TWI781593B - Plasma resistant protective layer and formation method thereof - Google Patents

Plasma resistant protective layer and formation method thereof Download PDF

Info

Publication number
TWI781593B
TWI781593B TW110114391A TW110114391A TWI781593B TW I781593 B TWI781593 B TW I781593B TW 110114391 A TW110114391 A TW 110114391A TW 110114391 A TW110114391 A TW 110114391A TW I781593 B TWI781593 B TW I781593B
Authority
TW
Taiwan
Prior art keywords
layer
plasma
plasma corrosion
resistant
thermal barrier
Prior art date
Application number
TW110114391A
Other languages
Chinese (zh)
Other versions
TW202242197A (en
Inventor
吳宗豐
蔡宇硯
李文亮
蘇修賢
周冠廷
賴泱蓉
Original Assignee
翔名科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 翔名科技股份有限公司 filed Critical 翔名科技股份有限公司
Priority to TW110114391A priority Critical patent/TWI781593B/en
Priority to CN202110442122.6A priority patent/CN115223835A/en
Application granted granted Critical
Publication of TWI781593B publication Critical patent/TWI781593B/en
Publication of TW202242197A publication Critical patent/TW202242197A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32807Construction (includes replacing parts of the apparatus)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0208Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work for applying liquid or other fluent material to separate articles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32467Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • H01J37/32495Means for protecting the vessel against plasma

Abstract

A plasma resistant protective layer and a formation method thereof are provided in the present invention. The plasma resistant protective layer is formed on a metal substrate and includes a thermal barrier coating and a plasma corrosion resistant layer. The thermal barrier coating is disposed on the metal substrate, and the plasma corrosion resistant layer disposed on the thermal barrier coating. The thermal barrier coating can improve thermal expansion and contraction of plasma cavity during operation in order to avoid the peeling off of anti-plasma corrosion materials caused by stress generated between the plasma cavity and the anti-plasma corrosion material because of different coefficient of thermal expansion. Thus, the stability of plasma resistant protective layer can be increased; the plasma corrosion can be improved; and the frequency of device maintenance can be improved.

Description

耐電漿腐蝕的保護層與其形成方法 Plasma corrosion-resistant protective layer and method for forming same

本發明係關於光電及半導體例如IC製造、液晶顯示面板、發光二極體、微機電等產業需要應用電漿之製程,特別是乾式蝕刻、物理氣象沉積(PVD)及電漿增益化學氣象沉積(PE-CVD)等製程之技術領域,尤指應用於各式任一種光電及半導體產業乾式蝕刻或者電漿輔助薄膜製程之可能暴露於電漿之內部部件的一種耐電漿膜層結構,該保護膜層用於提升上述製程良率及部件使用壽命。 The present invention relates to photoelectric and semiconductor industries such as IC manufacturing, liquid crystal display panels, light-emitting diodes, micro-electromechanical and other industries that require the application of plasma processes, especially dry etching, physical vapor deposition (PVD) and plasma-enhanced chemical vapor deposition ( The technical field of PE-CVD) and other processes, especially a plasma-resistant film structure applied to any kind of photoelectric and semiconductor industry dry etching or plasma-assisted thin film process that may be exposed to plasma internal components, the protective film layer It is used to improve the yield rate of the above process and the service life of components.

現行在電漿製程如RIE(Reactive Ion Etch)或PECVD(Plasma enhanced chemical vapor deposition)的環境下,其真空腔體或零部件是暴露於反應式電漿環境下之,因此非常容易遭到侵蝕。 In the current plasma process such as RIE (Reactive Ion Etch) or PECVD (Plasma enhanced chemical vapor deposition) environment, the vacuum chamber or parts are exposed to the reactive plasma environment, so they are very easy to be corroded.

請參閱圖1,圖1所繪示為常見改善腐蝕的方式,在零部件10之陽極氧化層12上,以噴塗方式塗佈一耐電漿腐蝕材料層11,例如釔鋁石榴石(Y3Al5O12)氧化釔(Y2O3)、氟化釔(YF3)、氟氧化釔(YOF)等耐電漿腐蝕材料,由於此等氧化物含有較重之金屬原子,因此耐電漿侵蝕之能力較佳,特別是當形成某種晶格方向性結構(Texture structure)時,如藉由離子束電子槍蒸鍍(IAD)讓耐電漿侵蝕材料晶格之<111>方向延垂直基材表面排列,此係由細小之特定方向單晶結構所覆蓋而成,其耐電漿侵蝕更佳。 Please refer to FIG. 1. FIG. 1 shows a common way to improve corrosion. On the anodic oxide layer 12 of the component 10, a plasma corrosion-resistant material layer 11 is coated by spraying, such as yttrium aluminum garnet (Y 3 Al 5 O 12 ) yttrium oxide (Y 2 O 3 ), yttrium fluoride (YF 3 ), yttrium oxyfluoride (YOF) and other plasma corrosion-resistant materials, because these oxides contain heavy metal atoms, they are resistant to plasma corrosion Better ability, especially when forming a certain lattice texture structure (Texture structure), such as by ion beam electron gun deposition (IAD) so that the <111> direction of the plasma erosion-resistant material lattice is arranged along the vertical direction of the substrate surface , which is covered by a small specific direction single crystal structure, which has better resistance to plasma erosion.

然而,電漿製程是在高腐蝕性環境下進行,即便使用耐電漿腐蝕材料層11防止鋁合金基板13腐蝕。實際上,耐電漿腐蝕材料層11上具有晶界(Grain Boundary)及缺陷造成細微之裂縫,電漿能可仍經由此裂縫腐蝕鋁合金基板13,導致零部件10劣化。此外,電漿製程還是在高溫環境(200℃~300℃)下進行,而鋁合金基板的熱膨脹係數較大(23.2×10-6/K @ 20℃),鋁合金基板受熱後膨脹便會擴張耐電漿腐蝕材料層11上的裂縫,使鋁合金基板13更容易受到電漿腐蝕。 However, the plasma process is performed in a highly corrosive environment, even if the plasma corrosion-resistant material layer 11 is used to prevent the aluminum alloy substrate 13 from corroding. In fact, there are fine cracks caused by grain boundaries and defects on the plasma corrosion-resistant material layer 11 , and the plasma energy can still corrode the aluminum alloy substrate 13 through the cracks, resulting in the deterioration of the component 10 . In addition, the plasma process is still carried out in a high-temperature environment (200°C~300°C), and the thermal expansion coefficient of the aluminum alloy substrate is relatively large (23.2×10 -6 /K @ 20°C), and the expansion of the aluminum alloy substrate will expand after heating The cracks on the plasma corrosion resistant material layer 11 make the aluminum alloy substrate 13 more susceptible to plasma corrosion.

因此,如何解決上述問題便是本領域具通常知識者值得去思量的。 Therefore, how to solve the above problems is worthy of consideration by those skilled in the art.

為解決金屬基板熱膨脹擴大耐電漿腐蝕材料層縫隙之問題,本發明乃於耐電漿侵蝕層與陽極處理層間,增加一低熱導係數的熱阻障層。可減少金屬基板之熱膨脹現象,進一步提升膜層結構穩定及耐電漿腐蝕層耐蝕能力。其具體技術手段如下:一種耐電漿腐蝕的保護層,形成於一金屬基板上,該耐電漿腐蝕的保護層包括一熱阻障層及一耐電漿腐蝕層。熱阻障層設置於該金屬基板上。耐電漿腐蝕層設置於該熱阻障層上。 In order to solve the problem that the thermal expansion of the metal substrate expands the gap of the plasma corrosion resistant material layer, the present invention adds a thermal barrier layer with low thermal conductivity between the plasma corrosion resistant layer and the anodic treatment layer. It can reduce the thermal expansion of the metal substrate, further improve the stability of the film structure and the corrosion resistance of the plasma corrosion resistance layer. The specific technical means are as follows: a plasma corrosion-resistant protective layer is formed on a metal substrate, and the plasma corrosion-resistant protective layer includes a thermal barrier layer and a plasma corrosion-resistant layer. The thermal barrier layer is disposed on the metal substrate. The plasma corrosion resistant layer is disposed on the thermal barrier layer.

上述之耐電漿腐蝕的保護層,其中,該金屬基板還包括一陽極處理層,該熱阻障層設置於該陽極處理層上。 In the above plasma corrosion resistant protective layer, the metal substrate further includes an anodic treatment layer, and the thermal barrier layer is disposed on the anodic treatment layer.

上述之耐電漿腐蝕的保護層,其中,該熱阻障層的熱傳導係數為該陽極處理層的熱傳導係數的二分之一以下。 In the above plasma corrosion resistant protective layer, the thermal conductivity of the thermal barrier layer is less than half of the thermal conductivity of the anodized layer.

上述之耐電漿腐蝕的保護層,其中,該熱阻障層的熱傳導係數為該耐電漿腐蝕層的熱傳導係數的二分之一以下。 In the above plasma corrosion resistant protective layer, the thermal conductivity of the thermal barrier layer is less than half of the thermal conductivity of the plasma corrosion resistant layer.

上述之耐電漿腐蝕的保護層,其中,該熱阻障層為非晶(Amorphous)結構。 In the above-mentioned protective layer resistant to plasma corrosion, the thermal barrier layer has an amorphous structure.

上述之耐電漿腐蝕的保護層,其中,該熱阻障層是選自釔(Y)、釓(Gd)、鐿(Yb)氧化物所組成的群組與鈮(Nb)、鋯(Zr)、鋁(Al)、鉿(Hf)氧化物所組成的群組。 The above plasma corrosion resistant protective layer, wherein the thermal barrier layer is selected from the group consisting of yttrium (Y), gadolinium (Gd), ytterbium (Yb) oxides and niobium (Nb), zirconium (Zr) , aluminum (Al), hafnium (Hf) oxide group.

上述之耐電漿腐蝕的保護層,其中,該耐電漿腐蝕層選自鋁(Al)、釔(Y)、鉺(Er)、銠(Rh)的氧化物及鑭系元素之氧化物、氮化物、硼化物及氟化物所組成的群組。 The above plasma corrosion resistant protective layer, wherein the plasma corrosion resistant layer is selected from oxides of aluminum (Al), yttrium (Y), erbium (Er), rhodium (Rh) and oxides and nitrides of lanthanides , the group consisting of borides and fluorides.

上述之耐電漿腐蝕的保護層,其中,該熱阻障層是以離子束輔助電子槍蒸鍍(Ion Assisted Deposition,IAD)技術沉積形成。 In the above-mentioned protective layer resistant to plasma corrosion, the thermal barrier layer is deposited and formed by ion beam assisted electron gun evaporation (Ion Assisted Deposition, IAD) technology.

上述之耐電漿腐蝕的保護層,其中,該耐電漿腐蝕層是以電漿噴塗方式沉積形成。 In the above plasma corrosion resistant protective layer, the plasma corrosion resistant layer is deposited and formed by plasma spraying.

本發明還提供一種耐電漿腐蝕的保護層的形成方法,包括:S10:於一金屬基板上形成一熱阻障層;及S20:於該熱阻障層上形成一耐電漿腐蝕層。 The invention also provides a method for forming a plasma corrosion resistant protective layer, including: S10: forming a thermal barrier layer on a metal substrate; and S20: forming a plasma corrosion resistant layer on the thermal barrier layer.

上述之耐電漿腐蝕的保護層的形成方法,其中,在步驟S10中,該金屬基板還包括一陽極處理層,熱阻障層是形成於該陽極處理層上。 In the above method for forming a protective layer resistant to plasma corrosion, in step S10, the metal substrate further includes an anodic treatment layer, and the thermal barrier layer is formed on the anodic treatment layer.

上述之耐電漿腐蝕的保護層的形成方法,其中,該熱阻障層的熱傳導係數為該陽極處理層的熱傳導係數的二分之一以下。 In the method for forming a protective layer resistant to plasma corrosion, the thermal conductivity of the thermal barrier layer is less than half of the thermal conductivity of the anodized layer.

上述之耐電漿腐蝕的保護層的形成方法,其中,該熱阻障層的熱傳導係數為該耐電漿腐蝕層的熱傳導係數的二分之一以下。 In the method for forming the plasma corrosion-resistant protective layer, the thermal conductivity of the thermal barrier layer is less than half of the thermal conductivity of the plasma corrosion-resistant layer.

上述之耐電漿腐蝕的保護層的形成方法,其中,該熱阻障層為非晶(Amorphous)結構。 In the above method for forming the plasma corrosion resistant protective layer, the thermal barrier layer has an amorphous structure.

上述之耐電漿腐蝕的保護層的形成方法,其中,該熱阻障層是選自釔(Y)、釓(Gd)、鐿(Yb)氧化物所組成的群組與鈮(Nb)、鋯(Zr)、鋁(Al)、鉿(Hf)氧化物所組成的群組。 The above-mentioned method for forming a protective layer resistant to plasma corrosion, wherein the thermal barrier layer is selected from the group consisting of yttrium (Y), gadolinium (Gd), ytterbium (Yb) oxides and niobium (Nb), zirconium (Zr), aluminum (Al), and hafnium (Hf) oxides.

上述之耐電漿腐蝕的保護層的形成方法,其中,該耐電漿腐蝕層選自鋁(Al)、釔(Y)、鉺(Er)、銠(Rh)的氧化物及鑭系元素之氧化物、氮化物、硼化物及氟化物所組成的群組。 The method for forming the above-mentioned plasma corrosion-resistant protective layer, wherein the plasma corrosion-resistant layer is selected from oxides of aluminum (Al), yttrium (Y), erbium (Er), rhodium (Rh) and oxides of lanthanides , nitride, boride and fluoride group.

上述之耐電漿腐蝕的保護層的形成方法,其中,該熱阻障層是以離子束輔助電子槍蒸鍍(Ion Assisted Deposition,IAD)技術沉積形成。 In the method for forming the plasma corrosion-resistant protective layer, the thermal barrier layer is formed by ion beam assisted electron gun evaporation (Ion Assisted Deposition, IAD) technology.

上述之耐電漿腐蝕的保護層的形成方法,其中,該耐電漿腐蝕層是以電漿噴塗方式沉積形成。 In the method for forming the plasma corrosion-resistant protective layer, the plasma corrosion-resistant layer is formed by depositing by plasma spraying.

10:零部件 10: Parts

11:使用耐電漿腐蝕材料層 11: Use plasma corrosion resistant material layer

12:陽極氧化層 12: Anodized layer

13:金屬基板 13: Metal substrate

100:耐電漿腐蝕的保護層 100: protective layer resistant to plasma corrosion

110:耐電漿腐蝕層 110: Plasma corrosion resistant layer

120:熱阻障層 120: thermal barrier layer

200:金屬基板 200: metal substrate

210:基板 210: Substrate

220:陽極處理層 220: Anodized layer

S10~S20:流程圖步驟 S10~S20: Flow chart steps

圖1所繪示為常見改善腐蝕的方式。 Figure 1 shows common ways to improve corrosion.

圖2所繪示為本發明之耐電漿腐蝕的保護層示意圖。 FIG. 2 is a schematic diagram of the plasma corrosion-resistant protective layer of the present invention.

圖3所繪示為熱阻障層之側面圖。 Figure 3 shows a side view of the thermal barrier layer.

圖4所繪示為耐電漿腐蝕的保護層的形成方法。 FIG. 4 illustrates a method for forming a protective layer resistant to plasma corrosion.

請參閱圖2,圖2所繪示為本發明之耐電漿腐蝕的保護層示意圖。耐電漿腐蝕的保護層100是形成於一金屬基板200上。耐電漿腐蝕的保護層100包括一熱阻障層120與一耐電漿腐蝕層110。其中,熱阻障層120是設置於金屬基板200上,耐電漿腐蝕層110是設置於熱阻障層120上。在另一實施例中,金屬基板200包括了基板210與陽極處理層220,而熱阻障層120便是設置在陽極處理層220上。 Please refer to FIG. 2 . FIG. 2 is a schematic diagram of the plasma corrosion-resistant protective layer of the present invention. The plasma corrosion resistant protection layer 100 is formed on a metal substrate 200 . The plasma corrosion resistant protective layer 100 includes a thermal barrier layer 120 and a plasma corrosion resistant layer 110 . Wherein, the thermal barrier layer 120 is disposed on the metal substrate 200 , and the plasma corrosion resistant layer 110 is disposed on the thermal barrier layer 120 . In another embodiment, the metal substrate 200 includes a substrate 210 and an anodized layer 220 , and the thermal barrier layer 120 is disposed on the anodized layer 220 .

熱阻障層120(Thermal Barrier Coating,TBC)是經由電子槍蒸鍍(e-gun evaporation)、物理氣相沉積(PVD)、化學氣象沉積(CVD)、電漿噴塗等方法層積形成於金屬基板200上,其沉積厚度為5um~50um。而熱阻障層120的材料選用自釔(Y)、釓(Gd)、鐿(Yb)氧化物所組成的群組與鈮(Nb)、鋯(Zr)、 鋁(Al)、鉿(Hf)氧化物所組成的群組。如此可形成低熱傳導係數的熱阻障層120,並且熱阻障層120的熱傳導係數為陽極處理層220的熱傳導係數的二分之一以下,熱阻障層120的熱傳導係數為耐電漿腐蝕層110的熱傳導係數的二分之一以下。進一步,可透過控制沉積條件,使熱阻障層120形成非晶(Amorphous)結構,可減少熱阻障層120的孔隙率,從而減少電漿離子穿過熱阻障層120腐蝕金屬基板200的機會。在較佳實施例中,熱阻障層120的材料選用釔安定氧化鋯(8YSZ),具有極低的熱傳導效率(小於4W/mk,氧化鋁約為25W/mk)。在另一實施例中,熱阻障層120可經由離子束輔助電子槍蒸鍍(Ion Assisted Deposition,IAD)技術沉積形成,而層積的厚度為10um~20um。 The thermal barrier layer 120 (Thermal Barrier Coating, TBC) is laminated and formed on the metal substrate by e-gun evaporation (e-gun evaporation), physical vapor deposition (PVD), chemical vapor deposition (CVD), plasma spraying, etc. 200, the deposition thickness is 5um~50um. The material of the thermal barrier layer 120 is selected from the group consisting of yttrium (Y), gadolinium (Gd), ytterbium (Yb) oxides and niobium (Nb), zirconium (Zr), A group consisting of aluminum (Al) and hafnium (Hf) oxides. In this way, a thermal barrier layer 120 with low thermal conductivity can be formed, and the thermal conductivity of the thermal barrier layer 120 is less than half of the thermal conductivity of the anodized layer 220, and the thermal conductivity of the thermal barrier layer 120 is less than that of the plasma corrosion resistant layer. Less than half of the thermal conductivity of 110. Further, by controlling the deposition conditions, the thermal barrier layer 120 can form an amorphous structure, which can reduce the porosity of the thermal barrier layer 120, thereby reducing the chance of plasma ions passing through the thermal barrier layer 120 to corrode the metal substrate 200 . In a preferred embodiment, the material of the thermal barrier layer 120 is yttrium stabilized zirconia (8YSZ), which has extremely low thermal conductivity (less than 4W/mk, and alumina is about 25W/mk). In another embodiment, the thermal barrier layer 120 can be deposited by ion beam assisted electron gun evaporation (Ion Assisted Deposition, IAD) technology, and the thickness of the stack is 10um˜20um.

耐電漿腐蝕層110則是經由電子槍蒸鍍(e-gun evaporation)、物理氣相沉積(PVD)、化學氣象沉積(CVD)、電漿噴塗方式沉積於熱阻障層120上。耐電漿腐蝕層110的材料選自鋁(Al)、釔(Y)、鉺(Er)、銠(Rh)的氧化物及鑭系元素之氧化物、氮化物、硼化物及氟化物所組成的群組。在較佳實施例中,耐電漿腐蝕層110的材料選用氧化釔(Y2O3),並以電漿噴塗方式沉積形成。 The plasma corrosion resistant layer 110 is deposited on the thermal barrier layer 120 through e-gun evaporation, physical vapor deposition (PVD), chemical vapor deposition (CVD), and plasma spraying. The material of the plasma corrosion resistant layer 110 is selected from oxides of aluminum (Al), yttrium (Y), erbium (Er), rhodium (Rh) and oxides, nitrides, borides and fluorides of lanthanides. group. In a preferred embodiment, the material of the plasma corrosion-resistant layer 110 is yttrium oxide (Y 2 O 3 ), which is deposited by plasma spraying.

請參閱圖3,圖3所繪示為熱阻障層之側面圖。在圖3中,熱阻障層120是以釔安定氧化鋯(8YSZ)沉積所形成。經由熱場發射掃描式電子顯微鏡(Thermal Field Emission Scanning Electron Microscope,FE-SEM)以35000倍率觀察,確認熱阻障層120的孔隙率為0.5%以下。 Please refer to FIG. 3, which is a side view of the thermal barrier layer. In FIG. 3, the thermal barrier layer 120 is formed by depositing yttrium stabilized zirconia (8YSZ). It is confirmed that the porosity of the thermal barrier layer 120 is less than 0.5% when observed by a Thermal Field Emission Scanning Electron Microscope (FE-SEM) at a magnification of 35,000.

請參閱圖4,圖4所繪示為耐電漿腐蝕的保護層的形成方法。首先,在一金屬基板200上形成一熱阻障層120(步驟S10)。其中,在一實施例中,金屬基板200包括一基板210與一陽極處理層220,而在步驟S10中是在金屬基板200的陽極處理層220上形成熱阻障層120,並且熱阻障層的熱傳導係數為陽極處理層的熱傳導係數的二分之一以下。 Please refer to FIG. 4 . FIG. 4 illustrates a method for forming a protective layer resistant to plasma corrosion. First, a thermal barrier layer 120 is formed on a metal substrate 200 (step S10 ). Wherein, in one embodiment, the metal substrate 200 includes a substrate 210 and an anodized layer 220, and in step S10, the thermal barrier layer 120 is formed on the anodized layer 220 of the metal substrate 200, and the thermal barrier layer The thermal conductivity of the anodized layer is less than half of that of the anodized layer.

進一步的,在步驟S10中,熱阻障層120(Thermal Barrier Coating,TBC)是經由電子槍蒸鍍(e-gun evaporation)、物理氣相沉積(PVD)、化學氣象沉積(CVD)、電漿噴塗或離子束輔助電子槍蒸鍍(Ion Assisted Deposition,IAD)方法層積形成於金屬基板200上。並且熱阻障層120的材料選用自釔(Y)、釓(Gd)、鐿(Yb)氧化物所組成的群組與鈮(Nb)、鋯(Zr)、鋁(Al)、鉿(Hf)氧化物所組成的群組。 Further, in step S10, the thermal barrier layer 120 (Thermal Barrier Coating, TBC) is deposited via electron gun evaporation (e-gun evaporation), physical vapor deposition (PVD), chemical vapor deposition (CVD), plasma spraying Or the ion beam assisted electron gun evaporation (Ion Assisted Deposition, IAD) method is laminated and formed on the metal substrate 200 . And the material of the thermal barrier layer 120 is selected from the group consisting of yttrium (Y), gadolinium (Gd), ytterbium (Yb) oxides and niobium (Nb), zirconium (Zr), aluminum (Al), hafnium (Hf ) group of oxides.

在較佳實施例中,步驟S10是選用釔安定氧化鋯(8YSZ)為材料,並以離子束輔助電子槍蒸鍍(Ion Assisted Deposition,IAD)方法層積形成熱阻障層120。在進行離子束輔助電子槍蒸鍍時,材料平均蒸鍍速率為3A/s,溫度於製程中保持室溫以防熱應力產生。離子源於製程中通入氬氣(Ar)與氧氣(O2)作為電漿離子來源,並以至少600V/600mA之離子束強度進行離子束蒸鍍,形成厚度10um~20um,並且為非晶結構的熱阻障層120。 In a preferred embodiment, step S10 is to use yttrium stabilized zirconia (8YSZ) as the material, and form the thermal barrier layer 120 by lamination by ion beam assisted electron gun deposition (IAD). During the ion beam-assisted electron gun evaporation, the average evaporation rate of the material is 3A/s, and the temperature is kept at room temperature during the process to prevent thermal stress. Argon (Ar) and oxygen (O2) are introduced into the ion source process as the source of plasma ions, and ion beam evaporation is performed with an ion beam intensity of at least 600V/600mA to form a thickness of 10um~20um and an amorphous structure The thermal barrier layer 120.

形成熱阻障層120後,在熱阻障層120上形成一耐電漿腐蝕層110(步驟S20)。其中,耐電漿腐蝕層110是經由電子槍蒸鍍(e-gun evaporation)、物理氣相沉積(PVD)、化學氣象沉積(CVD)、電漿噴塗等方式形成。並且耐電漿腐蝕層110的材料選自鋁(Al)、釔(Y)、鉺(Er)、銠(Rh)的氧化物及鑭系元素之氧化物、氮化物、硼化物及氟化物所組成的群組。在較佳實施例中,步驟S20是選用氧化釔(Y2O3)材料,並以電漿噴塗方式沉積形成耐電漿腐蝕層110。此外,熱阻障層120的熱傳導係數為耐電漿腐蝕層110的熱傳導係數的二分之一以下。 After the thermal barrier layer 120 is formed, a plasma corrosion resistant layer 110 is formed on the thermal barrier layer 120 (step S20 ). Wherein, the plasma corrosion resistant layer 110 is formed by means of e-gun evaporation, physical vapor deposition (PVD), chemical vapor deposition (CVD), plasma spraying and the like. And the material of the plasma corrosion resistant layer 110 is selected from the oxides of aluminum (Al), yttrium (Y), erbium (Er), rhodium (Rh) and the oxides, nitrides, borides and fluorides of lanthanide elements. group. In a preferred embodiment, step S20 is to select yttrium oxide (Y 2 O 3 ) material and deposit it by plasma spraying to form the plasma corrosion resistant layer 110 . In addition, the thermal conductivity of the thermal barrier layer 120 is less than half of the thermal conductivity of the plasma corrosion resistant layer 110 .

本發明所提供之耐電漿腐蝕的保護層與其形成方法,在金屬基板200與耐電漿腐蝕層110之間形成一個熱阻障層120,利用熱阻障層120低熱傳導係數的特性,減少金屬基板200熱膨脹的現象,進而降低金屬基板200受到腐蝕的機會。此外,熱阻障層120還具有低孔隙率的特性,可進一步減少電漿穿過熱阻障層120 腐蝕金屬基板200的機會,並且可增加保護層的穩定性。因此,本發明之耐電漿腐蝕的保護層可提高零部件在電漿製程中耐電漿腐蝕層耐蝕能力,減少機台維修保養的頻率。 The plasma corrosion-resistant protective layer and its formation method provided by the present invention form a thermal barrier layer 120 between the metal substrate 200 and the plasma corrosion-resistant layer 110, and utilize the characteristics of the low thermal conductivity of the thermal barrier layer 120 to reduce the heat loss of the metal substrate. The thermal expansion of the metal substrate 200 reduces the chance of the metal substrate 200 being corroded. In addition, the thermal barrier layer 120 also has the characteristics of low porosity, which can further reduce the penetration of plasma through the thermal barrier layer 120. chance of corroding the metal substrate 200, and can increase the stability of the protection layer. Therefore, the plasma corrosion-resistant protective layer of the present invention can improve the corrosion resistance of the plasma corrosion-resistant layer of parts in the plasma process, and reduce the frequency of machine maintenance.

本發明說明如上,然其並非用以限定本發明所主張之專利權利範圍。其專利保護範圍當視後附之申請專利範圍及其等同領域而定。凡本領域具有通常知識者,在不脫離本專利精神或範圍內,所作之更動或潤飾,均屬於本創作所揭示精神下所完成之等效改變或設計,且應包含在下述之申請專利範圍內。 The description of the present invention is as above, but it is not intended to limit the scope of patent rights claimed by the present invention. The scope of its patent protection shall depend on the scope of the appended patent application and its equivalent fields. All changes or modifications made by those with common knowledge in the field without departing from the spirit or scope of this patent belong to equivalent changes or designs completed under the spirit disclosed in this creation, and should be included in the scope of the following patent application Inside.

100:耐電漿腐蝕的保護層 100: protective layer resistant to plasma corrosion

110:耐電漿腐蝕層 110: Plasma corrosion resistant layer

120:熱阻障層 120: thermal barrier layer

200:金屬基板 200: metal substrate

210:基板 210: Substrate

220:陽極處理層 220: Anodized layer

Claims (16)

一種耐電漿腐蝕的保護層,形成於一金屬基板上,該耐電漿腐蝕的保護層包括:一熱阻障層,設置於該金屬基板上;及一耐電漿腐蝕層,設置於該熱阻障層上;其中,該熱阻障層的熱傳導係數為該耐電漿腐蝕層的熱傳導係數的二分之一以下。 A protective layer resistant to plasma corrosion is formed on a metal substrate, and the protective layer resistant to plasma corrosion includes: a thermal barrier layer disposed on the metal substrate; and a plasma corrosion resistant layer disposed on the thermal barrier layer; wherein, the thermal conductivity of the thermal barrier layer is less than half of the thermal conductivity of the plasma corrosion resistant layer. 如請求項1所述之耐電漿腐蝕的保護層,其中,該金屬基板還包括一陽極處理層,該熱阻障層設置於該陽極處理層上。 The plasma corrosion-resistant protective layer as claimed in claim 1, wherein the metal substrate further includes an anodized layer, and the thermal barrier layer is disposed on the anodized layer. 如請求項2所述之耐電漿腐蝕的保護層,其中,該熱阻障層的熱傳導係數為該陽極處理層的熱傳導係數的二分之一以下。 The plasma corrosion-resistant protective layer according to claim 2, wherein the thermal conductivity of the thermal barrier layer is less than half of the thermal conductivity of the anodized layer. 如請求項1所述之耐電漿腐蝕的保護層,其中,該熱阻障層為非晶(Amorphous)結構。 The plasma corrosion-resistant protective layer as claimed in claim 1, wherein the thermal barrier layer has an amorphous structure. 如請求項1所述之耐電漿腐蝕的保護層,其中,該熱阻障層是選自釔(Y)、釓(Gd)、鐿(Yb)氧化物所組成的群組與鈮(Nb)、鋯(Zr)、鋁(Al)、鉿(Hf)氧化物所組成的群組。 The plasma corrosion-resistant protective layer as claimed in claim 1, wherein the thermal barrier layer is selected from the group consisting of yttrium (Y), gadolinium (Gd), ytterbium (Yb) oxides and niobium (Nb) , zirconium (Zr), aluminum (Al), hafnium (Hf) oxide group. 如請求項1所述之耐電漿腐蝕的保護層,其中,該耐電漿腐蝕層選自鋁(Al)、釔(Y)銠(Rh)的氧化物及鑭系元素之氧化物、氮化物、硼化物及氟化物所組成的群組。 The plasma corrosion-resistant protective layer as claimed in claim 1, wherein the plasma corrosion-resistant layer is selected from oxides of aluminum (Al), yttrium (Y) rhodium (Rh) and oxides, nitrides, and lanthanides. A group consisting of borides and fluorides. 如請求項1所述之耐電漿腐蝕的保護層,其中,該熱阻障層是以離子束輔助電子槍蒸鍍(Ion Assisted Deposition,IAD)技術沉積形成。 The plasma corrosion-resistant protective layer as claimed in claim 1, wherein the thermal barrier layer is formed by ion beam assisted electron gun evaporation (Ion Assisted Deposition, IAD) technology. 如請求項1所述之耐電漿腐蝕的保護層,其中,該耐電漿腐蝕層是以電漿噴塗方式沉積形成。 The plasma corrosion-resistant protective layer as claimed in claim 1, wherein the plasma corrosion-resistant layer is deposited and formed by plasma spraying. 一種耐電漿腐蝕的保護層的形成方法,包括: S10:於一金屬基板上形成一熱阻障層;及S20:於該熱阻障層上形成一耐電漿腐蝕層;其中,該熱阻障層的熱傳導係數為該耐電漿腐蝕層的熱傳導係數的二分之一以下。 A method for forming a protective layer resistant to plasma corrosion, comprising: S10: forming a thermal barrier layer on a metal substrate; and S20: forming a plasma corrosion resistant layer on the thermal barrier layer; wherein, the thermal conductivity of the thermal barrier layer is the thermal conductivity of the plasma corrosion resistant layer less than half of that. 如請求項9所述之耐電漿腐蝕的保護層的形成方法,其中,在步驟S10中,該金屬基板還包括一陽極處理層,熱阻障層是形成於該陽極處理層上。 The method for forming a plasma corrosion-resistant protective layer as claimed in claim 9, wherein, in step S10, the metal substrate further includes an anodized layer, and the thermal barrier layer is formed on the anodized layer. 如請求項10所述之耐電漿腐蝕的保護層形成方法,其中,該熱阻障層的熱傳導係數為該陽極處理層的熱傳導係數的二分之一以下。 The method for forming a plasma corrosion-resistant protective layer according to claim 10, wherein the thermal conductivity of the thermal barrier layer is less than half of the thermal conductivity of the anodized layer. 如請求項9所述之耐電漿腐蝕的保護層形成方法,其中,該熱阻障層為非晶(Amorphous)結構。 The method for forming a plasma corrosion-resistant protective layer as claimed in claim 9, wherein the thermal barrier layer has an amorphous structure. 如請求項9所述之耐電漿腐蝕的保護層形成方法,其中,該熱阻障層是選自釔(Y)、釓(Gd)、鐿(Yb)氧化物所組成的群組與鈮(Nb)、鋯(Zr)、鋁(Al)、鉿(Hf)氧化物所組成的群組。 The method for forming a plasma corrosion-resistant protective layer as claimed in Claim 9, wherein the thermal barrier layer is selected from the group consisting of yttrium (Y), gadolinium (Gd), ytterbium (Yb) oxides and niobium ( A group consisting of Nb), zirconium (Zr), aluminum (Al), and hafnium (Hf) oxides. 如請求項9所述之耐電漿腐蝕的保護層形成方法,其中,該耐電漿腐蝕層選自鋁(Al)、釔(Y)、銠(Rh)的氧化物及鑭系元素之氧化物、氮化物、硼化物及氟化物所組成的群組。 The method for forming a plasma corrosion-resistant protective layer as claimed in claim 9, wherein the plasma corrosion-resistant layer is selected from oxides of aluminum (Al), yttrium (Y), rhodium (Rh) and oxides of lanthanides, The group consisting of nitrides, borides and fluorides. 如請求項9所述之耐電漿腐蝕的保護層形成方法,其中,該熱阻障層是以離子束輔助電子槍蒸鍍(Ion Assisted Deposition,IAD)技術沉積形成。 The method for forming a plasma corrosion-resistant protective layer according to claim 9, wherein the thermal barrier layer is formed by ion beam assisted electron gun evaporation (Ion Assisted Deposition, IAD) technology. 如請求項9所述之耐電漿腐蝕的保護層形成方法,其中,該耐電漿腐蝕層是以電漿噴塗方式沉積形成。 The method for forming a plasma corrosion-resistant protective layer as claimed in claim 9, wherein the plasma corrosion-resistant layer is deposited and formed by plasma spraying.
TW110114391A 2021-04-21 2021-04-21 Plasma resistant protective layer and formation method thereof TWI781593B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110114391A TWI781593B (en) 2021-04-21 2021-04-21 Plasma resistant protective layer and formation method thereof
CN202110442122.6A CN115223835A (en) 2021-04-21 2021-04-23 Plasma corrosion resistant protective layer and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110114391A TWI781593B (en) 2021-04-21 2021-04-21 Plasma resistant protective layer and formation method thereof

Publications (2)

Publication Number Publication Date
TWI781593B true TWI781593B (en) 2022-10-21
TW202242197A TW202242197A (en) 2022-11-01

Family

ID=83606775

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110114391A TWI781593B (en) 2021-04-21 2021-04-21 Plasma resistant protective layer and formation method thereof

Country Status (2)

Country Link
CN (1) CN115223835A (en)
TW (1) TWI781593B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201504044A (en) * 2013-06-20 2015-02-01 Applied Materials Inc Plasma erosion resistant rare-earth oxide based thin film coatings
TWM615992U (en) * 2021-04-21 2021-08-21 翔名科技股份有限公司 Passivation layer capable of preventing plasma corrosion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201504044A (en) * 2013-06-20 2015-02-01 Applied Materials Inc Plasma erosion resistant rare-earth oxide based thin film coatings
TWM615992U (en) * 2021-04-21 2021-08-21 翔名科技股份有限公司 Passivation layer capable of preventing plasma corrosion

Also Published As

Publication number Publication date
CN115223835A (en) 2022-10-21
TW202242197A (en) 2022-11-01

Similar Documents

Publication Publication Date Title
JP6956774B2 (en) Ion-assisted vapor deposition topcoat of rare earth oxides
US11680308B2 (en) Plasma erosion resistant rare-earth oxide based thin film coatings
JP4331479B2 (en) High toughness zirconia ceramic components and coatings in semiconductor processing equipment and methods of manufacturing the same
US20180096825A1 (en) Ion assisted deposition for rare-earth oxide based thin film coatings on process rings
US20150021324A1 (en) Ion assisted deposition for rare-earth oxide based coatings on lids and nozzles
CN104241069A (en) Component with yttrium oxide coating layer in plasma device and manufacturing method of component
CN215183849U (en) Protective layer resistant to plasma corrosion
TWI405743B (en) Multi-component thermal spray coating material for semiconductor processing equipment, and manufacturing and coating method thereof
TWI781593B (en) Plasma resistant protective layer and formation method thereof
TW202344316A (en) Plasma resistant arc preventative coatings for manufacturing equipment components
CN115223833A (en) Protective coating for semiconductor parts and method for producing same

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent