TWI777326B - 可穩定菌種活性之厭氧發酵系統及其方法 - Google Patents

可穩定菌種活性之厭氧發酵系統及其方法 Download PDF

Info

Publication number
TWI777326B
TWI777326B TW109143973A TW109143973A TWI777326B TW I777326 B TWI777326 B TW I777326B TW 109143973 A TW109143973 A TW 109143973A TW 109143973 A TW109143973 A TW 109143973A TW I777326 B TWI777326 B TW I777326B
Authority
TW
Taiwan
Prior art keywords
ammonia nitrogen
anaerobic
anaerobic fermentation
gas
stripping gas
Prior art date
Application number
TW109143973A
Other languages
English (en)
Other versions
TW202222710A (zh
Inventor
賴奇厚
楊謦鴻
林俊雄
Original Assignee
逢甲大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 逢甲大學 filed Critical 逢甲大學
Priority to TW109143973A priority Critical patent/TWI777326B/zh
Publication of TW202222710A publication Critical patent/TW202222710A/zh
Application granted granted Critical
Publication of TWI777326B publication Critical patent/TWI777326B/zh

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Physical Water Treatments (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本發明係揭露一種可穩定菌種活性之厭氧發酵方法,利用一厭氧微生物在一不會致使該厭氧微生物活性受到抑制的酸鹼值範圍下對該廢水污泥中所含的有機物進行厭氧發酵反應,並以該厭氧發酵反應所產生之氣體作為一初始之氣提氣體;接著,將該氣提氣體注入該廢水污泥中,使該廢水污泥中之氨氮係隨該氣提氣體脫出,並混入該氣提氣體中;最後,將混有氨氮之該氣提氣體曝氣於一氨氮吸收溶液中,使混入之氨氮為該氨氮吸收溶液所吸收,並使經除去氨氮之該氣提氣體能再次被回收重新利用。

Description

可穩定菌種活性之厭氧發酵系統及其方法
本發明係有關污水處理技術,尤指一種可穩定菌種活性之厭氧發酵系統及其方法
按,畜牧產業所產生之廢水通常含有高濃度的有機物質,若直接排放將會污染河川、湖泊、海洋等水域,故現行已有污水處理設備來處理廢水,使其滿足法定之排放標準。其中,由於畜牧產所排放的廢水含有較高的碳、氨氮、磷等有機營養物質,能以厭氧消化(Anaerobic Digestion)的方式,利用厭氧微生物將有機營養物質分解發酵,得以產生沼氣,並可再生能源來使用。
然而,厭氧系統的穩定性及效能通常良莠不齊,可能的因素在於溫度、pH、氨氮濃度、有機物含量等,都能影響該厭氧系統的產氣量。
再者,為了改善含高氨氮的廢水對該厭氧系統造成抑制現象的問題,通常會利用吹脫法(Stripping)以一氣提塔與該厭氧系統結合,以期降低廢
Figure 109143973-A0305-02-0003-1
水中的氨氮含量。詳細來說,吹脫法主要是利用氨在水中的游離氨(NH3)和銨離子(NH4+)之不同型態來進行處理,如下方反應式:
同時配合圖1所示,當pH大於11時,氨在水中大多以游離氨型態存在;當pH低於7時,氨在水中大多以銨離子型態存在。
再者,如圖2所示,隨著溫度提高游離氨的含量也可隨之增加。據此,在習知技術中,通常需要將發酵液導出至氣提塔中進行沖提,同時添加鹼將pH值提高至10-11,同時加溫至55℃,使氨氣(NH3)自然釋出,以達到較好的氣提效果。但是,反而會使得厭氧微生物受到高溫、高酸鹼值影響,發生抑制作用。
因此,本發明之主要目的即係在提供一種可穩定菌種活性之厭氧發酵系統及其方法,其係能夠在適合菌種生長的環境下去除廢水中的氨氮,以維持菌種的活性,從而達到較佳的產氣效果。
本發明之另一目的即係在提供一種可穩定菌種活性之厭氧發酵系統及其方法,其係能夠利用厭氧發酵反應所產生之氣體作為氣提氣體,而直接對廢水污泥進行氣提,改善習知技術中需要將發酵液導出到氣提塔始能進行沖提之問題,並能有效地降低廢水中的氨氮濃度。
緣是,為達成上述目的,本發明所提供之可穩定菌種活性之厭氧發酵方法,其包括以下步驟:步驟A:提供一含氨氮及有機物的廢水污泥;步驟B:利用一厭氧微生物在一不會致使該厭氧微生物活性受到抑制的酸鹼值範圍下對該廢水污泥中所含的有機物進行厭氧發酵反應,並以該厭氧發酵反應所產生之氣體作為一初始之氣提氣體; 步驟C:將該氣提氣體注入該廢水污泥中,以對該廢水污泥進行曝氣;步驟D:在對該廢水污泥進行曝氣時,存在於該廢水污泥中之氨氮係隨該氣提氣體脫出該廢水污泥,並混入該氣提氣體中;步驟E:將步驟D中混有氨氮之該氣提氣體,曝氣於氨氮吸收溶液中,使混入之氨氮為該氨氮吸收溶液所吸收,並使經除去氨氮之該氣提氣體再被回收作為步驟C中對廢水污泥進行曝氣之氣體。
其中,在步驟B中,該酸鹼值範圍係介於6至8之間。
其中,在步驟E中,該氨氮吸收溶液為硫酸溶液,能與氨氮反應形成一硫酸銨回收溶液。
在一實施例中,本發明還提供了一種可穩定菌種活性之厭氧發酵系統,包括:一厭氧發酵反應單元,係具有一厭氧反應槽,用以容置該廢水污泥與該厭氧微生物;一原位氨氣提單元,係包括:一循環曝氣管路,其進氣端及出氣端分別連接於該厭氧反應槽上;一第一動力部,係設於該循環曝氣管路上,用以提供抽提該氣提氣體之動力;一吸收槽,係設於該循環曝氣管路上,用於容置該氨氮吸收溶液。
10:系統
11:厭氧發酵反應單元
12:厭氧反應槽
121:槽體
122:第一入水口
123:第一出水口
124:第二入水口
125:第二出水口
126:出氣口
127:進氣口
128:蓋體
129:容置空間
13:監控模組
131:處理器
132:溫度感測器
133:pH值感測器
134:氧化還原電位感測器
135:氣體流量感測器
14:攪拌裝置
20:原位氨氣提單元
21:循環曝氣管路
22:第一動力部
23:吸收槽
24:緩衝槽
30:熱交換單元
31:加熱管路
32:第二動力部
33:加熱器
圖1係pH值對游離氨(NH3)和銨離子(NH4 +)之間影響的關係圖。
圖2係溫度對游離氨(NH3)和銨離子(NH4 +)之間影響的關係圖。
圖3係本發明一較佳實施例之示意圖。
圖4係本發明一較佳實施例之系統方塊圖。
圖5為本發明實例中控制組與實驗組的甲烷產率曲線示意圖。
圖6為本發明實例中控制組與實驗組的游離氨濃度曲線示意圖。
圖7為本發明實例中控制組與實驗組的總氨氮濃度曲線示意圖。
圖8為本發明實例中控制組與實驗組的總凱氏氮濃度曲線示意圖。
首先,請參閱圖3及圖4所示,在本發明一較佳實施例中所提供可穩定菌種活性之厭氧發酵系統10,其主要係提供一厭氧發酵反應單元11、一原位氨氣提單元20及一熱交換單元30。
該厭氧發酵反應單元11係具有一厭氧反應槽12、一監控模組13及一攪拌裝置14。其中,該厭氧反應槽12具有一槽體121、一第一入水口122、一第一出水口123、一第二入水口124、一第二出水口125、一出氣口126、一進氣口127及一蓋體128,該槽體121內部具有一容置空間129,用以容納未經處理之廢水污泥及厭氧微生物(Anaerobic Microorganism),而該蓋體128可卸除地覆設於該槽體121的槽口,以使該容置空間129與外界相隔離,構成一厭氧環境,據以避免該厭氧微生物與外界的氧氣接觸。在本實例中,該廢水污泥含氨氮及有機物,該厭氧微生物係選用甲烷菌,係於一不會致使該厭氧微生物活性受到抑制的酸鹼值範圍下對該廢水污泥中所含的有機物進行厭氧發酵反應,以產生一生質氣體(Biogas),意即甲烷及二氧化碳,並以該生質氣體作為一初始之氣提氣體。
再者,該第一入水口122及該第二入水口124分別該位於該槽體121槽壁靠近該槽體121槽底的位置上,該第一出水口123及該第二出水口125分 別位於該槽體121相對遠離於該第一入水口122之槽壁並靠近該蓋體128的位置上,該出氣口126設於該蓋體128上,而該進氣口127位於該槽體121槽底,並且該等通口係分別連通於該容置空間129。其中,該第一入水口122及該第一出水口123作為該廢水排入或排放之用。
此外,該厭氧反應槽12可為但不限於上流式厭氧污泥床(Upflow Anaerobic Sludge Blanket,Uasb)、連續式攪拌反應器(Continuous Stirred Tank Reactor,Cstr)、厭氧序批式反應器(Anaerobic Sequencing Batch Reactor,Asbr)、擔體誘發式顆粒污泥床(Carrier-Induced Granular Sludge Bed,Cigsb)或導向管流化床反應器(Draft Tube Fluidized Bed Reactor,Dtfbr)。
該監控模組13設於該厭氧反應槽12上,用於監測廢水處理的情況。其中,該監控模組13包括一處理器131、一溫度感測器132、一pH值感測器133、一氧化還原電位感測器134及一氣體流量感測器135,該處理器131係分別與該溫度感測器132、該pH值感測器133、該氧化還原電位感測器134及該氣體感測器電性連接,用以接收該等感測器所分別量測的溫度數值、酸鹼值(pH)、氧化還原電位值(Oxidation Reduction Potential,ORP)、氣體流量監測數值,並進行自動控制程序,以使該容置空間129構成適當的菌種培養環境。在本例中,溫度係控制在35℃、酸鹼值控制介於6至8之間、及氧化還原電位值控制介於-400mV至-500mV之間等操作條件下進行厭氧培養。該氣體流量感測器135可為但不限於濕式氣體流量計(Ritter TG1/5,Germany)。
該攪拌裝置14設於該槽體121內,並受該監控模組13所操控,用以使甲烷菌與該廢水中所含有之有機質充分接觸,其結構與動作原理,屬習知且非本發明的主要技術特徵,在此不予贅述。
該原位氨氣提單元20包括一循環曝氣管路21、一第一動力部22、一吸收槽23及一緩衝槽24,該循環曝氣管路21的一進氣端與一出氣端係分別對應連通於該厭氧反應槽12之該出氣口126及該進氣口127,該第一動力部22、該吸收槽23及該緩衝槽24分別依序設於該循環曝氣管路21上,其中,該第一動力部22提供抽提該氣提氣體之動力,具體地該第一動力部22為幫浦。該吸收槽23內容置有一氨氮吸收溶液,在本例中,該氨氮吸收溶液為5M硫酸溶液,用以吸收氨以形成硫酸銨,其反應式如下:2NH3+H2SO4 → (NH4)2SO4
該緩衝槽24連通於該吸收槽23,以一緩衝溶液來吸收該循環曝氣管路21中的硫酸溶液。該緩衝溶液可為但不限於水(RO Water)。
該熱交換單元30與該厭氧反應槽12連接,而對該廢水進行熱交換,以將該廢水溫度控制在一預定溫度下,以維持較佳的厭氧微生物生長條件。在本例中,該熱交換單元30包括一加熱管路31、一第二動力部32及一加熱器33,該加熱管路31的進、出口分別對應連通於該厭氧反應槽12之該第二出水口125及該第二入水口124,該第二動力部32與該加熱器33係分別設於該加熱管路31上,其中,該第二動力部32提供抽取該厭氧反應槽12中的廢水之動力,具體地該第二動力部32為幫浦。該加熱器33用以對流入該加熱管路31中的廢水進行熱交換,並再排回至該厭氧反應槽12中。
藉由以上構造,本創作較佳實施例的主要實施步驟如下: 首先,利用該幫浦將該容置空間129中的該氣提氣體抽出,再經由該循環曝氣管路21將該氣提氣體送回該厭氧反應槽12中,形成氣泡,以進行曝氣程序。
再者,當該氣提氣體對該廢水污泥進行曝氣時,存在於該廢水污泥中之氨氮係隨該氣提氣體脫出該廢水污泥,並混入該氣提氣體中。
接著,將沖混有氨氮之該氣提氣體再次受到該幫浦的抽取,而進入該該循環曝氣管路21中,並流入曝氣於該吸收槽23內的氨氮吸收溶液中,使混入之氨氮為該氨氮吸收溶液所吸收。
最後,使經除去氨氮之該氣提氣體再被回收利用,並且仍作為對廢水污泥進行曝氣之氣體。
如此一來,可循環地重複以上步驟,以使該氣提氣體不斷地重複進行氣提氨氮與去除氨氮等程序,藉以降低該廢水中氨的含量,避免該厭氧反應槽12中的氨氮濃度過高而對該厭氧微生物造成抑制現象。
以下,茲舉本發明之若干實例並搭配圖式來說明本發明之技術特徵及功效。
以兩座完全相同且體積為5L的厭氧反應槽12分別為實驗組與控制組,各組別均以相同的基本條件進行試驗,其中,該幫浦以0.5L/min的低流速運作,該攪拌裝置14的機械攪拌速率為50rpm,水力滯留時間(Hydraulic Retention Times,HRT)為30天,pH值為7.45,有機負荷率(Organic Loading Rate,OLR)為6g-VS/(L.d),氧化還原電位(ORP)為-400mV至-500mV,溫度為35℃。其中,在實驗過程中,雖該厭氧反應槽12內所預設的pH值為7.45,但隨著時間的推進所測得的pH值仍會於6至8之間變動。
各組別的主要差異在於實驗組設有原位氨氣提單元20,而控制組並未設有原位氨氣提單元20。
總固體(TS)、揮發性固體(VS)、溶解性化學需氧量(SCOD)、總凱氏氮(Total Kjeldahl Nitrogen,TKN)濃度、總氨氮(total Ammonia Nitrogen,TAN)濃度、揮發性脂肪酸(Volatile Fatty Acid,Vfas)、游離氨(Free Ammonia Nitrogen,FAN)濃度等係以環境保護署所公布的標準方法進行分析。其中,以氣相層析火焰離子化偵檢器(GC-FID)來測定VFAs,氣相層析熱導偵測器(GC-TCD)來測定氣體組成,而游離氨濃度的計算公式如下:
Figure 109143973-A0305-02-0010-3
其中,CFA為游離氨濃度,CTAN為總氨氮濃度,Ka為解離常數(在35℃時為1.097×10-9),pH為酸鹼值。
總氨氮濃度為廢水中的銨離子(NH4+-N)濃度(mg/L)與廢水中游離氨(NH3-N)濃度(mg/L)之總和。
總凱氏氮為總氨氮與有機氮(ON)之和。
試驗結果如表1所示,在實驗組的厭氧反應槽12中完全測不到氨氣的存在,而控制組的厭氧反應槽12中氣態氨(NH3-N(g))濃度係大於1000ppm。再者,於控制組的廢水中的液體氨(NH3-N(q))濃度為80±20mg/L,相較之下,實驗組的廢水中的液體氨(NH3-N(q))濃度為63±18mg/L,明顯兩者之間的差異。此外,更於實驗組吸收槽23中的硫酸溶液測出總氨氮濃度為55mg/L,得以證明可在適合菌種培養的條件下進行氣提除氮。
Figure 109143973-A0305-02-0010-2
Figure 109143973-A0305-02-0011-4
如圖5所示,其係實驗組與控制組經過了70天長期測試下的甲烷產率(Methane Yield,MY)紀錄,其中,實驗組的整體甲烷產率相較於控制組整體甲烷產率提高了32%。
如圖6至圖8所示,其分別係實驗組與控制組經過了70天長期測試下的游離氨濃度、總氨氮濃度及總凱氏氮濃度之紀錄。其中,實驗組的游離氨濃度相較於控制組游離氨濃度減少了17%,實驗組的總氨氮濃度相較於控制組總氨氮濃度減少了15%,並使在實驗組總凱氏氮濃度均穩定地維持低於5g/L,能在較為合適的氨氮濃度下於反應槽中培養菌種,並使其不受氨氮抑制的影響而降低菌種活性。
進一步來說,廢水中所存在的游離氨(NH3)係對水生生物有害,而不同的氨氮濃度之差異對菌種活性亦有不同程度的抑制作用,舉例來說:當總氨氮濃度為7000mg/L時,菌種活性的抑制率為100%;當總氨氮濃度為5000mg/L時,菌種活性的抑制率為70%;當總氨氮濃度為3000mg/L時,菌種活性的抑制率為30%;當總氨氮濃度為2000mg/L時,菌種活性的抑制率為10%。是以,在本發明具體的實驗中,實驗組的游離氨濃度係低於控制組游離氨濃度17%,而實驗組的菌種活性抑制率相對低於控制組的菌種活性抑制率,既實驗組相較於控制組更能使菌種保持較佳的菌種活性狀態,達到較佳的產氣效果。
10:系統
11:厭氧發酵反應單元
12:厭氧反應槽
121:槽體
122:第一入水口
123:第一出水口
124:第二入水口
125:第二出水口
126:出氣口
127:進氣口
128:蓋體
129:容置空間
133:pH值感測器
134:氧化還原電位感測器
135:氣體流量感測器
14:攪拌裝置
20:原位氨氣提單元
21:循環曝氣管路
22:第一動力部
23:吸收槽
24:緩衝槽
30:熱交換單元
31:加熱管路
32:第二動力部
33:加熱器

Claims (7)

  1. 一種可穩定菌種活性之厭氧發酵方法,其包括以下步驟:步驟A:提供一含氨氮及有機物的廢水污泥,並置於一供容置該廢水污泥與一厭氧微生物之厭氧反應槽,該厭氧反應槽為連續式攪拌反應器(Continuous Stirred Tank Reactor,Cstr);步驟B:利用該厭氧微生物在一不會致使該厭氧微生物活性受到抑制的酸鹼值範圍下對該廢水污泥中所含的有機物進行厭氧發酵反應,並以該厭氧發酵反應所產生之氣體作為一初始之氣提氣體,該氣提氣體包含甲烷;步驟C:將該氣提氣體注入該廢水污泥中,以對該廢水污泥進行曝氣;步驟D:在對該廢水污泥進行曝氣時,存在於該廢水污泥中之氨氮係隨該氣提氣體脫出該廢水污泥,並混入該氣提氣體中;步驟E:將步驟D中混有氨氮之該氣提氣體,曝氣於氨氮吸收溶液中,使混入之氨氮為該氨氮吸收溶液所吸收,並使經除去氨氮之該氣提氣體再被回收作為步驟C中對廢水污泥進行曝氣之氣體;其中,該氨氮吸收溶液為硫酸溶液,能與氨氮反應形成一硫酸銨回收溶液;步驟F:經前述各步驟之氣提除氮後,係可提升32%甲烷產率。
  2. 如請求項1所述可穩定菌種活性之厭氧發酵方法,其中,在步驟B中,該酸鹼值範圍係介於6至8之間。
  3. 如請求項2所述可穩定菌種活性之厭氧發酵方法,其中,在步驟B中,該厭氧微生物的培養溫度為35℃,氧化還原電位介於-400mV至-500mV之間。
  4. 如請求項3所述可穩定菌種活性之厭氧發酵方法,其中,在步驟B中,該氣提氣體更包含二氧化碳。
  5. 一種可穩定菌種活性之厭氧發酵系統,係包含有如請求項1至4任一項所述之方法,以及更包含有:一厭氧發酵反應單元,係具有該厭氧反應槽;一原位氨氣提單元,係包括:一循環曝氣管路,其進氣端及出氣端分別連接於該厭氧反應槽上;一第一動力部,係設於該循環曝氣管路上,用以提供抽提該氣提氣體之動力;一吸收槽,係設於該循環曝氣管路上,用於容置該氨氮吸收溶液。
  6. 如請求項5所述可穩定菌種活性之厭氧發酵系統,其中,該原位氨氣提單元更包括一緩衝槽,係連通於該吸收槽,並容置有一緩衝溶液,用以稀釋被帶離該吸收槽之該氨氮吸收溶液。
  7. 如請求項5所述可穩定菌種活性之厭氧發酵系統,其中,該厭氧發酵反應單元更具有一監控模組,設於該厭氧反應槽上,用於監測廢水處理的情況。
TW109143973A 2020-12-11 2020-12-11 可穩定菌種活性之厭氧發酵系統及其方法 TWI777326B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109143973A TWI777326B (zh) 2020-12-11 2020-12-11 可穩定菌種活性之厭氧發酵系統及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109143973A TWI777326B (zh) 2020-12-11 2020-12-11 可穩定菌種活性之厭氧發酵系統及其方法

Publications (2)

Publication Number Publication Date
TW202222710A TW202222710A (zh) 2022-06-16
TWI777326B true TWI777326B (zh) 2022-09-11

Family

ID=83062537

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109143973A TWI777326B (zh) 2020-12-11 2020-12-11 可穩定菌種活性之厭氧發酵系統及其方法

Country Status (1)

Country Link
TW (1) TWI777326B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102249494A (zh) * 2011-06-23 2011-11-23 南京大学 降低厌氧过程高浓度氨氮同步提高产甲烷菌活性的方法
CN103086512A (zh) * 2013-02-06 2013-05-08 同济大学 利用间歇微曝气调控易降解有机废物厌氧消化的方法
CN107021600A (zh) * 2016-04-26 2017-08-08 华中农业大学 猪粪厌氧发酵后沼液氨氮回收及沼气提纯的工艺与装置
CN109680013A (zh) * 2017-09-30 2019-04-26 江西省农业科学院农业应用微生物研究所(江西省农村能源研究中心) 一种高浓度多原料混合厌氧发酵方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102249494A (zh) * 2011-06-23 2011-11-23 南京大学 降低厌氧过程高浓度氨氮同步提高产甲烷菌活性的方法
CN103086512A (zh) * 2013-02-06 2013-05-08 同济大学 利用间歇微曝气调控易降解有机废物厌氧消化的方法
CN107021600A (zh) * 2016-04-26 2017-08-08 华中农业大学 猪粪厌氧发酵后沼液氨氮回收及沼气提纯的工艺与装置
CN109680013A (zh) * 2017-09-30 2019-04-26 江西省农业科学院农业应用微生物研究所(江西省农村能源研究中心) 一种高浓度多原料混合厌氧发酵方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
期刊 Dong-min Yin等人,Upgrading the anaerobic membrane bioreactor treatment of chicken manure by introducing in-situ ammonia stripping and hyper-thermophilic pretreatment, Bioresource Technology, Vol. 310 Bioresource Technology 2020年5月1日出版 123470 *

Also Published As

Publication number Publication date
TW202222710A (zh) 2022-06-16

Similar Documents

Publication Publication Date Title
JP5127200B2 (ja) アンモニア性窒素を含有する廃水の処理装置
Wang et al. Effect of hydraulic retention time on performance of an anoxic–aerobic sequencing batch reactor treating saline wastewater
CN105668783A (zh) 一种一体式养殖场废水生物处理反应器
CN104649518B (zh) 一种生物法处理硝酸铵废水的装置与方法
Kader et al. Soil management in sustainable agriculture: analytical approach for the ammonia removal from the diary manure.
CN109095727B (zh) 一种高氨氮低碳氮比污水的脱氮除碳装置和方法
CN205328703U (zh) 一种高氨氮废水高效生物处理装置
CN104150729B (zh) 一种高效资源化和低污染排放的污泥处理系统及方法
CN104291444B (zh) 一种接触水解-藻类微曝气复合污水处理系统及方法
CN212451088U (zh) 一种应用于养殖废水处理的一体化处理装置
TWI777326B (zh) 可穩定菌種活性之厭氧發酵系統及其方法
CN205442970U (zh) 一种高cod精细化工废水处理装置
CN111410368A (zh) 一种臭氧协同微生物的循环冷却水处理系统
RU2463259C2 (ru) Способ обработки, в том числе предварительной, жидкого навоза или отходов производства биогаза, обеспечивающий удаление вредных компонентов, в частности азота, фосфора и молекул пахучих веществ
CN103922469A (zh) 一种半短程硝化/厌氧氨氧化污水脱氮过程中n2o产生的收集装置和方法
JP4329359B2 (ja) 脱窒方法
CN207192920U (zh) 高效厌氧反应除磷设备
CN113998827A (zh) 一种油气田脱硫废水高级氧化处理装置及处理方法
CN210974083U (zh) 一种废水深度脱氮处理系统
CN110451738B (zh) 一种高效的污水处理系统及其高效处理方法
CN210481124U (zh) 一种畜禽养殖污水处理系统
CN209352631U (zh) 一种电场强化型厌氧氨氧化装置
CN205527988U (zh) 一种一体式养殖场废水生物处理反应器
CN104609545B (zh) 一种生化处理高浓度硝酸盐废水的方法及其装置
CN112919728A (zh) 一种蓝藻泥压滤液处理方法

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent