TWI775140B - Learning apparatus, inspection apparatus, learning method and inspection method - Google Patents
Learning apparatus, inspection apparatus, learning method and inspection method Download PDFInfo
- Publication number
- TWI775140B TWI775140B TW109130836A TW109130836A TWI775140B TW I775140 B TWI775140 B TW I775140B TW 109130836 A TW109130836 A TW 109130836A TW 109130836 A TW109130836 A TW 109130836A TW I775140 B TWI775140 B TW I775140B
- Authority
- TW
- Taiwan
- Prior art keywords
- learning
- image
- inspection
- defect
- substrate
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/12—Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/9501—Semiconductor wafers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/9515—Objects of complex shape, e.g. examined with use of a surface follower device
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/956—Inspecting patterns on the surface of objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/20—Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/30—Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8887—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/956—Inspecting patterns on the surface of objects
- G01N2021/95638—Inspecting patterns on the surface of objects for PCB's
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30141—Printed circuit board [PCB]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30148—Semiconductor; IC; Wafer
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30168—Image quality inspection
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Software Systems (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Medical Informatics (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Image Analysis (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
本發明是有關於一種對表面上具有圖案的基板進行檢查的技術。 The present invention relates to a technique for inspecting a substrate having a pattern on the surface.
以往,於印刷配線基板的檢查中,藉由檢查裝置來檢查印刷配線基板的各區域的圖像,並選出被判斷為具有缺陷的圖像(以下,稱為「缺陷圖像」)。而且,藉由作業者來對經選出的缺陷圖像進行缺陷確認作業(所謂的核實作業)。藉由檢查裝置所選出的缺陷包含於品質上成為問題的可能性高的真缺陷、及於品質上成為問題的可能性實質上不存在的虛報,於所述缺陷確認作業中,作業者藉由目視來從藉由檢查裝置所選出的缺陷圖像中選出真缺陷。 Conventionally, in inspection of a printed wiring board, an image of each region of the printed wiring board is inspected by an inspection apparatus, and an image judged to have a defect (hereinafter, referred to as a "defective image") is selected. Then, a defect confirmation operation (so-called verification operation) is performed on the selected defect image by the operator. The defects selected by the inspection device include true defects with a high possibility of causing problems in quality, and false reports that have substantially no possibility of causing problems in quality. In the defect confirmation operation, the operator uses True defects are visually selected from defect images selected by the inspection device.
另一方面,於日本專利第6512585號公報(專利文獻1)中提出有於如金屬波紋管般的零件的外觀檢查裝置中,藉由使用事先準備的許多良否圖像資料的深度學習來製作學習二進制文 件,並藉由該學習二進制文件進行對於被檢查圖像的圖像處理來進行良否判定。 On the other hand, in Japanese Patent No. 6512585 (Patent Document 1), it is proposed to create learning by deep learning using a large number of quality image data prepared in advance in an appearance inspection apparatus for parts such as metal bellows binary file, and use the learning binary file to perform image processing on the image to be inspected to determine whether it is good or not.
然而,當於印刷配線基板的檢查裝置中,將如專利文獻1般的深度學習技術應用於缺陷圖像的選出時,若想要減少缺陷圖像中所包含的虛報的比例來提升檢查精度,則存在學習處理所需要的圖像數量變得龐大(即,學習用資料集的容量變得龐大),學習需要大量的時間的擔憂。
However, when applying the deep learning technique like
本發明是製作對表面上具有圖案的基板進行檢查時所利用的學習完成模型的學習裝置,且其目的在於減少學習用資料集的容量,並實現高精度的基板檢查。 The present invention is a learning device for producing a learning completed model used when inspecting a substrate having a pattern on the surface, and aims to reduce the capacity of the learning data set and realize high-precision inspection of the substrate.
本發明之一較佳實施方式的學習裝置,包括:第一輸入部,輸入基板圖像被分類成具有缺陷的假定缺陷圖像與不具有缺陷的假定良品圖像的第一資料;第二輸入部,輸入藉由真缺陷的有無對所述第一資料中的所述假定缺陷圖像進行了再分類的第二資料;以及學習部,於所述第二資料中進行對於所述假定缺陷圖像的加權來生成學習用資料集,藉由使用所述學習用資料集的機器學習,學習基板圖像與缺陷的有無的關係來製作學習完成模型。於藉由所述學習部的所述學習用資料集的生成中,當所述假定缺陷圖像被再分類成具有真缺陷時,使多個權重係數之中,對應於所 述真缺陷的重要度所選擇的權重係數與所述假定缺陷圖像相乘後,將所述假定缺陷圖像分類成有缺陷,當所述假定缺陷圖像被再分類成不具有真缺陷時,將所述假定缺陷圖像分類成無缺陷。 A learning apparatus according to a preferred embodiment of the present invention includes: a first input unit for inputting first data in which a substrate image is classified into a presumed defective image with defects and a presumed good image without defects; a second input a unit for inputting second data in which the assumed defect image in the first data is reclassified by the presence or absence of a true defect; and a learning unit for performing an analysis of the hypothetical defect image in the second data A learning data set is generated by the weighting of the learning data set, and the relationship between the substrate image and the presence or absence of a defect is learned by machine learning using the learning data set, and a learning completion model is produced. In the generation of the learning data set by the learning unit, when the hypothetical defect image is reclassified as having a true defect, among a plurality of weighting coefficients, the corresponding After the weight coefficient selected by the importance of the true defect is multiplied by the hypothetical defect image, the hypothetical defect image is classified as defective, and when the hypothetical defect image is reclassified as not having a true defect , classifying the hypothetical defective image as non-defective.
依據本發明,能夠減少學習用資料集的容量,並實現高精度的基板檢查。 According to the present invention, it is possible to reduce the capacity of the learning data set and realize high-precision board inspection.
較佳的是,所述多個權重係數隨著於所述基板上真缺陷所在的區域的重要度變高而變大。 Preferably, the plurality of weighting coefficients become larger as the importance of the region where the true defect is located on the substrate becomes higher.
較佳的是,所述多個權重係數隨著多種檢查之中檢測到真缺陷的檢查的種類的重要度變高而變大。 Preferably, the plurality of weighting coefficients increase as the importance of the type of inspection in which a true defect is detected among the plurality of inspections becomes higher.
本發明為對表面上具有圖案的基板進行檢查的檢查裝置。本發明之一較佳實施方式的檢查裝置,包括檢查部,所述檢查部利用藉由上述學習裝置所製作的學習完成模型,對拍攝基板所獲得的被檢查圖像進行檢查。 The present invention is an inspection apparatus for inspecting a substrate having a pattern on the surface. An inspection apparatus according to a preferred embodiment of the present invention includes an inspection unit that inspects an image to be inspected obtained by photographing a substrate using a learned model created by the above-mentioned learning device.
本發明之另一較佳實施方式的檢查裝置,包括:上述學習裝置;以及檢查部,利用藉由所述學習裝置所製作的學習完成模型,對拍攝基板所獲得的被檢查圖像進行檢查。 An inspection apparatus according to another preferred embodiment of the present invention includes: the above-mentioned learning device; and an inspection unit that inspects an image to be inspected obtained by photographing a substrate using a learned completed model created by the learning device.
較佳的是,所述學習裝置的所述第二輸入部輸入將藉由所述檢查部所獲得的缺陷圖像設為所述假定缺陷圖像,藉由真缺陷的有無進行了再分類的新的第二資料,所述學習部於所述新的第二資料中進行對於所述假定缺陷圖像的加權來生成新的學習用資料集,藉由使用所述新的學習用資料集的機器學習,針對所述學習完成模型再學習基板圖像與缺陷的有無的關係。 Preferably, the second input unit of the learning device inputs a new image that is reclassified by the presence or absence of a true defect, using the defect image obtained by the inspection unit as the hypothetical defect image. the second data, the learning section performs weighting on the assumed defect image in the new second data to generate a new learning data set, and a machine using the new learning data set is used. Learning, for the learning completion model, the relationship between the substrate image and the presence or absence of defects is relearned.
較佳的是,更包括拍攝基板來獲取所述被檢查圖像的拍攝部。 Preferably, it further includes a photographing unit for photographing the substrate to obtain the image to be inspected.
本發明為對表面上具有圖案的基板進行檢查時所利用的學習完成模型的學習方法。本發明之一較佳實施方式的學習方法,包括:a)輸入基板圖像被分類成具有缺陷的假定缺陷圖像與不具有缺陷的假定良品圖像的第一資料的步驟;b)輸入藉由真缺陷的有無對所述第一資料中的所述假定缺陷圖像進行了再分類的第二資料的步驟;以及c)於所述第二資料中進行對於所述假定缺陷圖像的加權來生成學習用資料集,藉由使用所述學習用資料集的機器學習,學習基板圖像與缺陷的有無的關係來製作學習完成模型的步驟,於所述c)步驟中的所述學習用資料集的生成中,當所述假定缺陷圖像被再分類成具有真缺陷時,使多個權重係數之中,對應於所述真缺陷的重要度所選擇的權重係數與所述假定缺陷圖像相乘後,將所述假定缺陷圖像分類成有缺陷,當所述假定缺陷圖像被再分類成不具有真缺陷時,將所述假定缺陷圖像分類成無缺陷。 The present invention is a learning method for learning a completed model used when inspecting a substrate having a pattern on the surface. A learning method according to a preferred embodiment of the present invention includes: a) a step of inputting first data in which a substrate image is classified into a presumed defective image with defects and a presumed good image without defects; b) inputting a borrowed image the step of reclassifying said putative defect images in said first data by the presence or absence of true defects in a second profile; and c) weighting said putative defect images in said second profile to obtain The steps of generating a learning data set, learning the relationship between the substrate image and the presence or absence of defects by machine learning using the learning data set, and creating a learning completion model, the learning data in the step c) In the generation of the set, when the hypothetical defect image is reclassified as having a true defect, among a plurality of weighting coefficients, the weight coefficient selected corresponding to the importance of the true defect and the hypothetical defect image After multiplication, the putative defect image is classified as defective, and when the putative defect image is reclassified as not having a true defect, the putative defect image is classified as non-defective.
較佳的是,所述多個權重係數隨著於所述基板上真缺陷所在的區域的重要度變高而變大。 Preferably, the plurality of weighting coefficients become larger as the importance of the region where the true defect is located on the substrate becomes higher.
較佳的是,所述多個權重係數隨著多種檢查之中檢測到真缺陷的檢查的種類的重要度變高而變大。 Preferably, the plurality of weighting coefficients increase as the importance of the type of inspection in which a true defect is detected among the plurality of inspections becomes higher.
本發明為對表面上具有圖案的基板進行檢查的檢查方法。本發明之一較佳實施方式的檢查方法,包括:利用藉由上述 學習方法所製作的學習完成模型,對拍攝基板所獲得的被檢查圖像進行檢查的步驟。 The present invention is an inspection method for inspecting a substrate having a pattern on the surface. An inspection method according to a preferred embodiment of the present invention includes: utilizing the The learning completion model created by the learning method is a step of inspecting the image to be inspected obtained by photographing the substrate.
本發明之另一較佳實施方式的檢查方法,包括:d)藉由技術方案8至技術方案10中任一項所記載的學習方法來製作學習完成模型的步驟;以及e)利用於所述d)步驟中所製作的所述學習完成模型,對拍攝基板所獲得的被檢查圖像進行檢查的步驟。 The inspection method of another preferred embodiment of the present invention includes: d) the step of making a learning completion model by the learning method described in any one of the technical solutions 8 to 10; d) A step of inspecting the image to be inspected obtained by photographing the substrate in the learning completion model produced in the step.
較佳的是,更包括:f)輸入將於所述e)步驟中所獲得的缺陷圖像設為所述假定缺陷圖像,藉由真缺陷的有無進行了再分類的新的第二資料的步驟;以及g)於所述新的第二資料中進行對於所述假定缺陷圖像的加權來生成新的學習用資料集,藉由使用所述新的學習用資料集的機器學習,針對所述學習完成模型再學習基板圖像與缺陷的有無的關係的步驟。 Preferably, it further comprises: f) inputting the defect image obtained in the step e) as the hypothetical defect image, and reclassifying new second data based on the presence or absence of true defects; step; and g) performing weighting on the assumed defect image in the new second data to generate a new learning data set, by using the machine learning of the new learning data set, for all Describe the steps of learning the completed model and then learning the relationship between the substrate image and the presence or absence of defects.
較佳的是,更包括拍攝基板來獲取所述被檢查圖像的步驟。 Preferably, it further includes a step of photographing the substrate to obtain the inspected image.
上述目的及其他目的、特徵、態樣及優點請參照所附的圖式在下面詳細地說明本發明而進一步明確。 The above object and other objects, features, aspects and advantages will be further clarified by the detailed description of the present invention below with reference to the accompanying drawings.
1:檢查裝置 1: Inspection device
2:裝置本體 2: Device body
3:第一電腦 3: The first computer
4:第二電腦 4: Second computer
9:基板 9: Substrate
21:拍攝部 21: Filming Department
22:平台 22: Platform
23:平台移動機構 23: Platform moving mechanism
30、40:匯流排 30, 40: busbar
31、41:CPU 31, 41: CPU
32、42:ROM 32, 42: ROM
33、43:RAM 33, 43: RAM
34、44:固定磁碟 34, 44: Fixed disk
35、45:顯示器 35, 45: Display
36、46:輸入部 36, 46: Input part
36a、46a:鍵盤 36a, 46a: Keyboard
36b、46b:滑鼠 36b, 46b: Mouse
37、47:讀取裝置 37, 47: Reader
38、48:通訊部 38, 48: Communications Department
39、49:GPU 39, 49: GPU
81、82:記錄媒體 81, 82: Recording media
93a:小面積鍍覆區域 93a: Small area plated area
93b:中面積鍍覆區域 93b: Medium area plated area
93c:大面積鍍覆區域 93c: Large area plated area
94a:細線SR區域 94a: Thin line SR region
94b:標準配線SR區域 94b: Standard wiring SR area
94c:基材SR區域 94c: Substrate SR region
811、821:程式 811, 821: Program
211:照明部 211: Lighting Department
212:光學系統 212: Optical System
213:拍攝元件 213: Shooting Elements
301、404:儲存部 301, 404: Storage Department
302:檢查部 302: Inspection Department
303:控制部 303: Control Department
401:第一輸入部 401: The first input part
402:第二輸入部 402: Second input part
403:學習部 403: Learning Department
S11~S15、S21~S24、S31~S33:步驟 S11~S15, S21~S24, S31~S33: Steps
圖1是表示檢查裝置的結構的圖。 FIG. 1 is a diagram showing a configuration of an inspection apparatus.
圖2是表示第一電腦的結構的圖。 FIG. 2 is a diagram showing a configuration of a first computer.
圖3是表示藉由第一電腦來實現的功能結構的圖。 FIG. 3 is a diagram showing a functional configuration realized by a first computer.
圖4是表示第二電腦的結構的圖。 FIG. 4 is a diagram showing a configuration of a second computer.
圖5是表示藉由第二電腦來實現的功能結構的圖。 FIG. 5 is a diagram showing a functional configuration realized by a second computer.
圖6是表示學習完成模型的製作的流程的圖。 FIG. 6 is a diagram showing a flow of creating a learning completion model.
圖7是表示學習完成模型的製作的狀況的圖。 FIG. 7 is a diagram showing a state in which a learning completed model is created.
圖8是表示基板上的多種區域的圖。 FIG. 8 is a diagram showing various regions on the substrate.
圖9是表示基板上的多種區域的圖。 FIG. 9 is a diagram showing various regions on the substrate.
圖10是表示基板的檢查的流程的圖。 FIG. 10 is a diagram showing a flow of inspection of a substrate.
圖11是表示學習完成模型的再學習的流程的圖。 FIG. 11 is a diagram showing a flow of re-learning of a learned-completed model.
圖1是表示本發明一實施方式的檢查裝置1的結構的圖。檢查裝置1例如為對安裝電子零件之前的印刷配線基板9(以下,亦僅稱為「基板9」)的外觀進行檢查的裝置。於基板9的表面上形成有圖案(例如,藉由銅所形成的配線圖案或電極圖案)。於基板9上,例如存在銅的鍍層露出的區域、銅的配線藉由作為保護膜的阻焊劑包覆的區域、以及於基材表面上直接地配置有阻焊劑的區域。
FIG. 1 is a diagram showing the configuration of an
檢查裝置1包括:拍攝基板9的裝置本體2、第一電腦3、以及第二電腦4。第一電腦3及第二電腦4分別為包含運算部的處理裝置。第一電腦3亦進行檢查裝置1的整體運作的控制。第二電腦4是進行後述的學習完成模型的製作的學習裝置。裝置本體2具有:拍攝部21、保持基板9的平台22、以及平台移動機構23。拍攝部21拍攝基板9來獲取圖像。該圖像例如為多灰度的彩色圖像。平台移動機構23使平台22相對於拍攝部21相對地移
動。
The
拍攝部21具有:射出照明光的照明部211、光學系統212、以及拍攝元件213。光學系統212朝基板9引導照明光,並且朝拍攝元件213引導來自基板9的光。拍攝元件213將藉由光學系統212而成像的基板9的像轉換成電訊號。照明部211包含發光二極體(Light Emitting Diode,LED)或電燈泡等燈、及調整來自燈的光的透鏡或反射構件等光學部件。光學系統212包含多個透鏡或半反射鏡等光學部件。拍攝元件213例如為二維的影像感測器。拍攝元件213亦可以是一維的影像感測器,於該情況下,一邊使平台22移動一邊進行拍攝。
The
平台移動機構23包含滾珠絲槓、導軌、馬達等。當然,作為平台移動機構23,可采用各種機構,例如可藉由線性馬達。第一電腦3控制平台移動機構23及拍攝部21,藉此平台22於水平方向上移動,基板9上的所期望的區域得到拍攝。平台22是保持基板9的保持部。基板9的保持可藉由各種方法來進行。例如,於平台22形成槽,從形成於槽內的吸引口進行吸引,藉此將基板9吸附於平台22上。亦可以於平台22形成許多吸引口來吸附基板9。亦可以藉由多孔質材料來形成平台22,從多孔質材料進行吸引。平台22亦可以藉由機械式的機構來保持基板9。
The
圖2是表示第一電腦3的結構的圖。第一電腦3具有一般的電腦系統的結構,所述一般的電腦系統包含:中央處理單元(Central Processing Unit,CPU)31、唯讀記憶體(Read Only
Memory,ROM)32、隨機存取記憶體(Random Access Memory,RAM)33、固定磁碟34、顯示器35、輸入部36、讀取裝置37、通訊部38、圖形處理器(Graphics Processing Unit,GPU)39、以及匯流排30。CPU31進行各種運算處理。GPU39進行與圖像處理相關的各種運算處理。ROM32儲存基本程式。RAM33儲存各種資訊。固定磁碟34進行資訊儲存。顯示器35進行圖像等各種資訊的顯示。輸入部36包括受理來自操作者的輸入的鍵盤36a及滑鼠36b。讀取裝置37從光碟、磁碟、磁光碟、儲存卡等電腦可讀取的記錄媒體81進行資訊的讀取。顯示器35、鍵盤36a、滑鼠36b及讀取裝置37經由接口I/F而與匯流排30連接。通訊部38與檢查裝置1的其他結構、及外部的裝置之間收發訊號。匯流排30是將CPU31、GPU39、ROM32、RAM33、固定磁碟34、顯示器35、輸入部36、讀取裝置37及通訊部38連接的訊號電路。
FIG. 2 is a diagram showing the configuration of the
於第一電腦3中,事先經由讀取裝置37而從記錄媒體81讀出程式811並儲存於固定磁碟34中。程式811亦可以經由網路而儲存於固定磁碟34中。CPU31及GPU39按照程式811,一邊利用RAM33或固定磁碟34一邊執行運算處理。CPU31及GPU39於第一電腦3中作為運算部發揮功能。除CPU31及GPU39以外,亦可以采用作為運算部發揮功能的其他結構。
In the
圖3是表示藉由第一電腦3按照程式811執行運算處理等來實現的功能結構的圖。於該些功能結構中包含儲存部301、檢查部302、以及控制部303。該些功能的全部或一部分亦可以藉由
專用的電路來實現。另外,該些功能亦可以藉由多個電腦來實現。圖3中所示的功能結構之中,檢查部302及控制部303藉由CPU31、GPU39、ROM32、RAM33、固定磁碟34及該些的周邊結構來實現。另外,儲存部301主要藉由RAM33及固定磁碟34來實現。
FIG. 3 is a diagram showing a functional configuration realized by the
儲存部301儲存由拍攝部21所獲取的基板9的圖像、及後述的學習完成模型等。檢查部302是利用儲存於儲存部301中的該學習完成模型來檢查基板9的圖像,藉由缺陷的有無對該圖像進行分類的分類器。控制部303控制拍攝部21及平台移動機構23、以及各功能結構的動作。
The
圖4是表示第二電腦4的結構的圖。第二電腦4與第一電腦3大致同樣地具有一般的電腦系統的結構,所述一般的電腦系統包含:CPU41、ROM42、RAM43、固定磁碟44、顯示器45、輸入部46、讀取裝置47、通訊部48、GPU49、以及匯流排40。CPU41進行各種運算處理。GPU49進行與圖像處理相關的各種運算處理。ROM42儲存基本程式。RAM43儲存各種資訊。固定磁碟44進行資訊儲存。顯示器45進行圖像等各種資訊的顯示。輸入部46包括受理來自操作者的輸入的鍵盤46a及滑鼠46b。讀取裝置47從光碟、磁碟、磁光碟、儲存卡等電腦可讀取的記錄媒體82進行資訊的讀取。顯示器45、鍵盤46a、滑鼠46b及讀取裝置47經由接口I/F而與匯流排40連接。通訊部48與檢查裝置1的其他結構、及外部的裝置之間收發訊號。匯流排40是將CPU41、
GPU49、ROM42、RAM43、固定磁碟44、顯示器45、輸入部46、讀取裝置47及通訊部48連接的訊號電路。
FIG. 4 is a diagram showing the configuration of the
於第二電腦4中,事先經由讀取裝置47而從記錄媒體82讀出程式821並儲存於固定磁碟44中。程式821亦可以經由網路而儲存於固定磁碟44中。CPU41及GPU49按照程式821,一邊利用RAM43或固定磁碟44一邊執行運算處理。CPU41及GPU49於第二電腦4中作為運算部發揮功能。除CPU41及GPU49以外,亦可以采用作為運算部發揮功能的其他結構。
In the
圖5是表示藉由第二電腦4按照程式821執行運算處理等來實現的功能結構的圖。於該些功能結構中包含第一輸入部401、第二輸入部402、學習部403、以及儲存部404。該些功能的全部或一部分亦可以藉由專用的電路來實現。另外,該些功能亦可以藉由多個電腦來實現。圖5中所示的功能結構之中,第一輸入部401、第二輸入部402及學習部403藉由CPU41、GPU49、ROM42、RAM43、固定磁碟44及該些的周邊結構來實現。另外,儲存部404主要藉由RAM43及固定磁碟44來實現。
FIG. 5 is a diagram showing a functional configuration realized by the
第一輸入部401朝儲存部404輸入作為經分類的基板9的圖像(以下,稱為「基板圖像」)的集合的第一資料。第二輸入部402朝儲存部404輸入作為經再分類的基板圖像的集合的第二資料。儲存部404儲存從第一輸入部401及第二輸入部402輸入的資料等。基板圖像的分類及再分類的詳細情況將後述。
The
學習部403藉由第二資料來生成學習用資料集,藉由使
用該學習用資料集的機器學習,製作用於藉由所述檢查部302的檢查的學習完成模型。於學習部403中,針對檢查用的初期模型,對基板圖像與缺陷的有無的關係進行機器學習,藉此製作學習完成模型。學習用資料集的詳細情況將後述。學習部403中的機器學習例如藉由使用神經網路的深度學習來進行。藉由該深度學習的學習例如可使用殘差網路(Residual Network,ResNet)來進行。另外,該機器學習亦可以藉由深度學習以外的方法來進行。
The
圖6是表示檢查裝置1中的學習完成模型的製作的流程的圖。圖7是表示學習完成模型的製作的狀況的圖。於學習完成模型的製作中,首先,準備許多從拍攝基板9所獲得的圖像中選出的各種區域的圖像(即,基板圖像)(步驟S11)。於以下的說明中,將該許多基板圖像稱為「基板圖像群」。基板圖像群較佳由檢查裝置1的拍攝部21獲取。另外,較佳於所述基板圖像群中包含分別拍攝多個基板9所得的圖像。
FIG. 6 is a diagram showing the flow of creation of the learning completion model in the
於基板9中,於銅的配線或基材上形成有被稱為阻焊劑的保護膜,於基板9上存在各種區域。例如,於基板9上存在銅的鍍層露出的區域、於銅的配線上存在阻焊劑的區域、以及於基材上存在阻焊劑的區域等。
In the
如圖8所示,於銅的鍍層露出的區域中包含露出的各鍍覆部的面積小的小面積鍍覆區域93a、露出的各鍍覆部的面積大的大面積鍍覆區域93c、露出的各鍍覆部的面積為中等程度的中面積鍍覆區域93b。於小面積鍍覆區域93a中,與中面積鍍覆區域93b
及大面積鍍覆區域93c相比,由缺陷所產生的對於導通等的不良影響大。另外,於中面積鍍覆區域93b中,與大面積鍍覆區域93c相比,由缺陷所產生的對於導通等的不良影響大。換言之,於基板9上缺陷所在的區域的重要度以大面積鍍覆區域93c、中面積鍍覆區域93b、小面積鍍覆區域93a的順序變高。
As shown in FIG. 8, the area where the copper plating layer is exposed includes a small
如圖9所示,於被阻焊劑包覆的區域中包含阻焊劑下的配線為細線圖案的細線阻焊劑(Solder Resist,SR)區域94a、阻焊劑下的配線為標準圖案的標準配線SR區域94b、以及於阻焊劑下不存在配線而僅存在基材的基材SR區域94c。於細線SR區域94a中,與標準配線SR區域94b及基材SR區域94c相比,由缺陷所產生的對於導通等的不良影響大。另外,於標準配線SR區域94b中,與基材SR區域94c相比,由缺陷所產生的對於導通等的不良影響大。換言之,於基板9上缺陷所在的區域的重要度以基材SR區域94c、標準配線SR區域94b、細線SR區域94a的順序變高。
As shown in FIG. 9 , the area covered with the solder resist includes a thin-line solder resist (SR)
如圖7所示,所準備的基板圖像群(即,許多基板圖像)被分類成具有缺陷的假定缺陷圖像、及不具有缺陷的假定良品圖像。於第二電腦4中,藉由第一輸入部401將經分類的基板圖像群作為第一資料而輸入儲存部404(步驟S12)。步驟S12中的基板圖像群的分類(即,檢查)可藉由各種公知的方法來進行。例如,藉由公知的外觀檢查裝置將各基板圖像與不具有缺陷的基準基板圖像進行比較,將存在明顯的差异的基板圖像分類成假定缺
陷圖像,將其以外的基板圖像分類成假定良品圖像。
As shown in FIG. 7 , the prepared group of substrate images (ie, many substrate images) are classified into presumed defective images having defects and presumed good images having no defects. In the
於步驟S12中的基板圖像群的分類中進行多種缺陷檢查。例如,於鍍覆部的檢查中,進行檢測鍍覆部上的异物等的鍍覆异物檢查、或檢測鍍覆部中的鍍覆的深淺的鍍覆多值檢查。與於鍍覆多值檢查中所檢測的缺陷(例如,鍍覆部的變色、污垢、瑕疵等)相比,於鍍覆异物檢查中所檢測的缺陷(例如,鍍覆部上的异物或鍍覆部的欠缺)對於導通等的不良影響大。換言之,檢查的種類的重要度以鍍覆多值檢查、鍍覆异物檢查的順序變高。 Various defect inspections are performed in the classification of the substrate image group in step S12. For example, in the inspection of the plated portion, a plated foreign matter inspection to detect foreign matter or the like on the plated portion, or a plated multi-value inspection to detect the depth of the plating in the plated portion is performed. Defects detected in the plating foreign matter inspection (eg, foreign matter on the plated portion or plating The lack of the cladding portion) has a large adverse effect on conduction, etc. In other words, the importance of the type of inspection becomes higher in the order of the multi-value inspection of plating and inspection of plating foreign objects.
另外,例如於阻焊劑的檢查中,進行檢測阻焊劑的剝離的SR剝離檢查、或檢測阻焊劑的深淺的SR斑點檢查。與於SR斑點檢查中所檢測的缺陷(例如,阻焊劑的亮的斑點或暗的斑點)相比,於SR剝離檢查中所檢測的缺陷(例如,藉由阻焊劑的剝離所引起的配線的露出)對於導通等的不良影響大。換言之,檢查的種類的重要度以SR斑點檢查、SR剝離檢查的的順序變高。 Moreover, for example, in the inspection of a solder resist, the SR peeling test which detects peeling of a solder resist, or the SR spot test which detects the depth of a solder resist is performed. Compared with defects detected in SR spot inspection (eg, bright spots or dark spots of solder resist), defects detected in SR peel inspection (for example, defects of wiring caused by peeling of solder resist) exposure) has a large adverse effect on conduction, etc. In other words, the importance of the type of inspection becomes higher in the order of SR spot inspection and SR peel inspection.
於第一資料中,將各假定缺陷圖像於基板9上的區域的種類、及檢測到缺陷的檢查的種類與各假定缺陷圖像組合。於第一資料中與各假定缺陷圖像建立關聯的所述「檢查區域種類」及「檢查種類」例如藉由文本資料來表達。
In the first data, the type of the region on the
繼而,選出已於步驟S12中被儲存於儲存部404中的第一資料中的所有假定缺陷圖像(以下,亦稱為「假定缺陷圖像群」),並顯示於顯示器45。而且,藉由作業者的目視,如圖7所示,實施藉由真缺陷的有無對假定缺陷圖像群進行再分類的作業
(所謂的核實)。所謂真缺陷,是指對基板9的性能造成實質性的不良影響,因此判斷基板9無法作為製品來上市的缺陷。於所述核實中,例如當作業者目視假定缺陷圖像而判斷存在真缺陷時,右擊該假定缺陷圖像,從下拉菜單中選擇「真缺陷」,藉此將該假定缺陷圖像保存於真缺陷文件夾中。另外,當作業者目視假定缺陷圖像而判斷不存在真缺陷時,右擊該假定缺陷圖像,從下拉菜單中選擇「虛報」,藉此將該假定缺陷圖像保存於虛報文件夾中。
Then, all the hypothetical defect images (hereinafter, also referred to as "hypothetical defect image groups") in the first data stored in the
於第二電腦4中,藉由第二輸入部402將藉由所述核實進行了再分類的假定缺陷圖像群作為第二資料而輸入儲存部404(步驟S13)。於第二資料中,將各假定缺陷圖像與所述檢查區域種類及檢查種類、以及核實結果(即,表示真缺陷的有無的資訊)建立關聯。
In the
繼而,藉由學習部403,根據第二資料來生成學習用資料集(步驟S14)。於步驟S14中,於第二資料中進行對於假定缺陷圖像的加權。具體而言,當於步驟S13中將假定缺陷圖像再分類成具有真缺陷時,於步驟S14中,從事先準備的多個權重係數中,對應於該真缺陷的重要度來選擇一個權重係數,並與假定缺陷圖像相乘。而且,將乘以了權重係數的假定缺陷圖像分類成「有缺陷」。另一方面,當於步驟S13中將假定缺陷圖像再分類成不具有真缺陷時,於步驟S14中,不使該假定缺陷圖像與權重係數相乘,而分類成「無缺陷」。
Next, the
所述多個權重係數對應於與假定缺陷圖像建立關聯的
檢查區域種類及檢查種類等而事先設定,並儲存於儲存部404中。於本實施方式中,權重係數隨著檢查區域種類(即,於基板9上真缺陷所在的區域)的重要度變高而變大。另外,權重係數隨著檢查種類(即,檢測到真缺陷的檢查的種類)的重要度變高而變大。所述多個權重係數例如於0~1之間設定。
The plurality of weight coefficients correspond to values associated with the assumed defect image.
The inspection area type, inspection type, and the like are set in advance and stored in the
具體而言,例如,檢查區域種類為小面積鍍覆區域93a、且檢查種類為鍍覆异物檢查時的權重係數比檢查區域種類為中面積鍍覆區域93b、且檢查種類為鍍覆异物檢查時的權重係數大。另外,檢查區域種類為小面積鍍覆區域93a、且檢查種類為鍍覆异物檢查時的權重係數比檢查區域種類為小面積鍍覆區域93a、且檢查種類為鍍覆多值檢查時的權重係數大。檢查區域種類為小面積鍍覆區域93a、且檢查種類為鍍覆异物檢查時的權重係數比檢查區域種類為大面積鍍覆區域93c、且檢查種類為鍍覆多值檢查時的權重係數大。
Specifically, for example, when the inspection area type is the small-area plated
例如,檢查區域種類為細線SR區域94a、且檢查種類為SR剝離檢查時的權重係數比檢查區域種類為標準配線SR區域94b、且檢查種類為SR剝離檢查時的權重係數大。另外,檢查區域種類為細線SR區域94a、且檢查種類為SR剝離檢查時的權重係數比檢查區域種類為細線SR區域94a、且檢查種類為SR斑點檢查時的權重係數大。檢查區域種類為細線SR區域94a、且檢查種類為SR剝離檢查時的權重係數比檢查區域種類為基材SR區域94c、且檢查種類為SR斑點檢查時的權重係數大。
For example, when the inspection area type is the thin
另外,所述權重係數亦可以僅對應於所述檢查區域種類及檢查種類中的一者而事先設定。另外,權重係數亦可以根據與假定缺陷圖像建立關聯的其他資訊(即,所述檢查區域種類及檢查種類以外的資訊)而事先設定。權重係數未必需要於0~1之間設定,可適宜變更。 In addition, the weight coefficient may be set in advance corresponding to only one of the inspection area type and the inspection type. In addition, the weight coefficient may be set in advance based on other information associated with the assumed defect image (that is, information other than the inspection area type and inspection type). The weight coefficient does not necessarily need to be set between 0 and 1, and can be appropriately changed.
若生成學習用資料集,則學習部403使用該學習用資料集,針對檢查用的初期模型來對基板圖像與缺陷的有無的關係進行機器學習。藉此,製作對基板9進行檢查時所利用的學習完成模型(步驟S15)。
When the learning data set is generated, the
圖10是表示利用所述學習完成模型的基板9的檢查的流程的圖。於圖1中所示的檢查裝置1中,首先,如上所述藉由作為學習裝置的第二電腦4來製作學習完成模型(步驟S21)。從第二電腦4朝第一電腦3發送學習完成模型,並儲存於第一電腦3的儲存部301(參照圖3)中。
FIG. 10 is a diagram showing a flow of inspection of the
其次,藉由控制部303來控制拍攝部21及平台移動機構23等,藉此藉由拍攝部21來拍攝基板9,獲取作為檢查對象的基板9的圖像(以下,亦稱為「被檢查圖像」)(步驟S22)。
Next, the
繼而,藉由檢查部302,利用儲存於儲存部301中的學習完成模型,進行所述被檢查圖像的檢查(步驟S23)。於步驟S23中,例如進行所述鍍覆异物檢查、鍍覆多值檢查、SR剝離檢查及SR斑點檢查等。而且,將從被檢查圖像中選出的各區域的基板圖像之中,被判斷為與於學習完成模型中被分類成「有缺陷」的基
板圖像(即,具有真缺陷的基板圖像)類似的基板圖像分類成缺陷圖像。另外,將未被分類成缺陷圖像的基板圖像分類成良品圖像。
Next, the
其後,針對藉由檢查部302分類成缺陷圖像的基板圖像,與所述步驟S13大致同樣地,藉由作業者來進行核實,判定基板9中的真缺陷的有無(即,基板9能否上市)(步驟S24)。於步驟S24中,將藉由檢查部302分類成缺陷圖像的基板圖像再分類成具有真缺陷的基板圖像、及不具有真缺陷的基板圖像(即,虛報)。
After that, with respect to the board image classified into the defect image by the
於檢查裝置1中,亦可以利用檢查裝置1對於基板9的檢查(步驟S21~步驟S24)的結果,進行學習完成模型的再學習。圖11是表示檢查裝置1中的學習完成模型的再學習的流程的圖。於學習完成模型的再學習中,首先藉由第二電腦4的第二輸入部402(參照圖5),將於所述步驟S24中進行了再分類的缺陷圖像(即,將於步驟S23中所獲得的缺陷圖像設為假定缺陷圖像,藉由真缺陷的有無進行了再分類的缺陷圖像)作為新的第二資料而輸入儲存部404(步驟S31)。
In the
其次,藉由學習部403,根據該新的第二資料來生成新的學習用資料集(步驟S32)。於步驟S32中,與所述步驟S14大致同樣地,於新的第二資料中進行對於假定缺陷圖像的加權。具體而言,當於步驟S31中將假定缺陷圖像再分類成具有真缺陷時,於步驟S32中,從事先準備的所述多個權重係數中,對應於該真
缺陷的重要度來選擇一個權重係數,並與假定缺陷圖像相乘。而且,將乘以了權重係數的假定缺陷圖像分類成「有缺陷」。另一方面,當於步驟S31中將假定缺陷圖像再分類成不具有真缺陷時,於步驟S32中,不使該假定缺陷圖像與權重係數相乘,而分類成「無缺陷」。
Next, the
若生成所述新的學習用資料集,則學習部403藉由使用該新的學習用資料集的機器學習,針對學習完成模型再學習基板圖像與缺陷的有無的關係(步驟S33)。
When the new learning data set is generated, the
如以上所說明般,第二電腦4是製作對表面上具有圖案的基板進行檢查時所利用的學習完成模型的學習裝置。該學習裝置包括:第一輸入部401、第二輸入部402、以及學習部403。第一輸入部401輸入基板圖像被分類成具有缺陷的假定缺陷圖像與不具有缺陷的假定良品圖像的第一資料。第二輸入部402輸入藉由真缺陷的有無對該第一資料中的假定缺陷圖像進行了再分類的第二資料。學習部403於第二資料中進行對於假定缺陷圖像的加權來生成學習用資料集。學習部403藉由使用該學習用資料集的機器學習,學習基板圖像與缺陷的有無的關係來生成學習完成模型。
As described above, the
於藉由學習部403的學習用資料集的生成中,當假定缺陷圖像被再分類成具有真缺陷時,使多個權重係數之中,對應於真缺陷的重要度所選擇的權重係數與該假定缺陷圖像相乘後,將所述假定缺陷圖像分類成「有缺陷」。另外,當假定缺陷圖像被再
分類成不具有真缺陷時,將該假定缺陷圖像分類成「無缺陷」。
In the generation of the learning data set by the
藉由使用該學習用資料集所製作的學習完成模型來進行基板9的檢查,藉此與具有重要度低的真缺陷的基板圖像類似的圖像相比,與具有重要度高的真缺陷的基板圖像類似的圖像容易被檢測為缺陷圖像。其結果,可降低與具有重要度低的真缺陷的基板圖像類似,但實際上不具有真缺陷的圖像(即,於核實中被判斷為虛報的基板圖像),於基板9的檢查中被檢測為缺陷圖像的可能性。換言之,可減少基板9的缺陷檢查中的虛報率,並實現高精度的檢查。
The inspection of the
另外,如上所述,於藉由學習部403的學習用資料集的生成中,使具有真缺陷的假定缺陷圖像與對應於真缺陷的重要度的權重係數相乘,藉此可減少假定缺陷圖像的數量(即,假定缺陷圖像群的容量),並生成可實現所述高精度的檢查的學習完成模型製作用的學習用資料集。即,於所述學習裝置中,可減少學習用資料集的容量,並實現高精度的基板9的檢查。
In addition, as described above, in the generation of the learning data set by the
如上所述,較佳為多個權重係數隨著於基板9上真缺陷所在的區域的重要度變高而變大。藉此,與重要度低的區域中的缺陷相比,可優先檢測基板9上的重要度高的區域(即,高感度區域)中的缺陷。其結果,可進一步減少基板9的缺陷檢查中的虛報率,並實現更高精度的檢查。
As described above, it is preferable that the plurality of weighting coefficients become larger as the importance of the region where the true defect is located on the
如上所述,較佳為多個權重係數隨著多種檢查之中檢測真缺陷的檢查的種類的重要度變高而變大。藉此,與重要度低的
種類的檢查中的缺陷相比,可優先檢測重要度高的種類的檢查(即,高致命度的檢查)中的缺陷。其結果,可進一步減少基板9的缺陷檢查中的虛報率,並實現更高精度的檢查。
As described above, it is preferable that the plurality of weighting coefficients increase as the importance of the type of inspection for detecting a true defect among various inspections increases. Thus, with less important
Defects in inspections of high importance (that is, inspections with high fatality) can be preferentially detected over defects in inspections of the kind. As a result, the false alarm rate in the defect inspection of the
如上所述,檢查裝置1是對表面上具有圖案的基板9進行檢查的裝置。檢查裝置1包括所述學習裝置與檢查部302。檢查部302利用藉由該學習裝置所製作的學習完成模型,對拍攝基板9所獲得的被檢查圖像進行檢查。藉此,如上所述,可實現高精度的基板9的檢查。
As described above, the
如上所述,較佳為第二輸入部402輸入將藉由檢查部302所獲得的缺陷圖像設為假定缺陷圖像,藉由真缺陷的有無進行了再分類的新的第二資料。另外,學習部403於該新的第二資料中進行對於假定缺陷圖像的加權,生成新的學習用資料集。而且,學習部403藉由使用該新的學習用資料集的機器學習,針對學習完成模型再學習基板圖像與缺陷的有無的關係。藉此,可減少用於再學習的學習用資料集的容量,並提升基板9的檢查精度。
As described above, it is preferable that the
另外,於檢查裝置1中,若檢查部302利用所述學習完成模型對被檢查圖像進行檢查,則未必需要設置學習裝置。於該情況下,檢查部302利用藉由與檢查裝置1獨立設置的學習裝置所製作的學習完成模型,對拍攝基板9所獲得的被檢查圖像進行檢查。於該情況下,亦可以與所述同樣地實現高精度的基板9的檢查。
In addition, in the
如上所述,較佳為檢查裝置1更包括拍攝基板9來獲取
所述被檢查圖像的拍攝部21。藉此,從被檢查圖像的獲取至檢查為止,可藉由一個裝置來連貫地進行。其結果,可提升基板9的檢查效率。
As mentioned above, it is preferable that the
如上所述,製作學習完成模型的學習方法包括:輸入基板圖像被分類成具有缺陷的假定缺陷圖像與不具有缺陷的假定良品圖像的第一資料的步驟(步驟S12);輸入藉由真缺陷的有無對第一資料中的假定缺陷圖像進行了再分類的第二資料的步驟(步驟S13);以及於該第二資料中進行對於假定缺陷圖像的加權來生成學習用資料集,藉由使用該學習用資料集的機器學習,學習基板圖像與缺陷的有無的關係來製作學習完成模型的步驟(步驟S14~步驟S15)。 As described above, the learning method for making the learning completion model includes: inputting first data (step S12 ) in which the substrate image is classified into a presumed defective image with defects and a presumed good image without defects (step S12 ); The presence or absence of defects is a step of reclassifying the assumed defect images in the first data to the second data (step S13); and performing weighting on the presumed defect images in the second data to generate a learning data set, The steps of creating a learning completion model by learning the relationship between the substrate image and the presence or absence of defects by machine learning using the learning data set (step S14 to step S15 ).
於步驟S14~步驟S15中的學習用資料集的生成中,當假定缺陷圖像被再分類成具有真缺陷時,使多個權重係數之中,對應於該真缺陷的重要度所選擇的權重係數與假定缺陷圖像相乘後,將所述假定缺陷圖像分類成有缺陷,當假定缺陷圖像被再分類成不具有真缺陷時,將假定缺陷圖像分類成無缺陷。藉此,可與所述同樣地減少學習用資料集的容量,並實現高精度的基板9的檢查。
In the generation of the learning data set in steps S14 to S15, when it is assumed that the defective image is reclassified as having a true defect, among the plurality of weighting coefficients, the weight selected according to the importance of the true defect is set. After the coefficients are multiplied by the hypothetical defect image, the hypothetical defect image is classified as defective, and when the hypothetical defect image is reclassified as not having a true defect, the hypothetical defect image is classified as defect-free. As a result, the capacity of the learning data set can be reduced in the same manner as described above, and the inspection of the
於所述學習裝置、檢查裝置1、學習方法以及檢查方法中,可進行各種變更。
Various modifications can be made to the above-described learning device,
例如,亦可以於檢查裝置1的外部獲取於步驟S11中所準備的基板圖像群,並經由記錄磁碟或網路而輸入檢查裝置1。另
外,於步驟S22中,亦可以同樣地於檢查裝置1的外部獲取被檢查圖像,並輸入檢查裝置1。於該情況下,亦可以從檢查裝置1中省略拍攝部21。
For example, the substrate image group prepared in step S11 may be acquired outside the
於所述步驟S12、步驟S23中對基板9進行的檢查並不限定於所述鍍覆异物檢查或SR剝離檢查等,可對基板9進行各種檢查。另外,基板9上的檢查區域並不限定於所述小面積鍍覆區域或細線SR區域等,可於基板9上設定各種區域。
The inspection performed on the
於所述步驟S14的學習用資料集的生成中,與假定缺陷圖像相乘的權重係數未必需要事先設定,亦可以於步驟S13的核實時等,作業者目視假定缺陷圖像並根據經驗來設定。於利用了由檢查部302所得的檢查結果的學習完成模型的再學習(步驟S31~步驟S33)中亦同樣如此。
In the generation of the learning data set in the step S14, the weight coefficient by which the assumed defect image is multiplied does not necessarily need to be set in advance, and the operator may visually inspect the assumed defect image and determine it based on experience during the verification of the step S13, etc. set up. The same is true for the relearning of the learning completion model (step S31 to step S33 ) using the inspection result obtained by the
於該學習完成模型的再學習(步驟S31~步驟S33)中,於步驟S32的新的學習用資料集的生成中,亦可以不進行對於假定缺陷圖像的加權(即,對應於缺陷的重要度的權重係數的相乘)。即便於該情況下,藉由學習完成模型的再學習,亦可以提升基板9的檢查精度。另外,未必需要進行該學習完成模型的再學習(步驟S31~步驟S33)。
In the re-learning of the learning completion model (steps S31 to S33), in the generation of the new learning data set in step S32, the weighting of the assumed defect image (that is, the importance corresponding to the defect may not be performed. multiplication of the weight coefficients of the degree). Even in this case, by completing the relearning of the model by learning, the inspection accuracy of the
所述第一電腦3及所述第二電腦4亦可以收納於裝置本體2的框體中。相反地,第二電腦4亦可以用作與檢查裝置1的其他結構獨立的單一的學習裝置。
The
所述實施方式及各變形例中的結構只要不相互矛盾,便 可適宜組合。 The configurations in the above-described embodiment and each modification are not contradictory to each other. Can be combined appropriately.
雖然已詳細地描繪並說明本發明,已描述的說明僅為例示並非用以限定本發明,在不脫離本發明的範圍內,當然能夠作包含許多的變形與態樣。 Although the present invention has been described and described in detail, the described description is merely illustrative and not intended to limit the present invention, and many modifications and aspects can of course be incorporated without departing from the scope of the present invention.
4:第二電腦 4: Second computer
45:顯示器 45: Display
401:第一輸入部 401: First input part
402:第二輸入部 402: Second input part
403:學習部 403: Learning Department
404:儲存部 404: Storage Department
Claims (16)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-170273 | 2019-09-19 | ||
JP2019170273A JP7317647B2 (en) | 2019-09-19 | 2019-09-19 | LEARNING DEVICE, INSPECTION DEVICE, LEARNING METHOD AND INSPECTION METHOD |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202113650A TW202113650A (en) | 2021-04-01 |
TWI775140B true TWI775140B (en) | 2022-08-21 |
Family
ID=74876234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109130836A TWI775140B (en) | 2019-09-19 | 2020-09-09 | Learning apparatus, inspection apparatus, learning method and inspection method |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7317647B2 (en) |
KR (1) | KR102529354B1 (en) |
CN (1) | CN112614086A (en) |
TW (1) | TWI775140B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102668045B1 (en) * | 2021-04-28 | 2024-05-22 | 주식회사 크레셈 | Method for inspection of board |
KR102632508B1 (en) * | 2021-04-30 | 2024-02-06 | 텔스타 주식회사 | Artificial intelligence-based tampon outer high-speed quality inspection system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201707436A (en) * | 2015-03-27 | 2017-02-16 | 英特爾公司 | Machine learning of real-time image capture parameters |
TW201901475A (en) * | 2017-05-19 | 2019-01-01 | 日商半導體能源硏究所股份有限公司 | Machine learning method, machine learning system and display system |
CN109142371A (en) * | 2018-07-31 | 2019-01-04 | 华南理工大学 | High density flexible exterior substrate defect detecting system and method based on deep learning |
CN109952019A (en) * | 2017-12-21 | 2019-06-28 | 株式会社高永科技 | Whether printed circuit board checking device, perception soldering paste abnormal method and computer can interpretation recording mediums |
CN110070536A (en) * | 2019-04-24 | 2019-07-30 | 南京邮电大学 | A kind of pcb board component detection method based on deep learning |
CN110186938A (en) * | 2019-06-28 | 2019-08-30 | 笪萨科技(上海)有限公司 | Two-sided defect analysis equipment and defects detection and analysis system |
CN110223269A (en) * | 2019-04-24 | 2019-09-10 | 深圳市派科斯科技有限公司 | A kind of FPC defect inspection method and device |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3566470B2 (en) * | 1996-09-17 | 2004-09-15 | 株式会社日立製作所 | Pattern inspection method and apparatus |
JPH10318937A (en) * | 1997-05-22 | 1998-12-04 | Dainippon Screen Mfg Co Ltd | Optical irregularity inspection device and method |
JP2006293820A (en) * | 2005-04-13 | 2006-10-26 | Sharp Corp | Appearance inspection device, appearance inspection method, and program for causing computer to function as appearance inspection device |
JP4950806B2 (en) * | 2006-08-22 | 2012-06-13 | 株式会社東芝 | Defect inspection apparatus, defect inspection method, semiconductor device manufacturing system, and semiconductor device manufacturing method |
JP2011158373A (en) * | 2010-02-02 | 2011-08-18 | Dainippon Screen Mfg Co Ltd | Method for creation of teacher data for use in automatic defect classification, and method and apparatus for automatic defect classification |
JP5546317B2 (en) * | 2010-03-31 | 2014-07-09 | 株式会社デンソーアイティーラボラトリ | Visual inspection device, visual inspection discriminator generation device, visual inspection discriminator generation method, and visual inspection discriminator generation computer program |
JP6009956B2 (en) * | 2013-01-31 | 2016-10-19 | 株式会社日立ハイテクノロジーズ | Defect inspection apparatus and defect inspection method |
JP6113024B2 (en) * | 2013-08-19 | 2017-04-12 | 株式会社Screenホールディングス | Classifier acquisition method, defect classification method, defect classification device, and program |
JP7039851B2 (en) | 2017-03-22 | 2022-03-23 | 日本電気株式会社 | Print image inspection device, print image inspection method, program |
JP2019039727A (en) | 2017-08-23 | 2019-03-14 | 富士通株式会社 | Image inspection device, method for inspecting image, and image inspection program |
-
2019
- 2019-09-19 JP JP2019170273A patent/JP7317647B2/en active Active
-
2020
- 2020-09-07 KR KR1020200113813A patent/KR102529354B1/en active IP Right Grant
- 2020-09-09 TW TW109130836A patent/TWI775140B/en active
- 2020-09-10 CN CN202010947201.8A patent/CN112614086A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201707436A (en) * | 2015-03-27 | 2017-02-16 | 英特爾公司 | Machine learning of real-time image capture parameters |
TW201901475A (en) * | 2017-05-19 | 2019-01-01 | 日商半導體能源硏究所股份有限公司 | Machine learning method, machine learning system and display system |
CN109952019A (en) * | 2017-12-21 | 2019-06-28 | 株式会社高永科技 | Whether printed circuit board checking device, perception soldering paste abnormal method and computer can interpretation recording mediums |
CN109142371A (en) * | 2018-07-31 | 2019-01-04 | 华南理工大学 | High density flexible exterior substrate defect detecting system and method based on deep learning |
CN110070536A (en) * | 2019-04-24 | 2019-07-30 | 南京邮电大学 | A kind of pcb board component detection method based on deep learning |
CN110223269A (en) * | 2019-04-24 | 2019-09-10 | 深圳市派科斯科技有限公司 | A kind of FPC defect inspection method and device |
CN110186938A (en) * | 2019-06-28 | 2019-08-30 | 笪萨科技(上海)有限公司 | Two-sided defect analysis equipment and defects detection and analysis system |
Also Published As
Publication number | Publication date |
---|---|
KR102529354B1 (en) | 2023-05-04 |
KR20210033900A (en) | 2021-03-29 |
TW202113650A (en) | 2021-04-01 |
JP7317647B2 (en) | 2023-07-31 |
JP2021047104A (en) | 2021-03-25 |
CN112614086A (en) | 2021-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110658198B (en) | Optical detection method, optical detection device and optical detection system | |
US6198529B1 (en) | Automated inspection system for metallic surfaces | |
TW583389B (en) | A surface conduction examination method and a substrate examination device | |
CN104819984B (en) | The check device and inspection method of printed circuit board (PCB) outward appearance | |
Moganti et al. | Automatic PCB inspection systems | |
TWI775140B (en) | Learning apparatus, inspection apparatus, learning method and inspection method | |
JPH09275272A (en) | Soldering check device and method taking advantage of relative neuron network | |
KR102252592B1 (en) | Apparatus and method for inspecting substrate defect | |
Sanz et al. | Machine-vision techniques for inspection of printed wiring boards and thick-film circuits | |
JP4788549B2 (en) | Image storage method and image storage processing apparatus for appearance inspection | |
JP4015436B2 (en) | Gold plating defect inspection system | |
JP2021056004A (en) | Image determination device and image determination method | |
JP4506395B2 (en) | Substrate inspection device, parameter setting method and parameter setting device | |
Kumar et al. | Automated quality inspection of PCB assembly using image processing | |
CN111665264A (en) | Representative color determining method, inspection device, inspection method, and recording medium | |
Zhang | Computer-aided visual inspection for integrated quality control | |
JP2024110453A (en) | Inspection device and inspection method | |
JPH0669700A (en) | Visual inspection system for printed board unit | |
JP2959156B2 (en) | Solder shape inspection method | |
JPH07159333A (en) | Apparatus and method for inspection of appearance | |
JP2024132653A (en) | Inspection device, inspection method, and program | |
KR100240956B1 (en) | Apparatus and method for visual inspecting of solder joint | |
JP3348059B2 (en) | Method for manufacturing semiconductor device | |
KR19990070849A (en) | Solder Inspection System and Method of Printed Circuit Board | |
Vaidya | Automatic Optical Inspection-Based PCB Fault Detection Using Image Processing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent |