TWI774239B - 可重組態功率轉換器 - Google Patents

可重組態功率轉換器 Download PDF

Info

Publication number
TWI774239B
TWI774239B TW110105412A TW110105412A TWI774239B TW I774239 B TWI774239 B TW I774239B TW 110105412 A TW110105412 A TW 110105412A TW 110105412 A TW110105412 A TW 110105412A TW I774239 B TWI774239 B TW I774239B
Authority
TW
Taiwan
Prior art keywords
controller
power conversion
conversion device
phase
phases
Prior art date
Application number
TW110105412A
Other languages
English (en)
Other versions
TW202203559A (zh
Inventor
特雷 羅西格
帕拉格 歐克
雪尼凡賽 賈格納瑟
納任拉 葛丹
Original Assignee
美商予力半導體公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商予力半導體公司 filed Critical 美商予力半導體公司
Publication of TW202203559A publication Critical patent/TW202203559A/zh
Application granted granted Critical
Publication of TWI774239B publication Critical patent/TWI774239B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/165Modifications for eliminating interference voltages or currents in field-effect transistor switches by feedback from the output circuit to the control circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)
  • Amplifiers (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

本發明提供一種功率轉換裝置,其包括:一半導體基板;複數個控制器,其形成於該半導體基板上;兩個或多於兩個轉換器相,其形成於該半導體基板上;兩個或多於兩個可程式化組件,其形成於該半導體基板上,該等可程式化組件中之每一者連接至該兩個或多於兩個轉換器相中之一各別者;及一互連電路,其形成於該半導體基板上。該兩個或多於兩個可程式化組件可程式化以經由該互連電路將該兩個或多於兩個轉換器相選擇性地耦接至該複數個控制器。

Description

可重組態功率轉換器
除非本文中另外指示,否則此章節中所描述之材料並非本申請案中之申請專利範圍的先前技術,且並不因包括於此章節中而被認可為先前技術。
DC-DC開關轉換器將來自DC電源之功率轉換至DC負載,諸如處理器或其他負載元件,同時轉換電壓及電流特性。多相開關轉換器包括一組並聯的功率級。在一些狀況下,為了將足夠功率提供至不同負載,可並聯地組合多個功率級以增加所供應功率及/或提供具有改善電特性(例如,更好地控制的輸出電壓)之功率。在此類狀況下,可針對每一應用具體地設計多級功率轉換器。
本揭示案之態樣係關於電源供應器,且更特定而言但未必排他地,係關於可重組態功率轉換器。
在一些實施例中,一種功率轉換裝置包含一半導體基板及形成於該半導體基板上之一或多個控制器電路。兩個或多於兩個轉換器相電路形成於半導體基板上,且一或多個可程式化組件形成於半導體基板上,該一或多個可程式化組件可程式化以將兩個或多於兩個轉換器相電路中之任一者選擇性地耦接至一或多個控制器電路中之任一者。
在一些實施例中,一種功率轉換裝置包含一半導體基板及形成於該半導體基板上之一或多個控制器電路。兩個或多於兩個轉換器相電路形成於半導體基板上,且可組態電路將一或多個控制器電路中之任一者耦接至兩個或多於兩個轉換器相電路中之任一者。
根據各種態樣,提供一種功率轉換裝置。在一些態樣中,該功率轉換裝置可包括:一半導體基板;複數個控制器,其形成於該半導體基板上;兩個或多於兩個轉換器相,其形成於該半導體基板上;兩個或多於兩個可程式化組件,其形成於該半導體基板上,該等可程式化組件中之每一者連接至兩個或多於兩個轉換器相中之各別者;及一互連電路,其形成於該半導體基板上。該兩個或多於兩個可程式化組件可程式化以經由該互連電路將該兩個或多於兩個轉換器相選擇性地耦接至該複數個控制器。
根據各種態樣,提供一種功率轉換裝置。在一些態樣中,該功率轉換裝置可包括:控制器,其形成於半導體基板上;及轉換器相,其形成於半導體基板上,該等轉換器相經由可程式化組件通信耦接至控制器。該等可程式化組件可程式化以將轉換器相選擇性地耦接至控制器。
根據各種態樣,提供一種功率轉換裝置。在一些態樣中,該功率轉換裝置可包括:一半導體基板;一或多個控制器,其形成於該半導體基板上;複數個轉換器相,其形成於該半導體基板上;及一可組態互連電路,其將一或多個控制器中之任一者耦接至複數個轉換器相中之任一者。
相關申請案之交叉參考
本申請案主張2020年2月13日申請之美國臨時申請案第62/976,052號、2020年2月14日申請之美國臨時申請案第62/977,075號及2021年2月12日申請之美國專利申請案第17/175,466號的權益,該等申請案中之每一者特此出於所有目的而以全文引用之方式併入本文中。
雖然描述了某些實施例,但此等實施例僅作為實例呈現且並不意欲限制保護範圍。本文中所描述之設備、方法及系統可以多種其他形式體現。此外,可在不脫離保護範圍之情況下以本文中所描述之實例方法及系統的形式進行各種省略、替代及改變。
多相轉換器用於自膝上型電腦及平板電腦至伺服器、行動電話及乙太網路交換器之許多計算領域以及其他領域中,以滿足苛刻的功率遞送要求。多相轉換器為一組並聯的功率級,該等功率級中之每一者可包括一電感器及一或多個電源開關。並聯功率級中之一些可組態以將功率遞送至負載且可共用輸出電容器。變化的負載要求(例如,不同的輸出電壓及/或輸出電流)可能需要功率級之不同組合以用最佳效率供應必需的功率。本揭示案之態樣可提供一種可重組態功率轉換器,其能夠根據變化的負載要求而提供功率級之不同組合。在一些實施例中,該功率轉換器經由「硬連線(hardwiring)」在裝置及/或封裝層級處進行組態,且在其他實施例中,功率轉換器經由一或多個可程式化組件進行組態,該一或多個可程式化組件可為靜態的(例如,固定)或動態的(例如,可基於負載需求而改變),如下文更詳細地描述。
圖1為根據本揭示案之一些態樣的可重組態功率轉換器100之簡化方塊圖。如圖1中所展示,可重組態功率轉換器100包括第一控制器105及第二控制器110,其各自經由通信匯流排120耦接至五個轉換器電路(亦被稱作「相」) 115a至115e中之每一者,該通信匯流排在本文中亦被稱作可組態電路109之一部分。在一些實施例中,可組態電路109可將相115a至115e中之任一者耦接至控制器105、110中之任一者,且進一步可將時脈125耦接至相115a至115e中之任一者及控制器105、110中之任一者,如下文更詳細地描述。
在一些實施例中,可組態電路109可包括互連電路(例如,個別電導體),該互連電路形成於基板上且經配置以形成控制器電路中之任一者與兩個或多於兩個轉換器相電路中之任一者之間的電連接。在一個實施例中,可組態電路109可包括形成於控制器105、110、相115a至115e及/或時脈125之間的一或多個電跡線及/或開關。在一些實施例中,可組態電路109可例如使用形成於半導體基板上之一或多個金屬層、跨越半導體基板形成之接合線及/或形成於電佈線結構(例如,電路板、封裝基板、引線框等)中之外部電導體進行「硬連線」。在其他實施例中,可組態電路109可為可使用一或多個可程式化組件程式化的,該一或多個可程式化組件組態由互連電路形成之電連接。亦即,在一些實施例中,可程式化組件可為開關,或可控制將任何控制器105、110耦接至任何相115a至115e且將時脈125耦接至控制器中之任一者或相中之任一者的一或多個開關。
在一些實施例中,一或多個可程式化組件可包含基於電晶體之開關,諸如但不限於三態緩衝器。在其他實施例中,一或多個可程式化組件包含非揮發性記憶體及/或數位電路系統。在另外其他實施例中,一或多個可程式化組件包含一熔絲及/或一或多個反熔絲。在一些實施例中,非揮發性記憶體可包含熔絲或反熔絲。
在一些實施例中,一或多個可程式化組件中之至少一者為一或多個控制器電路之一部分。舉例而言,在一個實施例中,控制器電路105、110可各自包括複數個三態緩衝器,該等緩衝器選擇性地將控制器105耦接至相115a至115c且將控制器110耦接至相115d及115e,因此每一各別相自其各別控制器接收控制資訊。在另一實施例中,相115a至115e可各自具有複數個三態緩衝器,該等緩衝器將相中之每一者選擇性地耦接至特定時脈控制線,使得每一相接收適當計時的信號。亦即,使用上述實例,相115a至115e可各自耦接至分開的時脈控制線,因此每一相以隔開120度之方式進行觸發。使用此同一實例,當由於負載要求降低而控制器105將相115c斷開時,可組態電路109可改變三態緩衝器開關之組態,使得控制器105現僅耦接至相115a及115b。類似地,時脈125現可選擇性地耦接至相115a及115b,該等相各自以隔開180度之方式自時脈125接收PWM控制信號。控制器105可基於其正控制多少相而程式化以具有不同的操作模式。舉例而言,當控制三個相時,控制器可具有具體地程式化之增益、設定點、電壓臨限值、電流臨限值及其類似者,且當控制兩個相時,控制器可改變操作參數中之任一者或全部。
在一些實施例中,開關及/或可程式化組件中之一或多者可定位於控制器105、110與相115a至115e之間。在一個實例中,通信匯流排120可包括複數個三態緩衝器,該等緩衝器可經由可程式化組件程式化,使得該等三態緩衝器並非控制器電路系統或相電路系統之一部分,但定位於此等電路之間。因此,互連電路可包括自每一控制器、時脈及相至一組開關之金屬跡線,且該組開關可經由可程式化組件操作以將任何控制器耦接至任何相且將任何時脈耦接至任何控制器及/或任何相。雖然圖1說明具有五個相之可重組態功率轉換器,但在不脫離本揭示案之範圍的情況下,可重組態功率轉換器可具有更多或更少相。
標準化的功率轉換裝置130可為半導體裝置,其分別包括:第一控制器105及第二控制器110;時序電路系統125,例如時脈電路、振盪器電路或其他時序電路;及五個相115a至115e,其各自經配置以將功率自能量源(未圖示)遞送至一或多個負載(未圖示)。每一相可包括例如但不限於一或多個電源開關(例如,金屬氧化物半導體場效電晶體(MOSFET)或雙極電晶體)、脈寬調變器(PWM)以及其他電路系統。在一些實施方案中,PWM可包括於控制器(例如,第一控制器105及第二控制器110)中。第一控制器105及第二控制器110、時序電路系統125及五個相115a至115e可形成於整體基板上。
在一些實施方案中,整體基板可為整體單塊基板。在一些實施方案中,第一控制器105及第二控制器110以及時序電路系統125可形成於一個基板上,且五個相115a至115e可形成於不同基板上。在不脫離本揭示案之範圍的情況下,其他組態為可能的。通信匯流排120可用以分別形成相115a至115e中之每一者與第一控制器105及第二控制器110中之一者之間的電連接,從而針對各種應用組態可重組態功率轉換器100。第一控制器105及第二控制器110中之每一者可經程式化以控制可重組態功率轉換器100之五個相115a至115e中的任一者或全部。在一些組態中,時序電路系統可含於控制器或相電路系統中之一或多者中。在一些組態中,不利用時序電路系統。
舉例而言,在一個實施例中,第一控制器105可組態以控制形成單相功率轉換器之第一相115a,且第二控制器110可組態以控制形成四相功率轉換器之剩餘相115b至115e。在另一實例中,第一控制器105可組態以控制形成二相功率轉換器之第一相115a及第二相115b,且第二控制器110可組態以控制形成三相功率轉換器之剩餘相115c至115e。控制器與相之任何組合可經由可組態電路109進行組態。在一些實施例中,控制器(例如,控制器110)可使正主動地將功率遞送至負載之相(例如,相115c至115e)的數目動態地變化,因此可最佳化功率轉換效率。
在一些實施例中,通信匯流排120可經由硬連線(在基板上或經由基板外組件)、一或多個組件之程式化、多工、開關矩陣、數位定址、諸如熔絲之非揮發性記憶體或任何其他合適的方法形成,如下文更詳細地描述。每一相115a至115e可為分開的功率轉換器電路,其包括來自電源之功率輸入、一或多個固態開關、開關驅動器電路、二極體及其他電子組件。在一個實例中,每一相115a至115e為同步降壓轉換器。在一些實施例中,每一相115a至115e可具有不同的功率轉換容量、操作電壓、電流容量或其他參數。在一個實施例中,相115a為具有2瓦特之功率遞送能力的低功率睡眠模式相,而相115b至115e各自具有10瓦特之功率遞送能力。
圖2A為說明根據本揭示案之一些態樣的可重組態功率轉換器200之實例的簡化示意圖。圖2B為說明根據本揭示案之一些態樣的可重組態功率轉換器250之另一實例的簡化示意圖。參看圖2A及圖2B,可重組態功率轉換器200、250中之每一者可包括標準化的功率轉換裝置205。標準化的功率轉換裝置205可分別安裝於電子封裝210、260內。標準化的功率轉換裝置205可包括兩個控制器215a、215b及五個相220a至220e。可重組態功率轉換器之其他實施方案可包括兩個或多於兩個控制器及/或兩個或多於兩個相。
在本文中亦被稱作互連電路之通信匯流排225、265可將控制器215a、215b中之每一者耦接至相220a至220e。舉例而言,如圖2A及圖2B中所展示,每一控制器215a、215b及每一相220a至220e經組態有可在標準化的功率轉換裝置205上存取的通信線230。每一電子封裝210、260可包括形成每一各別通信匯流排225、265之虛線部分235、270的電路系統。因為電子封裝210、260形成通信匯流排225、265之一部分,所以對於不同應用,標準化的功率轉換裝置205可藉由組態每一電子封裝內之通信匯流排225、265的虛線部分235、270 (在本文中亦被稱作電佈線結構)而經由不同電子封裝使用及重組態。電佈線結構可為例如但不限於封裝內基板(PCB或陶瓷)、封裝引線框、晶粒間接合線、晶粒間接點(例如,焊柱、焊球或其他接觸結構)、主機板跡線,或不在含有控制器及相之晶粒上且經組態以將控制器耦接至相的其他構造。組態通信匯流排之能力可使得任何控制器能夠耦接至任何相,如下文更詳細地描述。在一些實施方案中,通信匯流排(例如,互連電路)可作為金屬化導體完全形成於半導體基板之基板上。在一個實例中,晶圓可為分段的,等待頂部金屬層。在客戶訂購控制器及相之特定組態之後,可塗覆頂部金屬層以針對彼特定組態適當地組態通信匯流排。在其他實施例中,半導體基板中之任何層或層組合可用於形成通信匯流排之一部分。
參看圖2A,標準化的功率轉換裝置205可用於功率轉換器200中以組態單相及四相功率轉換器。功率轉換器200可包括耦接至第一相220a之第一控制器215a及耦接至剩餘四個相220b至220e之第二控制器215b。第一控制器215a與第一相220a之間的電連接235可藉由電導體形成,該等電導體例如但不限於電子封裝210內之印刷電路配線及/或半導體基板之頂部層金屬化物。類似地,第二控制器215b與剩餘四個相220b至220e之間的電連接235可藉由電導體形成,該等電導體例如但不限於印刷電路配線及/或半導體基板之頂部層金屬化物。
參看圖2B,標準化的功率轉換裝置205可用於功率轉換器250中以組態三相及二相功率轉換器。功率轉換器250可包括耦接至三個相220a至220c之第一控制器215a及耦接至剩餘兩個相220d至220e之第二控制器215b。第一控制器215a與三個相220a至220c之間的電連接270可藉由電導體形成,該等電導體例如但不限於電子封裝260之印刷電路配線及/或半導體基板之頂部層金屬化物。類似地,第二控制器215b與剩餘兩個相220d至220e之間的電連接270可藉由電導體形成,該等電導體例如但不限於電子封裝260之印刷電路配線及/或半導體基板之頂部層金屬化物。
如圖2A及圖2B中所說明,在一些實施例中,標準化的功率轉換裝置205為包括一或多個控制器(例如,分別為第一控制器215a及第二控制器215b)及一或多個相(例如,相220a至220e)之半導體裝置。更具體而言,除相中之每一者的電源開關以外,半導體裝置亦可包括控制器之邏輯及控制功能。標準化的功率轉換裝置205可具有複數個端子237、277,該等端子可用多種方式重組態以將控制器中之任一者耦接至相中之任一者,如下文更詳細地描述。在一些實施例中,端子237、277藉由接合線、焊球(例如,覆晶組態)、焊料連接件、導電黏著接頭或任何其他導電結構電耦接在一起或電耦接至外部結構。
在一些實施例中,相較於電子封裝260,控制器及功率轉換器相之不同組態可藉由電子封裝210內之不同配線實現。每一電子封裝210、260可包括可重組態為通信匯流排225、265之一部分的電導體。在一些實施例中,電導體之不同佈線可藉由改變可為塑膠電子封裝(諸如,四邊扁平無引腳(QFN)或球柵陣列(BGA)封裝)之組件的以下各者來實現:基板中之電路板跡線、引線框或任何其他類型之電佈線結構。在其他實施例中,複數個端子237、277可經佈線至附接其他電組件之主機板,且主機板可將控制器中之任一者耦接至相中之任一者。在另外其他實施例中,電導體之不同佈線可藉由改變形成於功率轉換裝置205上之一或多個金屬化層來實現。
當功率轉換器相220a至220e之組態改變(諸如,自圖2A至圖2B)時,第一控制器215a及第二控制器215b中之每一者可經程式化以在裝置測試及/或封裝測試期間控制適當的相。在一些實施方案中,第一控制器215a及第二控制器215b中之每一者可輪詢相220a至220e以自動地偵測經由可重組態匯流排225、265耦接至每一控制器之相的數目。第一控制器215a及第二控制器215b中之每一者可自動地組態自身以控制其耦接之相的數目。在其他實施例中,第一控制器215a及第二控制器215b中之每一者可經由與諸如以下各者之外部裝置的通信進行程式化:微控制器、電腦及/或具有由控制器讀取之特定值的一或多個周邊組件(例如,電阻器、電容器及其類似者)。
根據本揭示案之各種態樣,每一相220a至220e可經組態有不同的功率轉換器,包括但不限於DC至DC轉換器、AC至DC轉換器、DC至AC轉換器或其他轉換器架構。在一些實施方案中,功率轉換架構可包括例如但不限於降壓轉換器、同步降壓轉換器、升壓轉換器、降壓/升壓轉換器、電壓模式轉換器、電流模式轉換器、恆定接通時間轉換器、固定頻率轉換器或其他轉換架構。在一些實施例中,每一相可包括並聯連接之一系列半導體開關,如更詳細地描述於共同擁有的美國專利9,300,210以及相關接續案及分案中,該等案皆出於所有目的而以全文引用之方式併入本文中。
舉例而言,參看圖2A,在一個實施方案中,第一相220a可經組態為用於在中央處理單元(CPU)之睡眠模式期間將功率供應至CPU的低功率高效DC至DC功率轉換器。剩餘相220b至220e可經組態為用於在將CPU喚醒時將功率供應至CPU之高功率四相DC至DC功率轉換器。在另一實施方案中,兩個相220a至220b可形成二相轉換器,且剩餘三個相220c至220e可形成三相轉換器。在又一實施方案中,第一相220a可經組態為將5伏特電源轉換至24伏特電源之升壓轉換器,且剩餘相220b至220e可經組態為將5伏特電源轉換至1.3伏特電源之多相降壓轉換器。因此,標準化的功率轉換裝置205可藉由將標準化的功率轉換裝置205封裝於不同的電子封裝210、260中來用於各種應用,該等電子封裝組態通信匯流排225、265之適當連接。上述實例僅用於說明且控制器及/或相之任何參數可經程式化,包括但不限於輸出電壓、輸出電流、最大作用時間循環、最小作用時間循環、過電流及過電壓保護。
根據本揭示案之各種態樣,第一控制器215a及第二控制器215b中之一或多者可經程式化以在由控制器控制之相上的負載發生變化時動態地改變所使用之相220a至220e的數目。舉例而言,再次參考圖2A中所展示之組態,第二控制器215b控制四個相220b至220e。在一些狀況下,可能僅需要一個相,例如相220b,來以最佳效率將功率供應至負載。然而,隨著負載之需求增大,第二控制器215b可根據負載需要添加額外相220c至220e。該等相可基於負載要求(例如,輸出電壓及/或輸出電流及功率轉換器之效率)而一次一個地或組合地添加。
根據本揭示案之各種態樣,耦接至多相控制器之一或多個相可能夠提供不同的輸出功率。舉例而言,再次參看圖2A,第一相220a可能夠供應500毫安,而剩餘四個相220b至220e可各自能夠供應5安培。在一些實施方案中,當判定在多相操作期間啟動哪些相時,多相控制器可考量每一相之變化的功率遞送能力。
如圖2A及圖2B中所說明,每一通信匯流排225、265至少部分地藉由包括於電子封裝210、260中之電導體進行組態。根據本揭示案之各種態樣,通信匯流排可經由可重組態功率轉換器之控制器(例如,第一控制器215a及第二控制器215b)及/或每一相(例如,相220a至220e)的程式化進行組態。舉例而言,在一些實施方案中,可利用數位通信匯流排(或任何其他類型之通信匯流排)。在此等實施方案中,每一控制器僅對與經組態以與控制器通信之相之位址對應的信號作出回應。
在一些實施方案中,通信匯流排225、265可為積體電路間(I2 C)匯流排或其他合適的通信匯流排。通信匯流排225、265可使用標準化或專屬的通信協定以用於控制器與相之間的通信。在一些實施方案中,通信匯流排225、265可經多次組態且經由開關多工器裝置、基於電晶體之開關的陣列或其他合適的多工架構(未圖示)形成。在其他實施例中,通信匯流排225、265可經一次組態,且經由硬連線、諸如熔絲及/或反熔絲之非揮發性記憶體等形成。
通信匯流排225、265可為具有多個並列通信通道之雙向匯流排。雙向匯流排可使得控制器及相能夠進行傳輸通信及接收通信兩者。匯流排可為數位信號、類比信號或類比信號與數位信號之組合。每一相可將命令或請求發送至其各別控制器,該等命令或請求向控制器提供關於彼特定相及/或負載要求之資訊。舉例而言,再次參看圖2A,第一相220a可經由雙向匯流排將通信發送至第一控制器215a,且相220b至220e可經由雙向匯流排將通信發送至第二控制器215b。在一些實施方案中,每一作用中相可組態以將信號傳輸至各別控制器,該信號請求控制器在該作用中相接近或超過將功率供應至負載之安全操作限制時添加另一相。在一些實施例中,以類似方式,當負載之功率要求降低時,可減少(例如,斷開)相,其中可藉由控制器及/或相促進該減少。
根據本揭示案之各種態樣,時序電路系統(例如,一或多個時脈電路、振盪器電路或其他時序電路)可用以使每一相及/或每一控制器之操作同步。在一些實施方案中,控制器可經組態以「啟用」一或多個相以處於作用中,或「停用」一或多個相。當藉由觸發信號起始且供應適當的時序信號時,啟用相中之每一者可將功率供應至負載。停用相可不將功率供應至負載。時序電路系統可為集中式的或分散式的,如下文更詳細地描述。
電子封裝(例如,電子封裝210、260)可為任何類型或組態之電子封裝,包括但不限於塑膠球柵陣列(PBGA)、四邊扁平無引腳(QFN)、小型積體電路(SOIC)、晶片尺度封裝(CSP)及其混合物或變體。在一個實例中,電子封裝210、260可為PBGA,且用於每一電子封裝210、260之通信匯流排225、265的虛線部分235、270可經由形成於印刷電路板(PCB)中之電跡線或其他電佈線結構形成。因此,改變通信匯流排之組態可包括改變PCB內之一或多個電跡線的佈線。
在另一實施方案中,通信匯流排之組態可藉由改變電子封裝內之一或多個接合線的組態來改變。更具體而言,通信匯流排225、265之「重新佈線」可藉由改變電子封裝210、260內之接合線連接或藉由在標準化的功率轉換裝置205上執行修整功能(例如,藉由非揮發性記憶體,諸如熔絲、反熔絲或其他類型之組件)來執行。在其他實施例中,通信匯流排225、265之「重新佈線」可藉由改變形成通信匯流排之部分的一或多個基於電晶體之開關或其他邏輯電路系統(例如,可程式化組件)來執行。在不脫離本揭示案之範圍的情況下,電子封裝之其他變體及更改可用以重組態通信匯流排。
在一些實施方案中,輸出電感器240及/或輸出電容器245可整合於電子封裝210、260內。在一些實施方案中,輸出電感器240及/或輸出電容器245可作為離散組件鄰近於電子封裝而定位於電路板上,該等電子封裝經安裝至該電路板。在一些實施方案中,可結合可重組態功率轉換器使用可重組態電容器組,如下文更詳細地描述。在一些實施方案中,控制器及/或相中之一或多者可形成於分開的半導體晶粒上。實例可重組態電容器組揭示於共同擁有且同在申請中的申請案17/085,514中,該申請案之內容出於所有目的而以全文引用的方式併入本文中。
應瞭解,為易於解釋及理解,可重組態功率轉換器之態樣已描述及展示為具有兩個控制器及五個相。在不脫離本揭示案之範圍的情況下,任何數目個控制器及任何數目個相可用於可重組態功率轉換器。
圖3為說明根據本揭示案之一些態樣的通信匯流排300之實例的簡化示意圖。通信匯流排300可用於關於圖1及圖2A至圖2B所描述之可重組態功率轉換器中。相較於說明實施為電子封裝之一部分之通信匯流排的圖2A及圖2B,圖3之通信匯流排可藉由以下各者實施:諸如基於電晶體之開關、三態緩衝器或其他邏輯電路系統之匯流排選擇開關、其他可程式化組件、修整或硬連線,例如使用諸如熔絲及/或反熔絲之非揮發性記憶體,如本文中更詳細地描述,其經定位以控制每一相,如下文更詳細地描述。在一些實施方案中,可程式化組件可定位於該等相外部,而在其他實施例中,其可定位於該等相內。
如圖3中所展示,第一控制器320可耦接至第一通信匯流排線325,且第二控制器330可耦接至第二通信匯流排線335。如上文所描述,通信匯流排線在本文中亦可被稱作互連電路。每一通信匯流排線可包括一或多條實體信號線。第一通信匯流排線325及第二通信匯流排線335中之每一者可耦接至每一相340a至340e。每一相340a至340e可包括匯流排選擇開關310a至310e (例如,基於電晶體之開關、三態緩衝器或其他邏輯電路系統)或其他特徵(例如,諸如熔絲及/或反熔絲之非揮發性記憶體、金屬模片層、金屬化導體、接合線、焊料連接件等),其使得每一相能夠耦接至第一控制器320或第二控制器330且由該等控制器命令,從而使匯流排成為可組態互連電路。在圖3中所說明之實例中,第一相340a中之匯流排選擇開關310a耦接至第一匯流排線325,且因此可由來自第一控制器320之指令控制。類似地,分別用於第二至第五相340b至340e之匯流排選擇開關310b至310e耦接至第二匯流排線335,且因此可由來自第二控制器330之指令控制。因此,藉由改變匯流排選擇開關310a至310e之狀態,第一控制器320及第二控制器330可耦接至相340a至340e中之任一者。在一些實施例中,可組態互連電路可至少部分地定位於控制器內,且控制器內之一或多個可程式化開關可將相中之任一者耦接至控制器中之任一者。在各種實施例中,可組態互連電路可至少部分地定位於相內,且相內之一或多個可程式化開關可將相中之任一者耦接至控制器中之任一者。
在一個實例中,第一控制器320及第二控制器330可使用一或多個類比控制信號控制相340a至340e之操作。類比信號可直接控制相之輸出電流。控制器可使相產生與由控制器接收到之類比信號成比例的輸出電流。舉例而言,控制器可使相產生為常數乘以類比控制信號之值的輸出電流。在一些實施方案中,藉由每一相調整其比例常數或藉由控制器以其他方式修改至相之控制信號,可在相之間平衡輸出電流。
如圖3中所展示,第一控制器320可在第一匯流排線325上產生電壓。當第一匯流排線325上之電壓降至低於臨限電壓時,第一相340a可藉由減小其輸出功率來作出回應。相反地,當第一控制器320使第一匯流排線325上之電壓達到臨限電壓時,第一相340a可藉由增加其輸出功率來作出回應。舉例而言,可使用對應於負載要求而增加或減小的電流來實施類似控制方法。
在圖3中所說明之實施例中,匯流排選擇開關310a至310e可位於相340a至340e中之每一者中。在一些實施方案中,匯流排選擇開關可位於第一控制器320及第二控制器330中,或位於可通信耦接於第一控制器320及第二控制器330與相340a至340e之間的多工器裝置(未圖示)中。在一些實施方案中,匯流排選擇開關可在測試及/或組裝至電子封裝中期間經由數位通信、熔絲及/或反熔絲設定及/或程式化至每一相340a至340e中。在另一實施方案中,匯流排選擇開關可在將功率轉換裝置組裝至電子封裝中期間藉由形成電子封裝內之適當連接之間的接合線來設定,藉此有效地硬連線每一開關之位置。
雖然圖3將匯流排選擇開關310a至310e說明為開關組件(例如,基於電晶體之開關),但在不脫離本揭示案之範圍的情況下,可使用其他可程式化組件,例如但不限於可熔鏈(fusible link)、反熔絲等。在其他實施例中,任何類型之可組態硬連線可用以將任何控制器耦接至任何轉換器相,包括但不限於基板之金屬層、接合線、外部電路板跡線、焊料互連件等。
圖3亦說明耦接至第一控制器320以感測第一負載電壓V1之第一反饋線327及耦接至第二控制器330以感測第二負載電壓V2之第二反饋線337。第一控制器320及第二控制器330可使用感測到的負載電壓以判定每一負載之狀態(例如,負載電壓高於或低於指定電壓)。基於感測到的負載電壓,控制器可判定適當的控制信號,且將控制信號傳輸至一或多個相340a至340e以調節遞送至第一及第二負載之功率。
圖4為說明根據本揭示案之一些態樣的可重組態功率轉換器之時序電路400之實例的方塊圖。參看圖4,時序電路系統410可經由時脈匯流排415耦接至可重組態功率轉換器(例如,可重組態功率轉換器100)之每一相420a至420e。在一些實施方案中,時序電路系統410可實施為在控制器外部的電路系統。在圖4中所說明之實例中,時脈匯流排415每相420a至420e包括一個導體。在一些實施方案中,時脈匯流排可包括經多工至相420a至420e中之每一者的單個導體,或時脈匯流排可每相包括多個導體。如上文所描述,在一些實施方案中,控制器可「啟用」或「停用」可重組態功率轉換器之每一相。時序電路400可產生觸發信號,該等觸發信號可使每一啟用相起始開關循環(例如,將功率遞送至負載),如下文更詳細地描述。在一些實施方案中,時序電路系統410可藉由控制器實施。
在一些實施方案中,時序電路400可經由例如但不限於以下各者之可程式化組件耦接至相及/或控制器:可程式化開關(例如,基於電晶體之開關、三態緩衝器或其他邏輯電路系統)、諸如熔絲及/或反熔絲之非揮發性記憶體等。在其他實施例中,任何類型之硬連線可用以執行耦接,包括但不限於基板之金屬層、接合線、外部電路板跡線、焊料互連件等。
在一些實施方案中,控制器(例如,控制器320、330)可自電壓反饋信號線(例如,反饋線327、337)感測遞送至負載之功率,且可使用感測到的反饋資訊以啟用及/或停用相。在一些實施方案中,藉由感測電流,例如輸出電流、電感器中之電流、與電感器串聯之電阻器中的電流等,可替代地或另外為每一相提供電流反饋信號線422a至422e、424a至424e。可將電流反饋信號422a至422e、424a至424e提供至控制器430、時序電路系統410或其兩者。每一控制器可將「啟用」及「停用」命令傳輸至其控制的每一相,以滿足負載要求(例如,輸出電壓及/或輸出電流)。如上文所描述,每一控制器可經程式化以識別其控制的相及/或當不同相具有不同的功率輸出能力時,識別每一相之能力。每一「啟用」相可將指示該相經啟用之信號提供至時序電路系統400。
時序電路400可判定啟用相之數目且可為每一相產生時序信號。舉例而言,對於四個啟用相,時序信號可觸發四個相中之一個相,以基本上規則的間隔(例如,每90度)執行開關循環。時序信號可繼續為四個相中之每一者產生觸發信號,直至相要求例如由控制器改變。在各種實施例中,控制器可命令電路斷開一相,且時序電路系統可觸發三個相中之一個相以基本上規則的間隔(例如,每120度)執行開關循環。在一些實施例中,時脈電路可劃分時序信號且將時序信號之右邊緣發送至每一作用中相。控制器可發送信號以控制每一相之輸出(例如,類比或數位),該信號指示每一相之所要電流或電壓輸出。每一相可藉由用時序信號之右邊緣接通及用時序信號之左邊緣斷開來控制,其中左邊緣利用來自控制器之資訊以控制相之脈寬。
在一些實施方案中,控制器可藉由「停用」先前「啟用」相來主動地改變作用中相之數目。作為回應,新停用的相可停止將「啟用」信號發送至時序電路400。時序電路400可判定相之新數目且相應地調整觸發信號。舉例而言,若四個相中之一個相經停用,則時序電路400可以基本上規則的間隔(例如,每120度)將時序信號發送至三個啟用相。此動態相調整可在可重組態功率轉換器持續將功率供應至一或多個負載時執行。
在一些實施方案中,時序電路400可組態以為複數個控制器產生時序信號。時序電路400可使每一控制器之間的時序信號同步,例如以最小化雜訊及/或電源之不良激勵。在一些實施方案中,時序電路400可耦接至每一控制器。替代自每一相接收啟用哪些相及停用哪些相的資訊或除接收該資訊以外,時序電路400亦可自控制器判定彼資訊。在一些實施方案中,控制器及/或時序電路系統可藉由輸入數位程式碼而程式化以控制相。
圖5為說明根據本揭示案之一些態樣的包括分散式時序電路系統之可重組態功率轉換器500的簡化示意圖。參看圖5,相較於用於所有控制器之集中式時序電路400 (如圖4中所說明),每一控制器520、530可具有分開的時序電路系統522、532。如圖5中所說明,第一控制器520可包括第一時序電路系統522,且第二控制器530可包括第二時序電路系統532。第一時序電路系統522可耦接至第一時脈匯流排525,且第二時序電路系統532可耦接至第二時脈匯流排535。
每一相540a至540e可經由各別可程式化時脈匯流排選擇開關510a至510e (例如,基於電晶體之開關、三態緩衝器或其他邏輯電路系統)或其他可組態組件(例如,諸如熔絲及/或反熔絲之非揮發性記憶體、金屬模片層、金屬化導體等)耦接至第一時脈匯流排525或第二時脈匯流排535。時脈匯流排選擇開關510a至510e可類似於關於圖3所描述之匯流排選擇開關(例如,匯流排選擇開關310a至310e)而操作。因此,每一相540a至540e可選擇性地耦接至特定時序電路系統,該相自該時序電路系統接收信號以執行開關循環。在一些實施方案中,時序協調匯流排550可耦接於第一時序電路系統522與第二時序電路系統532之間以實現第一控制器520與第二控制器530之間的時序協調。在一些實施例中,時序電路系統522、532、時脈匯流排535及選擇開關510a至510e可連同控制器520、530及相540a至540e一起形成於整體半導體裝置上。
在一些實施方案中,控制器及時序電路系統之組態可藉由在功率轉換器外部的構件實現。舉例而言,外部組件(例如,耦接至功率轉換器之電阻器或電容器或其他組件或組件組合)可使功率轉換器組態控制器之連接且組態控制器及時序電路之連接。控制器可經程式化以辨識具體組件值或值組合,且作為回應,改變一組開關以組態通信及/或時脈匯流排,因此將特定相耦接至特定控制器。在一些實施方案中,可將數位程式碼輸入至功率轉換器以組態通信及/或時脈匯流排。
雖然圖5將匯流排選擇開關510a至510e說明為開關組件(例如,基於電晶體之開關),但在不脫離本揭示案之範圍的情況下,可使用其他組件,例如但不限於邏輯電路系統、諸如熔絲及/或反熔絲之非揮發性記憶體、金屬模片層、金屬化導體等。
圖6A為說明根據本揭示案之一些態樣的包括整合式可重組態電容器690之可重組態功率轉換器600之實例的簡化示意圖。圖6B為說明根據本揭示案之一些態樣的包括整合式可重組態電容器690之可重組態功率轉換器650之另一實例的簡化示意圖。
參看圖6A及圖6B,可重組態功率轉換器600、650中之每一者可包括標準化的功率轉換裝置605。標準化的功率轉換裝置605可分別安裝於電子封裝610、660內,且可為整體半導體裝置。標準化的功率轉換裝置605可類似於圖2A及圖2B中所說明之標準化的功率轉換裝置205。標準化的功率轉換裝置605可包括兩個控制器615a、615b及五個相620a至620e。可重組態功率轉換器之其他實施方案可包括任何數目個控制器及/或相。
可重組態電容器690可包括於具有標準化的功率轉換裝置605之電子封裝610、660內。類似於圖2A及圖2B中所描述之實施方案,通信匯流排625、665可將控制器615a、615b中之每一者耦接至相620a至620e。舉例而言,如圖6A及圖6B中所展示,每一控制器615a、615b及每一相620a至620e經組態有可在標準化的功率轉換裝置605上存取的通信線630。每一電子封裝610、660可包括形成每一各別通信匯流排625、665之虛線部分635、670的電路系統。
因為電子封裝610、660形成通信匯流排625、665之一部分,所以對於不同應用,可藉由組態每一電子封裝內之通信匯流排625、665的虛線部分635、670而經由不同電子封裝使用及重組態標準化的功率轉換裝置605。類似地,可重組態電容器690包括複數個電容器692,該等電容器可使用電子封裝610、660之電路系統695耦接在一起以針對每一負載將適當數目個電容器耦接在一起。
參看圖6A,標準化的功率轉換裝置605可用於功率轉換器600中以組態單相及四相功率轉換器。功率轉換器600可包括耦接至第一相620a之第一控制器615a及耦接至剩餘四個相620b至620e之第二控制器615b。第一控制器615a與第一相620a之間的電連接635可藉由電子封裝610之電導體(例如但不限於印刷電路配線)形成。類似地,第二控制器615b與剩餘四個相620b至620e之間的電連接635可藉由電子封裝610之電導體(例如但不限於印刷電路配線)形成。
在圖6A中所說明之實施方案中,可重組態電容器690中之兩個電容器可耦接在一起以用於第一負載,且可重組態電容器690中之四個電容器可耦接在一起以用於第二負載。第一相620a與可重組態電容器690中之兩個電容器之間的電連接695可藉由電子封裝610之電導體(例如但不限於印刷電路配線)形成。類似地,剩餘四個相620b至620e與可重組態電容器690中之四個電容器之間的電連接695可藉由電子封裝610之電導體(例如但不限於印刷電路配線)形成。
參看圖6B,標準化的功率轉換裝置605可用於功率轉換器650中以組態二相及三相功率轉換器。功率轉換器650可包括耦接至兩個相620a至620b之第一控制器615a及耦接至剩餘三個相620c至620e之第二控制器615b。第一控制器615a與兩個相620a至620b之間的電連接670可藉由電子封裝660之電導體(例如但不限於印刷電路配線)形成。類似地,第二控制器615b與剩餘三個相620c至620e之間的電連接670可藉由電子封裝660之電導體(例如但不限於印刷電路配線)形成。
如圖6A及圖6B中所說明,相較於電子封裝660,功率轉換器相及電容器之不同組態可藉由電子封裝610內之不同配線實現。每一電子封裝610、660可包括可重組態為通信匯流排625、665之一部分的電導體。在一些實施方案中,通信匯流排可經由硬連線、一或多個組件之程式化、多工、開關矩陣、數位定址或任何其他合適的結構形成。在一些實施方案中,可重組態電容器匯流排可經由多工裝置、一系列離散開關或其他合適的裝置形成。在其他實施方案中,輸出電感器可經由電子封裝內之電路系統、多工裝置及/或離散開關或其他合適的裝置重組態。
圖7為說明根據本揭示案之一些態樣的用於控制形成於單個半導體晶粒上之功率轉換積體電路(IC)裝置的方法700之實例的流程圖。參看圖7,在區塊710處,可判定藉由功率IC裝置遞送至負載的功率。控制器可感測遞送至負載的功率。舉例而言,耦接至控制器的反饋線可感測遞送的功率。控制器可使用感測到的負載電壓來判定負載狀態(例如,負載電壓高於或低於指定電壓)。
在區塊720處,可判定待啟用之相的數目。基於感測到的負載電壓,控制器可判定待啟用以滿足負載要求之相的數目。
在區塊730處,可啟用該等相。控制器可判定適當的控制信號且將控制信號傳輸至一或多個相以調節遞送至負載的功率。
在區塊740處,控制器可繼續監測負載要求。控制器可基於例如來自反饋線之信號而感測負載要求,以判定負載要求是否改變。舉例而言,反饋信號的改變可指示功率IC裝置上的較高或較低負載。
在區塊750處,控制器可判定負載要求是否已改變。舉例而言,功率IC裝置可判定功率IC裝置上的負載已增加抑或減小。回應於判定功率IC裝置上的負載尚未改變(750-否),該方法可在區塊740處繼續以監測負載要求。
回應於判定功率IC裝置上的負載已改變(750-是),該方法可在區塊720處繼續以判定滿足負載要求之相的數目。
圖7中所說明之具體操作提供根據本揭示案之實施例的用於控制形成於單個半導體晶粒上之功率轉換積體電路(IC)裝置的特定方法。亦可根據替代實施例執行其他操作序列。舉例而言,本揭示案之替代實施例可按不同次序執行上文所概述之操作。此外,圖7中所說明的個別操作可包括多個子操作,該等子操作可按如適於個別操作之各種序列執行。此外,可取決於特定應用而添加或移除額外操作。
圖8為說明根據本揭示案之一些態樣的用於製造可組態功率轉換器積體電路(IC)的方法800之實例的流程圖。參看圖8,在區塊810處,可形成複數個轉換器相。轉換器相可為藉由可用半導體製程形成於基板上的半導體裝置。每一相可包括例如但不限於一或多個電源開關(例如,金屬氧化物半導體場效電晶體(MOSFET)或雙極電晶體)、脈寬調變器(PWM)以及其他電路系統。
在區塊820處,可形成複數個控制器。該等控制器可為藉由可用半導體製程形成於基板上的半導體裝置。該等控制器可與轉換器相形成於同一基板上,或可形成於不同基板上。該等控制器中之每一者可組態以控制指定數目個轉換器相。
在區塊830處,可形成通信匯流排。該等通信匯流排可用以形成轉換器相與控制器之間的電連接。該等通信匯流排之部分可形成於基板上,控制器及轉換器相形成於該基板上。
在區塊840處,通信匯流排之部分可形成於電子封裝中。該電子封裝可為例如但不限於塑膠球柵陣列(PBGA)、四邊扁平無引腳(QFN)、小型積體電路(SOIC)、晶片尺度封裝(CSP)及其混合物或變體。該電子封裝可包括封裝基板,通信匯流排之部分形成於該封裝基板上。舉例而言,經組態以提供控制器與轉換器相之間的連接的電路跡線可形成於封裝基板上。
在區塊850處,複數個轉換器相及複數個控制器可整合於電子封裝中。控制器及轉換器相中之每一者可電及機械耦接至電子封裝之基板。在一些實施方案中,用於轉換器相之輸出電感器可整合於電子封裝內。
在區塊860處,配線連接可形成於電子封裝中之通信匯流排的部分上。配線連接可形成於電子封裝中之通信匯流排的部分上以將控制器電耦接至轉換器相。配線連接可將每一控制器耦接至指定數目個相,以將所需量之功率提供至指定負載。通信匯流排可使得標準化的功率轉換裝置能夠經組態用於具有不同功率要求之負載的多種應用。
在區塊870處,可形成可重組態電容器及可重組態電容器匯流排。可重組態電容器以及可重組態電容器匯流排之部分可與控制器及轉換器相形成於同一基板上,或可形成於不同基板上。可重組態電容器匯流排之其他部分可形成於電子封裝之封裝基板上。可重組態電容器可包括可藉由可重組態電容器匯流排耦接在一起的複數個個別電容器。配線連接可形成於電子封裝中之可重組態電容器匯流排的部分上,以將個別電容器電耦接至轉換器相。在一些實施方案中,可重組態電容器可替代地或另外藉由附接電子封裝之PCB上的配線跡線來重組態。
圖8中所說明之具體操作提供根據本揭示案之實施例的用於製造可組態功率轉換器的特定方法。亦可根據替代實施例執行其他操作序列。舉例而言,本揭示案之替代實施例可按不同次序執行上文所概述之操作。此外,圖8中所說明的個別操作可包括多個子操作,該等子操作可按如適於個別操作之各種序列執行。此外,可取決於特定應用而添加或移除額外操作。
為簡單起見,在諸圖中未展示各種周邊電組件及電路。
在前述說明書中,已參考可根據實施方案而變化之眾多具體細節而描述本揭示案之實施例。因此,應在說明性意義上而非限制性意義上看待說明書及圖式。本揭示案之範圍的唯一且排他性的指示以及申請者期望成為本揭示案之範圍的內容為以申請專利範圍發佈之具體形式而自本申請案發佈之此類申請專利範圍的集合之文字及等效範圍,包括任何後續校正。可在不脫離本揭示案之實施例的精神及範圍的情況下以任何合適的方式組合特定實施例之具體細節。
另外,諸如「底部」或「頂部」以及其類似者之空間相對術語可用以描述一元件及/或特徵與另一(多個)元件及/或特徵的關係,如(例如)說明於諸圖中。應理解,空間相對術語意欲涵蓋裝置在使用及/或操作中除諸圖中所描繪之定向以外的不同定向。舉例而言,若諸圖中之裝置經翻轉,則描述為「底部」表面之元件可接著定向於其他元件或特徵「上方」。裝置可按其他方式定向(例如,旋轉90度或處於其他定向)且本文中所使用之空間相對描述詞相應地進行解譯。
100:可重組態功率轉換器 105:第一控制器 109:可組態電路 110:第二控制器 115a:第一相/轉換器電路 115b:第二相/轉換器電路 115c:相/轉換器電路 115d:相/轉換器電路 115e:相/轉換器電路 120:通信匯流排 125:時脈/時序電路系統 130:標準化的功率轉換裝置 200:可重組態功率轉換器 205:功率轉換裝置 210:電子封裝 215a:第一控制器 215b:第二控制器 220a:功率轉換器相/第一相 220b:功率轉換器相 220c:功率轉換器相 220d:功率轉換器相 220e:功率轉換器相 225:通信匯流排 230:通信線 235:虛線部分/電連接 237:端子 240:輸出電感器 245:輸出電容器 250:可重組態功率轉換器 260:電子封裝 265:通信匯流排 270:虛線部分/電連接 277:端子 300:通信匯流排 310a:匯流排選擇開關 310b:匯流排選擇開關 310c:匯流排選擇開關 310d:匯流排選擇開關 310e:匯流排選擇開關 320:第一控制器 325:第一通信匯流排線 327:第一反饋線 330:第二控制器 335:第二通信匯流排線 337:第二反饋線 340a:第一相 340b:第二相 340c:第三相 340d:第四相 340e:第五相 400:時序電路/時序電路系統 410:時序電路系統 415:時脈匯流排 420a:相 420b:相 420c:相 420d:相 420e:相 422a:電流反饋信號線/電流反饋信號 422b:電流反饋信號線/電流反饋信號 422c:電流反饋信號線/電流反饋信號 422d:電流反饋信號線/電流反饋信號 422e:電流反饋信號線/電流反饋信號 424a:電流反饋信號線/電流反饋信號 424b:電流反饋信號線/電流反饋信號 424c:電流反饋信號線/電流反饋信號 424d:電流反饋信號線/電流反饋信號 424e:電流反饋信號線/電流反饋信號 430:控制器 500:可重組態功率轉換器 510a:可程式化時脈匯流排選擇開關 510b:可程式化時脈匯流排選擇開關 510c:可程式化時脈匯流排選擇開關 510d:可程式化時脈匯流排選擇開關 510e:可程式化時脈匯流排選擇開關 520:第一控制器 522:第一時序電路系統 525:第一時脈匯流排 530:第二控制器 532:第二時序電路系統 535:第二時脈匯流排 540a:相 540b:相 540c:相 540d:相 540e:相 550:時序調節匯流排 600:可重組態功率轉換器 605:標準化的功率轉換裝置 610:電子封裝 615a:第一控制器 615b:第二控制器 620a:第一相 620b:相 620c:相 620d:相 620e:相 625:通信匯流排 630:通信線 635:電連接/虛線部分 650:可重組態功率轉換器 660:電子封裝 665:通信匯流排 670:電連接/虛線部分 690:整合式可重組態電容器 692:電容器 695:電連接/電路系統 710:區塊 720:區塊 730:區塊 740:區塊 750:區塊 800:用於製造可組態功率轉換器積體電路(IC)的方法 810:區塊 820:區塊 830:區塊 840:區塊 850:區塊 860:區塊 870:區塊 V1:第一負載電壓 V2:第二負載電壓
將參看圖式描述根據本揭示案之各種實施例,其中:
圖1為根據本揭示案之一些態樣的可重組態功率轉換器之簡化方塊圖;
圖2A為說明根據本揭示案之一些態樣的可重組態功率轉換器之實例的簡化示意圖;
圖2B為說明根據本揭示案之一些態樣的可重組態功率轉換器之另一實例的簡化示意圖;
圖3為說明根據本揭示案之一些態樣的通信匯流排之實例的簡化示意圖;
圖4為說明根據本揭示案之一些態樣的可重組態功率轉換器之時序電路系統之實例的方塊圖;
圖5為說明根據本揭示案之一些態樣的包括分散式時序電路系統之可重組態功率轉換器的簡化示意圖;
圖6A為說明根據本揭示案之一些態樣的包括整合式可重組態電容器之可重組態功率轉換器之實例的簡化示意圖;
圖6B為說明根據本揭示案之一些態樣的包括整合式可重組態電容器之可重組態功率轉換器之另一實例的簡化示意圖;
圖7為說明根據本揭示案之一些態樣的用於控制形成於單個半導體晶粒上之功率轉換積體電路(IC)裝置的方法之實例的流程圖;及
圖8為說明根據本揭示案之一些態樣的用於製造可組態功率轉換器之方法之實例的流程圖。
100:可重組態功率轉換器
105:第一控制器
109:可組態電路
110:第二控制器
115a:第一相/轉換器電路
115b:第二相/轉換器電路
115c:相/轉換器電路
115d:相/轉換器電路
115e:相/轉換器電路
120:通信匯流排
125:時脈/時序電路系統
130:標準化的功率轉換裝置
V1:第一負載電壓
V2:第二負載電壓

Claims (29)

  1. 一種功率轉換裝置,其包含:一半導體基板;一或多個控制器電路,其形成於該半導體基板上;兩個或多於兩個轉換器相電路,其形成於該半導體基板上;一或多個可程式化組件,其形成於該半導體基板上,該等可程式化組件可程式化以將該兩個或多於兩個轉換器相電路中之任一者選擇性地耦接至該一或多個控制器電路中之任一者。
  2. 如請求項1之功率轉換裝置,其中該一或多個可程式化組件中之至少一者為該一或多個控制器電路之一部分。
  3. 如請求項1之功率轉換裝置,其中該一或多個可程式化組件中之至少一者為該兩個或多於兩個轉換器相電路中之至少一者的一部分。
  4. 如請求項1之功率轉換裝置,其中該一或多個可程式化組件中之至少一者定位於該一或多個控制器電路中之至少一者與該兩個或多於兩個轉換器相電路中之至少一者之間。
  5. 如請求項1之功率轉換裝置,其進一步包含一互連電路,該互連電路形成於該基板上且經配置以形成該等控制器電路中之任一者與該兩個或多於兩個轉換器相電路中之任一者之間的電連接。
  6. 如請求項5之功率轉換裝置,其中該一或多個可程式化組件組態由該互連電路形成之該等電連接。
  7. 如請求項1之功率轉換裝置,其中該一或多個可程式化組件包含基於電晶體之開關。
  8. 如請求項1之功率轉換裝置,其中該一或多個可程式化組件包含 一非揮發性記憶體。
  9. 如請求項1之功率轉換裝置,其中該一或多個可程式化組件包含數位電路系統。
  10. 如請求項1之功率轉換裝置,其中該一或多個可程式化組件包含一熔絲。
  11. 如請求項1之功率轉換裝置,其中該一或多個可程式化組件包含一反熔絲。
  12. 如請求項1之功率轉換裝置,其進一步包含耦接至該兩個或多於兩個轉換器相電路中之至少一者的一可組態電容器。
  13. 如請求項1之功率轉換裝置,其進一步包含時序電路系統,該時序電路系統可程式化為以基本上規則地間隔開之時間間隔選擇性地觸發該兩個或多於兩個轉換器相電路中之至少一者的操作。
  14. 一種功率轉換裝置,其包含:一半導體基板;一或多個控制器電路,其形成於該半導體基板上;兩個或多於兩個轉換器相電路,其形成於該半導體基板上;及一可組態電路,其將該一或多個控制器電路中之任一者選擇性地耦接至該兩個或多於兩個轉換器相電路中之任一者。
  15. 如請求項14之功率轉換裝置,其中該可組態電路包括一或多個可程式化組件。
  16. 如請求項15之功率轉換裝置,其中該一或多個可程式化組件中之至少一者為該一或多個控制器電路之一部分。
  17. 如請求項15之功率轉換裝置,其中該一或多個可程式化組件中 之至少一者為該兩個或多於兩個轉換器相電路中之至少一者的一部分。
  18. 如請求項15之功率轉換裝置,其中該一或多個可程式化組件中之至少一者定位於該一或多個控制器電路中之至少一者與該兩個或多於兩個轉換器相電路中之至少一者之間。
  19. 如請求項15之功率轉換裝置,其中該一或多個可程式化組件包含基於電晶體之開關。
  20. 如請求項15之功率轉換裝置,其中該一或多個可程式化組件包含一非揮發性記憶體。
  21. 如請求項15之功率轉換裝置,其中該一或多個可程式化組件包含數位電路系統。
  22. 如請求項15之功率轉換裝置,其中該一或多個可程式化組件包含一熔絲。
  23. 如請求項15之功率轉換裝置,其中該一或多個可程式化組件包含一反熔絲。
  24. 如請求項14之功率轉換裝置,其中該可組態電路包括一互連電路,該互連電路形成於該基板上且經配置以形成該等控制器電路中之任一者與該兩個或多於兩個轉換器相電路中之任一者之間的電連接。
  25. 如請求項24之功率轉換裝置,其中該可組態電路包括一或多個可程式化組件,該一或多個可程式化組件組態由該互連電路形成之該等電連接。
  26. 如請求項14之功率轉換裝置,其進一步包含耦接至該兩個或多於兩個轉換器相電路中之至少一者的一可組態電容器。
  27. 如請求項14之功率轉換裝置,其中該可組態電路包括形成於該半導體基板上之一電導體。
  28. 如請求項14之功率轉換裝置,其進一步包含耦接至該半導體基板之一電佈線結構,其中該可組態電路包括形成於該電佈線結構中之一電導體。
  29. 如請求項14之功率轉換裝置,其進一步包含時序電路系統,該時序電路系統可程式化為以基本上規則地間隔開之時間間隔選擇性地觸發該兩個或多於兩個轉換器相電路中之至少一者的操作。
TW110105412A 2020-02-13 2021-02-17 可重組態功率轉換器 TWI774239B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US202062976052P 2020-02-13 2020-02-13
US62/976,052 2020-02-13
US202062977075P 2020-02-14 2020-02-14
US62/977,075 2020-02-14
US17/175,466 2021-02-12
US17/175,466 US20210257909A1 (en) 2020-02-13 2021-02-12 Reconfigurable power converter

Publications (2)

Publication Number Publication Date
TW202203559A TW202203559A (zh) 2022-01-16
TWI774239B true TWI774239B (zh) 2022-08-11

Family

ID=77273097

Family Applications (2)

Application Number Title Priority Date Filing Date
TW110105412A TWI774239B (zh) 2020-02-13 2021-02-17 可重組態功率轉換器
TW111128532A TWI839795B (zh) 2020-02-13 2021-02-17 可重組態功率轉換器

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW111128532A TWI839795B (zh) 2020-02-13 2021-02-17 可重組態功率轉換器

Country Status (5)

Country Link
US (1) US20210257909A1 (zh)
CN (1) CN113557656A (zh)
DE (1) DE112021001009T5 (zh)
TW (2) TWI774239B (zh)
WO (1) WO2021163649A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11888398B2 (en) * 2021-06-25 2024-01-30 Ge Energy Power Conversion Technology Limited Self reconfigurable, adaptable power electronics building block (A-PEBB)
WO2023172928A1 (en) * 2022-03-07 2023-09-14 Microchip Technology Incorporated Providing timing signals to gate drivers of a converter
US20240204683A1 (en) * 2022-12-14 2024-06-20 Solaredge Technologies Ltd. System and Methods for Operating a Power Converter at Varying Power Production Conditions

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012080744A (ja) * 2010-10-06 2012-04-19 Renesas Electronics Corp 電源装置
CN102761287A (zh) * 2011-04-28 2012-10-31 常州天曼智能科技有限公司 数字功率模块
CN102835010A (zh) * 2010-03-29 2012-12-19 大金工业株式会社 开关电源电路
JP2017055590A (ja) * 2015-09-10 2017-03-16 トヨタ自動車株式会社 電源装置
US9780663B2 (en) * 2015-03-02 2017-10-03 Empower Semiconductor, Inc. Resonant rectified discontinuous switching regulator with inductor preflux
US9899140B2 (en) * 2016-04-28 2018-02-20 Murata Manufacturing Co., Ltd. Multi-tap winding design for embedded transformer
US10177658B2 (en) * 2016-04-14 2019-01-08 Texas Instruments Incorporated Methods and apparatus for adaptive timing for zero voltage transition power converters
TW201906293A (zh) * 2017-06-30 2019-02-01 美商予力半導體公司 具有連續電流之共振切換調節器
US10504848B1 (en) * 2019-02-19 2019-12-10 Faraday Semi, Inc. Chip embedded integrated voltage regulator

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563780A (en) * 1993-12-08 1996-10-08 International Power Systems, Inc. Power conversion array applying small sequentially switched converters in parallel
US6826028B2 (en) * 2003-01-28 2004-11-30 International Rectifier Corporation Multi-phase buck converter with programmable phase selection
US7190210B2 (en) * 2004-03-25 2007-03-13 Integral Wave Technologies, Inc. Switched-capacitor power supply system and method
US7482792B2 (en) * 2005-06-14 2009-01-27 Intel Corporation IC with fully integrated DC-to-DC power converter
US7685441B2 (en) * 2006-05-12 2010-03-23 Intel Corporation Power control unit with digitally supplied system parameters
US7636242B2 (en) * 2006-06-29 2009-12-22 Intel Corporation Integrated inductor
US8341582B2 (en) * 2009-01-30 2012-12-25 Active-Semi, Inc. Programmable analog tile configuration tool
US8412923B2 (en) * 2009-07-01 2013-04-02 International Rectifier Corporation Multi-mode pin usage in a power supply control integrated circuit
US8362555B2 (en) * 2009-11-24 2013-01-29 Intersil Americas Inc. Voltage converter and systems including same
US8344842B1 (en) * 2010-01-20 2013-01-01 Vlt, Inc. Vertical PCB surface mount inductors and power converters
US8400778B2 (en) * 2010-02-02 2013-03-19 Monolithic Power Systems, Inc. Layout schemes and apparatus for multi-phase power switch-mode voltage regulator
EP2634901A1 (en) * 2012-02-28 2013-09-04 ST-Ericsson SA Configurable integrated two channel buck converter device
EP2634902A1 (en) * 2012-02-28 2013-09-04 ST-Ericsson SA Multiphase buck converter with integrated phase current balancing controller
WO2016073645A1 (en) * 2014-11-04 2016-05-12 Progranalog Corp. Configurable power management integrated circuit
US10103627B2 (en) * 2015-02-26 2018-10-16 Altera Corporation Packaged integrated circuit including a switch-mode regulator and method of forming the same
US9300210B1 (en) 2015-03-02 2016-03-29 Empower Semiconductor Resonant rectified discontinuous switching regulator
EP3123937B1 (en) * 2015-07-28 2019-08-28 ams AG Biometric sensor arrangement and method for generating a biometric signal
US20190044436A1 (en) * 2017-08-04 2019-02-07 Dell Products L.P. Multi-path capacitor divider
US10707753B2 (en) * 2017-09-19 2020-07-07 Qualcomm Incorporated Power regulation with charge pumps
KR20190041645A (ko) * 2017-10-13 2019-04-23 삼성전자주식회사 메모리 모듈, 메모리 모듈의 동작 방법 및 메모리 모듈의 테스트 시스템
US10505456B1 (en) * 2018-09-07 2019-12-10 International Business Machines Corporation Fully integrated multi-phase buck converter with coupled air core inductors
US11147165B2 (en) * 2019-10-17 2021-10-12 Infineon Technologies Austria Ag Electronic system and interposer having an embedded power device module
US20230031911A1 (en) * 2021-07-28 2023-02-02 Intel Corporation Configurable multi-domain multi-phase disaggregated voltage regulator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102835010A (zh) * 2010-03-29 2012-12-19 大金工业株式会社 开关电源电路
JP2012080744A (ja) * 2010-10-06 2012-04-19 Renesas Electronics Corp 電源装置
CN102761287A (zh) * 2011-04-28 2012-10-31 常州天曼智能科技有限公司 数字功率模块
US9780663B2 (en) * 2015-03-02 2017-10-03 Empower Semiconductor, Inc. Resonant rectified discontinuous switching regulator with inductor preflux
JP2017055590A (ja) * 2015-09-10 2017-03-16 トヨタ自動車株式会社 電源装置
US10177658B2 (en) * 2016-04-14 2019-01-08 Texas Instruments Incorporated Methods and apparatus for adaptive timing for zero voltage transition power converters
US9899140B2 (en) * 2016-04-28 2018-02-20 Murata Manufacturing Co., Ltd. Multi-tap winding design for embedded transformer
TW201906293A (zh) * 2017-06-30 2019-02-01 美商予力半導體公司 具有連續電流之共振切換調節器
US10504848B1 (en) * 2019-02-19 2019-12-10 Faraday Semi, Inc. Chip embedded integrated voltage regulator

Also Published As

Publication number Publication date
TW202306284A (zh) 2023-02-01
US20210257909A1 (en) 2021-08-19
TW202203559A (zh) 2022-01-16
DE112021001009T5 (de) 2022-12-15
TWI839795B (zh) 2024-04-21
CN113557656A (zh) 2021-10-26
WO2021163649A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
TWI774239B (zh) 可重組態功率轉換器
US11652062B2 (en) Chip embedded integrated voltage regulator
US9078381B2 (en) Method of connecting to a monolithic voltage regulator
US9812964B2 (en) Semiconductor device and power supply unit utilizing the same
JP4808979B2 (ja) マルチチップ型半導体装置及びその製造方法
US9245872B2 (en) Flip-chip package structure and method for an integrated switching power supply
JP5781624B2 (ja) スタック電力変換器を有する半導体装置
WO2017209874A1 (en) Top-side connector interface for processor packaging
CN101976951A (zh) 多相功率开关模式电压调节器
JP4588765B2 (ja) 複数電圧用の分割型薄膜キャパシタ
US20220007512A1 (en) Processor interposer and electronic system including the processor interposer
CN116661579A (zh) 一种3d异构可编程芯片供电网络的半导体器件及结构
US10664035B2 (en) Reconfigurable power delivery networks
CN103827775A (zh) 用于半导体器件的电力增强电路
US20220230991A1 (en) Multi-die package structure and multi-die co-packing method
US20210257846A1 (en) Battery control system-in-package and method of fabricating the same
EP3809460A1 (en) Electronic system and processor substrate having an embedded power device module
JP2002208663A (ja) パワー系電子部品
KR20150124650A (ko) 전력용 반도체 모듈