給電力加以控制之程序(步驟S10)一致。藉此,可盡力縮小使晶圓W的溫度成為目標溫度之加熱器HT的溫度、及將往各加熱器HT之供給電力加以控制之程序(步驟S10)中之各加熱器HT的設定溫度之背離。In addition, the calculated set temperature of the heater HT to bring the wafer W to the target temperature may be used in a program for controlling the power supply to each heater HT when the plasma treatment is completed and the wafer W is replaced ( The set temperature of each heater HT in step S10). That is, the process of correcting the set temperature of each heater HT to the temperature of the heater HT at which the temperature of the wafer W becomes the target temperature (step S14 ) is the same as the process for the next wafer W after replacement. The procedure (step S10 ) for controlling the power supply to each heater HT is the same. Thereby, the difference between the temperature of the heater HT for making the temperature of the wafer W at the target temperature and the set temperature of each heater HT in the process of controlling the power supply to each heater HT (step S10 ) can be minimized as much as possible. Deviate from.

又,本實施形態之電漿處理裝置10之中,量測部102b以預定循環量測未點燃狀態與過渡狀態中的供給電力。參數計算部102c,依每一預定循環,使用所量測之未點燃狀態與過渡狀態之供給電力,來分別計算入熱量及熱阻。警示部102e基於由參數計算部102c計算之入熱量及熱阻中之至少一者的變化,進行警示。藉此,電漿處理裝置10可於處理容器12內的特性係異常狀態之情形、或搬入異常晶圓W之情形,報告異常的產生。In addition, in the plasma processing apparatus 10 of the present embodiment, the measuring unit 102b measures the power supplied in the unignited state and the transition state in a predetermined cycle. The parameter calculation unit 102c calculates the input heat and the thermal resistance by using the measured power supply in the unignited state and the transition state for each predetermined cycle. The warning unit 102e gives a warning based on a change in at least one of the heat input and the thermal resistance calculated by the parameter calculation unit 102c. Accordingly, the plasma processing apparatus 10 can report the occurrence of an abnormality when the characteristics in the processing container 12 are in an abnormal state or when an abnormal wafer W is loaded.

(第二實施形態) 其次,說明第二實施形態。第二實施形態之電漿處理裝置10及載置台16的構成係與圖1、圖2所示之第一實施形態之電漿處理裝置10及載置台16的構成同樣,因此省略說明。(Second Embodiment) Next, a second embodiment will be described. The configurations of the plasma processing apparatus 10 and the mounting table 16 of the second embodiment are the same as those of the plasma processing apparatus 10 and the mounting table 16 of the first embodiment shown in FIG. 1 and FIG.

圖9係將控制第二實施形態之電漿處理裝置之控制部的概略構成加以顯示之方塊圖。第二實施形態之控制部100的構成係與圖3所示之第一實施形態之控制部100的構成部分同樣,因此針對同樣部分標註同一符號,說明主要相異之點。Fig. 9 is a block diagram showing a schematic configuration of a control unit for controlling the plasma processing apparatus according to the second embodiment. The configuration of the control unit 100 of the second embodiment is the same as that of the control unit 100 of the first embodiment shown in FIG. 3 , so the same symbols are assigned to the same parts, and the main differences will be described.

然而,由加熱器控制部102a將往各加熱器HT之供給電力控制為使各加熱器HT的溫度成為固定而量測未點燃狀態與過渡狀態中之供給電力之際,就晶圓W的溫度TW 而言,相較未點燃狀態,過渡狀態由於來自電漿之入熱而更加使溫度上昇。圖10示意性顯示晶圓的溫度的變化。例如,加熱器控制部102a將加熱器HT的溫度Th 控制成預定的設定溫度Tb,以在未點燃狀態下使晶圓W的溫度TW 成為預定目標溫度Ta。於如此狀態點燃電漿之情形下,晶圓W的溫度藉由來自電漿之入熱而上昇至溫度Ta´。如同上述使晶圓W的溫度上昇至溫度Ta´之情形下,加熱器控制部102a使加熱器HT的溫度Th 降低成溫度Tb´,用以使晶圓W的溫度成為目標溫度Ta。如上所述,使晶圓W的溫度上昇至溫度Ta´後並控制為目標溫度Ta之情形下,電漿處理裝置10耗費使晶圓W的溫度TW 成為目標溫度Ta為止的時間。However, when the power supply to each heater HT is controlled by the heater control unit 102a so that the temperature of each heater HT becomes constant and the power supply in the unlit state and the transition state is measured, the temperature of the wafer W In terms of T W , the transition state increases the temperature more due to the incoming heat from the plasma than the unignited state. Fig. 10 schematically shows the variation of the temperature of the wafer. For example, the heater control unit 102a controls the temperature Th of the heater HT to a predetermined set temperature Tb so that the temperature T W of the wafer W becomes a predetermined target temperature Ta in an unignited state. When the plasma is ignited in this state, the temperature of the wafer W rises to the temperature Ta′ by the heat input from the plasma. As in the case of raising the temperature of the wafer W to the temperature Ta′, the heater control unit 102a lowers the temperature Th of the heater HT to the temperature Tb′ so that the temperature of the wafer W becomes the target temperature Ta. As described above, when the temperature of the wafer W is raised to the temperature Ta′ and then controlled to the target temperature Ta, it takes time for the plasma processing apparatus 10 to bring the temperature T W of the wafer W to the target temperature Ta.

於是,第二實施形態之控制部100將熱通量qp 及熱阻Rth ・A的初始值作為設定資訊104a而記憶於記憶部104。例如,程序管理者或管理者由使用者介面103輸入藉由過去經驗或實驗等而求取之熱通量qp 及熱阻Rth ・A的初始值。控制部100將由使用者介面103輸入之熱通量qp 及熱阻Rth ・A的初始值作為設定資訊104a而記憶於記憶部104。Then, the control unit 100 of the second embodiment memorizes the initial values of the heat flux q p and the thermal resistance R th ·A in the memory unit 104 as the setting information 104 a. For example, the program manager or manager inputs the initial values of the heat flux q p and the thermal resistance R th ·A obtained through past experiences or experiments through the user interface 103 . The control unit 100 memorizes the initial values of the heat flux q p and the thermal resistance R th ·A input from the user interface 103 in the memory unit 104 as setting information 104 a.

設定溫度計算部102d,於開始電漿處理之際,自設定資訊104a讀出熱通量qp 及熱阻Rth ・A的初始值。設定溫度計算部102d由所讀出之熱通量qp 及熱阻Rth ・A,使用算式(12)或算式(13),來計算使晶圓成為目標溫度之各加熱器HT的設定溫度。加熱器控制部102a以由設定溫度計算部102d計算之使各加熱器HT成為設定溫度之方式,控制往各加熱器HT之供給電力控制。記憶部104將適當之熱通量qp 及熱阻Rth ・A的初始值記憶為設定資訊104a,藉以使設定溫度計算部102d即使於最先的晶圓W、即使具有來自電漿之入熱,亦能以使晶圓W的溫度成為目標溫度之方式,計算加熱器HT的設定溫度。例如,圖10之情形下,設定溫度計算部102d能以針對最先的晶圓W亦使晶圓W的溫度成為目標溫度Ta之方式,計算加熱器HT的溫度Tb´。藉此,電漿處理裝置10可縮短使最先的晶圓W的溫度TW 成為目標溫度Ta為止的時間。The set temperature calculation unit 102d reads out the initial values of the heat flux q p and the thermal resistance R th ·A from the setting information 104a when starting the plasma treatment. The set temperature calculation unit 102d calculates the set temperature of each heater HT to bring the wafer to the target temperature using the formula (12) or formula (13) from the read heat flux q p and thermal resistance R th・A . The heater control part 102a controls the electric power supply control to each heater HT so that each heater HT may become set temperature calculated by the set temperature calculation part 102d. The memory unit 104 memorizes the appropriate initial values of the heat flux qp and the thermal resistance R th ·A as the setting information 104a, so that the set temperature calculation unit 102d can be used even for the first wafer W, even if there is an input from the plasma. Heat can also calculate the set temperature of the heater HT so that the temperature of the wafer W becomes the target temperature. For example, in the case of FIG. 10 , the set temperature calculation unit 102d can calculate the temperature Tb′ of the heater HT so that the temperature of the wafer W also becomes the target temperature Ta for the first wafer W. Thereby, the plasma processing apparatus 10 can shorten the time until the temperature T W of the first wafer W reaches the target temperature Ta.

於藉由參數計算部102c而將往各加熱器HT之供給電力控制為各加熱器HT成為設定溫度之狀態下,量測部102b量測未點燃狀態與過渡狀態中往各加熱器HT之供給電力。When the power supply to each heater HT is controlled by the parameter calculation unit 102c so that each heater HT reaches a set temperature, the measurement unit 102b measures the supply to each heater HT in the non-ignited state and the transition state. electricity.

參數計算部102c,依每一加熱器HT,對於以來自電漿的入熱量、及晶圓W與加熱器HT間之熱阻作為參數並將過渡狀態之供給電力加以計算之計算模式,使用由量測部102b量測之未點燃狀態與過渡狀態之供給電力進行擬合,來計算實際於電漿處理中之入熱量及熱阻。For each heater HT, the parameter calculation unit 102c uses the calculation model for calculating the supply power in the transition state with the heat input from the plasma and the thermal resistance between the wafer W and the heater HT as parameters, using The unignited state measured by the measurement unit 102b is fitted with the power supply in the transition state to calculate the actual heat input and thermal resistance in the plasma treatment.

例如,參數計算部102c,依每一加熱器HT,求取每一經過時間t之未點燃狀態之加熱器功率Ph0 。又,參數計算部102c,依每一加熱器HT,求取每一經過時間t之過渡狀態之加熱器功率Ph 。而且,參數計算部102c將所求取之加熱器功率Ph 、及加熱器功率Ph0 各者除以每一加熱器HT的面積,藉以求取每一經過時間t之未點燃狀態之每一單位面積的來自加熱器HT的發熱量qh0 、及每一經過時間t之過渡狀態之每一單位面積的來自加熱器HT的發熱量qhFor example, the parameter calculation unit 102c obtains the heater power P h0 in the non-ignited state for each elapsed time t for each heater HT. Furthermore, the parameter calculation unit 102c obtains the heater power P h in the transition state for each elapsed time t for each heater HT. Furthermore, the parameter calculation unit 102c divides each of the obtained heater power Ph and the heater power Ph0 by the area of each heater HT to obtain each of the non-ignited states for each elapsed time t. The calorific value q h0 per unit area from the heater HT, and the calorific value q h per unit area of the transition state per elapsed time t from the heater HT.

而且,參數計算部102c將上述算式(1)-(11)作為計算模式使用,依每一加熱器HT,進行每一經過時間t之每一單位面積的來自加熱器HT的發熱量qh 、及每一單位面積的來自加熱器HT之發熱量qh0 的擬合,來計算實際電漿處理中誤差係最小之熱通量qp 及熱阻Rth ・A。Then, the parameter calculation unit 102c uses the above-mentioned formulas (1)-(11) as a calculation model, and calculates, for each heater HT, the calorific value q h from the heater HT per unit area per elapsed time t, And the fitting of the calorific value q h0 from the heater HT per unit area to calculate the heat flux q p and thermal resistance R th ·A with the smallest error in the actual plasma treatment.

設定溫度計算部102d,依每一加熱器HT,使用由參數計算部102c計算之實際之電漿處理的熱通量qp 及熱阻Rth ・A,來計算使晶圓W成為目標溫度之加熱器HT的設定溫度。The set temperature calculation unit 102d calculates the temperature at which the wafer W reaches the target temperature using the actual plasma processing heat flux qp and thermal resistance R th ·A calculated by the parameter calculation unit 102c for each heater HT. The set temperature of the heater HT.

設定溫度計算部102d判斷:由實際之電漿處理的熱通量qp 及熱阻Rth ・A計算之各加熱器HT的設定溫度相較於由熱通量qp 及熱阻Rth ・A的初始值計算之各加熱器HT的設定溫度,是否背離預定值以上。設定溫度計算部102d判斷為背離預定值以上之情形下,將加熱器控制部102a的設定溫度更新為由實際之電漿處理的熱通量qp 及熱阻Rth ・A計算之各加熱器HT的設定溫度。藉此,各加熱器HT的設定溫度更新為由實際之電漿處理的熱通量qp 及熱阻Rth ・A求取之設定溫度,因此可將晶圓W的溫度精度良好控制為目標溫度。加熱器控制部102a將往各加熱器HT之供給電力控制為成為所更新之設定溫度。The set temperature calculation unit 102d judges that the set temperature of each heater HT calculated from the actual heat flux q p and thermal resistance R th ·A of the plasma treatment is higher than the set temperature of each heater HT calculated from the heat flux q p and thermal resistance R th ·A Whether the set temperature of each heater HT calculated from the initial value of A deviates from the predetermined value or more. When the set temperature calculation unit 102d judges that it deviates from the predetermined value or more, the set temperature of the heater control unit 102a is updated to each heater calculated from the actual heat flux q p and thermal resistance R th ·A of the plasma treatment. HT's set temperature. In this way, the set temperature of each heater HT is updated to the set temperature calculated from the actual heat flux q p and thermal resistance R th・A of the plasma treatment, so the temperature accuracy of the wafer W can be well controlled as the target temperature. The heater control part 102a controls the electric power supplied to each heater HT so that it may become the updated set temperature.

設定溫度計算部102d,於背離預定值以上之情形下,將實際之電漿處理的熱通量qp 及熱阻Rth ・A收納於設定資訊104a。例如,設定溫度計算部102d將設定資訊104a所記憶之熱通量qp 及熱阻Rth ・A的初始值更換為實際之電漿處理之熱通量qp 及熱阻Rth ・A。藉此,將實際之電漿處理的熱通量qp 及熱阻Rth ・A作為初始值而保存於設定資訊104a使用。亦即,設定溫度計算部102d,於背離預定值以上之情形下,恆將預先保存在記憶部104之熱通量qp 及熱阻Rth ・A更新為最新的值。The set temperature calculation unit 102d stores the actual heat flux q p and thermal resistance R th ·A of the plasma treatment in the setting information 104a when the temperature deviates from the predetermined value or more. For example, the set temperature calculation unit 102d replaces the initial values of the heat flux qp and thermal resistance Rth ·A stored in the setting information 104a with the actual heat flux qp and thermal resistance Rth ·A of the plasma treatment. In this way, the actual heat flux q p and thermal resistance R th · A of the plasma treatment are stored in the setting information 104 a as initial values and used. That is, the set temperature calculation unit 102d always updates the heat flux q p and thermal resistance R th ·A previously stored in the memory unit 104 to the latest values when the set temperature deviates from the predetermined value or more.

〔溫度控制的流程〕 其次,說明使用第二實施形態之電漿處理裝置10之溫度控制方法。圖11係將第二實施形態之溫度控制方法的流程的一例加以顯示之流程圖。〔Flow of temperature control〕 Next, a temperature control method using the plasma processing apparatus 10 of the second embodiment will be described. Fig. 11 is a flowchart showing an example of the flow of the temperature control method of the second embodiment.

設定溫度計算部102d,於開始電漿處理之際,自設定資訊104a讀出熱通量qp 及熱阻Rth ・A的初始值(步驟S20)。The set temperature calculating unit 102d reads out the initial values of the heat flux q p and the thermal resistance R th ·A from the setting information 104a when starting the plasma treatment (step S20).

設定溫度計算部102d,由熱通量qp 及熱阻Rth ・A,使用算式(12)或算式(13),來計算成為晶圓W的目標溫度之各加熱器HT的設定溫度(步驟S21)。The set temperature calculation unit 102d calculates the set temperature of each heater HT to be the target temperature of the wafer W from the heat flux qp and the thermal resistance R th ·A using the formula (12) or the formula (13) (step S21).

加熱器控制部102a將往各加熱器HT之供給電力控制為使各加熱器HT成為設定溫度(步驟S22)。The heater control part 102a controls the electric power supplied to each heater HT so that each heater HT may become set temperature (step S22).

量測部102b,由加熱器控制部102a將往各加熱器HT之供給電力控制為使各加熱器HT的溫度成為固定的設定溫度之情形下,而量測未點燃狀態與過渡狀態中之往各加熱器HT之供給電力(步驟S23)。The measuring unit 102b measures the difference between the non-ignited state and the transition state when the power supplied to each heater HT is controlled by the heater control unit 102a so that the temperature of each heater HT becomes a fixed set temperature. Power supply to each heater HT (step S23).

參數計算部102c,依每一加熱器HT,對於計算模式,使用藉由所量測之未點燃狀態與過渡狀態之供給電力除以加熱器HT的面積而求取之每一單位面積的來自加熱器的發熱量進行擬合,來計算入熱量及熱阻(步驟S24)。例如,參數計算部102c將上述算式(1)-(11)作為計算模式使用,而依每一加熱器HT,進行每一經過時間t之每一單位面積的來自加熱器HT的發熱量qh 、及每一單位面積的來自加熱器HT的發熱量qh0 之擬合,計算使誤差係最小之熱通量qp 及熱阻Rth ・A。The parameter calculation unit 102c uses the heat source per unit area obtained by dividing the measured power supply in the unignited state and transition state by the area of the heater HT for the calculation mode for each heater HT. The heating value of the device is fitted to calculate the input heat and thermal resistance (step S24). For example, the parameter calculation unit 102c uses the above formulas (1)-(11) as a calculation model, and calculates the calorific value q h from the heater HT per unit area per elapsed time t for each heater HT. , and the fitting of the calorific value q h0 from the heater HT per unit area, and calculate the heat flux q p and thermal resistance R th ·A that minimize the error system.

設定溫度計算部102d,依每一加熱器HT,使用所計算之入熱量及熱阻,來計算使晶圓W成為目標溫度之加熱器HT的溫度(步驟S25)。例如,設定溫度計算部102d,依每一加熱器HT,將所計算之熱通量qp 及熱阻Rth ・A代入至算式(5)、(6)、(12),並使用算式(5)-(11)所示之a1 、a2 、a3 、λ1 、λ2 、τ1 、τ2 ,由算式(12)來計算使晶圓W的溫度TW 成為目標溫度之加熱器HT的溫度Th 。此外,使晶圓W的溫度成為目標溫度之加熱器HT的溫度Th 亦可由算式(13)求取。The set temperature calculation unit 102d calculates the temperature of the heater HT to bring the wafer W to the target temperature using the calculated heat input and thermal resistance for each heater HT (step S25 ). For example, the set temperature calculation unit 102d substitutes the calculated heat flux q p and thermal resistance R th ·A into formulas (5), (6) and (12) for each heater HT, and uses the formula ( 5) A 1 , a 2 , a 3 , λ 1 , λ 2 , τ 1 , τ 2 shown in - (11) are calculated by formula (12) to make the temperature T W of the wafer W the target temperature. The temperature T h of the device HT. In addition, the temperature Th h of the heater HT that makes the temperature of the wafer W the target temperature can also be obtained from Equation (13).

設定溫度計算部102d判斷:由實際之電漿處理的熱通量qp 及熱阻Rth ・A計算之各加熱器HT的設定溫度是否與由熱通量qp 及熱阻Rth ・A的初始值計算之各加熱器HT的設定溫度背離預定值以上(步驟S26)。The set temperature calculation unit 102d judges whether the set temperature of each heater HT calculated from the actual heat flux q p and thermal resistance R th ·A of the plasma treatment is consistent with the heat flux q p and thermal resistance R th ·A The set temperature of each heater HT calculated from the initial value deviates from the predetermined value or more (step S26).

背離預定值以上之情形(步驟S26:Yes)下,設定溫度計算部102d將加熱器控制部102a的設定溫度更新為由實際之電漿處理的熱通量qp 及熱阻Rth ・A計算之各加熱器HT的設定溫度(步驟S27)。If the deviation exceeds the predetermined value (step S26: Yes), the set temperature calculation unit 102d updates the set temperature of the heater control unit 102a to be calculated from the actual heat flux q p and thermal resistance R th ·A of the plasma treatment The set temperature of each heater HT (step S27).

設定溫度計算部102d將設定資訊104a所記憶之熱通量qp 及熱阻Rth ・A的初始值更換為實際之電漿處理的熱通量qp 及熱阻Rth ・A(步驟S28)。藉此,將實際之電漿處理的熱通量qp 及熱阻Rth ・A作為初始值而保存於設定資訊104a使用。The set temperature calculation unit 102d replaces the initial values of the heat flux qp and thermal resistance Rth ·A stored in the setting information 104a with the actual heat flux qp and thermal resistance Rth ·A of the plasma treatment (step S28 ). In this way, the actual heat flux q p and thermal resistance R th · A of the plasma treatment are stored in the setting information 104 a as initial values and used.

另一方面,未背離預定值以上之情形(步驟S26:No)下,設定溫度計算部102d不更新設定溫度,維持原樣進行控制(步驟S29)。On the other hand, when it is not deviated from the predetermined value or more (step S26: No), the set temperature calculation unit 102d does not update the set temperature, and controls as it is (step S29).

設定溫度計算部102d判斷是否有接續實施之下一個電漿處理(步驟S30)。有接續實施之下一個電漿處理之情形(步驟S30:Yes)下,轉移至上述步驟S22。另一方面,無接續實施之下一個電漿處理之情形(步驟S30:No)下,結束處理。The set temperature calculation unit 102d determines whether or not the next plasma treatment will be performed next (step S30). In the case where the next plasma treatment is to be performed successively (step S30: Yes), transfer to the above-mentioned step S22. On the other hand, when the next plasma treatment is not performed (step S30: No), the process ends.

如上所述,本實施形態之電漿處理裝置10將入熱量及熱阻作為設定資訊104a而記憶於記憶部104。設定溫度計算部102d使用記憶部104所記憶之入熱量及熱阻,來計算使晶圓W成為目標溫度之加熱器HT的設定溫度。藉此,電漿處理裝置10可縮短使晶圓W的溫度TW 成為目標溫度Ta為止的時間。又,電漿處理裝置10進行成為事先預測之晶圓W之目標溫度之加熱器HT的溫度設定,因此,電漿點火後之晶圓W的溫度的誤差變小,可將電漿處理中之晶圓W的溫度更精度良好控制為目標溫度。As described above, the plasma processing apparatus 10 of the present embodiment memorizes the heat input amount and thermal resistance in the memory unit 104 as the setting information 104a. The set temperature calculation unit 102d calculates the set temperature of the heater HT to bring the wafer W to the target temperature using the input heat amount and thermal resistance stored in the storage unit 104 . Thereby, the plasma processing apparatus 10 can shorten the time until the temperature T W of the wafer W reaches the target temperature Ta. In addition, since the plasma processing apparatus 10 sets the temperature of the heater HT to be the target temperature of the wafer W predicted in advance, the error in the temperature of the wafer W after the plasma ignition is reduced, and the temperature of the wafer W during the plasma processing can be reduced. The temperature of the wafer W is more precisely controlled to a target temperature.

設定溫度計算部102d判斷:所計算之該設定溫度相較於利用由參數計算部102c計算之入熱量及熱阻來計算之設定溫度,是否背離預定值以上。設定溫度計算部102d,於背離預定值以上之情形下,將記憶部104所記憶之入熱量及熱阻更新為由參數計算部102c計算之入熱量及熱阻。藉此,可於其次實施之電漿處理亦將晶圓W的溫度更高精度控制為目標溫度。The set temperature calculation unit 102d judges whether the calculated set temperature deviates more than a predetermined value from the set temperature calculated using the heat input and thermal resistance calculated by the parameter calculation unit 102c. The set temperature calculation unit 102d updates the input heat and thermal resistance stored in the memory unit 104 to the input heat and thermal resistance calculated by the parameter calculation unit 102c when the set temperature deviates from the predetermined value or more. Thereby, the temperature of the wafer W can be controlled to the target temperature with higher precision in the plasma treatment performed next.

以上,使用實施形態說明本發明,但本發明的技術範圍不限定於上述實施形態所記載之範圍。本發明所屬領域中具有通常知識者當明瞭上述實施形態可添加多種變更或改良。又,由申請專利範圍之記載可明瞭添加如此變更或改良之形態亦可包含於本發明的技術範圍。As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range described in the said embodiment. It is clear to those skilled in the art to which this invention belongs that various changes and improvements can be added to the said embodiment. In addition, it is clear from the description of the scope of application that such modifications or improvements are also included in the technical scope of the present invention.

例如,上述實施形態,以將半導體晶圓作為被處理體而進行電漿處理之情形為例說明,但不限定於此。被處理體只要係因溫度而影響電漿處理之進行者皆可。For example, in the above-mentioned embodiment, the case where plasma processing is performed on a semiconductor wafer as an object to be processed has been described as an example, but the present invention is not limited thereto. The object to be treated can be any object as long as the temperature affects the progress of the plasma treatment.

又,上述第二實施形態之中,以設定資訊104a記憶有一個熱通量qp 及熱阻Rth ・A的初始值之情形為例說明,但不限定於此。由熱通量qp 及熱阻Rth ・A取決於進行電漿處理之條件來看,使用相異之電漿處理條件時,則亦須更換所預測之熱通量q及熱阻Rth ・A。於是,記憶部104將熱通量qp 及熱阻Rth ・A,加以與具有依賴性之電漿處理參數一起產生關連而保存。例如,就具有對於熱阻Rth 之依賴性之電漿處理的參數而言,有傳熱氣體壓、往靜電夾盤18之施加電壓、冷媒溫度、靜電夾盤18的表面狀態等。就具有對於熱通量qp 之依賴性之電漿處理的參數而言,有射頻電力HFS、射頻電力LFS、處理容器12內的壓力、氣體種等。設定溫度計算部102d亦可由記憶部104讀出與所實施之電漿處理的電漿處理條件對應之熱通量qp 及熱阻Rth ・A。In addition, in the above-mentioned second embodiment, the case where the setting information 104a stores one initial value of the heat flux q p and the thermal resistance R th ·A is described as an example, but it is not limited thereto. From the point of view that the heat flux q p and thermal resistance R th ·A depend on the conditions of plasma treatment, when different plasma treatment conditions are used, the predicted heat flux q and thermal resistance R th must also be replaced・A. Therefore, the memory unit 104 correlates the heat flux q p and the thermal resistance R th ·A with the dependent plasma processing parameters and stores them. For example, the parameters of the plasma treatment that have dependence on the thermal resistance R th include the pressure of the heat transfer gas, the voltage applied to the electrostatic chuck 18 , the temperature of the refrigerant, and the surface state of the electrostatic chuck 18 . Parameters of plasma processing having a dependence on the heat flux q p include radio frequency power HFS, radio frequency power LFS, pressure in the processing container 12, gas species, and the like. The set temperature calculation unit 102d can also read out the heat flux q p and the thermal resistance R th ·A corresponding to the plasma treatment conditions of the plasma treatment performed from the memory unit 104 .

又,上述實施形態之中,就電漿處理而言以進行電漿蝕刻之情形為例說明,但不限定於此。電漿處理只要使用電漿,並因溫度而影響處理進行者皆可。In addition, in the above-mentioned embodiments, the case where plasma etching is performed as an example of plasma treatment has been described, but it is not limited thereto. Plasma treatment can be done as long as plasma is used and the treatment is affected by temperature.

10‧‧‧電漿處理裝置 12‧‧‧處理容器 12a‧‧‧接地導體 12e‧‧‧排氣口 12g‧‧‧搬入搬出口 14‧‧‧支持部 16‧‧‧載置台 18‧‧‧靜電夾盤 18a‧‧‧載置區域 18b‧‧‧外周區域 18m‧‧‧本體部 19‧‧‧黏接層 20‧‧‧基台 22‧‧‧直流電源 24‧‧‧冷媒流道 26a、26b‧‧‧配管 30‧‧‧上部電極 32‧‧‧絕緣性遮蔽構件 34‧‧‧電極板 34a‧‧‧氣體噴吐孔 36‧‧‧電極支持體 36a‧‧‧氣體擴散室 36b‧‧‧氣體通流孔 36c‧‧‧氣體導入口 38‧‧‧氣體供給管 40‧‧‧氣體源群 42‧‧‧閥群 44‧‧‧流量控制器群 46‧‧‧沉積物屏障 48‧‧‧排氣板 50‧‧‧排氣裝置 52‧‧‧排氣管 54‧‧‧閘閥 100‧‧‧控制部 101‧‧‧外部介面 102‧‧‧製程控制器 102a‧‧‧加熱器控制部 102b‧‧‧量測部 102c‧‧‧參數計算部 102d‧‧‧設定溫度計算部 102e‧‧‧警示部 103‧‧‧使用者介面 104‧‧‧記憶部 E1‧‧‧電極 ESC‧‧‧靜電夾盤 FR‧‧‧聚焦環 HFS‧‧‧第一射頻電源 HP‧‧‧加熱器電源 HT‧‧‧加熱器 LFS‧‧‧第二射頻電源 MU1、MU2‧‧‧匹配器 PD‧‧‧電力偵知部 S‧‧‧處理空間 SW1‧‧‧開關 Ta‧‧‧目標溫度 Ta´‧‧‧溫度 Tb‧‧‧設定溫度 Tb´‧‧‧溫度 TD‧‧‧溫度測量器 W‧‧‧晶圓10‧‧‧Plasma treatment device 12‧‧‧Disposal container 12a‧‧‧Earth conductor 12e‧‧‧Exhaust port 12g‧‧‧Import and export 14‧‧‧Support Department 16‧‧‧Placing table 18‧‧‧Electrostatic Chuck 18a‧‧‧Location area 18b‧‧‧peripheral area 18m‧‧‧Body 19‧‧‧Adhesive layer 20‧‧‧abutment 22‧‧‧DC power supply 24‧‧‧Refrigerant channel 26a, 26b‧‧‧Piping 30‧‧‧Upper electrode 32‧‧‧Insulating shielding components 34‧‧‧electrode plate 34a‧‧‧Gas injection hole 36‧‧‧electrode support 36a‧‧‧Gas diffusion chamber 36b‧‧‧gas flow hole 36c‧‧‧Gas inlet 38‧‧‧gas supply pipe 40‧‧‧gas source group 42‧‧‧valve group 44‧‧‧Flow controller group 46‧‧‧Sediment barrier 48‧‧‧Exhaust plate 50‧‧‧exhaust device 52‧‧‧Exhaust pipe 54‧‧‧gate valve 100‧‧‧Control Department 101‧‧‧External interface 102‧‧‧Process Controller 102a‧‧‧Heater control unit 102b‧‧‧Measurement Department 102c‧‧‧Parameter calculation department 102d‧‧‧Set temperature calculation department 102e‧‧‧Warning Department 103‧‧‧User Interface 104‧‧‧memory E1‧‧‧electrode ESC‧‧‧Electrostatic Chuck FR‧‧‧focus ring HFS‧‧‧First RF Power Supply HP‧‧‧Heater power supply HT‧‧‧heater LFS‧‧‧Second RF power supply MU1, MU2‧‧‧Matching PD‧‧‧Power Detection Department S‧‧‧Processing Space SW1‧‧‧switch Ta‧‧‧target temperature Ta´‧‧‧temperature Tb‧‧‧set temperature Tb´‧‧‧temperature TD‧‧‧Temperature Measuring Device W‧‧‧Wafer

圖1概略性顯示第一實施形態之電漿處理裝置。 圖2係將第一實施形態之載置台加以顯示之俯視圖。 圖3係將控制第一實施形態之電漿處理裝置之控制部的概略性構成加以顯示之方塊圖。 圖4示意性顯示影響晶圓的溫度之能量的流動。 圖5A示意性顯示未點燃狀態之能量的流動。 圖5B示意性顯示點燃狀態之能量的流動。 圖6(A)~(B)係往晶圓W的溫度與加熱器HT之供給電力的變化的一例。 圖7示意性顯示點燃狀態之能量的流動。 圖8係將第一實施形態之溫度控制方法的流程的一例加以顯示之流程圖。 圖9係將控制第二實施形態之電漿處理裝置之控制部的概略性構成加以顯示之方塊圖。 圖10示意性顯示晶圓的溫度的變化。 圖11係將第二實施形態之溫度控制方法的流程的一例加以顯示之流程圖。Fig. 1 schematically shows a plasma treatment apparatus according to a first embodiment. Fig. 2 is a plan view showing the mounting table of the first embodiment. Fig. 3 is a block diagram showing a schematic configuration of a control unit for controlling the plasma processing apparatus according to the first embodiment. Figure 4 schematically shows the flow of energy affecting the temperature of the wafer. Figure 5A schematically shows the flow of energy in the unignited state. Figure 5B schematically shows the flow of energy in the ignited state. 6(A) to (B) are examples of changes in the temperature of the wafer W and the power supplied to the heater HT. Figure 7 schematically shows the flow of energy in the ignited state. Fig. 8 is a flowchart showing an example of the flow of the temperature control method of the first embodiment. Fig. 9 is a block diagram showing a schematic configuration of a control unit for controlling the plasma processing apparatus according to the second embodiment. Fig. 10 schematically shows the variation of the temperature of the wafer. Fig. 11 is a flowchart showing an example of the flow of the temperature control method of the second embodiment.

100‧‧‧控制部 100‧‧‧Control Department

101‧‧‧外部介面 101‧‧‧External interface

102‧‧‧製程控制器 102‧‧‧Process Controller

102a‧‧‧加熱器控制部 102a‧‧‧Heater control unit

102b‧‧‧量測部 102b‧‧‧Measurement Department

102c‧‧‧參數計算部 102c‧‧‧Parameter calculation department

102d‧‧‧設定溫度計算部 102d‧‧‧Set temperature calculation department

102e‧‧‧警示部 102e‧‧‧Warning Department

103‧‧‧使用者介面 103‧‧‧User Interface

104‧‧‧記憶部 104‧‧‧memory

HP‧‧‧加熱器電源 HP‧‧‧Heater power supply

PD‧‧‧電力偵知部 PD‧‧‧Power Detection Department

TD‧‧‧溫度測量器 TD‧‧‧Temperature Measuring Device

Claims (6)

一種電漿處理裝置,具備:載置台,設有加熱器,該加熱器可對於作為電漿處理的對象之被處理體所被載置之載置面的溫度進行調整;加熱器控制部,控制對該加熱器之供給電力俾使該加熱器成為所設定之設定溫度;量測部,由該加熱器控制部控制對於該加熱器之供給電力以使該加熱器的溫度成為固定,而量測未點燃電漿之未點燃狀態與點燃電漿後對於該加熱器之供給電力降低之過渡狀態的供給電力;參數計算部,對於以來自電漿的入熱量、及被處理體與該加熱器間之熱阻作為參數而計算該過渡狀態之供給電力的計算模式,使用由該量測部所量測得之未點燃狀態與過渡狀態之供給電力進行擬合,來計算該入熱量及該熱阻;以及設定溫度計算部,使用由該參數計算部所計算之該入熱量及該熱阻,來計算使被處理體成為目標溫度之該加熱器的設定溫度。 A plasma processing device comprising: a mounting table provided with a heater capable of adjusting the temperature of a mounting surface on which an object to be processed as a plasma processing object is mounted; a heater control unit controlling Supply power to the heater so that the heater becomes the set temperature; the measurement unit controls the power supply to the heater by the heater control unit so that the temperature of the heater becomes constant, and measures The unignited state of the unignited plasma and the power supply in the transitional state in which the power supply to the heater is reduced after the plasma is ignited; the parameter calculation unit uses the heat input from the plasma and the distance between the object to be processed and the heater The thermal resistance is used as a parameter to calculate the calculation model of the power supply in the transition state, and the power supply in the unignited state and the transition state measured by the measurement unit is used to perform fitting to calculate the heat input and the thermal resistance and a set temperature calculation unit that calculates a set temperature of the heater to bring the object to be processed to a target temperature using the input heat and the thermal resistance calculated by the parameter calculation unit. 如申請專利範圍第1項之電漿處理裝置,其中,該載置台之中,於將該載置面加以分割而成之每一區域個別設置有該加熱器,該加熱器控制部,對於逐一區域設置之該加熱器控制其供給電力,俾令逐一區域設置之該加熱器成為逐一區域設定之設定溫度,該量測部,藉由該加熱器控制部控制供給電力,俾令每一該加熱器之溫度成為固定,對每一該加熱器量測該未點燃狀態與該過渡狀態之供給電力, 該參數計算部,針對每一該加熱器,就該計算模式,使用由該量測部所量測之未點燃狀態與過渡狀態之供給電力進行擬合,以針對每一該加熱器計算該入熱量及該熱阻,該設定溫度計算部,針對每一該加熱器,使用由該參數計算部所計算之該入熱量及該熱阻,來計算使被處理體成為目標溫度之該設定溫度。 As for the plasma processing device in claim 1 of the scope of the patent application, wherein, in the mounting table, the heater is individually provided in each area formed by dividing the mounting surface, and the heater control part controls each The heaters installed in each area control their power supply so that the heaters installed in each area become the set temperature set for each area. The measurement part controls the power supply through the heater control part so that each heating The temperature of the heater becomes fixed, and the power supply of the non-ignited state and the transition state is measured for each heater, The parameter calculation unit, for each of the heaters, uses the power supply in the unignited state and the transition state measured by the measurement unit to perform fitting for the calculation model, so as to calculate the input power for each of the heaters. The amount of heat and the thermal resistance, the set temperature calculation unit calculates the set temperature for making the object to be processed a target temperature for each of the heaters using the input heat amount and the thermal resistance calculated by the parameter calculation unit. 如申請專利範圍第1或2項之電漿處理裝置,其中,該量測部,以預定循環量測該未點燃狀態與該過渡狀態之供給電力,該參數計算部,於每一該預定循環,使用已量測得之未點燃狀態與過渡狀態之供給電力,來分別計算該入熱量及該熱阻,且更具有:警示部,基於由該參數計算部所計算之該入熱量及該熱阻的至少一者的變化,而進行警示。 The plasma processing device as claimed in claim 1 or 2 of the scope of the patent application, wherein the measurement unit measures the power supply of the unignited state and the transition state in a predetermined cycle, and the parameter calculation unit measures in each predetermined cycle , using the measured supply power in the unignited state and the transition state to calculate the heat input and the thermal resistance respectively, and further comprising: a warning unit based on the heat input and the heat input calculated by the parameter calculation unit A change in at least one of the resistances, and a warning is issued. 如申請專利範圍第1或2項之電漿處理裝置,其中,更具備:記憶部,記憶該入熱量及該熱阻;該設定溫度計算部,使用該記憶部所記憶之該入熱量及該熱阻,來計算使被處理體成為目標溫度之該加熱器的設定溫度,於該設定溫度係相較於利用由該參數計算部所計算之該入熱量及該熱阻來計算之設定溫度而言背離預定量以上之情形下,就將該記憶部所記憶之該入熱量及該熱阻更新為由該參數計算部所計算之該入熱量及該熱阻。 Such as the plasma processing device of claim 1 or 2 of the scope of the patent application, wherein, it is further equipped with: a memory unit that memorizes the input heat and the thermal resistance; the set temperature calculation unit uses the input heat and the heat stored in the memory unit The thermal resistance is used to calculate the set temperature of the heater that makes the object to be processed a target temperature, and the set temperature is compared with the set temperature calculated by using the heat input and the thermal resistance calculated by the parameter calculation part. If it deviates from the predetermined amount or more, the input heat and the thermal resistance memorized by the memory unit are updated to the input heat and the thermal resistance calculated by the parameter calculation unit. 一種溫度控制方法,其特徵為執行以下處理: 對於設有可對作為電漿處理的對象之被處理體所被載置之載置面的溫度進行調整之加熱器之載置台上之該加熱器的供給電力進行控制,俾令該加熱器的溫度成為固定,而量測未點燃電漿之未點燃狀態與點燃電漿後對於該加熱器之供給電力降低之過渡狀態中之供給電力;針對以來自電漿的入熱量、及被處理體與該加熱器間的熱阻作為參數並將該過渡狀態之供給電力加以計算之計算模式,使用所量測之未點燃狀態與過渡狀態之供給電力進行擬合,來計算該入熱量及該熱阻;以及使用所計算得之該入熱量及該熱阻,來計算使被處理體成為目標溫度之該加熱器的設定溫度。 A temperature control method characterized by performing the following processes: The electric power supplied to the heater on the mounting table provided with the heater capable of adjusting the temperature of the mounting surface on which the object to be processed as the plasma treatment object is mounted is controlled so that the heater's The temperature becomes fixed, and the power supply in the unignited state of the unignited plasma and the transition state in which the power supply to the heater is reduced after the plasma is ignited are measured; The calculation model that uses the thermal resistance between the heaters as a parameter and calculates the power supply in the transition state, and uses the measured power supply in the unignited state and the transition state to perform fitting to calculate the heat input and the thermal resistance and using the calculated input heat and the thermal resistance to calculate the set temperature of the heater for making the object to be processed a target temperature. 一種溫度控制程式,其特徵為執行以下處理:對於設有可對作為電漿處理的對象之被處理體所被載置之載置面的溫度進行調整之加熱器之載置台上之該加熱器的供給電力進行控制,俾令該加熱器的溫度成為固定,而量測未點燃電漿之未點燃狀態與點燃電漿後對於該加熱器之供給電力降低之過渡狀態中之供給電力;針對以來自電漿的入熱量、及被處理體與該加熱器間的熱阻作為參數並將該過渡狀態之供給電力加以計算之計算模式,使用所量測之未點燃狀態與過渡狀態之供給電力進行擬合,來計算該入熱量及該熱阻;以及使用所計算得之該入熱量及該熱阻,來計算使被處理體成為目標溫度之該加熱器的設定溫度。 A temperature control program characterized by executing the following process: the heater on the mounting table provided with the heater capable of adjusting the temperature of the mounting surface on which the object to be processed as the object of plasma treatment is mounted Control the supply power of the heater so that the temperature of the heater becomes constant, and measure the supply power in the unignited state of the unignited plasma and the transition state in which the power supply to the heater is reduced after the plasma is ignited; The calculation model that calculates the power supply in the transition state by using the heat input from the plasma and the thermal resistance between the object to be processed and the heater as parameters, using the measured power supply in the unignited state and the transition state fitting to calculate the input heat and the thermal resistance; and using the calculated input heat and the thermal resistance to calculate the set temperature of the heater to make the object to be processed a target temperature.
TW107139592A 2017-11-16 2018-11-08 Plasma processing apparatus, temperature control method, and temperature control program TWI782133B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-221223 2017-11-16
JP2017221223 2017-11-16
JP2018-160931 2018-08-30
JP2018160931A JP7068971B2 (en) 2017-11-16 2018-08-30 Plasma processing equipment, temperature control method and temperature control program

Publications (2)

Publication Number Publication Date
TW201933472A TW201933472A (en) 2019-08-16
TWI782133B true TWI782133B (en) 2022-11-01

Family

ID=66837490

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107139592A TWI782133B (en) 2017-11-16 2018-11-08 Plasma processing apparatus, temperature control method, and temperature control program

Country Status (2)

Country Link
JP (1) JP7068971B2 (en)
TW (1) TWI782133B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117238742A (en) * 2018-06-29 2023-12-15 东京毅力科创株式会社 Plasma processing device, plasma state detection method, and program
JP7244348B2 (en) * 2019-05-13 2023-03-22 東京エレクトロン株式会社 PLASMA PROCESSING APPARATUS, TEMPERATURE CONTROL METHOD AND TEMPERATURE CONTROL PROGRAM
JP7266481B2 (en) * 2019-07-19 2023-04-28 東京エレクトロン株式会社 Temperature control device, temperature control method, and inspection device
WO2021020723A1 (en) * 2019-07-26 2021-02-04 주성엔지니어링(주) Substrate processing apparatus, and method for interlocking of same
JP7539236B2 (en) * 2020-02-21 2024-08-23 東京エレクトロン株式会社 Substrate Processing Equipment
JP7493362B2 (en) * 2020-03-25 2024-05-31 東京エレクトロン株式会社 Substrate processing method and substrate processing apparatus
US20220115216A1 (en) * 2020-04-21 2022-04-14 Hitachi High-Tech Corporation Plasma processing apparatus and plasma processing method
JP7561575B2 (en) 2020-11-02 2024-10-04 東京エレクトロン株式会社 How to update recipes
KR102287443B1 (en) * 2020-12-22 2021-08-09 주식회사 오토콘시스템 The temperature control system of heater of electrostatic chuck
WO2024034355A1 (en) * 2022-08-09 2024-02-15 東京エレクトロン株式会社 Parameter estimation system, parameter estimation method, computer program, and substrate processing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7126091B1 (en) * 2005-03-23 2006-10-24 Eclipse Energy Systems, Inc. Workpiece holder for vacuum processing
TW200930159A (en) * 2007-11-16 2009-07-01 Advanced Energy Ind Inc Methods and apparatus for sputtering deposition using direct current
JP2009302390A (en) * 2008-06-16 2009-12-24 Hitachi High-Technologies Corp Test piece temperature control method
US20160378092A1 (en) * 2015-06-24 2016-12-29 Tokyo Electron Limited Temperature control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7126091B1 (en) * 2005-03-23 2006-10-24 Eclipse Energy Systems, Inc. Workpiece holder for vacuum processing
TW200930159A (en) * 2007-11-16 2009-07-01 Advanced Energy Ind Inc Methods and apparatus for sputtering deposition using direct current
JP2009302390A (en) * 2008-06-16 2009-12-24 Hitachi High-Technologies Corp Test piece temperature control method
US20160378092A1 (en) * 2015-06-24 2016-12-29 Tokyo Electron Limited Temperature control method

Also Published As

Publication number Publication date
JP7068971B2 (en) 2022-05-17
JP2019091880A (en) 2019-06-13
TW201933472A (en) 2019-08-16

Similar Documents

Publication Publication Date Title
TWI782133B (en) Plasma processing apparatus, temperature control method, and temperature control program
JP7313509B2 (en) PLASMA PROCESSING APPARATUS, TEMPERATURE CONTROL METHOD AND TEMPERATURE CONTROL PROGRAM
JP7244348B2 (en) PLASMA PROCESSING APPARATUS, TEMPERATURE CONTROL METHOD AND TEMPERATURE CONTROL PROGRAM
CN111009454B (en) Plasma processing apparatus, monitoring method, and recording medium
US20240087855A1 (en) Plasma processing apparatus, calculation method, and calculation program
CN111801990B (en) Plasma processing device, plasma state detection method, and plasma state detection program
JP7561913B2 (en) Plasma processing apparatus, monitoring method and monitoring program
JP7214562B2 (en) Plasma processing apparatus, calculation method and calculation program
JP7527342B2 (en) Plasma processing apparatus, plasma state detection method, and plasma state detection program