TWI776383B - 電壓參考電路以及提供參考電壓的方法 - Google Patents

電壓參考電路以及提供參考電壓的方法 Download PDF

Info

Publication number
TWI776383B
TWI776383B TW110103995A TW110103995A TWI776383B TW I776383 B TWI776383 B TW I776383B TW 110103995 A TW110103995 A TW 110103995A TW 110103995 A TW110103995 A TW 110103995A TW I776383 B TWI776383 B TW I776383B
Authority
TW
Taiwan
Prior art keywords
current
transistor
gate
coupled
mirror
Prior art date
Application number
TW110103995A
Other languages
English (en)
Other versions
TW202132937A (zh
Inventor
王彥婷
艾倫 羅斯
艾力克 蘇寧
亞歷山大 卡爾尼斯基
郭良泰
鄭新立
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW202132937A publication Critical patent/TW202132937A/zh
Application granted granted Critical
Publication of TWI776383B publication Critical patent/TWI776383B/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/262Current mirrors using field-effect transistors only

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Amplifiers (AREA)
  • Networks Using Active Elements (AREA)

Abstract

本揭露提供電壓參考電路。電壓參考電路包括一電晶體、一翻轉閘極電晶體、一第一電流鏡單元、一第二電流鏡單元與一輸出節點。翻轉閘極電晶體的閘極與汲極是耦接於電晶體的閘極與汲極。第一電流鏡單元配置以相應一偏壓電流而提供一第一電流至翻轉閘極電晶體並提供一鏡射電流。第二電流鏡單元配置以相應於鏡射電流而從電晶體汲取出一第二電流。輸出節點耦接於電晶體的源極以及第二電流鏡單元,並配置以輸出一參考電壓。

Description

電壓參考電路以及提供參考電壓的方法
本發明實施例係有關於參考電壓,且特別係有關於具有零溫度係數的參考電壓。
電壓參考電路是用於提供參考電壓信號至一或多個電路。在操作期間,電路可使用參考電壓作為比較手段。例如,在穩壓器的應用中,可將回授信號與參考電壓進行比較,以產生對應於參考電壓的比例值的已調整的輸出電壓。
在一些方法中,電壓參考電路是藉由使用雙極性接面電晶體(BJT)形成能隙(bandgap)參考來提供參考電壓。在PNP型BJT中,基底是作為BJT的集極,從而使BJT對基底中的多數載子雜訊(carrier noise)感到敏感。在NPN型BJT中,集極是形成在P型基底中的N型井區,且易於從基底中受到少數載子雜訊所影響。NPN型BJT和PNP型BJT都無法完全隔離於基底雜訊。
在一些方法中,互補式金屬氧化物半導體(CMOS)元件可用於形成電壓參考電路。在某些情況下,以三重井(triple well)流程製造CMOS元件,使得每一CMOS元件是反向接面隔離(reverse-junction-isolated)於主基底。在另一些方法中,CMOS元件包括多晶矽閘極特徵,其是使用與用於CMOS元件的基底的摻雜物相反的摻雜物類型來進行摻雜。
本發明實施例提供一種電壓參考電路。電壓參考電路包括一電晶體、一翻轉閘極電晶體、一第一電流鏡單元、一第二電流鏡單元與一輸出節點。翻轉閘極電晶體的閘極與汲極是耦接於電晶體的閘極與汲極。第一電流鏡單元被配置以相應一偏壓電流而提供一第一電流至翻轉閘極電晶體並提供一鏡射電流。第二電流鏡單元被配置以相應於鏡射電流而從電晶體汲取出一第二電流。輸出節點耦接於電晶體的源極以及第二電流鏡單元,並被配置以輸出一參考電壓。
再者,本發明實施例提供一種電壓參考電路。電壓參考電路包括一第一二極體連接方式的電晶體、一第二二極體連接方式的電晶體以及一輸出節點。第一二極體連接方式的電晶體安排在一第一電流路徑。第二二極體連接方式的電晶體安排在一第二電流路徑。第一二極體連接方式的電晶體與第二二極體連接方式的電晶體的閘極是耦接在一起。輸出節點耦接於第二二極體連接方式的電晶體的一源極以及一基極,並被配置以輸出一參考電壓。第一二極體連接方式的電晶體是翻轉閘極電晶體,以及第二二極體連接方式的電晶體是非翻轉閘極電晶體。
再者,本發明實施例提供一種提供一參考電壓的方法。使用複數溫度,調整在一第一電路中一第一翻轉閘極電晶體的一第一電流與一第一非翻轉閘極電晶體的一第二電流的一電流比,以得到在溫度具有相同電壓值的一第一電流比。鏡射一偏壓電流,以產生一第三電流流經一第二翻轉閘極電晶體,並在一第二電路中產生一鏡射電流。對鏡射電流進行鏡射,以產生一第四電流流經第二電路中的一第二非翻轉閘極電晶體。相應於第四電流,輸出參考電壓。第三電流與第四電流的電流比是等於第一電流比。
以下揭露內容提供了許多用於實現在此所提供之標的不同部件的不同實施例或範例。以下描述組件和排列的具體範例以簡化本發明之實施例。當然,這些僅僅是範例,而不在於限制本發明之保護範圍。例如,在以下描述中,在第二部件上方或其上形成第一部件,可以包含第一部件和第二部件以直接接觸的方式形成的實施例,並且也可以包含在第一部件和第二部件之間形成額外的部件,使得第一部件和第二部件可以不直接接觸的實施例。此外,本發明之實施例可在各個範例中重複參考標號及/或字母。此重複是為了簡單和清楚的目的,其本身並非用於指定所討論的各個實施例及/或配置之間的關係。
另外,在空間上的相關用語,例如“在---之下(beneath)”、“之下(below)”、 “低於(lower)”、 “在---之上(above)”、 “之上(upper)”或類似的用語,係用於說明顯示於圖中的某一特徵與另一特徵之間的關係。除了描繪於圖中的方向以外,這些相對用語包括使用或操作這些元件的不同方向。元件也有可能具有其他方向(轉90度或位於其他方向),且內文中關於空間的相對敘述可依據上述原則作類似的解釋。
第1圖係顯示根據本揭露一些實施例所述的電壓參考電路100。電壓參考電路100包括電流源110、電流源120、翻轉閘極(flipped-gate)電晶體M1和電晶體M2。翻轉閘極電晶體M1是耦接在電流源110和接地端VSS(或負電源電壓)之間。電流源110是耦接在電源VDD(或正電源電壓)和翻轉閘極電晶體M1之間。
電流源110被配置為提供或供應電流IFGD 至翻轉閘極電晶體M1。在一些實施例中,電流源110包括至少一個電流鏡。在一些實施例中,電流源110包括啟動元件和電流產生元件或另一合適的電流源。
電晶體M2耦接在電源VDD與電流源120之間。電晶體M2以Vgs減法配置(Vgs subtractive arrangement)的方式而耦接於翻轉閘極電晶體M1。Vgs減法配置是從電晶體M2的閘極和接收相同電壓的翻轉閘極電晶體M1的閘極以及耦接到接地端VSS的翻轉閘極電晶體M1的源極所產生。電晶體M2用於產生與溫度無關的參考電壓Vref。電晶體M2是非翻轉閘極電晶體。在一些實施例,電晶體M2是標準的NMOS電晶體。電晶體M2的閘極是耦接於翻轉閘極電晶體M1的閘極。
電流源120耦接在電晶體M2和接地端VSS之間。電流源120被配置為從電晶體M2汲取電流INFD 。在一些實施例中,電流源120包括至少一個電流鏡。在一些實施例中,電流源120包括啟動元件和電流產生元件或另一合適的電流源。
輸出節點n_out被配置為輸出參考電壓Vref,並耦接在電晶體M2的源極和接地端VSS之間。在電壓參考電路100中,翻轉閘極電晶體M1的源極和基極(bulk)耦接在一起,而電晶體M2的源極和基極耦接在一起。
翻轉閘極電晶體M1用於產生與溫度無關的參考電壓Vref。翻轉閘極電晶體M1包括反摻雜的閘極電極。反摻雜是對閘極電極進行摻雜的方法,而摻雜劑的類型與翻轉閘極電晶體M1的基底相同。例如,在傳統的N型金屬氧化物半導體(NMOS)中,基底為P型摻雜而閘極電極為N型摻雜。然而,在翻轉閘極NMOS中,一部分的閘極電極是P型摻雜。
第2圖係顯示根據本揭露一些實施例所述之在第1圖的電壓參考電路100中得到參考電壓Vref的零溫度係數(zero-temperature coefficient ,ZTC)操作點的方法。
在操作S210中,第1圖的電壓參考電路100的翻轉閘極電晶體M1和電晶體M2被設定為相似的尺寸。例如,翻轉閘極電晶體M1具有寬度W1和長度L1,以及寬度W1和長度L1定義了翻轉閘極電晶體M1中通道的面積尺寸。電晶體M2具有寬度W2和長度L2,且寬度W2和長度L2定義了電晶體M2中通道的面積尺寸。設定翻轉閘極電極晶體M1的寬度W1與長度L1之比,使得其等於電晶體M2的寬度W2與長度L2之比,即W1/L1=W2/L2。在一些實施例中,翻轉閘極電晶體M1和電晶體M2具有相同的尺寸。
在操作S220中,在一溫度範圍內的每一或某些溫度下,調整或掃描參考電路100中流經翻轉閘極電晶體M1的電流IFGD 與流經電晶體M2的電流INFD 的電流比Iratio(即Iratio=IFGD /INFD ),並測量對應於調整後的電流比Iratio的參考電壓Vref。
在操作S230中,根據對應於各種溫度的參考電壓Vref可得到零溫度係數操作點。在零溫度係數點中,電流比Iratio是等於特定值,例如R。當電流比Iratio為R時,在不同溫度下的參考電壓Vref會具有相同的電壓值。零溫度係數點將描述於後。
第3圖係顯示根據本揭露一些實施例所述的在各種溫度下的電流比Iratio與參考電壓Vref之間的關係。在第3圖中,顯示參考電壓Vref在-40℃、-20℃、25℃、85℃、125℃和150℃的溫度下所對應的電流比Iratio。對應於不同溫度的參考電壓Vref的曲線會在電流比Iratio為R的點ZP處相交。點ZP為零溫度係數(ZTC)點,且對應於電流比Iratio為R的參考電壓Vref是對溫度不敏感的電壓。應該注意的是,ZTC操作點是唯一的。
在第3圖中,當電流比Iratio等於R時,即Iratio = R,參考電壓Vref具有零溫度係數,且參考電壓Vref不會受溫度影響。再者,當電流比Iratio大於R時,即Iratio>R,參考電壓Vref具有正溫度係數(positive temperature coefficient,PTC),而參考電壓Vref會隨著溫度升高。反之,當電流比Iratio小於R時,即Iratio<R,參考電壓Vref具有負溫度係數(negative temperature coefficient,NTC),而參考電壓Vref會隨著溫度降低。
第4圖係顯示根據本揭露一些實施例所述的當電流比Iratio等於R時各種溫度與參考電壓Vref之間的關係。在此實施例中,最大參考電壓Vref_max是在25℃,而最小參考電壓Vref_min是在150℃。參考電壓Vref在整個溫度範圍內的電壓差是等於最大參考電壓Vref_max和最小參考電壓Vref_min之間的電壓差。此外,當電流比Iratio為R時,可以得到參考電壓Vref在整個溫度範圍內的最小電壓差。
第5圖係顯示根據本揭露一些實施例所述的翻轉閘極電晶體M1的剖面圖。翻轉閘極電晶體M1是N型翻轉閘極電晶體。翻轉閘極電晶體M1包括基底505。在一些實施例中,基底505是矽基底。在一些實施例中,基底505的材料選自從塊狀矽(bulk-Si)、SiP、SiGe、SiC、SiPC、Ge、SOI-Si、SOI-SiGe、III-VI材料及其組合組成的群組。
在基底505上方形成P型井區510。在翻轉閘極電晶體M1的通道區525上方形成閘極介電層540。閘極電極545形成在閘極介質層540上方。閘極電極545的主體區550摻雜有P型摻雜劑。在一些實施例中,主體區550是由P型多晶矽所形成。閘極電極545的邊緣560是N型摻雜,用於自對準地形成N型摻雜的源極/汲極(S/D)區域530。隔離區520形成在相鄰的翻轉閘極電晶體之間。在一些實施例中,隔離區520是淺溝槽隔離(STI)。在一些實施例中,閘極電極545包括摻雜的多晶矽、金屬閘極或是另一種合適的閘極材料。在一些實施例中,P型摻雜劑包括硼、二氟化硼或其他合適的p型摻雜劑。在一些實施例中,N型摻雜劑包括砷、磷或其他合適的N型摻雜劑。
第6圖係顯示根據本揭露一些實施例所述之第1圖的翻轉閘極電晶體M1的上視圖。如先前所描述,翻轉閘極電晶體M1具有寬度W1和長度L1,且寬度W1和長度L1定義了翻轉閘極電晶體M1中通道的面積尺寸。在一些實施例中,寬度W1和長度L1在從大約5um到大約10um的範圍內。在一些實施例中,閘極電極545的邊緣560的長度L3在從大約0.1um到大約0.3um的範圍內。再者,閘極電極545的主體區550的長度L4會等於翻轉閘極電晶體M1的長度L1減去兩倍的閘極電極545的邊緣560的長度L3,即L4=L1-2*L3。
第7圖係顯示根據本揭露一些實施例所述的電壓參考電路700的示意圖。電壓參考電路700包括翻轉閘極電晶體M1和電晶體M2。電壓參考電路700更包括配置為產生偏壓電流Ibias的啟動和偏壓單元710。第一電流鏡單元720被配置為基於來自啟動和偏壓單元710的偏壓電流Ibias而產生翻轉閘極電晶體M1的電流IFGD 。第二電流鏡單元730被配置為接收電流IFGD 的鏡射部分並產生電晶體M2的電流INFD 。根據電流IFGD 和電流INFD ,電壓參考電路700能夠在輸出節點n_out中提供參考電壓Vref。
在電壓參考電路700中,翻轉閘極電晶體M1的尺寸是小於電晶體M2的尺寸。在一些實施例中,翻轉閘極電晶體M1是由單一電晶體所形成,而電晶體M2由多個電晶體所形成。在一些實施例中,為了匹配,翻轉閘極電晶體M1被設置在電晶體M2的電晶體的中間。
啟動和偏壓單元710被配置為接收電源(或操作電壓)VDD。啟動和偏壓單元710耦接在電源VDD和接地端VSS(或負電源電壓)之間。啟動和偏壓單元710被配置為沿著第一電流路徑751提供偏壓電流Ibias至第一電流鏡單元720。偏壓電流Ibias是自偏壓(self-biased)電流。第一電流鏡單元720被配置為接收電源VDD。第一電流鏡單元720沿著第二電流路徑752以串聯方式耦接於第二電流鏡單元730。第一電流鏡單元720經由第三電流路徑753以串聯方式耦接於翻轉閘極電晶體M1。第一電流鏡單元720是沿著第四電流路徑754以串聯方式耦接於電晶體M2的汲極。在一些實施例中,電源VDD是大於兩倍的參考電壓Vref。在一些實施例中,接地端VSS等於0V。在一些實施例中,接地端VSS可以是大於或小於0V的負電源電壓,使得電源VDD始終以負電源電壓為參考。
啟動和偏壓單元710被配置為產生電壓參考電路700的偏壓電流Ibias。啟動和偏壓單元710包括配置為接收電源VDD的啟動電阻R1。第一偏壓電晶體N11與啟動電阻R1以串聯方式耦接。偏壓電阻R2是以串聯方式耦接到第二偏壓電晶體N22。偏壓電阻R2耦接在第二偏壓電晶體N22和接地端VSS之間。第一偏壓電晶體N11的閘極是耦接到第二偏壓電晶體N22和偏壓電阻R2之間的節點n1。第二偏壓電晶體N22的閘極是耦接到啟動電阻R1和第一偏壓電晶體N11之間的節點n2。第一偏壓電晶體N11的源極是耦接到接地端VSS。第二偏壓電晶體N22的汲極與第一電流鏡單元720是以串聯方式耦接。在一些實施例中,第一偏壓電晶體N11和第二偏壓電晶體N22是NMOS電晶體。在一些實施例中,第一偏壓電晶體N11和第二偏壓電晶體N22處於弱反轉狀態。弱反轉狀態意味著電晶體的閘極-源極電壓Vgs是低於電晶體的臨界電壓。在一些實施例中,第一偏壓電晶體N11的基極和源極是一起耦接到接地端VSS,而第二偏壓電晶體N22的基極和源極是一起耦接到偏壓電阻R2。在一些實施例中,啟動電阻R1和偏壓電阻R2是用於高密度和低溫度靈敏度的非矽化物多晶矽電阻。
在啟動和偏壓單元710中,啟動電阻R1用於提供從電源VDD到第二偏壓電晶體N22的閘極的直接的路徑,為了開始電壓參考電路700的操作。偏壓電阻R2的跨壓至少部分地基於第一偏壓電晶體N11的閘極-源極電壓Vgs所定義。第一偏壓電晶體N11的閘極-源極電壓Vgs至少部分地是由用於在啟動電阻R1上傳導啟動電流Istart的電壓所定義。電壓參考電路700的啟動電流Istart是由算式(VDD-V(n2))/r1所提供,其中VDD是電源電壓、r1是啟動電阻R1的對應阻抗,以及V(n2)是第一偏壓電晶體N11的閘極-源極電壓Vgs與第二偏壓電晶體N22的閘極-源極電壓Vgs之總和。偏壓電流Ibias沿著第一電流路徑751跨過第二偏壓電晶體N22而傳導至啟動和偏壓單元710。偏壓電流Ibias是由算式V(n1)/r2所得到,其中V(n1)是第一偏壓電晶體N11的閘極-源極電壓Vgs,而r2是偏壓電阻R2的對應阻抗。
第一電流鏡單元720被用於提供整數倍的偏壓電流Ibias至翻轉閘極電晶體M1。第一電流鏡單元720包括以串聯方式耦接的鏡射電晶體P12和鏡射電晶體P11。鏡射電晶體P11耦接到電源VDD。鏡射電晶體P11是以二極體方式連接,而鏡射電晶體P12是以二極體方式連接。鏡射電晶體P12的汲極是沿著第一電流路徑751而耦接到第二偏壓電晶體N22。在一些實施例中,鏡射電晶體P11和P12是P型電晶體。在一些實施例中,鏡射電晶體P11的基極和源極是耦接至電源VDD,而鏡射電晶體P12的基極和源極是耦接至鏡射電晶體P11的汲極。
鏡射電晶體P21沿著第二電流路徑752以串連方式耦接於鏡射電晶體P22。鏡射電晶體P21耦接至電源VDD。鏡射電晶體P21的閘極是耦接至鏡射電晶體P11的閘極,以及鏡射電晶體P22的閘極是耦接至鏡射電晶體P12的閘極。鏡射電晶體P22的汲極沿著第二電流路徑752耦接至第二電流鏡單元730。在一些實施例中,鏡射電晶體P21和P22是P型電晶體。在一些實施例中,鏡射電晶體P21的基極和源極是耦接到電源VDD,而鏡射電晶體P22的基極和源極是耦接到鏡射電晶體P21的汲極。
鏡射電晶體P31沿著第三電流路徑753以串聯方式耦接於鏡射電晶體P32。鏡射電晶體P31是耦接到電源VDD。鏡射電晶體P31的閘極是耦接到鏡射電晶體P11的閘極,而鏡射電晶體P32的閘極是耦接到鏡射電晶體P12的閘極。鏡射電晶體P32的汲極沿著第三電流路徑753耦接至翻轉閘極電晶體M1。在一些實施例中,鏡射電晶體P31和P32是P型電晶體。在一些實施例中,鏡射電晶體P31的基極和源極是耦接到電源VDD,而鏡射電晶體P32的基極和源極是耦接到鏡射電晶體P31的汲極。
鏡射電晶體P41沿著第四電流路徑754以串聯方式耦接於鏡射電晶體P42。鏡射電晶體P41是耦接到電源VDD。鏡射電晶體P41的閘極是耦接到鏡射電晶體P11的閘極,而鏡射電晶體P42的閘極是耦接到鏡射電晶體P12的閘極。鏡射電晶體P42的汲極沿著第四電流路徑754耦接到電壓分隔(voltage boxing)單元740。在一些實施例中,鏡射電晶體P41和P42是P型電晶體。在一些實施例中,鏡射電晶體P41的基極和源極是耦接到電源VDD,而鏡射電晶體P42的基極和源極是耦接到鏡射電晶體P41的汲極。
第一電流鏡單元720被配置為沿著第一電流路徑751從啟動和偏壓單元710接收偏壓電流Ibias,並沿著第二電流路徑752、第三電流路徑753和第四電流路徑754而鏡射偏壓電流Ibias。鏡射電晶體P11的尺寸被定義為鏡射電晶體P21、P31和P41的第一電晶體單位尺寸的整數倍。鏡射電晶體P21、P31和P41個別的尺寸為第一電晶體單元尺寸的整數倍。此外,鏡射電晶體P12的尺寸被定義為鏡射電晶體P22、P32和P42的第二電晶體單位尺寸的整數倍。鏡射電晶體P22、P32和P42個別的尺寸為第二電晶體單元尺寸的整數倍。在一些實施例中,第一電晶體單元尺寸等於第二電晶體單元尺寸。
使用第一電晶體單元尺寸,在第一電流鏡單元720的每一鏡射電晶體P11、P21、P31和P41上所鏡射的電流是電晶體相對尺寸的整數倍乘以鏡射電晶體P11上的電流(即偏壓電流Ibias)的比率。鏡射電晶體P21上的鏡射電流Im是由(n_P21/n_P11)×Ibias而得到,其中n_P21是鏡射電晶體P21的第一電晶體單元尺寸的整數倍、n_P11是鏡射電晶體P11的第一電晶體單元尺寸的整數倍而Ibias是鏡射電晶體P11的電流。鏡射電晶體P31的電流由(n_P31/n_P11)×Ibias而得到,其中n_P31是鏡射電晶體P31的第一電晶體單元尺寸的整數倍。鏡射電晶體P41的電流是由(n_P41/n_P11)×Ibias而得到,其中n_P41是鏡射電晶體P41的第一電晶體單元尺寸的整數倍。
相似地,使用第二電晶體單元尺寸,在第一電流鏡單元720的每一鏡射電晶體P12、P22、P32和P42上所鏡射的電流是電晶體相對尺寸的整數倍乘以鏡射電晶體P12上的電流(即偏壓電流Ibias)的比率。鏡射電晶體P22上的鏡射電流Im是由(n_P22/n_P12)×Ibias而得到,其中n_P22是鏡射電晶體P22的第二電晶體單元尺寸的整數倍、n_P12是鏡射電晶體P12的第二電晶體單元尺寸的整數倍而Ibias是鏡射電晶體P12的電流。鏡射電晶體P32上的電流是由(n_P32/n_P12)×Ibias而得到,其中n_P32是鏡射電晶體P32的第二電晶體單元尺寸的整數倍。鏡射電晶體P42上的電流是由(n_P42/n_P12)×Ibias而得到,其中n_P42是鏡射電晶體P42的第二電晶體單元尺寸的整數倍。在一些實施例中,可以在第一電流鏡單元720中省略鏡射電晶體P12、P22、P32和P42。在一些實施例中,第一電晶體單元尺寸是等於第二電晶體單元尺寸。
第二電流鏡單元730被配置為鏡射來自第一電流鏡單元720的鏡射電流Im。第二電流鏡單元730包括以串聯方式耦接的鏡射電晶體N31和鏡射電晶體N32。鏡射電晶體N32是耦接到接地端VSS。鏡射電晶體N31和N32是以二極體方式連接,即鏡射電晶體N31和N32是二極體連接方式(diode-connected)的電晶體。鏡射電晶體N31的汲極是沿著第二電流路徑752而耦接到第一電流鏡單元720的鏡射電晶體P22。第二電流鏡單元730更包括以串聯方式耦接的鏡射電晶體N42與鏡射電晶體N41。鏡射電晶體N42是耦接到接地端VSS。鏡射電晶體N42的閘極是耦接至鏡射電晶體N32的閘極,而鏡射電晶體N41的閘極是耦接至鏡射電晶體N31的閘極。鏡射電晶體N41的汲極沿著第四電流路徑754而耦接到電晶體M2。在一些實施例中,鏡射電晶體N31、N32、N41和N42是NMOS電晶體。
第二電流鏡單元730被配置為沿著第二電流路徑752從第一電流鏡單元720接收鏡射電流Im,並沿著第四電流路徑754對鏡射電流Im進行鏡射。鏡射電晶體N31的尺寸被定義為第三電晶體單元尺寸的整數倍。鏡射電晶體N41的尺寸是第三電晶體單元大小的整數倍。在一些實施例中,第一電晶體單元尺寸等於第三電晶體單元尺寸。在一些實施例中,第一電晶體單元尺寸不同於第三電晶體單元尺寸。此外,鏡射電晶體N32的尺寸被定義為第四電晶體單元尺寸的整數倍。鏡射電晶體N42的尺寸是第四電晶體單元尺寸的整數倍。在一些實施例中,第三電晶體單元尺寸等於第四電晶體單元尺寸。
使用第三電晶體單元尺寸,在第二電流鏡單元730的每一鏡射電晶體上所鏡射的電流是電晶體相對尺寸的整數倍乘以鏡射電晶體N31上的電流Im的比率。鏡射電晶體N41的電流是由(n_N41/n_N31)×Im而得到,其中n_N41是鏡射電晶體N41的第三電晶體單元尺寸的整數倍、n_N31是鏡射電晶體N31的第三電晶體單元尺寸的整數倍,而Im是鏡射電晶體N31的電流。
調整鏡射電晶體N31和M41(或N32和N42)的尺寸使得能夠微調電晶體M2上的電流INFD 。根據電流比Iratio,可以決定電流INFD ,以便增加電壓參考電路700所輸出的參考電壓Vref的準確度和溫度獨立性。
在一些實施例中,翻轉閘極電晶體M1的基極和源極一起耦接到接地端VSS,而電晶體M2的基極和源極一起耦接到第二電流鏡單元730。此外,翻轉閘極電晶體M1是以二極體方式連接,而電晶體M2是以二極體方式連接,即翻轉閘極電晶體M1和電晶體M2是二極體連接方式(diode-connected)的電晶體。因此,翻轉閘極電晶體M1和電晶體M2會形成二極體對。參考電壓Vref是二極體對的Vgs減法配置。
在電壓參考電路700中,組合比CR等於電晶體M2與翻轉閘極電晶體M1的元件尺寸比N乘以電流IFGD 與電流INFD 的電流比Iratio,即CR=N*Iratio=N*IFGD /INFD 。如先前所描述,當組合比CR等於R(即R=N*Iratio)時,參考電壓Vref的溫度係數為零。因此,根據為R的組合比CR,電壓參考電路700能夠提供對溫度不敏感的參考電壓Vref。
第8圖係顯示根據一或多個實施例所述的用於提供參考電壓的方法的流程圖。第8圖的方法從操作S810開始,其中根據第2圖的方法得到對應於零溫度係數點的電流比Iratio。如第2圖所顯示,第1圖的電壓參考電路100的翻轉閘極電晶體M1和電晶體M2被設定為相似尺寸。在電壓參考電路100中,流經翻轉閘極電晶體M1的電流IFGD 與流經電晶體M2的電流INFD 的電流比Iratio(即Iratio=IFGD /INFD )在各種溫度範圍內掃描,以便根據對應於各種溫度的參考電壓Vref而得到電流比Iratio等於R的零溫度係數點。當電流比Iratio等於R時,在不同溫度下的參考電壓Vref具有相同的電壓值。換句話說,對應於電流比Iratio為R的參考電壓Vref是對溫度不敏感的電壓。
在操作S820中,產生偏壓電流Ibias。在一些實施例中,通過使用啟動和偏壓電流產生器,例如第7圖的啟動和偏壓單元710,來產生偏壓電流Ibias。偏壓電流Ibias為縮放整個電壓參考電路(例如電壓參考電路700)中的其他電流提供了依據。在一些實施例中,啟動電流Istart基於電壓參考電路的操作電壓(例如電源VDD)而產生。在一些實施例中,基於偏壓電晶體(例如第一偏壓電晶體N11)的閘極-源極電壓除以偏壓電阻(例如第2圖的偏壓電阻R2)的阻抗,來產生偏壓電流Ibias。
第8圖的方法繼續到操作S830,其中對電流Ibias進行鏡射以產生流經翻轉閘極電晶體的電流IFGD 以及鏡射電流Im。基於電晶體單元尺寸(例如第一電晶體單元尺寸)決定翻轉閘極電晶體(例如第7圖的翻轉閘極電晶體M1)的電流IFGD 。在一些實施例中,使用第一電流鏡(例如第7圖的第一電流鏡單元720)來鏡射偏壓電流Ibias。在一些實施例中,藉由調整第一電流鏡內的鏡射電晶體的尺寸來設定電流IFGD 對參考電流Ibias的比率。沿著與第一電流鏡不同的電流路徑產生鏡射電流Im。在一些實施例中,鏡射電流Im等於電流IFGD 。在一些實施例中,鏡射電流Im不同於電流IFGD
在操作S840中,將鏡射電流Im鏡射以產生流經非翻轉閘極電晶體的電流INFD 。電流INFD 是基於電晶體單元尺寸(例如第三電晶體單元尺寸)的整數倍的比率而流經非翻轉閘極電晶體(例如第7圖的電晶體M2)。 如先前所描述,電流IFGD 對電流INFD 的電流比Iratio等於R,即Iratio=R。
在操作S850中,輸出參考電壓Vref。參考電壓Vref(例如第7圖的參考電壓Vref)是不受溫度影響。參考電壓Vref可由外部電路使用以執行比較。在一些實施例中,參考電壓Vref小於電壓參考電路的電源VDD的一半。
本領域技術人員將理解,能夠在第8圖的方法中包括附加的操作,以及在不脫離本揭露範圍的情況下,可以省略操作,且可以重新排列操作的順序。
本揭露實施例提供了電壓參考電路和用於提供參考電壓的方法。通過掃描一對翻轉閘極電晶體和非翻轉閘極電晶體的電流比Iratio,可以得到在各種溫度下電流-電壓(IV)曲線中的單一零溫度係數(ZTC)點。如果沒有單一ZTC點,則翻轉閘極電晶體不適用於設計參考電壓。單一ZTC點是對應於電流IFGD 對電流INFD 的最佳化電流比Iratio。電流IFGD 是流經翻轉閘極電晶體的電流,而電流INFD 是流經非翻轉閘極電晶體的電流。在電壓參考電路(例如第7圖的700)中,翻轉閘極電晶體和非翻轉閘極電晶體是以二極體方式連接,以及兩個電流鏡單元(例如第7圖的720和730)用於根據組合比CR為R而產生電流INFD 和電流IFGD 。因此,可以得到對溫度不敏感的參考電壓Vref,而無需考慮翻轉閘極電晶體的臨界電壓和元件特性。相較於傳統的能隙(bandgap)參考電路,電壓參考電路因為未使用BJT所以在整個溫度範圍內具有較低的功率和線性度。
本揭露實施例提供一種電壓參考電路。電壓參考電路包括一電晶體、一翻轉閘極電晶體、一第一電流鏡單元、一第二電流鏡單元與一輸出節點。翻轉閘極電晶體的閘極與汲極是耦接於電晶體的閘極與汲極。第一電流鏡單元被配置以相應一偏壓電流而提供一第一電流至翻轉閘極電晶體並提供一鏡射電流。第二電流鏡單元被配置以相應於鏡射電流而從電晶體汲取出一第二電流。輸出節點耦接於電晶體的源極以及第二電流鏡單元,並被配置以輸出一參考電壓。
在一些實施例中,翻轉閘極電晶體的尺寸是小於電晶體的尺寸。
在一些實施例中,電壓參考電路更包括一啟動與偏壓單元。啟動與偏壓單元包括一第一電阻、一第一N型電晶體、一第二電阻與一第二N型電晶體。第一電阻耦接於一電源。第一N型電晶體耦接於第一電阻與一接地端之間。一第二電阻耦接於第一N型電晶體的一閘極以及接地端之間。第二N型電晶體耦接於第二電阻以及第一電流鏡單元之間,具有一閘極耦接於第一電阻。偏壓電流是流經第二電阻與第二N型電晶體的電流。
在一些實施例中,第一電流鏡單元包括一第一P型電晶體、一第二P型電晶體、一第三P型電晶體與一第四P型電晶體。第一P型電晶體耦接於一電源。第一P型電晶體的一閘極以及一汲極是耦接於一啟動與偏壓單元。第二P型電晶體耦接於電源以及第二電流鏡單元之間,具有一閘極耦接於第一P型電晶體的閘極以及汲極。第三P型電晶體耦接於電源以及翻轉閘極電晶體的汲極之間,具有一閘極耦接於第一P型電晶體的閘極。第四P型電晶體耦接於電源以及電晶體的汲極,具有一閘極耦接於第一P型電晶體的閘極。偏壓電流是流經第一P型電晶體的電流,而鏡射電流是流經第二P型電晶體的電流。
在一些實施例中,第二電流鏡單元包括一第三N型電晶體以及一第四N型電晶體。第三N型電晶體耦接於一接地端以及第一電流鏡單元之間。第四N型電晶體耦接於接地端以及輸出節點之間,具有一閘極耦接於第三N型電晶體的一閘極以及一汲極。鏡射電流是流經第三N型電晶體的電流。
在一些實施例中,電晶體的一基極是耦接於輸出節點。
在一些實施例中,第一電流與第二電流的電流比是等於一第一值,使得參考電壓的溫度係數為0。
本揭露實施例提供一種電壓參考電路。電壓參考電路包括一第一二極體連接方式的電晶體、一第二二極體連接方式的電晶體以及一輸出節點。第一二極體連接方式的電晶體安排在一第一電流路徑。第二二極體連接方式的電晶體安排在一第二電流路徑。第一二極體連接方式的電晶體與第二二極體連接方式的電晶體的閘極是耦接在一起。輸出節點耦接於第二二極體連接方式的電晶體的一源極以及一基極,並被配置以輸出一參考電壓。第一二極體連接方式的電晶體是翻轉閘極電晶體,以及第二二極體連接方式的電晶體是非翻轉閘極電晶體。
在一些實施例中,電壓參考電路更包括一第一電流單元與一第二電流單元。第一電流單元被配置以在第一電流路徑提供一第一電流。第二電流單元被配置以在第二電流路徑提供一第二電流。
在一些實施例中,第一電流以及第二電流的電流率是等於一第一值,使得參考電壓具有零溫度係數。
在一些實施例中,第一二極體連接方式的電晶體的尺寸是小於第二二極體連接方式的電晶體的尺寸。
在一些實施例中,電壓參考電路更包括一第一電流鏡單元與一第二電流鏡單元。第一電流鏡單元被配置以相應於一偏壓電流而提供一第一電流至第一電流路徑以及提供一鏡射電流。第二電流鏡單元被配置以相應於鏡射電流而提供一第二電流至第二電流路徑。
在一些實施例中,電壓參考電路更包括一啟動與偏壓單元。啟動與偏壓單元包括一第一電阻、一第一N型電晶體、一第二電阻與一第二N型電晶體。第一電阻耦接於一電源。第一N型電晶體耦接於第一電阻與一接地端之間。第二電阻耦接於第一N型電晶體的一閘極以及接地端之間。第二N型電晶體耦接於第二電阻以及第一電流鏡單元之間,具有一閘極耦接於第一電阻。偏壓電流是流經第二電阻以及第二N型電晶體的電流。
在一些實施例中,第一電流鏡單元包括一第一P型電晶體、一第二P型電晶體、一第三P型電晶體與一第四P型電晶體。第一P型電晶體耦接於一電源。第一P型電晶體的一閘極以及一汲極是耦接於一啟動與偏壓單元。第二P型電晶體耦接於電源以及第二電流鏡單元之間,具有一閘極耦接於第一P型電晶體的閘極以及汲極。第三P型電晶體耦接於電源以及翻轉閘極電晶體的一汲極之間,具有一閘極耦接於第一P型電晶體的閘極。第四P型電晶體耦接於電源以及第二二極體連接方式的電晶體的一汲極之間,具有一閘極耦接於第一P型電晶體的閘極。偏壓電流是流經第一P型電晶體的電流,而鏡射電流是流經第二P型電晶體的電流。
在一些實施例中,第二電流鏡單元包括一第三N型電晶體與一第四N型電晶體。第三N型電晶體耦接於一接地端以及第一電流鏡單元之間。第四N型電晶體耦接於接地端以及輸出節點之間,具有一閘極耦接於第三N型電晶體的一閘極與一汲極。鏡射電流是流經第三N型電晶體的電流。
本揭露實施例提供一種提供一參考電壓的方法。使用複數溫度,調整在一第一電路中一第一翻轉閘極電晶體的一第一電流與一第一非翻轉閘極電晶體的一第二電流的一電流比,以得到在溫度具有相同電壓值的一第一電流比。將一偏壓電流鏡射,以產生一第三電流流經一第二翻轉閘極電晶體,並在一第二電路中產生一鏡射電流。將鏡射電流鏡射,以產生一第四電流流經第二電路中的一第二非翻轉閘極電晶體。相應於第四電流,輸出參考電壓。第三電流與第四電流的電流比是等於第一電流比。
在一些實施例中,第一電路包括一第一電流源、第一翻轉閘極電晶體、第一非翻轉閘極電晶體以及一第二電流源。第一電流源被配置以提供第一電流至第一翻轉閘極電晶體。第一翻轉閘極電晶體具有一汲極與一閘極耦接於第一電流源。第一非翻轉閘極電晶體具有一閘極耦接於第一翻轉閘極電晶體的閘極。第二電流源被配置以從第一翻轉閘極電晶體汲取出第二電流。
在一些實施例中,第二電路包括一啟動與偏壓單元,被配置以產生偏壓電流。
在一些實施例中,第二電路包括一第一電流鏡單元與一第二電流鏡單元。第一電流鏡單元被配置以相應於偏壓電流而提供第三電流至第二翻轉閘極電晶體以及提供鏡射電流。第二電流鏡單元被配置以相應於鏡射電流而從第二非翻轉閘極電晶體汲取出第四電流。第二翻轉閘極電晶體以及第二非翻轉閘極電晶體為以二極體方式連接。以及第二翻轉閘極電晶體以及第二非翻轉閘極電晶體的閘極是耦接在一起。
在一些實施例中,第一翻轉閘極電晶體與第一非翻轉閘極電晶體的尺寸相同,以及第二非翻轉閘極電晶體的尺寸是大於第二翻轉閘極電晶體的尺寸。
雖然本發明已以較佳實施例發明如上,然其並非用以限定本發明,任何所屬技術領域中包括通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
100,700:電壓參考電路 110,120:電流源 505:基底 510:P型井區 520:隔離區 525:通道區 530:源極/汲極區域 540:閘極介質層 545:閘極電極 550:主體區 560:邊緣 710:啟動和偏壓單元 720:第一電流鏡單元 730:第二電流鏡單元 740:電壓分隔單元 751:第一電流路徑 752:第二電流路徑 753:第三電流路徑 754:第四電流路徑 Ibias:偏壓電流 IFGD ,INFD :電流 Im:鏡射電流 Istart:啟動電流 M1:翻轉閘極電晶體 M2:電晶體 N11:第一偏壓電晶體 N22:第二偏壓電晶體 n_out:輸出節點 n1,n2:節點 VDD:電源 Vref:參考電壓 VSS:接地端 P11-P12,P21-P22,P31-P32,P41-P42,N31-N32,N41-N42:鏡射電晶體 R1:啟動電阻 R2:偏壓電阻 S210-S230,S810-S850:操作
第1圖係顯示根據本揭露一些實施例所述的電壓參考電路。 第2圖係顯示根據本揭露一些實施例所述之在第1圖的電壓參考電路中得到參考電壓的零溫度係數操作點的方法。 第3圖係顯示根據本揭露一些實施例所述的在各種溫度下的電流比Iratio與參考電壓Vref之間的關係。 第4圖係顯示根據本揭露一些實施例所述的當電流比Iratio等於R時各種溫度與參考電壓Vref之間的關係。 第5圖係顯示根據本揭露一些實施例所述的翻轉閘極電晶體的剖面圖。 第6圖係顯示根據本揭露一些實施例所述之第1圖的翻轉閘極電晶體的上視圖。 第7圖係顯示根據本揭露一些實施例所述的電壓參考電路的示意圖。 第8圖係顯示根據一或多個實施例所述的用於提供參考電壓的方法的流程圖。
100:電壓參考電路
110,120:電流源
IFGD,INFD:電流
M1:翻轉閘極電晶體
M2:電晶體
n_out:輸出節點
VDD:電源
Vref:參考電壓
VSS:接地端

Claims (10)

  1. 一種電壓參考電路,包括:一電晶體;一翻轉閘極電晶體,其中上述翻轉閘極電晶體的一閘極與一汲極是連接於上述電晶體的一閘極與一汲極;一第一電流鏡單元,配置以相應一偏壓電流而提供一第一電流至上述翻轉閘極電晶體以及提供一鏡射電流;一第二電流鏡單元,配置以相應於上述鏡射電流而從上述電晶體汲取出一第二電流;以及一輸出節點,耦接於上述電晶體的一源極以及上述第二電流鏡單元,並配置以輸出一參考電壓。
  2. 如請求項1所述之電壓參考電路,其中上述翻轉閘極電晶體的尺寸是小於上述電晶體的尺寸,其中上述第一電流與上述第二電流的電流比是等於一第一值,使得上述參考電壓的溫度係數為0。
  3. 如請求項1所述之電壓參考電路,其中上述第一電流鏡單元包括:一第一P型電晶體,耦接於一電源,其中上述第一P型電晶體的一閘極以及一汲極是耦接於一啟動與偏壓單元;一第二P型電晶體,耦接於上述電源以及上述第二電流鏡單元之間,具有一閘極耦接於上述第一P型電晶體的上述閘極以及上述汲極;一第三P型電晶體,耦接於上述電源以及上述翻轉閘極電晶體的上述汲極之間,具有一閘極耦接於上述第一P型電晶體的上述閘極;以及 一第四P型電晶體,耦接於上述電源以及上述電晶體的上述汲極,具有一閘極耦接於上述第一P型電晶體的上述閘極,其中上述偏壓電流是流經上述第一P型電晶體的電流,而上述鏡射電流是流經上述第二P型電晶體的電流。
  4. 如請求項1所述之電壓參考電路,其中上述第二電流鏡單元包括:一第三N型電晶體,耦接於一接地端以及上述第一電流鏡單元之間;以及一第四N型電晶體,耦接於上述接地端以及上述輸出節點之間,具有一閘極耦接於上述第三N型電晶體的一閘極以及一汲極,其中上述鏡射電流是流經上述第三N型電晶體的電流。
  5. 一種電壓參考電路,包括:一第一二極體連接方式的電晶體,安排在一第一電流路徑;一第二二極體連接方式的電晶體,安排在一第二電流路徑,其中上述第一二極體連接方式的電晶體與上述第二二極體連接方式的電晶體的閘極和汲極是連接在一起;以及一輸出節點,耦接於上述第二二極體連接方式的電晶體的一源極以及一基極,並配置以輸出一參考電壓,其中上述第一二極體連接方式的電晶體是翻轉閘極電晶體,以及上述第二二極體連接方式的電晶體是非翻轉閘極電晶體。
  6. 如請求項5所述之電壓參考電路,更包括:一第一電流單元,配置以在上述第一電流路徑提供一第一電流;以及一第二電流單元,配置以在上述第二電流路徑提供一第二電流, 其中上述第一電流以及上述第二電流的電流率是等於一第一值,使得上述參考電壓具有零溫度係數。
  7. 如請求項5所述之電壓參考電路,更包括:一第一電流鏡單元,配置以相應於一偏壓電流而提供一第一電流至上述第一電流路徑以及提供一鏡射電流;以及一第二電流鏡單元,配置以相應於上述鏡射電流而提供一第二電流至上述第二電流路徑。
  8. 如請求項7所述之電壓參考電路,其中上述第一電流鏡單元包括:一第一P型電晶體,耦接於一電源,其中上述第一P型電晶體的一閘極以及一汲極是耦接於一啟動與偏壓單元;一第二P型電晶體,耦接於上述電源以及上述第二電流鏡單元之間,具有一閘極耦接於上述第一P型電晶體的上述閘極以及上述汲極;一第三P型電晶體,耦接於上述電源以及上述翻轉閘極電晶體的一汲極之間,具有一閘極耦接於上述第一P型電晶體的上述閘極;以及一第四P型電晶體,耦接於上述電源以及上述第二二極體連接方式的電晶體的一汲極之間,具有一閘極耦接於上述第一P型電晶體的上述閘極,其中上述偏壓電流是流經上述第一P型電晶體的電流,而上述鏡射電流是流經上述第二P型電晶體的電流。
  9. 一種提供一參考電壓的方法,包括:使用複數溫度,調整在一第一電路中一第一翻轉閘極電晶體的一第一電流與一第一非翻轉閘極電晶體的一第二電流的一電流比,以得到在上述溫度具有相 同電壓值的一第一電流比;鏡射一偏壓電流,以產生一第三電流流經一第二翻轉閘極電晶體,並在一第二電路中產生一鏡射電流;鏡射上述鏡射電流,以產生一第四電流流經上述第二電路中的一第二非翻轉閘極電晶體;以及相應於上述第四電流,輸出上述參考電壓,其中上述第三電流與上述第四電流的電流比是等於上述第一電流比。
  10. 如請求項9所述之方法,其中上述第一翻轉閘極電晶體與上述第一非翻轉閘極電晶體的尺寸相同,以及上述第二非翻轉閘極電晶體的尺寸是大於上述第二翻轉閘極電晶體的尺寸。
TW110103995A 2020-02-17 2021-02-03 電壓參考電路以及提供參考電壓的方法 TWI776383B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202062977437P 2020-02-17 2020-02-17
US62/977,437 2020-02-17
US17/143,369 US11675383B2 (en) 2020-02-17 2021-01-07 Voltage reference circuit and method for providing reference voltage
US17/143,369 2021-01-07

Publications (2)

Publication Number Publication Date
TW202132937A TW202132937A (zh) 2021-09-01
TWI776383B true TWI776383B (zh) 2022-09-01

Family

ID=77273801

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110103995A TWI776383B (zh) 2020-02-17 2021-02-03 電壓參考電路以及提供參考電壓的方法

Country Status (2)

Country Link
US (1) US11675383B2 (zh)
TW (1) TWI776383B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5471131A (en) * 1991-10-30 1995-11-28 Harris Corporation Analog-to-digital converter and reference voltage circuitry
US20020017947A1 (en) * 1998-11-17 2002-02-14 Mitsubishi Denki Kabushiki Kaisha Semiconductor circuit device having hierarchical power supply structure
TWI423765B (zh) * 2006-10-13 2014-01-21 Basf Ag 2-氯-5-〔3,6-二氫-3-甲基-2,6-二酮基-4-(三氟甲基)-1-(2h)-嘧啶基〕-4-氟-n-〔〔甲基(1-甲基乙基)胺基〕磺醯基〕苯甲醯胺之水合物
TW201533559A (zh) * 2014-02-18 2015-09-01 Taiwan Semiconductor Mfg Co Ltd 電壓參考電路
TW201612671A (en) * 2014-09-30 2016-04-01 Taiwan Semiconductor Mfg Co Ltd Current reference circuits
WO2018057112A1 (en) * 2016-09-21 2018-03-29 Qualcomm Incorporated Device and method to stabilize a supply voltage

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5666046A (en) * 1995-08-24 1997-09-09 Motorola, Inc. Reference voltage circuit having a substantially zero temperature coefficient
US10241535B2 (en) * 2014-02-18 2019-03-26 Taiwan Semiconductor Manufacturing Company, Ltd. Flipped gate voltage reference having boxing region and method of using
US10345846B1 (en) * 2018-02-22 2019-07-09 Apple Inc. Reference voltage circuit with flipped-gate transistor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5471131A (en) * 1991-10-30 1995-11-28 Harris Corporation Analog-to-digital converter and reference voltage circuitry
US20020017947A1 (en) * 1998-11-17 2002-02-14 Mitsubishi Denki Kabushiki Kaisha Semiconductor circuit device having hierarchical power supply structure
TWI423765B (zh) * 2006-10-13 2014-01-21 Basf Ag 2-氯-5-〔3,6-二氫-3-甲基-2,6-二酮基-4-(三氟甲基)-1-(2h)-嘧啶基〕-4-氟-n-〔〔甲基(1-甲基乙基)胺基〕磺醯基〕苯甲醯胺之水合物
TW201533559A (zh) * 2014-02-18 2015-09-01 Taiwan Semiconductor Mfg Co Ltd 電壓參考電路
TW201612671A (en) * 2014-09-30 2016-04-01 Taiwan Semiconductor Mfg Co Ltd Current reference circuits
WO2018057112A1 (en) * 2016-09-21 2018-03-29 Qualcomm Incorporated Device and method to stabilize a supply voltage
TW201814418A (zh) * 2016-09-21 2018-04-16 美商高通公司 用以穩定一供應電壓之裝置及方法

Also Published As

Publication number Publication date
TW202132937A (zh) 2021-09-01
US11675383B2 (en) 2023-06-13
US20210255656A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
US11029714B2 (en) Flipped gate current reference and method of using
CN113110691B (zh) 电压参考电路以及提供参考电压的方法
US7268529B2 (en) Reference voltage generating circuit, a semiconductor integrated circuit and a semiconductor integrated circuit apparatus
US12038773B2 (en) Flipped gate voltage reference and method of using
US6876251B2 (en) Reference voltage source circuit operating with low voltage
TWI330307B (en) Folded cascode bandgap reference voltage circuit
US11269368B2 (en) Flipped gate voltage reference and method of using
TW200910050A (en) Bandgap reference circuit
US9489000B2 (en) Use of a thermistor within a reference signal generator
JP3818925B2 (ja) Mos型基準電圧発生回路
TWI776383B (zh) 電壓參考電路以及提供參考電壓的方法
CN113625818B (zh) 基准电压源
US20050253570A1 (en) Circuit for performing voltage regulation
CN113296569B (zh) 带隙基准电路
JP3557744B2 (ja) 基準電圧発生回路
US20240348217A1 (en) Asymmetric operational amplifier
CN117826928A (zh) 用于带隙基准电路的二阶温度补偿电路及带隙基准电路

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent