TWI773616B - Semiconductor memory device - Google Patents

Semiconductor memory device Download PDF

Info

Publication number
TWI773616B
TWI773616B TW110148858A TW110148858A TWI773616B TW I773616 B TWI773616 B TW I773616B TW 110148858 A TW110148858 A TW 110148858A TW 110148858 A TW110148858 A TW 110148858A TW I773616 B TWI773616 B TW I773616B
Authority
TW
Taiwan
Prior art keywords
signal
data
clock
control signal
semiconductor memory
Prior art date
Application number
TW110148858A
Other languages
Chinese (zh)
Other versions
TW202226243A (en
Inventor
森郁
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Publication of TW202226243A publication Critical patent/TW202226243A/en
Application granted granted Critical
Publication of TWI773616B publication Critical patent/TWI773616B/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4093Input/output [I/O] data interface arrangements, e.g. data buffers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • G11C11/40615Internal triggering or timing of refresh, e.g. hidden refresh, self refresh, pseudo-SRAMs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4076Timing circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4094Bit-line management or control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4096Input/output [I/O] data management or control circuits, e.g. reading or writing circuits, I/O drivers or bit-line switches 
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • G11C11/417Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction for memory cells of the field-effect type
    • G11C11/419Read-write [R-W] circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1078Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
    • G11C7/109Control signal input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1078Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
    • G11C7/1093Input synchronization
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • G11C7/222Clock generating, synchronizing or distributing circuits within memory device
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • G11C7/225Clock input buffers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/12Group selection circuits, e.g. for memory block selection, chip selection, array selection
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/401Indexing scheme relating to cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C2211/406Refreshing of dynamic cells
    • G11C2211/4066Pseudo-SRAMs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Databases & Information Systems (AREA)
  • Dram (AREA)
  • Semiconductor Memories (AREA)

Abstract

A semiconductor memory device includes a transmission circuit and a control circuit. The transmission circuit is configured to obtain write data and transmit that into a memory cell array according to the external clock signal when the chip selection signal is asserted. The control circuit is configured to control the transmission circuit to transmit first write data into the memory cell array when the chip selection signal changes from assertion to negation during an input period of the first write data of the write data, according to the external clock signal.

Description

半導體記憶裝置semiconductor memory device

本發明涉及一種半導體記憶裝置,特別是有關於與外部時鐘訊號非同步地操作的半導體記憶裝置。The present invention relates to a semiconductor memory device, in particular to a semiconductor memory device that operates asynchronously with an external clock signal.

現有的半導體記憶裝置包括同步動態隨機存取記憶體(Synchronous Dynamic Random Access Memory, SDRAM)與偽靜態隨機存取記憶體(pseudo-Static Random Access Memory, pSRAM)。例如美國專利公報第5594704號所公開的SDRAM,其是與外部時鐘訊號同步地操作。Existing semiconductor memory devices include Synchronous Dynamic Random Access Memory (SDRAM) and Pseudo-Static Random Access Memory (pSRAM). For example, the SDRAM disclosed in US Patent Publication No. 5594704 operates in synchronization with an external clock signal.

另外,pSRAM是與外部時鐘訊號非同步地操作,其將動態隨機存取記憶體(DRAM)作為記憶體單元陣列以儲存資料,且具有與靜態隨機存取記憶體(Static Random Access Memory, SRAM)相容之介面。pSRAM採用雙倍數資料速率(Double Data Rate, DDR)方法作為資料傳輸方法,且可以使用擴展序列周邊介面(Expanded Serial Peripheral Interface, xSPI)、HyperBus TM介面、或Xccella TM介面作為存取介面。 In addition, pSRAM operates asynchronously with an external clock signal, and uses a dynamic random access memory (DRAM) as a memory cell array to store data, and has the same function as a static random access memory (SRAM) Compatible interface. pSRAM adopts Double Data Rate (DDR) method as data transmission method, and can use Expanded Serial Peripheral Interface (xSPI), HyperBus TM interface, or Xccella TM interface as access interface.

第1圖(a)和第1圖(b)係為在現有的半導體記憶裝置中,各個訊號響應於寫入指令的輸入的時序圖。在此,是以使用HyperBus TM介面的pSRAM為例。於此例中,pSRAM被配置為當晶片選擇訊號CS#有效(低位準)時,執行寫入操作;當晶片選擇訊號CS#無效(高位準)時,停止外部時鐘訊號CK的輸入接收器的運作,以停止生成內部時鐘訊號。如此一來,晶片選擇訊號CS#的有效與外部時鐘訊號CK是非同步地。 FIG. 1(a) and FIG. 1(b) are timing charts of each signal in response to the input of a write command in a conventional semiconductor memory device. Here, a pSRAM using the HyperBus TM interface is used as an example. In this example, the pSRAM is configured to perform a write operation when the chip select signal CS# is active (low level); when the chip select signal CS# is inactive (high level), stop the input of the external clock signal CK to the receiver. operation to stop generating the internal clock signal. In this way, the validity of the chip select signal CS# is asynchronous with the external clock signal CK.

在第1圖的寫入指令序列中,以延遲計數為3並且寫入資料的叢發長度為4的情況為例。於此例中,自晶片選擇訊號CS#變為無效(高位準)起,經過時間tRWR(半導體記憶裝置返回讀/寫操作所需的時間),接著經過3個外部時鐘訊號CK的延遲計數後,在外部時鐘訊號CK的第六時鐘的上升邊緣時輸入寫入資料。在此雖然延遲計數以3為例,但是延遲計數的值取決於外部時鐘訊號CK的頻率。例如,當外部時鐘訊號CK的頻率越高,延遲計數越大。In the write command sequence of FIG. 1, a case where the delay count is 3 and the burst length of the write data is 4 is taken as an example. In this example, since the chip select signal CS# becomes inactive (high level), the time tRWR (the time required for the semiconductor memory device to return to the read/write operation) has elapsed, and then three delay counts of the external clock signal CK have elapsed. , input the write data at the rising edge of the sixth clock of the external clock signal CK. Although the delay count is 3 as an example, the value of the delay count depends on the frequency of the external clock signal CK. For example, when the frequency of the external clock signal CK is higher, the delay count is larger.

在第1圖之示例中,晶片選擇訊號CS#從無效(高位準)變為有效(低位準)後,根據外部時鐘訊號CK的第一至第三時鐘,依序地輸入指令(CMD),列位址(Row Address,RA),以及欄位址(Column Address, CA)。之後,根據外部時鐘訊號CK的第六時鐘,將所輸入的寫入資料(DE6,DO6)寫入到指定的記憶體單元。 接下來,根據外部時鐘訊號CK的第七時鐘,將所輸入的寫入資料(DE7,DO7)寫入到指定的記憶體單元。In the example of FIG. 1, after the chip selection signal CS# is changed from inactive (high level) to active (low level), commands (CMD) are sequentially input according to the first to third clocks of the external clock signal CK, Row Address (RA), and Column Address (CA). Then, according to the sixth clock of the external clock signal CK, the input write data (DE6, DO6) are written into the designated memory unit. Next, according to the seventh clock of the external clock signal CK, the input write data (DE7, DO7) are written into the designated memory cells.

然後,當寫入指令中的寫入資料全部輸入完畢時,晶片選擇訊號CS#從有效變為無效,以結束寫入操作。Then, when all the write data in the write command is input, the chip selection signal CS# changes from valid to invalid to end the write operation.

然而,如第1圖(b)所示,若晶片選擇訊號CS#在寫入資料(DE7,DO7)的輸入期間從有效變為無效,半導體記憶裝置中的某些電路將被立即結束操作,導致所輸入之寫入資料(DE7,DO7)不能被傳輸到記憶體單元陣列,結果,可能難以將寫入資料(DE7,DO7) 寫入到指定的記憶體單元。However, as shown in Figure 1(b), if the chip select signal CS# changes from active to inactive during the input period of the write data (DE7, DO7), some circuits in the semiconductor memory device will be terminated immediately, As a result, the input write data (DE7, DO7) cannot be transferred to the memory cell array, and as a result, it may be difficult to write the write data (DE7, DO7) to the designated memory cell.

鑑於上述課題,本發明的目的是解決半導體記憶裝置在資料寫入期間被非活化,導致資料無法完整地被寫入半導體記憶裝置的問題。In view of the above problems, the purpose of the present invention is to solve the problem that the semiconductor memory device is deactivated during data writing, resulting in that data cannot be completely written into the semiconductor memory device.

為了解決上述課題,本發明提供一種半導體記憶裝置,響應於有效狀態的晶片選擇訊號而執行寫入操作。半導體記憶裝置包括記憶體單元陣列、傳輸電路與控制電路。當晶片選擇訊號為有效狀態時,傳輸電路根據外部時鐘訊號取得寫入資料,並傳輸到記憶體單元陣列。控制電路根據外部時鐘訊號,在輸入寫入資料的第一寫入資料期間,在晶片選擇訊號從有效狀態變為無效狀態時,維持傳輸電路的運作,以使第一寫入資料傳輸到記憶體單元陣列。In order to solve the above problems, the present invention provides a semiconductor memory device that performs a write operation in response to a chip select signal in an active state. The semiconductor memory device includes a memory cell array, a transmission circuit and a control circuit. When the chip selection signal is in an active state, the transmission circuit obtains the written data according to the external clock signal and transmits it to the memory cell array. According to the external clock signal, the control circuit maintains the operation of the transmission circuit when the chip selection signal changes from an active state to an inactive state during the period of inputting the first written data of the written data, so as to transmit the first written data to the memory cell array.

根據本發明,在根據外部時鐘訊號輸入第一寫入資料的期間,即使晶片選擇訊號從有效變為無效時,也可將第一寫入資料傳輸到記憶體單元陣列,以將第一寫入資料寫入到記憶體單元陣列中的記憶體單元。因此,即使在資料寫入期間執行半導體記憶裝置的非活化時,也可適當地將資料寫入到半導體記憶裝置。According to the present invention, during the period when the first write data is input according to the external clock signal, even when the chip selection signal is changed from valid to invalid, the first write data can be transmitted to the memory cell array, so that the first write data can be transferred to the memory cell array. Data is written to the memory cells in the memory cell array. Therefore, even when deactivation of the semiconductor memory device is performed during data writing, data can be appropriately written to the semiconductor memory device.

以下,參照於圖式,詳細地說明與本發明實施例有關之的半導體記憶裝置。但是,本發明並不限於這些實施例。再者,在本說明書中之「第一」、「第二」、「第三」等標記用於區別某元件和其他元件,並不限於該元件之數目、順序、優先順序等。Hereinafter, the semiconductor memory device related to the embodiment of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to these Examples. Furthermore, in this specification, the notations such as "first", "second" and "third" are used to distinguish a certain element from other elements, and are not limited to the number, order, priority, etc. of the elements.

第2圖係為與本發明之實施例1有關之半導體記憶裝置之配置方塊圖。與本實施例有關之半導體記憶裝置為對於外部時鐘訊號CK非同步地執行藉由晶片選擇訊號CS#的非活化之半導體記憶裝置:其中,上述半導體記憶裝置包括輸入輸出介面(I/O)部10、控制邏輯部20,以及具有以矩陣配置之複數記憶體單元的記憶體單元陣列(圖式省略)。FIG. 2 is a block diagram showing the configuration of the semiconductor memory device according to the first embodiment of the present invention. The semiconductor memory device related to the present embodiment is a semiconductor memory device that asynchronously performs inactivation by the chip select signal CS# with respect to the external clock signal CK: wherein the semiconductor memory device includes an input-output interface (I/O) part 10. A control logic unit 20, and a memory cell array having a plurality of memory cells arranged in a matrix (not shown).

I/O部10被配置為執行與外部裝置(例如,記憶體控制器)之間的訊號 (例如,晶片選擇訊號CS#、資料訊號DQ、外部時鐘訊號CK等) 的接收與傳送。另外,控制邏輯部20被配置為基於從外部裝置所接收的指令,以控制對記憶體單元的資料的讀取或寫入等操作。進一步,I/O部10、控制邏輯部20、以及記憶體單元陣列可以由專用的硬體裝置或邏輯電路配置。The I/O section 10 is configured to perform reception and transmission of signals (eg, chip select signal CS#, data signal DQ, external clock signal CK, etc.) with an external device (eg, memory controller). In addition, the control logic unit 20 is configured to control operations such as reading or writing of data in the memory unit based on an instruction received from an external device. Further, the I/O section 10, the control logic section 20, and the memory cell array may be configured by dedicated hardware devices or logic circuits.

與本實施例有關之半導體記憶裝置,可以是對於外部時鐘訊號CK非同步地執行藉由晶片選擇訊號CS#的非活化之任何的半導體記憶裝置 (例如,DRAM,pSRAM,SRAM等)。在本實施例中,半導體記憶裝置是以HyperBus TM介面的pSRAM為例進行說明。另外,在本實施例中,與第1圖的示例相同,寫入指令序列中的延遲計數為3並且寫入資料的叢發長度為4。在本實施例中,適當地使用並且說明與第1圖所示的訊號相同的訊號。 The semiconductor memory device related to this embodiment may be any semiconductor memory device (eg, DRAM, pSRAM, SRAM, etc.) that is deactivated by the chip select signal CS# asynchronously to the external clock signal CK. In this embodiment, the semiconductor memory device is described by taking the HyperBus TM interface pSRAM as an example. In addition, in this embodiment, as in the example of FIG. 1, the delay count in the write command sequence is 3 and the burst length of the write data is 4. In this embodiment, the same signals as those shown in FIG. 1 are appropriately used and described.

I/O部10包括連接到資料端子(DQ端子)的接收器11、資料時鐘(DCK)緩衝器12,延遲正反器(DFF)13、連接到晶片選擇端子(CS#端子)的接收器14、晶片選擇(CS)緩衝器15,連接到外部時鐘端子(CK端子)的接收器16、以及時鐘(CK)緩衝器17。為了簡化說明,此處未繪示I/O部10中的其他已知的配置(例如,發送或接收其他訊號(資料選通訊號,重置訊號等)的電路)。The I/O section 10 includes a receiver 11 connected to a data terminal (DQ terminal), a data clock (DCK) buffer 12, a delay flip-flop (DFF) 13, and a receiver connected to a chip select terminal (CS# terminal) 14. A wafer select (CS) buffer 15, a receiver 16 connected to an external clock terminal (CK terminal), and a clock (CK) buffer 17. To simplify the description, other known configurations in the I/O section 10 (eg, circuits for sending or receiving other signals (data strobe signals, reset signals, etc.)) are not shown here.

CS緩衝器15被配置為輸出訊號CSADQX,且訊號CSADQX被配置為在有效狀態下可活化(activate,又稱為致能)接收器11。接收器11被配置為當從CS緩衝器15接收有效狀態的訊號CSADQX時,藉由DQ端子接收來自外部裝置的資料訊號DQ。在此,資料訊號DQ是根據外部時鐘訊號CK被輸入,且包括各別的特定長度(在本實施例中,8位元)的指令、位址(列位址、欄位址等)以及寫入資料。另外,接收器11將所輸入之資料訊號DQ作為訊號ADQINX輸出到DFF 13。The CS buffer 15 is configured to output the signal CSADQX, and the signal CSADQX is configured to activate the receiver 11 in an active state. The receiver 11 is configured to receive the data signal DQ from the external device through the DQ terminal when receiving the signal CSADQX in the active state from the CS buffer 15 . Here, the data signal DQ is input according to the external clock signal CK, and includes commands, addresses (column address, column address, etc.) and write commands of a specific length (in this embodiment, 8 bits). Enter data. In addition, the receiver 11 outputs the input data signal DQ to the DFF 13 as a signal ADQINX.

DCK緩衝器12被配置為根據有效狀態的訊號ENCADRV和訊號ENDQDRV被活化,其中訊號ENCADRV和訊號ENDQDRV可由指令解碼器21(將於後文描述)所提供。The DCK buffer 12 is configured to be activated according to the active state of the signal ENCADRV and the signal ENDQDRV, which are provided by the command decoder 21 (described later).

另外,在訊號ENCADRV為有效狀態的期間,響應於CK緩衝器17所提供的內部時鐘訊號CLK1的時鐘的每個上升邊緣,在與上述時鐘對應的外部時鐘訊號CK的上升邊緣中,DCK緩衝器12產生用於取得所輸入的指令、位址,以及寫入資料(包括訊號ADQINX)的訊號ACLKE,並將其輸出到DFF 13。在此情況下,訊號ACLKE也可以是具有與內部時鐘訊號CLK1的時鐘相同相位的訊號。In addition, during the period when the signal ENCADRV is in the active state, in response to each rising edge of the clock of the internal clock signal CLK1 provided by the CK buffer 17, in the rising edge of the external clock signal CK corresponding to the above clock, the DCK buffer 12 Generates and outputs to DFF 13 a signal ACLKE for fetching the input command, address, and writing data (including signal ADQINX). In this case, the signal ACLKE may also be a signal having the same phase as the clock of the internal clock signal CLK1.

再者,當訊號ENCADRV為有效的期間,響應於CK緩衝器17所輸入的內部時鐘訊號CLK1的時鐘的每個下降邊緣,在與上述時鐘對應的外部時鐘訊號CK的下降邊緣中,DCK緩衝器12產生用於取得所輸入的指令、位址,以及寫入資料(包括訊號ADQINX)的訊號ACLKO,並將其輸出到DFF 13。在此情況下,訊號ACLKO也可以是具有與內部時鐘訊號CLK1的時鐘相反相位的訊號。Furthermore, when the signal ENCADRV is valid, in response to each falling edge of the clock of the internal clock signal CLK1 input to the CK buffer 17, in the falling edge of the external clock signal CK corresponding to the above clock, the DCK buffer 12 generates and outputs to DFF 13 the signal ACLKO for fetching the input command, address, and writing data (including signal ADQINX). In this case, the signal ACLKO may also be a signal having an opposite phase to the clock of the internal clock signal CLK1.

再者,當訊號ENDQDRV為有效的期間,響應於CK緩衝器17所輸入的內部時鐘訊號CLK1的時鐘的每個下降邊緣,根據與上述時鐘對應的外部時鐘訊號CK,DCK緩衝器12產生用於所輸入的寫入資料(包括訊號ADQINX)傳輸到記憶體單元陣列的資料時鐘訊號DCLK,並將其輸出到DFF 13。在此情況下,資料時鐘訊號DCLK的時鐘寬度可以與內部時鐘訊號CLK1的時鐘寬度相同或不同。Furthermore, when the signal ENDQDRV is valid, in response to each falling edge of the clock of the internal clock signal CLK1 input to the CK buffer 17, the DCK buffer 12 generates a signal for The input write data (including the signal ADQINX) is transmitted to the data clock signal DCLK of the memory cell array and output to the DFF 13 . In this case, the clock width of the data clock signal DCLK may be the same as or different from that of the internal clock signal CLK1.

在使晶片選擇訊號CS#有效時,根據外部時鐘訊號CK,DFF 13取得所輸入的寫入資料,並傳輸到記憶體單元陣列。另外,DFF 13被配置為即使在使晶片選擇訊號CS#無效時(高位準),在使訊號ENCADRV或訊號ENDQDRV有效時也進行操作。另外, DFF 13是本發明中的「傳輸電路」的示例。When the chip selection signal CS# is enabled, the DFF 13 obtains the input write data according to the external clock signal CK, and transmits it to the memory cell array. In addition, the DFF 13 is configured to operate when the signal ENCADRV or the signal ENDQDRV is asserted even when the chip select signal CS# is deasserted (high level). In addition, the DFF 13 is an example of a "transmission circuit" in the present invention.

具體來說,當使訊號ENCADRV為有效時,每當從DCK緩衝器12接收訊號ACLKE和訊號ACLKO時,DFF 13取得從接收器11輸出的訊號ADQINX。然後,DFF 13將表示包括在訊號ADQINX中的指令和位址的訊號ADD輸出到指令解碼器21和記憶體陣列控制電路22(稍後描述)。另外,當使訊號ENDQDRV有效時,每當從DCK緩衝器12接收訊號ACLKE和訊號ACLKO時,DFF 13取得從接收器11輸出的訊號ADQINX的同時,每當DFF 13從DCK緩衝器12輸入資料時鐘訊號DCLK時,平行轉換並儲存包括已取得訊號ADQINX的寫入資料。然後,DFF 13根據資料時鐘訊號DCLK將表示包括訊號ADQINX的寫入資料的訊號DQ輸出(傳輸)到記憶體單元陣列。Specifically, when the signal ENCADRV is enabled, the DFF 13 obtains the signal ADQINX output from the receiver 11 every time the signal ACLKE and the signal ACLKO are received from the DCK buffer 12 . Then, the DFF 13 outputs the signal ADD representing the instruction and the address included in the signal ADQINX to the instruction decoder 21 and the memory array control circuit 22 (described later). In addition, when the signal ENDQDRV is enabled, whenever the signal ACLKE and the signal ACLKO are received from the DCK buffer 12 , the DFF 13 obtains the signal ADQINX output from the receiver 11 and the DFF 13 inputs the data clock from the DCK buffer 12 at the same time. When the signal DCLK is used, the write data including the acquired signal ADQINX is converted and stored in parallel. Then, the DFF 13 outputs (transmits) the signal DQ representing the written data including the signal ADQINX to the memory cell array according to the data clock signal DCLK.

接收器14將經由CS#端子從外部裝置輸入的晶片選擇訊號CS#作為內部晶片選擇訊號CSINX輸出到CS緩衝器15。The receiver 14 outputs the chip select signal CS# input from the external device via the CS# terminal to the CS buffer 15 as the internal chip select signal CSINX.

當使內部晶片選擇訊號CSINX有效 (低位準) 時,或者當使由CK緩衝器17提供的第一控制訊號CSACTB有效 (高位準)時,CS緩衝器15進行操作。具體來說,CS緩衝器15對來自接收器14的內部晶片選擇訊號CSINX進行邏輯反相,並且將反相晶片選擇訊號CSACT輸出到CK緩衝器17。 另外,CS緩衝器15將在有效(高位準)狀態下的訊號CSADQX輸出到接收器11,並且將在有效(高位準)狀態下的用於活化接收器16的訊號CSCLKX輸出到接收器16。The CS buffer 15 operates when the internal chip select signal CSINX is asserted (low level), or when the first control signal CSACTB provided by the CK buffer 17 is asserted (high level). Specifically, the CS buffer 15 logically inverts the internal chip select signal CSINX from the receiver 14 and outputs the inverted chip select signal CSACT to the CK buffer 17 . In addition, the CS buffer 15 outputs the signal CSADQX in the active (high level) state to the receiver 11 , and outputs the signal CSCLKX in the active (high level) state for activating the receiver 16 to the receiver 16 .

當從CS緩衝器15輸入有效的訊號CSCLKX時,接收器16將經由CK端子從外部裝置輸入的外部時鐘訊號CK作為訊號CLKX輸出到CK緩衝器17。另外,不論是否使晶片選擇訊號CS#有效,外部時鐘訊號CK可以以固定的頻率輸入。When the valid signal CSCLKX is input from the CS buffer 15, the receiver 16 outputs the external clock signal CK input from the external device via the CK terminal to the CK buffer 17 as the signal CLKX. In addition, regardless of whether the chip selection signal CS# is enabled or not, the external clock signal CK can be input at a fixed frequency.

當從CS緩衝器15輸入有效的(高位準)反相晶片選擇訊號CSACT時,CK緩衝器17使第一控制訊號CSACTB有效(高位準)並將其輸出到CS緩衝器15和指令解碼器21。另外,CK緩衝器17將從接收器16輸入的訊號CLKX作為內部時鐘訊號CLK1,並將其輸出到DCK緩衝器12和指令解碼器21。 內部時鐘訊號CLK1的頻率可以與外部時鐘訊號CK的頻率相同或不同。 另外,內部時鐘訊號CLK1的頻率可以隨時間變化,例如,用在臨時加速資料讀取或寫入操作。When a valid (high level) inverted chip select signal CSACT is input from the CS buffer 15 , the CK buffer 17 makes the first control signal CSACTB valid (high level) and outputs it to the CS buffer 15 and the command decoder 21 . In addition, the CK buffer 17 takes the signal CLKX input from the receiver 16 as the internal clock signal CLK1 and outputs it to the DCK buffer 12 and the command decoder 21 . The frequency of the internal clock signal CLK1 may be the same as or different from the frequency of the external clock signal CK. In addition, the frequency of the internal clock signal CLK1 can vary over time, for example, to temporarily speed up data read or write operations.

另外,根據外部時鐘訊號CK,在第一寫入資料(在此是寫入資料(DE7,DO7))輸入期間,晶片選擇訊號CS#從有效(低位準)變為無效(高位準)時,CK緩衝器17操作DFF 13(傳輸電路)將寫入資料(DE7,DO7)傳輸到記憶體單元陣列。 在此,CK緩衝器17是本發明中的「控制電路」的示例。In addition, according to the external clock signal CK, during the input period of the first write data (here, the write data (DE7, DO7)), when the chip select signal CS# changes from valid (low level) to invalid (high level), The CK buffer 17 operates the DFF 13 (transfer circuit) to transfer the write data (DE7, DO7) to the memory cell array. Here, the CK buffer 17 is an example of a "control circuit" in the present invention.

另外,上述第一寫入資料可以是寫入指令中的最後寫入資料(在本實施例中,寫入資料(DE7,DO7))。 由此,根據外部時鐘訊號CK,在寫入資料(DE7,DO7)輸入期間,即使晶片選擇訊號CS#從有效(低位準)變為無效(高位準)時, 由於可以將寫入資料(DE7,DO7)傳輸到記憶體單元陣列,所以可以將寫入資料(DE7,DO7)寫入到記憶體單元陣列中的記憶體單元。 由此,在寫入指令中所輸入的全部的寫入資料可以適當地被寫入到半導體記憶裝置。In addition, the above-mentioned first write data may be the last write data in the write command (in this embodiment, write data (DE7, DO7)). Therefore, according to the external clock signal CK, during the input period of the write data (DE7, DO7), even if the chip select signal CS# changes from valid (low level) to invalid (high level), the write data (DE7 , DO7) are transmitted to the memory cell array, so the write data (DE7, DO7) can be written to the memory cells in the memory cell array. Thus, all the write data input in the write command can be appropriately written to the semiconductor memory device.

另外,即使晶片選擇訊號CS#在變為無效(高位準)後,CK緩衝器17也可藉由將用以操作DFF 13(傳輸電路)的第一控制訊號CSACTB維持在有效(高位準)狀態而使DFF 13運作,第一控制訊號CSACTB(控制訊號)係基於晶片選擇訊號CS#而產生。由此,即使當晶片選擇訊號CS#從有效變為無效時,由於使第一控制訊號CSACTB有效(高位準),所以可以基於有效的第一控制訊號CSACTB來操作DFF 13。In addition, even after the chip selection signal CS# becomes inactive (high level), the CK buffer 17 can maintain the active (high level) state by maintaining the first control signal CSACTB for operating the DFF 13 (transmission circuit) To make the DFF 13 operate, the first control signal CSACTB (control signal) is generated based on the chip selection signal CS#. Thus, even when the chip selection signal CS# is changed from active to inactive, since the first control signal CSACTB is made active (high level), the DFF 13 can be operated based on the active first control signal CSACTB.

另外,內部時鐘訊號CLK1係基於外部時鐘訊號CK而產生,在用於產生上述資料時鐘訊號DCLK的內部時鐘訊號CLK1為有效(高位準)的期間,CK緩衝器17可以維持第一控制訊號CSACTB(控制訊號)在有效(高位準)狀態;上述資料時鐘訊號DCLK係用於傳輸第一寫入資料(在此為寫入資料(DE7,DO7))到記憶體單元陣列的訊號。由此,基於內部時鐘訊號CLK1,當產生用於將寫入資料(DE7,DO7)傳輸到記憶體單元陣列的資料時鐘訊號DCLK時,可以操作DFF 13。根據所產生的內部時鐘訊號CLK1,可以將寫入資料(DE7,DO7)傳輸到記憶體單元陣列。In addition, the internal clock signal CLK1 is generated based on the external clock signal CK, and the CK buffer 17 can maintain the first control signal CSACTB ( The control signal) is in an active (high level) state; the data clock signal DCLK is a signal for transmitting the first write data (here, write data (DE7, DO7)) to the memory cell array. Thus, based on the internal clock signal CLK1, the DFF 13 can be operated when the data clock signal DCLK for transferring the write data (DE7, DO7) to the memory cell array is generated. According to the generated internal clock signal CLK1, the write data (DE7, DO7) can be transmitted to the memory cell array.

另外,在晶片選擇訊號CS#從有效(低位準)變為無效(高位準)之後到下一次有效之期間,CK緩衝器17結束DFF 13(傳輸電路)的操作。由此,晶片選擇訊號CS#在下一次有效(即,下一次讀或寫入操作開始)前,可以重置DFF 13。In addition, the CK buffer 17 ends the operation of the DFF 13 (transfer circuit) during the period after the chip select signal CS# is changed from active (low level) to inactive (high level) until the next time it is active. Thus, the DFF 13 can be reset before the chip select signal CS# is next active (ie, the next read or write operation starts).

接下來,將說明控制邏輯部20的配置。控制邏輯部20包括指令解碼器21和記憶體陣列控制電路22。另外,為了簡化說明,此處未表示控制邏輯部20中的其他已知的配置(例如,控制記憶體單元的更新操作的電路)。Next, the configuration of the control logic section 20 will be described. The control logic unit 20 includes an instruction decoder 21 and a memory array control circuit 22 . In addition, to simplify the description, other known configurations in the control logic 20 (eg, circuits that control the refresh operation of the memory cells) are not shown here.

當從CK緩衝器17輸入有效的(高位準)第一控制訊號CSACTB時,在從CK緩衝器17輸入的內部時鐘訊號CLK1的特定時鐘(在第4圖的示例中,第一時鐘)的上升邊緣到特定時鐘(在第4圖的示例中,第三時鐘)的下降邊緣期間,指令解碼器21將有效的(高位準)訊號ENCADRV輸出到DCK緩衝器12。另外,當從CK緩衝器17輸入的有效的第一控制訊號CSACTB時,在內部時鐘訊號CLK1的特定時鐘(在第4圖的示例中,第六時鐘)的上升邊緣到特定時鐘(在第4圖的示例中,第七時鐘)的下降邊緣期間,指令解碼器21將有效的(高位準)訊號ENDQDRV輸出到DCK緩衝器12。When the valid (high level) first control signal CSACTB is input from the CK buffer 17, the rise of a specific clock (in the example of FIG. 4, the first clock) of the internal clock signal CLK1 input from the CK buffer 17 The instruction decoder 21 outputs a valid (high level) signal ENCADRV to the DCK buffer 12 during the edge to the falling edge of a particular clock (in the example of FIG. 4 , the third clock). In addition, when the valid first control signal CSACTB is input from the CK buffer 17, the rising edge of the specific clock (in the example of FIG. 4, the sixth clock) of the internal clock signal CLK1 to the specific clock (in the fourth In the example in the figure, during the falling edge of the seventh clock), the instruction decoder 21 outputs the valid (high level) signal ENDQDRV to the DCK buffer 12 .

另外,基於從DFF 13輸入的訊號ADD而識別出所輸入的全部的列位址之後,當輸入內部時鐘訊號CLK1的時鐘(在第4圖的示例中,第三時鐘)時,指令解碼器21藉由所輸入的列位址,將用於活化所選擇的字線的列控制訊號RAS有效(高位準),並且輸出到記憶體陣列控制電路22。In addition, after recognizing all the input column addresses based on the signal ADD input from the DFF 13, when the clock of the internal clock signal CLK1 (in the example of FIG. 4, the third clock) is input, the command decoder 21 borrows the From the inputted column address, the column control signal RAS for activating the selected word line is activated (high level), and output to the memory array control circuit 22 .

另外,在內部時鐘訊號CLK1的特定時鐘(在第4圖的示例中,各別的第六時鐘和第七時鐘)的下降邊緣中,指令解碼器21根據與上述時鐘對應的外部時鐘訊號CK,將用於選擇所輸入的寫入資料寫入到記憶體陣列的位元線的欄控制訊號CASP有效(高位準),並且將其輸出到記憶體陣列控制電路22。 在此,基於包括從DFF 13輸入的訊號ADD的欄位址來選擇記憶體單元的位元線。In addition, in the falling edge of a specific clock of the internal clock signal CLK1 (in the example of FIG. 4, the sixth clock and the seventh clock, respectively), the instruction decoder 21 according to the external clock signal CK corresponding to the above clock, The column control signal CASP for selecting the input write data to be written to the bit line of the memory array is active (high level), and is output to the memory array control circuit 22 . Here, the bit line of the memory cell is selected based on the column address including the signal ADD input from the DFF 13 .

另外,當從CK緩衝器17輸入無效(低位準)的第一控制訊號CSACTB時,在欄控制訊號CASP的時鐘(在第4圖的示例中,第七時鐘)的下降邊緣中,指令解碼器21將用於預充電訊號PRE有效(高位準),並輸出到記憶體陣列控制電路22,同時使列控制訊號RAS無效(低位準)。上述欄控制訊號CASP是用於選擇最後的寫入資料(在第4圖的示例中,寫入資料(DE7,DO7))寫入到記憶體單元的位元線的訊號。In addition, when the invalid (low level) first control signal CSACTB is input from the CK buffer 17, in the falling edge of the clock (in the example of FIG. 4, the seventh clock) of the column control signal CASP, the instruction decoder 21 is used for the precharge signal PRE to be active (high level), and output to the memory array control circuit 22, while the column control signal RAS is inactive (low level). The above-mentioned column control signal CASP is a signal for selecting the last write data (in the example of FIG. 4, write data (DE7, DO7)) to be written to the bit line of the memory cell.

進一步,當經過特定的預先充電時間時,指令解碼器21使訊號PRE無效(低位準),結束操作,並轉移到待機狀態。Further, when a specific precharge time elapses, the command decoder 21 deactivates the signal PRE (low level), ends the operation, and transitions to the standby state.

基於從DFF 13輸入的訊號ADD、從指令解碼器21輸入的列控制訊號RAS、欄控制訊號CASP、以及訊號PRE,記憶體陣列控制電路22控制對記憶體單元陣列的指令、位址、以及資料。進一步,因為對記憶體單元陣列的指令,位址和資料的控制細節與已知的技術相同,因此在本實施例中將省略其說明。Based on the signal ADD input from the DFF 13, the column control signal RAS, the column control signal CASP, and the signal PRE input from the command decoder 21, the memory array control circuit 22 controls commands, addresses, and data to the memory cell array. . Further, since the control details of the instructions, addresses and data for the memory cell array are the same as those of the known technology, the description thereof will be omitted in this embodiment.

接下來,參照於第3圖,說明關於一部分的CK緩衝器17的配置和操作。參照第3圖的(a),本發明一實施例的CK緩衝器17包括P通道型MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor, MOSFET)100,N通道型MOSFET 101,四個反相器102、103、104、105和延遲電路106。Next, the configuration and operation of a part of the CK buffer 17 will be described with reference to FIG. 3 . Referring to (a) of FIG. 3 , a CK buffer 17 according to an embodiment of the present invention includes a P-channel MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor, MOSFET) 100 , an N-channel MOSFET 101 , and four inverters 102 , 103 , 104 , 105 and delay circuit 106 .

P通道型MOSFET 100的源極連接到高電壓電源,MOSFET 100的汲極連接到反相器103的高電壓電源側。內部時鐘訊號CLK1被輸入到MOSFET 100的閘極。The source of the P-channel type MOSFET 100 is connected to the high-voltage power supply, and the drain of the MOSFET 100 is connected to the high-voltage power supply side of the inverter 103 . The internal clock signal CLK1 is input to the gate of the MOSFET 100 .

N通道型MOSFET 101的汲極連接到反相器103的低電壓電源側。MOSFET 101的源極連接到低電壓電源。MOSFET 101的閘極連接到反相器102的輸出端子。The drain of the N-channel type MOSFET 101 is connected to the low-voltage power supply side of the inverter 103 . The source of MOSFET 101 is connected to a low voltage power supply. The gate of the MOSFET 101 is connected to the output terminal of the inverter 102 .

內部時鐘訊號CLK1被輸入到反相器102的輸入端子。反相器102將所輸入的內部時鐘訊號CLK1進行邏輯反相,並且將邏輯反相後的訊號輸出到MOSFET 101的閘極。The internal clock signal CLK1 is input to the input terminal of the inverter 102 . The inverter 102 logically inverts the input internal clock signal CLK1 and outputs the logically inverted signal to the gate of the MOSFET 101 .

反相晶片選擇訊號CSACT被輸入到反相器103的輸入端子。反相器103的輸出端子連接到反相器104的輸入端子。當各別的MOSFET 100和MOSFET 101處於導通狀態時,操作反相器103。具體來說,反相器103對反相晶片選擇訊號CSACT進行邏輯反相,並且將邏輯反相後的訊號輸出到反相器104。The inverting chip select signal CSACT is input to the input terminal of the inverter 103 . The output terminal of the inverter 103 is connected to the input terminal of the inverter 104 . When the respective MOSFET 100 and MOSFET 101 are in an on state, the inverter 103 is operated. Specifically, the inverter 103 logically inverts the inverted chip select signal CSACT, and outputs the logically inverted signal to the inverter 104 .

反相器104的輸入端子連接到反相器103的輸出端子。反相器104的輸出端子連接到延遲電路106。 反相器104將從反相器103輸出的訊號進行邏輯反相,並且將邏輯反相後的訊號輸出到延遲電路106。The input terminal of the inverter 104 is connected to the output terminal of the inverter 103 . The output terminal of the inverter 104 is connected to the delay circuit 106 . The inverter 104 logically inverts the signal output from the inverter 103 , and outputs the logically inverted signal to the delay circuit 106 .

反相器105的輸入端子連接到反相器104和延遲電路106之間的節點n01。另外,反相器105的輸出端子連接到反相器103與反相器104之間的節點。 反相器105將從反相器104輸出的訊號進行邏輯反相,並且將邏輯反相後的訊號輸出到反相器104。The input terminal of the inverter 105 is connected to the node n01 between the inverter 104 and the delay circuit 106 . In addition, the output terminal of the inverter 105 is connected to the node between the inverter 103 and the inverter 104 . The inverter 105 logically inverts the signal output from the inverter 104 , and outputs the logically inverted signal to the inverter 104 .

延遲電路106將從反相器104輸出的訊號延遲特定時間,並且將延遲的訊號作為第一控制訊號CSACTB輸出到CS緩衝器15和指令解碼器21。The delay circuit 106 delays the signal output from the inverter 104 by a specific time, and outputs the delayed signal to the CS buffer 15 and the command decoder 21 as the first control signal CSACTB.

接下來,參照第3圖的(b)說明關於如第3圖的(a)所示的一部分的CK緩衝器17的操作。於本實施例中,在用於輸入如第4圖所示的寫入資料(DE7,DO7)的外部時鐘訊號CK的時鐘(第七時鐘)為有效的期間,晶片選擇訊號CS#從有效(低位準)變為無效(高位準)。首先,當使反相晶片選擇訊號CSACT有效(高位準),並且使內部時鐘訊號CLK1無效(低位準)時,反相晶片選擇訊號CSACT經由反相器103和104被輸入到延遲電路106。然後,將延遲電路106所輸入的訊號進行延遲,並且從延遲電路106輸出作為有效的(高位準)第一控制訊號CSACTB。Next, the operation of a part of the CK buffer 17 shown in (a) of FIG. 3 will be described with reference to (b) of FIG. 3 . In this embodiment, during the period when the clock (the seventh clock) of the external clock signal CK for inputting the write data (DE7, DO7) as shown in FIG. 4 is valid, the chip select signal CS# is changed from valid ( low level) becomes invalid (high level). First, when the inverted chip select signal CSACT is asserted (high level) and the internal clock signal CLK1 is deactivated (low level), the inverted chip select signal CSACT is input to the delay circuit 106 via the inverters 103 and 104 . Then, the signal input from the delay circuit 106 is delayed, and the effective (high level) first control signal CSACTB is output from the delay circuit 106 .

接下來,當使外部時鐘訊號CK的第七時鐘有效(高位準)時,在時間t1中,使內部時鐘訊號CLK1的第七時鐘有效(高位準)。 在此情況下,由於各別的MOSFET 100和MOSFET 101變為截止狀態,所以反相器103的操作停止,並且反相器103的輸出端子的電位維持在低位準。由此,從延遲電路106輸出的第一控制訊號CSACTB維持在有效(高位準)狀態。Next, when the seventh clock of the external clock signal CK is enabled (high level), at time t1, the seventh clock of the internal clock signal CLK1 is enabled (high level). In this case, since the respective MOSFETs 100 and 101 are turned off, the operation of the inverter 103 is stopped, and the potential of the output terminal of the inverter 103 is maintained at a low level. Thus, the first control signal CSACTB output from the delay circuit 106 is maintained in an active (high level) state.

然後,在時間t2中,在外部時鐘訊號CK的第七個時鐘為有效的期間,晶片選擇訊號CS#從有效(低位準)變為無效(高位準)時,反相晶片選擇訊號CSACT從有效變為無效(低位準)。 在此,由於使內部時鐘訊號CLK1的第七時鐘保持為有效(高位準),所以各別的MOSFET 100和MOSFET 101都保持在截止狀態。因此,從延遲電路106輸出保持為有效的第一控制訊號CSACTB。Then, at time t2, when the seventh clock of the external clock signal CK is active, when the chip select signal CS# changes from active (low level) to inactive (high level), the inverting chip select signal CSACT changes from active becomes invalid (low level). Here, since the seventh clock of the internal clock signal CLK1 is kept active (high level), the respective MOSFETs 100 and 101 are kept in the OFF state. Therefore, the first control signal CSACTB that remains active is output from the delay circuit 106 .

這樣一來,內部時鐘訊號CLK1係基於外部時鐘訊號CK而產生,在用於產生資料時鐘訊號DCLK的內部時鐘訊號CLK1為有效的期間,CK緩衝器17維持第一控制訊號CSACTB在有效狀態;上述資料時鐘訊號DCLK係用於傳輸寫入資料(DE7,DO7)到記憶體單元陣列的訊號。In this way, the internal clock signal CLK1 is generated based on the external clock signal CK. During the period when the internal clock signal CLK1 for generating the data clock signal DCLK is valid, the CK buffer 17 maintains the first control signal CSACTB in the valid state; the above-mentioned The data clock signal DCLK is used to transmit write data (DE7, DO7) to the memory cell array.

進一步,基於從延遲電路106輸出的第一控制訊號CSACTB,指令解碼器21輸出有效的訊號ENDQDRV。 另外,DCK緩衝器12產生用於將寫入資料(DE7,DO7)傳輸到記憶體單元陣列的資料時鐘訊號DCLK,並將其輸出到DFF 13。另外,DFF 13根據訊號ACLKE、訊號ACLKO、以及資料時鐘訊號DCLK的輸入而取得訊號ADQINX,並且將表示包括訊號ADQINX的寫入資料的訊號DQ輸出(傳輸)到記憶體單元陣列。Further, based on the first control signal CSACTB output from the delay circuit 106, the command decoder 21 outputs a valid signal ENDQDRV. In addition, the DCK buffer 12 generates a data clock signal DCLK for transferring the write data ( DE7 , DO7 ) to the memory cell array, and outputs it to the DFF 13 . In addition, the DFF 13 obtains the signal ADQINX according to the input of the signal ACLKE, the signal ACLKO, and the data clock signal DCLK, and outputs (transmits) the signal DQ representing the written data including the signal ADQINX to the memory cell array.

這樣一來,即使晶片選擇訊號CS#變為無效(高位準),CK緩衝器17仍可藉由將用以操作DFF 13的第一控制訊號CSACTB維持在有效(高位準)狀態而使DFF 13運作,第一控制訊號CSACTB係基於晶片選擇訊號CS#而產生。In this way, even if the chip select signal CS# becomes inactive (high level), the CK buffer 17 can still enable the DFF 13 by maintaining the first control signal CSACTB for operating the DFF 13 in the active (high level) state In operation, the first control signal CSACTB is generated based on the chip selection signal CS#.

另外,這樣一來,根據外部時鐘訊號CK,在寫入資料(DE7,DO7)輸入期間,晶片選訊號CS#從有效(低位準)變為無效(高位準)時,CK緩衝器17操作DFF 13以將寫入資料(DE7,DO7)傳輸到記憶體單元陣列。In addition, in this way, according to the external clock signal CK, during the input period of the write data (DE7, DO7), when the chip select signal CS# changes from valid (low level) to invalid (high level), the CK buffer 17 operates DFF 13 to transfer the write data (DE7, DO7) to the memory cell array.

接下來,在時間t3中,當內部時鐘訊號CLK1的第七時鐘從有效(高位準)變為無效(低位準)時,各別的MOSFET 100和MOSFET 101變為導通狀態。在此情況下,反相器103將無效的(低位準)反相晶片選擇訊號CSACT進行邏輯反相,並輸出邏輯反相後的訊號。然後,從反相器103輸出的訊號經由反相器104輸入到延遲電路106。然後,將延遲電路106所輸入的訊號進行延遲,在時間t4中,從延遲電路106輸出無效(低位準)的第一控制訊號CSACTB。此時,基於從延遲電路106輸出的第一控制訊號CSACTB,指令解碼器21輸出無效(低位準)的訊號ENDQDRV。由此,結束DCK緩衝器12的操作,進一步,結束DFF 13的操作。Next, at time t3, when the seventh clock of the internal clock signal CLK1 is changed from active (high level) to inactive (low level), the respective MOSFETs 100 and 101 become on-state. In this case, the inverter 103 logically inverts the invalid (low level) inverting chip select signal CSACT, and outputs the logically inverted signal. Then, the signal output from the inverter 103 is input to the delay circuit 106 via the inverter 104 . Then, the signal input from the delay circuit 106 is delayed, and at time t4, the first control signal CSACTB inactive (low level) is output from the delay circuit 106 . At this time, based on the first control signal CSACTB output from the delay circuit 106, the command decoder 21 outputs an invalid (low level) signal ENDQDRV. Thereby, the operation of the DCK buffer 12 is terminated, and further, the operation of the DFF 13 is terminated.

於一實施例中,延遲電路106中的延遲時間可以任意設定,例如,可以設定為小於半導體記憶裝置中的讀取或寫入操作之間晶片選擇訊號CS#的無效持續時間(例如,在HyperBus TM介面規格中的tCSHI)。在此情況下,在晶片選擇訊號CS#從有效變為無效之後,再到下一次有效時之期間,CK緩衝器17可以結束DFF 13的操作。 In one embodiment, the delay time in the delay circuit 106 can be arbitrarily set, eg, can be set to be less than the inactive duration of the chip select signal CS# between read or write operations in the semiconductor memory device (eg, in HyperBus tCSHI in the TM interface specification). In this case, the CK buffer 17 may end the operation of the DFF 13 after the chip selection signal CS# is changed from valid to invalid and until the next valid time.

第4圖係為當輸入寫入指令時半導體記憶裝置中的訊號的變化的時序圖。首先,當晶片選擇訊號CS#從無效(高位準)變為有效(低位準)時,藉由使內部晶片選擇訊號CSINX有效(低位準),CS緩衝器15開始操作。此時,藉由使反相晶片選擇訊號CSACT有效(高位準),CK緩衝器17開始運作(即被啟用或被活化)。 另外,當使訊號CSADQX和訊號CSCLKX有效(高位準)時,接收器11和接收器16開始運作。另外,藉由使第一控制訊號CSACTB有效(高位準)時,指令解碼器21開始運作,根據上述動作,DCK緩衝器12,DFF 13和記憶體陣列控制電路22開始運作。FIG. 4 is a timing chart of signal changes in the semiconductor memory device when a write command is input. First, when the chip select signal CS# changes from inactive (high level) to active (low level), the CS buffer 15 starts to operate by making the internal chip select signal CSINX active (low level). At this time, the CK buffer 17 starts to operate (ie, enabled or activated) by asserting the inverting chip select signal CSACT (high level). In addition, when the signal CSADQX and the signal CSCLKX are asserted (high level), the receiver 11 and the receiver 16 start to operate. In addition, when the first control signal CSACTB is active (high level), the command decoder 21 starts to operate. According to the above-mentioned operations, the DCK buffer 12, the DFF 13 and the memory array control circuit 22 start to operate.

接下來,在從外部時鐘訊號CK的第一時鐘的上升邊緣至第三時鐘的下降邊緣之間輸入指令(CMD)、列位址(RA)、以及欄位址(CA)。 然後,在外部時鐘訊號CK的第二時鐘的下降邊緣中,當輸入全部的列位址時,響應於根據外部時鐘訊號CK所產生的內部時鐘訊號CLK1的第三時鐘的上升邊緣,使列控制訊號RAS有效,上述列控制訊號RAS為用於活化由輸入的列位址所選擇的字線的訊號。由此,藉由列位址,以使選擇的字線活化。Next, a command (CMD), a column address (RA), and a column address (CA) are input between the rising edge of the first clock of the external clock signal CK and the falling edge of the third clock. Then, in the falling edge of the second clock of the external clock signal CK, when all the column addresses are input, in response to the rising edge of the third clock of the internal clock signal CLK1 generated according to the external clock signal CK, the column control The signal RAS is valid, and the row control signal RAS is a signal for activating the word line selected by the input row address. Thus, the selected word line is activated by the column address.

接下來,在外部時鐘訊號CK的第六時鐘的上升邊緣和下降邊緣中,輸入寫入資料(DE6,DO6)。 然後,響應於內部時鐘訊號CLK1的第六時鐘的下降邊緣,使資料時鐘訊號DCLK的時鐘(第六時鐘)有效,上述資料時鐘訊號DCLK為用於藉由外部時鐘訊號CK的第六時鐘所輸入的資料(DE6,DO6)傳輸到記憶體單元陣列的訊號。根據上述時鐘,寫入資料(DE6,DO6)被傳輸到記憶體單元陣列。Next, in the rising edge and the falling edge of the sixth clock of the external clock signal CK, write data (DE6, DO6) are input. Then, in response to the falling edge of the sixth clock of the internal clock signal CLK1, the clock (sixth clock) of the data clock signal DCLK, which is used to input the sixth clock of the external clock signal CK, is valid. The data (DE6, DO6) are transmitted to the signal of the memory cell array. According to the above clock, the written data (DE6, DO6) are transferred to the memory cell array.

然後,在使內部時鐘訊號CLK1的第六時鐘無效(低位準)之後,使欄控制訊號CASP的時鐘(第六時鐘)有效(高位準),上述欄控制訊號CASP為用於選擇寫入資料(DE6,DO6)寫入到記憶體單元的位元線的訊號,並且使由欄位址所選擇的位元線活化。由此,藉由外部時鐘訊號CK的第六時鐘,所輸入的寫入資料(DE6,DO6)被寫入到記憶體單元。Then, after the sixth clock of the internal clock signal CLK1 is disabled (low level), the clock (sixth clock) of the column control signal CASP is enabled (high level), and the column control signal CASP is used for selecting write data ( DE6, DO6) write the signal to the bit line of the memory cell and activate the bit line selected by the field address. Thus, the input write data (DE6, DO6) are written into the memory cells by the sixth clock of the external clock signal CK.

接下來,在外部時鐘訊號CK的第七時鐘的上升邊緣和下降邊緣中,輸入寫入資料(DE7,DO7)。 在此,在外部時鐘訊號CK的第七時鐘有效(高位準)期間,當晶片選擇訊號CS#從有效(低位準)變為無效(高位準)時,使內部晶片選擇訊號CSINX無效(高位準),進一步,使反相晶片選擇訊號CSACT無效(低位準)。Next, in the rising edge and the falling edge of the seventh clock of the external clock signal CK, write data (DE7, DO7) are input. Here, during the valid (high level) period of the seventh clock of the external clock signal CK, when the chip selection signal CS# changes from valid (low level) to inactive (high level), the internal chip selection signal CSINX is deactivated (high level). ), and further, the inverting chip select signal CSACT is disabled (low level).

另一方面,如第3圖的(b)所述,在晶片選擇訊號CS#從有效(低位準)變為無效(高位準)後,第一控制訊號CSACTB仍可維持在有效(高位準)狀態,使得訊號CSADQX和訊號CSCLKX也維持在有效(高位準)狀態。在此情況下,接收器11和接受器16,DCK緩衝器12,DFF 13,CS緩衝器15,CK緩衝器17,指令解碼器21和記憶體陣列控制電路22繼續運作。由此,在內部時鐘訊號CLK1的第七時鐘的下降邊緣中,使資料時鐘訊號DCLK的時鐘(第七時鐘)有效(高位準),上述資料時鐘訊號DCLK為用於由外部時鐘訊號CK的第七時鐘所輸入的資料(DE7,DO7)傳輸到記憶體單元陣列的訊號。藉由上述有效的資料時鐘訊號DCLK,所輸入的資料(DE7,DO7)被傳輸到記憶體單元陣列。On the other hand, as described in (b) of FIG. 3, after the chip selection signal CS# is changed from active (low level) to inactive (high level), the first control signal CSACTB can still be maintained at active (high level) state, so that the signal CSADQX and the signal CSCLKX are also maintained in the active (high level) state. In this case, the receiver 11 and the receiver 16, the DCK buffer 12, the DFF 13, the CS buffer 15, the CK buffer 17, the instruction decoder 21 and the memory array control circuit 22 continue to operate. Therefore, in the falling edge of the seventh clock of the internal clock signal CLK1, the clock (the seventh clock) of the data clock signal DCLK is enabled (high level), and the above-mentioned data clock signal DCLK is used for the second clock of the external clock signal CK. The data (DE7, DO7) input by the seven clocks are transmitted to the signal of the memory cell array. With the above-mentioned valid data clock signal DCLK, the input data (DE7, DO7) are transmitted to the memory cell array.

然後,在使內部時鐘訊號CLK1的第七時鐘無效(低位準)之後,使欄控制訊號CASP的時鐘(第七時鐘)有效(高位準),上述欄控制訊號CASP為用於選擇寫入資料(DE7,DO7) 寫入到記憶體單元的位元線的訊號,並且將由欄位址所選擇的位元線活化。由此,由外部時鐘訊號CK的第七時鐘所輸入的寫入資料(DE7,DO7)被寫入到記憶體單元。Then, after the seventh clock of the internal clock signal CLK1 is disabled (low level), the clock (the seventh clock) of the column control signal CASP is enabled (high level), and the column control signal CASP is used to select the write data ( DE7, DO7) Write the signal to the bit line of the memory cell, and activate the bit line selected by the field address. Thus, the write data (DE7, DO7) input by the seventh clock of the external clock signal CK are written into the memory cells.

進一步,在從內部時鐘訊號CLK1的第七時鐘無效(低位準)開始經過特定時間後,使第一控制訊號CSACTB無效(低位準),以使訊號CSADQX和訊號CSCLKX無效(低位準)。藉此,接收器11、接收器16、DCK緩衝器12、DFF 13、CS緩衝器15、以及CK緩衝器17結束運作。Further, after a certain time elapses from the invalidation (low level) of the seventh clock of the internal clock signal CLK1, the first control signal CSACTB is invalidated (low level), so that the signals CSADQX and CSCLKX are invalid (low level). Thereby, the operation of the receiver 11, the receiver 16, the DCK buffer 12, the DFF 13, the CS buffer 15, and the CK buffer 17 ends.

另外,在欄控制訊號CASP的第七時鐘的下降邊緣中,將用於預充電訊號PRE有效(高位準),同時列控制訊號RAS無效(低位準)。 然後,當經過特定的預先充電期間時,使訊號PRE無效(低位準)。此時,指令解碼器21和記憶體陣列控制電路22結束運作。In addition, during the falling edge of the seventh clock of the column control signal CASP, the precharge signal PRE is active (high level), while the column control signal RAS is inactive (low level). Then, when a specific precharge period has elapsed, the signal PRE is deactivated (low level). At this point, the command decoder 21 and the memory array control circuit 22 end their operations.

如此,根據外部時鐘訊號CK,在寫入資料(DE7,DO7)輸入期間,當晶片選擇訊號CS#從有效(低位準)變為無效(高位準)時,可以將寫入資料(DE7,DO7)傳輸到記憶體單元陣列,並且可以將寫入資料(DE7,DO7)寫入到記憶體單元陣列中的記憶體單元。In this way, according to the external clock signal CK, during the input period of the write data (DE7, DO7), when the chip select signal CS# changes from valid (low level) to inactive (high level), the write data (DE7, DO7) can be written ) is transmitted to the memory cell array, and write data (DE7, DO7) can be written to the memory cells in the memory cell array.

如上所述,根據與本實施例有關的半導體記憶裝置,根據外部時鐘訊號CK,在寫入資料(DE7,DO7)(第一寫入資料)輸入期間,即使晶片選擇訊號CS#從有效(低位準)變為無效(高位準)時,仍可以將寫入資料(DE7,DO7)傳輸到記憶體單元陣列,並且可以將寫入資料(DE7,DO7)寫入到記憶體單元陣列中的記憶體單元。由此,即使在資料寫入操作期間執行半導體記憶裝置的非活化時,仍可以適當地將資料寫入到半導體記憶裝置。As described above, according to the semiconductor memory device related to this embodiment, according to the external clock signal CK, during the input period of the write data (DE7, DO7) (first write data), even if the chip select signal CS# is changed from the active (low-order) When the standard) becomes invalid (high level), the write data (DE7, DO7) can still be transferred to the memory cell array, and the write data (DE7, DO7) can be written to the memory in the memory cell array body unit. Thus, even when deactivation of the semiconductor memory device is performed during a data writing operation, data can be properly written to the semiconductor memory device.

另外,根據與本實施例有關的半導體記憶裝置,無論是否使晶片選擇訊號CS#有效(低位準),即使外部時鐘訊號CK以固定頻率輸入時,可以將寫入資料(DE7,DO7)(第一寫入資料)傳輸到記憶體單元陣列,並且可以將寫入資料(DE7,DO7)寫入到記憶體單元陣列中的記憶體單元。另外,根據與本實施例有關的半導體記憶裝置,從外部裝置對半導體記憶裝置的外部時鐘訊號的供應時序不受限制(例如,擴大或縮小外部時鐘訊號的連續兩個時鐘的間隔等)。由於可以以固定的頻率將外部時鐘訊號提供給半導體記憶裝置,因此可以實現提高操作性的半導體記憶裝置。In addition, according to the semiconductor memory device related to the present embodiment, regardless of whether the chip selection signal CS# is active (low level), even when the external clock signal CK is input at a fixed frequency, the data (DE7, DO7) can be written (the first A write data) is transmitted to the memory cell array, and the write data (DE7, DO7) can be written to the memory cells in the memory cell array. In addition, according to the semiconductor memory device related to this embodiment, the supply timing of the external clock signal from the external device to the semiconductor memory device is not limited (eg, the interval between two consecutive clocks of the external clock signal is enlarged or narrowed, etc.). Since an external clock signal can be supplied to the semiconductor memory device at a fixed frequency, a semiconductor memory device with improved operability can be realized.

在下文中,將說明關於本發明的實施例2。本實施例的半導體記憶裝置與實施例1的不同之處在於,CK緩衝器17(控制電路)操作DFF 13(傳輸電路),直到寫入資料(DE7,DO7)(第一寫入資料)寫入到記憶體單元陣列中的任何記憶體單元為止。 在下文中,將說明關於與實施例1不同的配置。Hereinafter, Embodiment 2 concerning the present invention will be explained. The semiconductor memory device of this embodiment is different from Embodiment 1 in that the CK buffer 17 (control circuit) operates the DFF 13 (transfer circuit) until the write data (DE7, DO7) (first write data) is written into any memory cell in the memory cell array. Hereinafter, a configuration different from that of Embodiment 1 will be explained.

第5圖係為與本實施例有關之半導體記憶裝置之 I/O部以及控制邏輯部20之配置方塊圖。在第5圖的示例中,第二控制訊號CSACTC(控制訊號)係基於晶片選擇訊號CS#而產生,以及用於操作DFF 13的第二控制訊號CSACTC係從CK緩衝器17輸入到指令解碼器21。FIG. 5 is a block diagram showing the configuration of the I/O section and the control logic section 20 of the semiconductor memory device according to the present embodiment. In the example of FIG. 5, the second control signal CSACTC (control signal) is generated based on the chip select signal CS#, and the second control signal CSACTC for operating the DFF 13 is input from the CK buffer 17 to the command decoder twenty one.

當從CS緩衝器15輸入有效(高位準)的反相晶片選擇訊號CSACT時,CK緩衝器17使第一控制訊號CSACTB有效(高位準),並將其輸出到CS緩衝器15和指令解碼器21。另外,在本實施例中,當從CS緩衝器15輸入有效(高位準)的反相晶片選擇訊號CSACT時,CK緩衝器17使第二控制訊號CSACTC有效(高位準),並且將其輸出到指令解碼器21。When a valid (high level) inverting chip select signal CSACT is input from the CS buffer 15, the CK buffer 17 makes the first control signal CSACTB valid (high level) and outputs it to the CS buffer 15 and the command decoder twenty one. In addition, in this embodiment, when a valid (high level) inverting chip select signal CSACT is input from the CS buffer 15, the CK buffer 17 makes the second control signal CSACTC valid (high level), and outputs it to Instruction decoder 21 .

另外,在本實施例中,在用於選擇寫入資料(DE7,DO7)(第一寫入資料)寫入到記憶體單元的位元線的欄控制訊號CASP為有效(高位準)的期間,CK緩衝器17操作DFF 13(傳輸電路)。 由此,由於在用於選擇寫入資料(DE7,DO7)寫入到記憶體單元的位元線的欄控制訊號CASP為有效(高位準)的期間,可以操作DFF 13,因此,寫入資料(DE7,DO7)可以更確實地傳輸到記憶體單元陣列。In addition, in this embodiment, the column control signal CASP for selecting write data (DE7, DO7) (the first write data) to be written to the bit line of the memory cell is active (high level) during the period , the CK buffer 17 operates the DFF 13 (transmission circuit). Therefore, the DFF 13 can be operated while the column control signal CASP for selecting the write data (DE7, DO7) to be written to the bit line of the memory cell is active (high level). (DE7, DO7) can be more reliably transferred to the memory cell array.

在本實施例中,當從CK緩衝器17輸入有效的(高位準)第一控制訊號CSACTB或有效的(高位準)第二控制訊號CSACTC時,在從CK緩衝器17輸入的內部時鐘訊號CLK1的特定時鐘(在此為第一時鐘)的上升邊緣到特定時鐘(在此為第三時鐘)的下降邊緣期間,指令解碼器21將有效的(高位準)訊號ENCADRV輸出到DCK緩衝器12。另外,當從CK緩衝器17輸入有效的(高位準)第一控制訊號CSACTB或有效的(高位準)第二控制訊號CSACTC時,在從CK緩衝器17輸入的內部時鐘訊號CLK1的特定時鐘(在此為第六時鐘)的上升邊緣到特定時鐘(在此為第七時鐘)的下降邊緣期間,指令解碼器21將有效的(高位準)訊號ENDQDRV輸出到DCK緩衝器12。In this embodiment, when the valid (high level) first control signal CSACTB or the valid (high level) second control signal CSACTC is input from the CK buffer 17, the internal clock signal CLK1 input from the CK buffer 17 During the period from the rising edge of the specific clock (here the first clock) to the falling edge of the specific clock (here the third clock), the instruction decoder 21 outputs the valid (high level) signal ENCADRV to the DCK buffer 12 . In addition, when the valid (high level) first control signal CSACTB or the valid (high level) second control signal CSACTC is input from the CK buffer 17 , at the specific clock ( The instruction decoder 21 outputs a valid (high level) signal ENDQDRV to the DCK buffer 12 during the period from the rising edge of the sixth clock (here the sixth clock) to the falling edge of the specific clock (here the seventh clock).

接下來,參照第6圖的(a),CK緩衝器17包括延遲電路200,串聯連接到三個反相器201、202、203,NAND電路204,串聯連接到三個反相器205、206、207,NOR電路208,反相器209,用兩個NAND電路210、211所構成的RS正反器,兩個反相器212、213,P通道型MOSFET  214,N通道型MOSFET 215,以及三個反相器216、217、218。Next, referring to FIG. 6(a), the CK buffer 17 includes a delay circuit 200 connected in series to three inverters 201, 202, 203, and a NAND circuit 204 connected in series to three inverters 205, 206 , 207, NOR circuit 208, inverter 209, RS flip-flop composed of two NAND circuits 210, 211, two inverters 212, 213, P-channel MOSFET 214, N-channel MOSFET 215, and Three inverters 216, 217, 218.

內部時鐘訊號CLK1被輸入到延遲電路200。 延遲電路200將輸入的內部時鐘訊號CLK1延遲特定時間,並且將延遲訊號CLK1D輸出到NAND電路204和反相器201。The internal clock signal CLK1 is input to the delay circuit 200 . The delay circuit 200 delays the input internal clock signal CLK1 by a specific time, and outputs the delayed signal CLK1D to the NAND circuit 204 and the inverter 201 .

反相器201的輸入端子連接到延遲電路200和NAND電路204之間的節點。另外,反相器203對經由反相器201和202輸入的訊號進行邏輯反相,並且將邏輯反相後的訊號輸出到NAND電路204。The input terminal of the inverter 201 is connected to the node between the delay circuit 200 and the NAND circuit 204 . In addition, the inverter 203 logically inverts the signals input through the inverters 201 and 202 , and outputs the logically inverted signal to the NAND circuit 204 .

從延遲電路200輸出的訊號CLK1D被輸入到NAND電路204的一個輸入端子。另外,從反相器203輸出的訊號被輸入到NAND電路204的另一個輸入端子。另外,NAND電路204基於輸入訊號執行NAND計算,並且將訊號CLKDRP作為計算結果輸出到NAND電路210。The signal CLK1D output from the delay circuit 200 is input to one input terminal of the NAND circuit 204 . In addition, the signal output from the inverter 203 is input to the other input terminal of the NAND circuit 204 . In addition, the NAND circuit 204 performs NAND calculation based on the input signal, and outputs the signal CLKDRP to the NAND circuit 210 as the calculation result.

欄控制訊號CASP被輸入到反相器205的輸入端子。另外,反相器207經由反相器205和206對所輸入的訊號進行邏輯反相,並且將邏輯反相後的訊號輸出到NOR電路208。The column control signal CASP is input to the input terminal of the inverter 205 . In addition, the inverter 207 logically inverts the input signal via the inverters 205 and 206 , and outputs the logically inverted signal to the NOR circuit 208 .

欄控制訊號CASP被輸入到NOR電路208的一個輸入端子。另外,從反相器207輸出的訊號被輸入到NOR電路208的另一個輸入端子。另外,NOR電路208基於輸入訊號執行NOR計算,並且將計算結果輸出到反相器209。The column control signal CASP is input to an input terminal of the NOR circuit 208 . In addition, the signal output from the inverter 207 is input to the other input terminal of the NOR circuit 208 . In addition, the NOR circuit 208 performs NOR calculation based on the input signal, and outputs the calculation result to the inverter 209 .

反相器209對從NOR電路208輸入的訊號進行邏輯反相,並且將邏輯反相後的訊號作為訊號CASPFP輸出到NAND電路211。The inverter 209 logically inverts the signal input from the NOR circuit 208, and outputs the logically inverted signal to the NAND circuit 211 as the signal CASPFP.

從NAND電路204輸出的訊號CLK1DRP被輸入到RS正反器的NAND電路210的一個輸入端子。另外,NAND電路210的另一個輸入端子連接到NAND電路211的輸出端子。另外,NAND電路210的輸出端子連接到反相器212的輸入端子和NAND電路211的一個輸入端子。另外,從反相器209輸出的訊號CASPFP被輸入到NAND電路211的另一個輸入端子。The signal CLK1DRP output from the NAND circuit 204 is input to one input terminal of the NAND circuit 210 of the RS flip-flop. In addition, the other input terminal of the NAND circuit 210 is connected to the output terminal of the NAND circuit 211 . In addition, the output terminal of the NAND circuit 210 is connected to the input terminal of the inverter 212 and one input terminal of the NAND circuit 211 . In addition, the signal CASPFP output from the inverter 209 is input to the other input terminal of the NAND circuit 211 .

反相器212對從NAND電路210輸出的訊號進行邏輯反相,並且將邏輯反相後的訊號作為訊號MASK2輸出到反相器213和MOSFET 215。The inverter 212 logically inverts the signal output from the NAND circuit 210 , and outputs the logically inverted signal to the inverter 213 and the MOSFET 215 as a signal MASK2 .

反相器213對從反相器212輸出的訊號MASK2進行邏輯反相,並且將邏輯反相後的訊號作為訊號MASK1輸出到MOSFET 214。The inverter 213 logically inverts the signal MASK2 output from the inverter 212, and outputs the logically inverted signal to the MOSFET 214 as the signal MASK1.

進一步,MOSFET 214、215和三個反相器216、217、218的配置使訊號MASK1輸入到MOSFET 214的閘極,訊號MASK2輸入到MOSFET 215的閘極,除了如第6圖的(a)所示的節點n01的訊號被輸入到反相器216,以及第二控制訊號CSACTC從反相器217輸出之外,與第3圖的(a)所示的MOSFET 100、101和三個反相器103、104、105的配置相同。Further, the MOSFETs 214, 215 and the three inverters 216, 217, 218 are configured such that the signal MASK1 is input to the gate of the MOSFET 214, and the signal MASK2 is input to the gate of the MOSFET 215, except as shown in (a) of FIG. 6 The signal of the node n01 shown is input to the inverter 216, and the second control signal CSACTC is output from the inverter 217, and the MOSFETs 100, 101 and the three inverters shown in (a) of FIG. 3 The configurations of 103, 104, and 105 are the same.

參照第6圖的(b),首先,當使反相晶片選擇訊號CSACT有效(高位準),使內部時鐘訊號CLK1無效(低位準),以及使欄控制訊號CASP無效(低位準)時,訊號MASK1變為低位準,以及訊號MASK2變為高位準。 由此,反相器216對節點n01所輸入的訊號進行邏輯反相,並且將邏輯反相後的訊號輸出到反相器217。另外,反相器217對輸入訊號進行邏輯反相,並輸出邏輯反相後的訊號作為有效(高位準)的第二控制訊號CSACTC。Referring to (b) of FIG. 6, first, when the inverting chip select signal CSACT is made active (high level), the internal clock signal CLK1 is inactive (low level), and the column control signal CASP is inactive (low level), the signal MASK1 goes low and the signal MASK2 goes high. Thus, the inverter 216 logically inverts the signal input from the node n01 , and outputs the logically inverted signal to the inverter 217 . In addition, the inverter 217 logically inverts the input signal, and outputs the logically inverted signal as the valid (high level) second control signal CSACTC.

接下來,當使外部時鐘訊號CK的第六時鐘有效(高位準)時,在時間t11中,使內部時鐘訊號CLK1的第六時鐘有效(高位準)。 之後,使訊號CLK1D有效(高位準),並且將訊號CLK1DRP變為低位準。 此時,藉由設定RS正反器,訊號MASK1變為高位準,以及訊號MASK2變為低位準。在此情況下,由於各別的MOSFET 214和MOSFET 215變為截止狀態,所以停止反相器216的運作,並且反相器216的輸出端子的電位維持在低位準。 由此,第二控制訊號CSACTC維持在有效(高位準)狀態。Next, when the sixth clock of the external clock signal CK is enabled (high level), at time t11, the sixth clock of the internal clock signal CLK1 is enabled (high level). After that, the signal CLK1D is enabled (high level), and the signal CLK1DRP is changed to a low level. At this time, by setting the RS flip-flop, the signal MASK1 becomes a high level, and the signal MASK2 becomes a low level. In this case, since the respective MOSFETs 214 and 215 are turned off, the operation of the inverter 216 is stopped, and the potential of the output terminal of the inverter 216 is maintained at a low level. Thus, the second control signal CSACTC is maintained in an active (high level) state.

接下來,在從內部時鐘訊號CLK1的第六時鐘的下降邊緣開始經過特定時間後,使欄控制訊號CASP的時鐘(第六時鐘) 有效(高位準)。由此,由外部時鐘訊號CK的第六時鐘所輸入的寫入資料(DE6,DO6)寫入到記憶體單元。然後,當使欄控制訊號CASP的時鐘(第六時鐘)無效(低位準)時,在時間t12中,訊號CASPFP變為低位準。此時,藉由重置RS正反器,訊號MASK1變為低位準,以及訊號MASK2變為高位準。在此情況下,各別的MOSFET 214和MOSFET 215變為導通狀態,並且反相器216對節點n01的輸入訊號進行邏輯反相,並且將邏輯反相後的訊號輸出到反相器217。在此,由於節點n01的訊號的邏輯位準與第一控制訊號CSACTB的邏輯位準相同(此時為高位準),所以第二控制訊號CSACTC維持在有效(高位準)狀態。Next, after a certain time has elapsed from the falling edge of the sixth clock of the internal clock signal CLK1, the clock of the column control signal CASP (the sixth clock) is made active (high level). Thus, the write data (DE6, DO6) input by the sixth clock of the external clock signal CK are written into the memory cells. Then, when the clock (sixth clock) of the column control signal CASP is deactivated (low level), in time t12, the signal CASPFP becomes the low level. At this time, by resetting the RS flip-flop, the signal MASK1 becomes a low level, and the signal MASK2 becomes a high level. In this case, the respective MOSFETs 214 and 215 are turned on, and the inverter 216 logically inverts the input signal of the node n01 and outputs the logically inverted signal to the inverter 217 . Here, since the logic level of the signal of the node n01 is the same as the logic level of the first control signal CSACTB (the high level at this time), the second control signal CSACTC is maintained in the active (high level) state.

接下來,在時間t13中,基於使內部時鐘訊號CLK1的第七時鐘有效(高位準),訊號CLK1DRP變為低位準。在此情況下,如上所述,基於重置RS觸發器,各別的MOSFET 214和MOSFET 215變為截止狀態。由此,第二控制訊號CSACTC維持在有效(高位準)狀態。Next, at time t13, based on validating (high level) the seventh clock of the internal clock signal CLK1, the signal CLK1DRP becomes a low level. In this case, as described above, based on the reset RS flip-flop, the respective MOSFETs 214 and 215 become off-states. Thus, the second control signal CSACTC is maintained in an active (high level) state.

接下來,當在內部時鐘訊號CLK1的第七時鐘為有效(高位準)的期間,反相晶片選擇訊號CSACT從有效(高位準)變為無效(低位準)時,在從內部時鐘訊號CLK1的第七時鐘有效(高位準)開始經過特定時間後,使第一控制訊號CSACTB無效(低位準)。Next, when the inverting chip select signal CSACT changes from active (high level) to inactive (low level) during the period when the seventh clock of the internal clock signal CLK1 is active (high level), the clock from the internal clock signal CLK1 is active (high level). The first control signal CSACTB is deactivated (low level) after a certain time has elapsed since the seventh clock is valid (high level).

然後,在從內部時鐘訊號CLK1的第七時鐘的下降邊緣開始經過特定時間後,使欄控制訊號CASP的時鐘(第七時鐘)有效(高位準)。由此,由外部時鐘訊號CK的第七時鐘所輸入的寫入資料(DE7,DO7)寫入到記憶體單元。然後,當使欄控制訊號CASP的時鐘(第7時鐘)無效(低位準)時,在時間t14中,訊號CASPFP變為低位準。此時,藉由重置RS正反器,訊號MASK1變為低位準,以及訊號MASK2變為高位準。在此情況下,各別的MOSFET 214和MOSFET 215變為導通狀態,並且反相器216對節點n01的輸入訊號進行邏輯反相,並且將邏輯反相後的訊號輸出到反相器217。在此,由於節點n01的訊號的邏輯位準與第一控制訊號CSACTB的邏輯位準相同(此時為低位準),因此使第二控制訊號CSACTC無效(低位準)。Then, after a specific time has elapsed from the falling edge of the seventh clock of the internal clock signal CLK1, the clock (the seventh clock) of the column control signal CASP is enabled (high level). Thus, the write data (DE7, DO7) input by the seventh clock of the external clock signal CK are written into the memory cells. Then, when the clock (the seventh clock) of the column control signal CASP is deactivated (low level), the signal CASPFP becomes low level at time t14. At this time, by resetting the RS flip-flop, the signal MASK1 becomes a low level, and the signal MASK2 becomes a high level. In this case, the respective MOSFETs 214 and 215 are turned on, and the inverter 216 logically inverts the input signal of the node n01 and outputs the logically inverted signal to the inverter 217 . Here, since the logic level of the signal of the node n01 is the same as the logic level of the first control signal CSACTB (the low level at this time), the second control signal CSACTC is invalid (the low level).

此時,由於使各別的第一控制訊號CSACTB和第二控制訊號CSACTC無效(低位準),因此指令解碼器21輸出無效(低位準)的訊號ENDQDRV。 由此,結束DCK緩衝器12的運作,並且進一步,結束DFF 13的運作。At this time, since the respective first control signal CSACTB and the second control signal CSACTC are invalid (low level), the command decoder 21 outputs the invalid (low level) signal ENDQDRV. Thereby, the operation of the DCK buffer 12 is ended, and further, the operation of the DFF 13 is ended.

以此方式,在用於選擇寫入資料(DE7,DO7)寫入到記憶體單元的位元線的欄控制訊號CASP為有效的期間,CK緩衝器17可以操作DFF 13。In this way, the CK buffer 17 can operate the DFF 13 during the period when the column control signal CASP for selecting the write data (DE7, DO7) to be written to the bit line of the memory cell is active.

另外,根據外部時鐘訊號CK,在寫入資料(DE7,DO7) 輸入期間,即使晶片選擇訊號CS#從有效(低位準)變為無效(高位準),CK緩衝器17也可以操作DFF 13,直到寫入資料(DE7,DO7)寫入到記憶體單元陣列中的任何記憶體單元為止。In addition, according to the external clock signal CK, during the writing data (DE7, DO7) input period, even if the chip select signal CS# is changed from active (low level) to inactive (high level), the CK buffer 17 can operate the DFF 13, Until write data (DE7, DO7) is written to any memory cell in the memory cell array.

進一步,在本實施例中,應當注意,必需設定延遲電路200的延遲時間,以使RS正反器交互地設定和重置(即,在使下一次內部時鐘訊號CLK1的延遲訊號CLK1D的時鐘(例如,第七時鐘)有效(高位準)之前,使基於內部時鐘訊號CLK1的時鐘(例如,第六時鐘)所產生的欄控制訊號CASP的時鐘(例如,第六時鐘)無效(低位準))。Further, in the present embodiment, it should be noted that the delay time of the delay circuit 200 must be set so that the RS flip-flops are alternately set and reset (ie, the next time the internal clock signal CLK1 is delayed by the clock of the signal CLK1D ( For example, before the seventh clock) is valid (high level), the clock (for example, the sixth clock) of the column control signal CASP generated based on the clock of the internal clock signal CLK1 (for example, the sixth clock) is invalid (low level)) .

第7圖係為當輸入寫入指令時本實施例中的半導體記憶裝置中的訊號的時間變化的時序圖。在此,將說明與第4圖所示的時序圖不同的部分。FIG. 7 is a timing chart of temporal changes of signals in the semiconductor memory device in this embodiment when a write command is input. Here, different parts from the timing chart shown in FIG. 4 will be described.

首先,當晶片選擇訊號CS#從無效(高位準)變為有效(低位準)時,使內部晶片選擇訊號CSINX有效(低位準),並且使反相晶片選擇訊號CSACT有效(高位準)。由此,使第一控制訊號CSACTB和第二控制訊號CSACTC有效(高位準)。First, when the chip select signal CS# changes from inactive (high level) to active (low level), the internal chip select signal CSINX is enabled (low level), and the inverted chip select signal CSACT is enabled (high level). Thus, the first control signal CSACTB and the second control signal CSACTC are enabled (high level).

在此,如第6圖的(b)所述,直到將用於選擇寫入資料(DE7,DO7) 寫入到記憶體單元的位元線的欄控制訊號CASP的時鐘(第七時鐘)無效(低位準)為止的期間,第二控制訊號CSACTC維持在有效(高位準)狀態。在此情況下,如第7圖所示,因為第二控制訊號CSACTC的有效(高位準)狀態比第一控制訊號CSACTB的有效(高位準)狀態長,所以基於有效的第二控制訊號CSACTC,以使DCK緩衝器12和DFF 13長時間操作。由此,與實施例1相比,由於可以擴大資料時鐘訊號DCLK的第七時鐘的寬度,所以可以更確實地將寫入資料(DE7,DO7)傳輸到記憶體單元陣列。Here, as described in (b) of FIG. 6, until the clock (seventh clock) of the column control signal CASP for writing the selection write data (DE7, DO7) to the bit lines of the memory cell is invalid During the period up to (low level), the second control signal CSACTC is maintained in an active (high level) state. In this case, as shown in FIG. 7, because the active (high level) state of the second control signal CSACTC is longer than the active (high level) state of the first control signal CSACTB, based on the active second control signal CSACTC, so that the DCK buffer 12 and the DFF 13 operate for a long time. Therefore, compared with the first embodiment, since the width of the seventh clock of the data clock signal DCLK can be enlarged, the write data (DE7, DO7) can be transmitted to the memory cell array more reliably.

如上所述,根據本實施例有關的半導體記憶裝置,由於直到寫入資料(DE7,DO7)(第一寫入資料)寫入到記憶體單元為止仍可以操作DFF 13(傳輸電路),所以可以更確實地將寫入資料(DE7,DO7)(第一寫入資料)傳輸到記憶體單元陣列。As described above, according to the semiconductor memory device according to the present embodiment, since the DFF 13 (transfer circuit) can be operated until the write data (DE7, DO7) (first write data) is written in the memory cell, it is possible to The write data (DE7, DO7) (the first write data) are more reliably transferred to the memory cell array.

在下文中,將說明上述實施例2的變形例。在本變形例中,與實施例2的不同之處在於,藉由寫入資料(DE7,DO7)(第一寫入資料)寫入到任何記憶體單元,CK緩衝器17(控制電路)可以操作DFF 13(傳輸電路),直到寫入指令中寫入到任何的記憶體單元的寫入資料的數量達到寫入指令中所輸入的寫入資料的數量為止。在下文中,將說明與實施例2不同的配置。Hereinafter, a modification of the above-described Embodiment 2 will be described. In this modification, the difference from Embodiment 2 is that by writing the write data (DE7, DO7) (first write data) to any memory cell, the CK buffer 17 (control circuit) can The DFF 13 (transfer circuit) is operated until the number of write data written to any memory cell in the write command reaches the number of write data input in the write command. Hereinafter, a configuration different from that of Embodiment 2 will be explained.

第8圖係為與本發明之變形例有關之半導體記憶裝置之I/O部10以及控制邏輯部20之配置圖。在第8圖的示例中,CK緩衝器17被配置為基於從指令解碼器21所輸入的訊號MASK1,輸出第二控制訊號CSACTC。FIG. 8 is a configuration diagram of the I/O unit 10 and the control logic unit 20 of the semiconductor memory device according to the modification of the present invention. In the example of FIG. 8 , the CK buffer 17 is configured to output the second control signal CSACTC based on the signal MASK1 input from the command decoder 21 .

接下來,參照第9圖,將說明關於在本變形例中的指令解碼器21和CK緩衝器17的配置。參照第9圖的(a),指令解碼器21包括第一計數器300、第二計數器301、比較器30、反相器303、以及NAND電路304。Next, with reference to FIG. 9, description will be given regarding the configuration of the instruction decoder 21 and the CK buffer 17 in the present modification. Referring to (a) of FIG. 9 , the instruction decoder 21 includes a first counter 300 , a second counter 301 , a comparator 30 , an inverter 303 , and a NAND circuit 304 .

在表示寫入操作狀態的訊號WRSTA在有效(高位準)狀態下輸入期間,在從CK緩衝器17輸入的內部時鐘訊號CLK1的時鐘的寫入資料中,在每個與上述寫入資料對應的時鐘的下降邊緣時,第一計數器300對寫入資料中所輸入的寫入資料的數量進行計數。然後,第一計數器300將表示計數值的訊號CNTDIN輸出到比較器302。During the period in which the signal WRSTA indicating the state of the write operation is input in the active (high level) state, in the write data of the clock of the internal clock signal CLK1 input from the CK buffer 17, in each write data corresponding to the above write data At the falling edge of the clock, the first counter 300 counts the number of write data input in the write data. Then, the first counter 300 outputs the signal CNTDIN representing the count value to the comparator 302 .

在此,訊號WRSTA可以藉由指令解碼器21產生。根據外部時鐘訊號CK,當輸入指令(CMD)表示為寫入指令時,指令解碼器21可以產生有效(高位準)的訊號WRSTA。Here, the signal WRSTA can be generated by the command decoder 21 . According to the external clock signal CK, when the input command (CMD) represents a write command, the command decoder 21 can generate a valid (high level) signal WRSTA.

訊號WRSTA在有效(高位準)狀態下輸入期間,在每個從指令解碼器21輸入的欄控制訊號CASP的時鐘的下降邊緣時,第二計數器301對在寫入指令中寫入到任何的記憶體單元的寫入資料的數量進行計數。然後,第二計數器301將表示計數值的訊號CNTWR輸出到比較器302。During the period when the signal WRSTA is input in the active (high level) state, at each falling edge of the clock of the column control signal CASP input from the command decoder 21, the second counter 301 writes to any memory in the write command. The number of written data of the body cell is counted. Then, the second counter 301 outputs a signal CNTWR representing the count value to the comparator 302 .

比較器302將從第一計數器300輸入的訊號CNTDIN與從第二計數器301輸入的訊號CNTWR進行比較。然後,當由各別的訊號CNTDIN和CNTWR的表示值一致時,比較器302將高位準訊號WRMTC輸出到NAND電路304。另外,當由各別的訊號CNTDIN和CNTWR的表示值不一致時,比較器302將低位準訊號WRMTC輸出到NAND電路304。The comparator 302 compares the signal CNTDIN input from the first counter 300 with the signal CNTWR input from the second counter 301 . Then, when the values indicated by the respective signals CNTDIN and CNTWR are consistent, the comparator 302 outputs the high-level signal WRMTC to the NAND circuit 304 . In addition, when the values indicated by the respective signals CNTDIN and CNTWR are inconsistent, the comparator 302 outputs the low-level signal WRMTC to the NAND circuit 304 .

反相器303對從CK緩衝器17輸入的內部時鐘訊號CLK1進行邏輯反相,並且將邏輯反相後的訊號輸出到NAND電路304。The inverter 303 logically inverts the internal clock signal CLK1 input from the CK buffer 17 , and outputs the logically inverted signal to the NAND circuit 304 .

從比較器302輸出的訊號WRMTC被輸入到NAND電路304的一個輸入端子。另外,從反相器303輸出的訊號被輸入到NAND電路304的另一個輸入端子。另外,NAND電路304基於輸入訊號執行NAND計算,並將計算結果訊號MASK1輸出到CK緩衝器17。The signal WRMTC output from the comparator 302 is input to one input terminal of the NAND circuit 304 . In addition, the signal output from the inverter 303 is input to the other input terminal of the NAND circuit 304 . In addition, the NAND circuit 304 performs NAND calculation based on the input signal, and outputs the calculation result signal MASK1 to the CK buffer 17 .

接下來,參照於第9圖的(b),將說明一部分的CK緩衝器17的配置。CK緩衝器17包括P通道型MOSFET 400,N通道型MOSFET 401以及四個反相器402、403、404和405。Next, with reference to FIG. 9(b), the configuration of a part of the CK buffer 17 will be described. The CK buffer 17 includes a P-channel type MOSFET 400 , an N-channel type MOSFET 401 and four inverters 402 , 403 , 404 and 405 .

進一步,MOSFET 400、401和四個反相器402、403、404、405的配置為,除了訊號MASK1輸入到MOSFET 400的閘極,訊號MASK2輸入到MOSFET 401的閘極,以及從反相器404輸出控制訊號CSACTC之外,與第3圖(a)所示的MOSFET 100、101和四個反相器102、103、104、105的配置相同。Further, the MOSFETs 400, 401 and the four inverters 402, 403, 404, 405 are configured such that, in addition to the signal MASK1 input to the gate of the MOSFET 400, the signal MASK2 is input to the gate of the MOSFET 401, and from the inverter 404 The configurations of the MOSFETs 100, 101 and the four inverters 102, 103, 104, and 105 shown in FIG. 3(a) are the same as those of the output control signal CSACTC.

參照第10圖,將說明第9圖(a)所示的一部分的指令解碼器21的操作,以及第9圖(b)所示的一部分的CK緩衝器17的操作。在此,第10圖的(a)表示,在使下一次內部時鐘訊號CLK1的的時鐘(例如,第七時鐘)有效(高位準)之前,使基於內部時鐘訊號CLK1的時鐘(例如,第六時鐘)所產生的欄控制訊號CASP的時鐘(例如,第六時鐘)無效(低位準)的情況。另外,第10圖的(b)表示,在使下一次內部時鐘訊號CLK1的的時鐘(例如,第七時鐘)有效(高位準)之前,使基於內部時鐘訊號CLK1的時鐘(例如,第六時鐘)所產生的欄控制訊號CASP的時鐘(例如,第六時鐘)沒有無效(低位準)的情況。Referring to Fig. 10, the operation of the part of the instruction decoder 21 shown in Fig. 9(a) and the operation of the part of the CK buffer 17 shown in Fig. 9(b) will be described. Here, (a) of FIG. 10 shows that the clock based on the internal clock signal CLK1 (for example, the sixth clock) is enabled before the next clock (for example, the seventh clock) of the internal clock signal CLK1 is enabled (high level). The clock (eg, the sixth clock) generated by the column control signal CASP is invalid (low level). In addition, (b) of FIG. 10 shows that the clock based on the internal clock signal CLK1 (for example, the sixth clock) is enabled before the next clock (for example, the seventh clock) of the internal clock signal CLK1 is enabled (high level). ) generated by the column control signal CASP clock (eg, the sixth clock) is not invalid (low level).

首先,參照第10圖的(a),當使反相晶片選擇訊號CSACT有效(高位準),使內部時鐘訊號CLK1無效(低位準),以及由第一計數器300和第二計數器301的計數值一致時(即,訊號WRMTC為高位準),訊號MASK1為低位準,以及訊號MASK2為高位準。由此,反相器403對所輸入的反相晶片選擇訊號CSACT進行邏輯反相,並且將邏輯反相後的訊號輸出到反相器404。另外,反相器404對輸入訊號進行邏輯反相,並輸出邏輯反相後的訊號作為有效(高位準)的第二控制訊號CSACTC。First, referring to (a) of FIG. 10, when the inverting chip select signal CSACT is active (high level), the internal clock signal CLK1 is inactive (low level), and the count values from the first counter 300 and the second counter 301 When consistent (ie, the signal WRMTC is at a high level), the signal MASK1 is at a low level, and the signal MASK2 is at a high level. Accordingly, the inverter 403 logically inverts the input inverting chip select signal CSACT, and outputs the logically inverted signal to the inverter 404 . In addition, the inverter 404 logically inverts the input signal, and outputs the logically inverted signal as the valid (high level) second control signal CSACTC.

接下來,當使外部時鐘訊號CK的第六時鐘有效(高位準)時,在時間t21中,使內部時鐘訊號CLK1的第六時鐘有效(高位準)。 此時,訊號MASK1變為高位準,以及訊號MASK2變為低位準。 在這種情況下,由於各別的MOSFET 400和MOSFET 403變為截止狀態,所以停止反相器403的運作,並且反相器403的輸出端子的電位維持在低位準。由此,第二控制訊號CSACTC維持在有效(高位準)狀態。Next, when the sixth clock of the external clock signal CK is enabled (high level), at time t21, the sixth clock of the internal clock signal CLK1 is enabled (high level). At this time, the signal MASK1 becomes a high level, and the signal MASK2 becomes a low level. In this case, since the respective MOSFETs 400 and 403 are turned off, the operation of the inverter 403 is stopped, and the potential of the output terminal of the inverter 403 is maintained at a low level. Thus, the second control signal CSACTC is maintained in an active (high level) state.

接下來 ,在時間t22中,使內部時鐘訊號CLK1的第六時鐘無效(低位準)。此時,藉由第一計數器300的計數值增加,因為各別的訊號CNTDIN和CNTWR的值不同,所以訊號WRMTC變為低準。在這種情況下,由於訊號MASK2為低位準,因此第二控制訊號CSACTC維持在有效(高位準)狀態。Next, at time t22, the sixth clock of the internal clock signal CLK1 is deactivated (low level). At this time, as the count value of the first counter 300 increases, the signal WRMTC becomes low level because the values of the respective signals CNTDIN and CNTWR are different. In this case, since the signal MASK2 is at a low level, the second control signal CSACTC is maintained in an active (high level) state.

然後,在從內部時鐘訊號CLK1的第六時鐘的下降邊緣開始經過特定時間後,使欄控制訊號CASP的時鐘(第六時鐘)有效(高位準)。由此,由外部時鐘訊號CK的第六時鐘所輸入的寫入資料(DE6,DO6)寫入到記憶體單元。然後,在時間t23中,當使欄控制訊號CASP的時鐘(第六時鐘)無效(低位準)時,第二計數器301的計數值增加。由此,因為各別的訊號CNTDIN和CNTWR的值相等,所以訊號WRMTC變為高位準。另外,當訊號MASK1變為低位準,並且訊號MASK2變為高位準時,反相器403開始操作。進一步,此時,第二控制訊號CSACTC維持在有效(高位準)狀態。Then, after a certain time elapses from the falling edge of the sixth clock of the internal clock signal CLK1, the clock of the column control signal CASP (the sixth clock) is enabled (high level). Thus, the write data (DE6, DO6) input by the sixth clock of the external clock signal CK are written into the memory cells. Then, at time t23, when the clock (sixth clock) of the column control signal CASP is deactivated (low level), the count value of the second counter 301 is increased. Therefore, since the values of the respective signals CNTDIN and CNTWR are equal, the signal WRMTC becomes a high level. In addition, when the signal MASK1 goes low and the signal MASK2 goes high, the inverter 403 starts to operate. Furthermore, at this time, the second control signal CSACTC is maintained in an active (high level) state.

另外,內在部時鐘訊號CLK1的第七時鐘為有效(高位準)的期間,晶片選擇訊號CS#從有效(低位準)變為無效(高位準)時,反相晶片選擇訊號CSACT從有效(高位準)變為無效(低位準)。In addition, during the period when the seventh clock of the internal clock signal CLK1 is active (high level), when the chip select signal CS# changes from active (low level) to inactive (high level), the inverted chip select signal CSACT changes from active (high level). standard) becomes invalid (low level).

接下來,在時間t24中,使內部時鐘訊號CLK1的第七時鐘無效(低位準)。此時,藉由第一計數器300的計數值增加,因為各別的訊號CNTDIN和CNTWR的值不同,所以訊號WRMTC變為低位準。在此,因為訊號MASK2為低位準,所以第二控制訊號CSACTC維持在有效(高位準)狀態。Next, at time t24, the seventh clock of the internal clock signal CLK1 is deactivated (low level). At this time, as the count value of the first counter 300 increases, the signal WRMTC becomes a low level because the values of the respective signals CNTDIN and CNTWR are different. Here, because the signal MASK2 is at a low level, the second control signal CSACTC is maintained in an active (high level) state.

然後,在從內部時鐘訊號CLK1的第七時鐘的下降邊緣開始經過特定時間後,使欄控制訊號CASP的時鐘(第七時鐘)有效(高位準)。由此,由外部時鐘訊號CK的第七時鐘所輸入的寫入資料(DE7,DO7)寫入到記憶體單元。然後,在時間t25中,當使欄控制訊號CASP的時鐘(第七時鐘)無效(低位準)時,第二計數器301的計數值增加。由此,因為各別的訊號CNTDIN和CNTWR的值相等,所以訊號WRMTC變為高位準。另外,當訊號MASK1變為低位準,並且訊號MASK2變為高位準時,反相器403開始運作。反相器403對輸入的反相晶片選擇訊號CSACT進行邏輯反相,並且將邏輯反相後的訊號輸出到反相器404。在此,因為第一控制訊號CSACTB的邏輯位準與反相晶片選擇訊號CSACT的邏輯位準相同(此時為低位準),所以使第二控制訊號CSACTC無效(低位準)。Then, after a specific time has elapsed from the falling edge of the seventh clock of the internal clock signal CLK1, the clock (the seventh clock) of the column control signal CASP is enabled (high level). Thus, the write data (DE7, DO7) input by the seventh clock of the external clock signal CK are written into the memory cells. Then, at time t25, when the clock (seventh clock) of the column control signal CASP is deactivated (low level), the count value of the second counter 301 is increased. Therefore, since the values of the respective signals CNTDIN and CNTWR are equal, the signal WRMTC becomes a high level. In addition, when the signal MASK1 goes low and the signal MASK2 goes high, the inverter 403 starts to operate. The inverter 403 logically inverts the input inverting chip select signal CSACT, and outputs the logically inverted signal to the inverter 404 . Here, because the logic level of the first control signal CSACTB is the same as the logic level of the inverted chip select signal CSACT (the low level at this time), the second control signal CSACTC is invalid (the low level).

此時,因為使各別的第一控制訊號CSACTB和第二控制訊號CSACTC無效(低位準),所以指令解碼器21輸出無效(低位準)的訊號ENDQDRV。 由此,結束DCK緩衝器12的運作,並且進一步,結束DFF 13的運作。At this time, since the respective first control signal CSACTB and the second control signal CSACTC are invalidated (low level), the command decoder 21 outputs the invalid (low level) signal ENDQDRV. Thereby, the operation of the DCK buffer 12 is ended, and further, the operation of the DFF 13 is ended.

以此方式,藉由將寫入資料(DE7,DO7)寫入任何記憶體單元,CK緩衝器17可以操作DFF13,直到寫入指令中寫入到任何的記憶體單元的寫入資料的數量達到上述寫入指令中輸入的寫入資料的數量為止。In this way, by writing write data (DE7, DO7) to any memory cell, CK buffer 17 can operate DFF 13 until the number of write data written to any memory cell in the write command reaches Up to the number of write data entered in the above write command.

接下來,將說明關於第10圖(b)所示的情況。 在此,時間t31中和時間t32中的各別的訊號的狀態與第10圖(a)的時間t21中和時間t22中的各別的訊號的狀態相同。Next, the case shown in FIG. 10(b) will be described. Here, the states of the respective signals at the time t31 and the time t32 are the same as the states of the respective signals at the time t21 and the time t22 in FIG. 10(a).

在時間t33中,在欄控制訊號CASP的時鐘(第七時鐘) 為有效(高位準)的期間,當使內部時鐘訊號CLK1的第七時鐘有效(高位準)時,因為各別的訊號CNTDIN,和CNTWR的值仍然不同,所以訊號WRMTC變為低位準。另外,由於訊號MASK2為低位準,因此第二控制訊號CSACTC維持在有效(高位準)狀態。At time t33, when the clock (the seventh clock) of the column control signal CASP is active (high level), when the seventh clock of the internal clock signal CLK1 is active (high level), because of the respective signals CNTDIN, The value of CNTWR is still different, so the signal WRMTC goes low. In addition, since the signal MASK2 is at a low level, the second control signal CSACTC is maintained in an active (high level) state.

接下來,在時間t34中,當使欄控制訊號CASP的時鐘(第六時鐘)無效(低位準)時,第二計數器301的計數值增加。由此,因為各別的訊號CNTDIN和CNTWR的值相等,所以訊號WRMTC變為高位準。在此,由於使內部時鐘訊號CLK1的第七時鐘有效(高位準),因此訊號MASK2仍然為低位準。因此,第二控制訊號CSACTC維持在有效(高位準)狀態。Next, at time t34, when the clock (sixth clock) of the column control signal CASP is deactivated (low level), the count value of the second counter 301 is increased. Therefore, since the values of the respective signals CNTDIN and CNTWR are equal, the signal WRMTC becomes a high level. Here, since the seventh clock of the internal clock signal CLK1 is enabled (high level), the signal MASK2 is still at the low level. Therefore, the second control signal CSACTC is maintained in an active (high level) state.

然後,在時間t35中,使內部時鐘訊號CLK1的第七時鐘無效(低位準)。此時,藉由第一計數器300的計數值的增加,因為各別的訊號CNTDIN和CNTWR的值不同,所以訊號WRMTC變為低位準。在這種情況下,由於訊號MASK2為低位準,因此第二控制訊號CSACTC維持在有效(高位準)狀態。Then, at time t35, the seventh clock of the internal clock signal CLK1 is deactivated (low level). At this time, as the count value of the first counter 300 increases, the signal WRMTC becomes a low level because the values of the respective signals CNTDIN and CNTWR are different. In this case, since the signal MASK2 is at a low level, the second control signal CSACTC is maintained in an active (high level) state.

在時間t36中的各別的訊號的狀態與第10圖(a)中在時間t25中的各別的訊號的狀態相同。The states of the respective signals at time t36 are the same as the states of the respective signals at time t25 in FIG. 10(a).

如上所述,根據本變形例,無需調整在內部時鐘訊號CLK1與欄控制訊號CASP之間的有效時序,就可以獲得與上述實施例2相同的效果。進一步,由於當輸入寫入指令時本變形例的半導體記憶裝置中的訊號的時間變化與上述實施例2的訊號的時間變化相同,因此將其省略說明。As described above, according to the present modification, the same effect as the above-described second embodiment can be obtained without adjusting the effective timing between the internal clock signal CLK1 and the column control signal CASP. Further, since the time change of the signal in the semiconductor memory device of this modification when the write command is input is the same as the time change of the signal of the above-mentioned second embodiment, the description thereof will be omitted.

如上所述,根據本變形例的半導體記憶裝置,直到在寫入指令中寫入到記憶體單元的寫入資料的數量達到在寫入指令中輸入的寫入資料的數量(即,寫入資料(DE7,DO7)( 第一寫入資料)寫入到記憶體單元)為止,由於維持DFF13(傳輸電路)的運作,因此可以將寫入資料(DE7,DO7)更確實地傳送到記憶體單元陣列。As described above, according to the semiconductor memory device of the present modification, until the number of write data written to the memory cell in the write command reaches the number of write data input in the write command (ie, write data (DE7, DO7) (the first written data) is written to the memory unit), since the operation of DFF13 (transmission circuit) is maintained, the written data (DE7, DO7) can be more reliably transmitted to the memory unit array.

進一步,在上述各個實施例及變形例中,雖半導體記憶裝置是以使用HyperBus TM介面的pSRAM的情況為例進行說明,但在這種情況下,發揮了下文中所述的進一步的效果。 Further, in each of the above-described embodiments and modifications, the semiconductor memory device has been described by taking the case of pSRAM using the HyperBus interface as an example, but in this case, further effects described below are exhibited.

第11圖的(a)係為基於現有的半導體記憶裝置規格,晶片選擇訊號CS#的輸入時序之說明示例圖,在HyperBus TM介面規格中,定義晶片選擇訊號CS#的動態特性(AC特性)。第11圖的(a)表示當外部時鐘訊號CK為200Mhz時,各別的參數的最小值之示例。 在此,tCSS為直到下一次外部時鐘訊號CK的上升邊緣為止的晶片選擇訊號CS#的設定時間,tCSH為在外部時鐘訊號CK的下降邊緣後的晶片選擇訊號CS#的保持時間。另外,tCK為時鐘週期,tCKHP為時鐘的半週期。 (a) of FIG. 11 is a diagram illustrating an example of the input timing of the chip select signal CS# based on the existing semiconductor memory device specification. In the HyperBus TM interface specification, the dynamic characteristics (AC characteristics) of the chip select signal CS# are defined. . (a) of FIG. 11 shows an example of the minimum value of each parameter when the external clock signal CK is 200Mhz. Here, tCSS is the setting time of the chip select signal CS# until the next rising edge of the external clock signal CK, and tCSH is the holding time of the chip select signal CS# after the falling edge of the external clock signal CK. In addition, tCK is the clock period, and tCKHP is the half period of the clock.

如第11圖的(a)所示,基於個別的參數,當調整晶片選擇訊號CS#的輸入時序時,外部時鐘訊號CK的第零時鐘和第一時鐘之間的間隔,以及第七時鐘第八時鐘之間的間隔,因為與其他時鐘之間的間隔不同,,因此難以以固定的頻率輸入外部時鐘訊號CK。As shown in (a) of FIG. 11, based on individual parameters, when adjusting the input timing of the chip selection signal CS#, the interval between the zeroth clock and the first clock of the external clock signal CK, and the seventh clock Since the interval between eight clocks is different from the interval between other clocks, it is difficult to input the external clock signal CK at a fixed frequency.

因此,如第11圖的(b)所示,無論是否使晶片選擇訊號CS#有效(低位準),當重新定義各別的參數,以便可以以固定的頻率輸入外部時鐘訊號CK時,由於tCSH的時序餘裕的範圍窄至大約0.7 ns,因此仍然難以固定頻率輸入,例如,200Mhz等的高頻外部時鐘訊號CK。另外,在現有的半導體記憶裝置中,在外部時鐘訊號CK的時鐘(在此為第七時鐘)為有效(高位準)的期間,當使晶片選擇訊號CS#無效(高位準)時,在上述時鐘所輸入的寫入資料沒有被傳送到記憶體單元陣列,結果,可能難以將寫入資料寫入到記憶體單元陣列中的記憶體單元。Therefore, as shown in (b) of FIG. 11, regardless of whether the chip selection signal CS# is enabled (low level), when the respective parameters are redefined so that the external clock signal CK can be input at a fixed frequency, due to tCSH The range of the timing margin is as narrow as about 0.7 ns, so it is still difficult to input a fixed frequency, for example, a high-frequency external clock signal CK such as 200Mhz. In addition, in the conventional semiconductor memory device, when the clock of the external clock signal CK (here, the seventh clock) is active (high level), when the chip selection signal CS# is inactive (high level), the above-mentioned The write data input by the clock is not transferred to the memory cell array, and as a result, it may be difficult to write the write data to the memory cells in the memory cell array.

另一方面,如第11圖的(c)所示,根據上述各個實施例以及變形例的半導體記憶裝置,在輸入寫入資料期間,即使晶片選訊號CS#從有效(低位準)變為無效(高位準)時,也可以將上述寫入資料傳輸到記憶體單元陣列,進一步,由於可以將上述寫入資料寫入到記憶體單元陣列中的記憶體單元,因此tCSH的值可以往負的方向增加(例如,-1.5 ns)。由此,tCSH的時序餘裕範圍可以擴大到約1.85(= 1.5 + 0.35)ns。因此,根據上述各實施例以及變形例的半導體記憶裝置,在維持與HyperBus TM介面規格的相容性的同時,不論是否使晶片選擇訊號CS#有效,都可以繼續輸入200 Mhz等的高頻外部時鐘訊號CK。因此,可以改善結合外部裝置(例如,記憶體控制器)和半導體記憶裝置的系統的性能。 On the other hand, as shown in (c) of FIG. 11, according to the semiconductor memory devices of the above-described embodiments and modifications, during the input of write data, even if the chip select signal CS# is changed from active (low level) to inactive (high level), the written data can also be transmitted to the memory cell array. Further, since the written data can be written to the memory cells in the memory cell array, the value of tCSH can be negative. direction increases (for example, -1.5 ns). As a result, the timing margin of tCSH can be expanded to about 1.85 (= 1.5 + 0.35) ns. Therefore, according to the semiconductor memory devices of the above-mentioned embodiments and modifications, while maintaining the compatibility with the HyperBus TM interface specification, regardless of whether the chip select signal CS# is enabled or not, it is possible to continue to input high-frequency external signals such as 200 Mhz. clock signal CK. Therefore, the performance of a system combining an external device (eg, a memory controller) and a semiconductor memory device can be improved.

以上所述各個實施例以及變形例是用於簡單地理解本發明,沒有描述為限制本發明。因此,上述各個實施例以及變形例中所示之各個特徵,意在包括屬於本發明的技術範圍的全部設計變更和均等物。The above-described respective embodiments and modified examples are for the simple understanding of the present invention, and are not described to limit the present invention. Therefore, each feature shown in each of the above-described embodiments and modified examples is intended to include all design changes and equivalents that belong to the technical scope of the present invention.

例如,在上述各個實施例以及變形例中,雖是以使用HyperBus TM介面的情況為例進行說明,但本發明不限於此。 例如,即使用Xccella TM介面的情況時,也可以獲得與上述各個實施例以及變形例相同的效果。 For example, in each of the above-mentioned embodiments and modifications, the case where the HyperBus TM interface is used is described as an example, but the present invention is not limited to this. For example, even in the case of using the Xccella interface, the same effects as those of the above-described embodiments and modifications can be obtained.

另外,在上述各個實施例以及變形例中,低位準時有效的訊號可以變更為高位準時有效。 另外,高位準時有效的訊號可以變更為低位準時有效。In addition, in each of the above-mentioned embodiments and modifications, the signal valid at the low level can be changed to be valid at the high level. In addition, the signal that is valid at high level can be changed to be valid at low level.

另外,在上述各個實施例以及變形例中,雖以CK緩衝器17為控制電路的情況為例進行了說明,但本發明並不限於此。 例如,可以提供具有第3圖的(a),第6圖的(a),及/或第9圖的(b)所示的配置的其他的電路作為控制電路。In addition, in each of the above-described embodiments and modifications, the case where the CK buffer 17 is used as the control circuit has been described as an example, but the present invention is not limited to this. For example, other circuits having the configurations shown in Fig. 3(a), Fig. 6(a), and/or Fig. 9(b) may be provided as control circuits.

另外,在上述各個實施例以及變形例中,雖以指令解碼器21具有第9圖的(a)所示的配置的情況為例進行了說明,但本發明並不限於此。 例如,第9圖的(a)所示的配置可以被提供在CK緩衝器17中,或者可以被提供在另一電路中。In addition, in each of the above-described embodiments and modifications, the case where the command decoder 21 has the configuration shown in FIG. 9( a ) has been described as an example, but the present invention is not limited to this. For example, the configuration shown in (a) of FIG. 9 may be provided in the CK buffer 17, or may be provided in another circuit.

另外,在上述各個實施例以及變形例中,雖以在寫入指令中的最後的寫入資料(寫入資料(DE7,DO7))輸入期間,晶片選擇訊號CS#從有效變為無效的情況為例進行了說明。 但本發明並不限於此。例如,即使在其他寫入資料(例如,寫入資料(DE6,DO6))輸入期間,晶片選擇訊號CS#從有效變為無效時,上述各個實施例以及變形例也可以獲得與上述相同的作用和效果。In addition, in each of the above-mentioned embodiments and modifications, although the last write data (write data (DE7, DO7)) in the write command is input, the chip selection signal CS# is changed from valid to invalid. An example is shown. However, the present invention is not limited to this. For example, even when the chip selection signal CS# is changed from valid to invalid during the input of other write data (for example, write data (DE6, DO6)), the above-mentioned respective embodiments and modifications can obtain the same effect as the above-mentioned and effects.

另外,第3圖的(a),第6圖的(a),第9圖的(a)和第9圖的(b)所示的配置為示例,可以適當地變更,也可以採用其他各種的配置。In addition, the arrangement shown in Fig. 3(a), Fig. 6(a), Fig. 9(a), and Fig. 9(b) are examples, and may be changed as appropriate, and various other arrangements may be adopted. Configuration.

另外,上述各個實施例以及變形例中的I/O部10和控制邏輯部20的配置為示例,可以適當地變更,也可以採用其他各種的配置。In addition, the configurations of the I/O unit 10 and the control logic unit 20 in each of the above-described embodiments and modifications are examples, and may be changed as appropriate, and other various configurations may be employed.

10:I/O部 11:接收器 12:DCK緩衝器 13:DFF 14:接收器 15:CS緩衝器 16:接收器 17:CK緩衝器 20:控制邏輯部 21:指令解碼器 22:記憶體陣列控制電路 100:P通道型MOSFET 101:N通道型MOSFET 102:反相器 103:反相器 104:反相器 105:反相器 106:延遲電路 200:延遲電路 201:反相器 202:反相器 203:反相器 204:NAND電路 205:反相器 206:反相器 207:反相器 208:NOR電路 209:反相器 210:NAND電路 211:NAND電路 212:反相器 213:反相器 214:P通道型MOSFET 215:N通道型MOSFET 216:反相器 217:反相器 218:反相器 300:第一計數器300 301:第二計數器301 302:比較器 303:反相器 304:NAND電路 400:P通道型MOSFET 401:N通道型MOSFET 402:反相器 403:反相器 404:反相器 405:反相器 n01:反相器104和延遲電路106之間的節點 ACLKE:從DCK緩衝器12輸入的訊號 ACLKO:從DCK緩衝器12輸入的訊號 ADD:從DFF 13輸入的訊號 ADQINX:從接收器11輸出的訊號 CASP:欄控制訊號 CASPFP:從反相器209輸出的訊號 CK:外部時鐘訊號 CLK1:內部時鐘訊號 CLK1D:延遲訊號 CLK1DRP:從NAND電路204輸出的訊號 CLKX:CK緩衝器17從接收器16輸入的訊號 CMD:指令 CS#:晶片選擇訊號 CSACT:反相晶片選擇訊號 CSACTB:第一控制訊號 CSACTC:第二控制訊號 CSADQX:用於活化接收器11的訊號 CSCLKX:用於活化接收器16的訊號 CSINX:內部晶片選擇訊號 DCLK:資料時鐘訊號 DQ:資料訊號 ENCADRV:用於活化DCK緩衝器12的訊號 ENDQDRV:用於活化DCK緩衝器12的訊號 MASK1:MASK2邏輯反相的訊號 MASK2:從反相器212輸出的訊號(第6圖)、從反相器402輸出的訊號(第9圖) RA:列位址 RAS:列控制訊號 CA:欄位址 DE6,DO6:寫入資料 DE7,DO7:寫入資料 PRE:預充電訊號 WRSTA:表示寫入操作狀態的訊號 WRMTC:從比較器302輸出的訊號 CNTDIN:第一計數器300表示計數值的訊號 CNTWR:第二計數器301表示計數值的訊號 10: I/O department 11: Receiver 12: DCK buffer 13: DFF 14: Receiver 15: CS buffer 16: Receiver 17: CK buffer 20: Control Logic Department 21: Instruction Decoder 22: Memory array control circuit 100:P channel MOSFET 101: N-channel MOSFET 102: Inverter 103: Inverter 104: Inverter 105: Inverter 106: Delay circuit 200: Delay circuit 201: Inverter 202: Inverter 203: Inverter 204: NAND circuit 205: Inverter 206: Inverter 207: Inverter 208:NOR circuit 209: Inverter 210: NAND circuit 211: NAND circuit 212: Inverter 213: Inverter 214: P-channel MOSFET 215: N-channel MOSFET 216: Inverter 217: Inverter 218: Inverter 300: First counter 300 301: Second counter 301 302: Comparator 303: Inverter 304: NAND circuit 400:P channel MOSFET 401: N-channel MOSFET 402: Inverter 403: Inverter 404: Inverter 405: Inverter n01: Node between inverter 104 and delay circuit 106 ACLKE: Signal input from DCK buffer 12 ACLKO: Signal input from DCK buffer 12 ADD: Signal input from DFF 13 ADQINX: Signal output from receiver 11 CASP: Column Control Signal CASPFP: Signal output from inverter 209 CK: External clock signal CLK1: Internal clock signal CLK1D: Delay signal CLK1DRP: Signal output from NAND circuit 204 CLKX: CK buffer 17 input signal from receiver 16 CMD: command CS#: Chip Select Signal CSACT: Inverting chip select signal CSACTB: The first control signal CSACTC: The second control signal CSADQX: Signal for activating receiver 11 CSCLKX: Signal used to activate receiver 16 CSINX: Internal Chip Select Signal DCLK: data clock signal DQ: data signal ENCADRV: Signal for activating DCK buffer 12 ENDQDRV: Signal for activating DCK buffer 12 MASK1:MASK2 logic inverted signal MASK2: Signal output from inverter 212 (Fig. 6), signal output from inverter 402 (Fig. 9) RA: column address RAS: row control signal CA: field address DE6,DO6: write data DE7,DO7: write data PRE: Precharge signal WRSTA: Signal indicating write operation status WRMTC: the signal output from the comparator 302 CNTDIN: The first counter 300 represents the signal of the count value CNTWR: The signal of the second counter 301 representing the count value

第1圖的(a)~(b)係為當輸入寫入指令時,現有的半導體記憶裝置中的訊號的時間變化的時序圖。 第2圖係為與本發明之實施例1有關之半導體記憶裝置之輸入輸出介面(I/O)部以及控制邏輯部之配置方塊圖。 第3圖的(a)係為一部分的時鐘(CK)緩衝器的配置示例圖,第3圖的(b)係為一部分的CK緩衝器中的訊號的時間變化的時序圖。 第4圖係為當輸入寫入指令時半導體記憶裝置中的訊號的變化的時序圖。 第5圖係為與本發明之實施例2有關之半導體記憶裝置之I/O部以及控制邏輯部之配置方塊圖。 第6圖的(a)係為一部分的時鐘(CK)緩衝器的配置示例圖,第6圖的(b)係為一部分的CK緩衝器中的訊號的時間變化的時序圖。 第7圖係為當輸入寫入指令時半導體記憶裝置中的訊號的時間變化的時序圖。 第8圖係為與本發明之變形例有關之半導體記憶裝置之I/O部以及控制邏輯部之配置方塊圖。 第9圖的(a)係為一部分的指令解碼器的配置示例圖,第9圖的(b)係為一部分的CK緩衝器的配置示例圖。 第10圖的(a)~(b)係為一部分的指令解碼器和一部分的CK緩衝器中的訊號的時間變化的時序圖。 第11圖的(a)係為基於現有的半導體記憶裝置規格,晶片選擇訊號的輸入時序之說明示例圖,第11圖的(b)係為基於現有的半導體記憶裝置中,用以輸入固定頻率的時鐘訊號而調整晶片選擇訊號的輸入時序的情況之說明示例圖,第11圖的(c)係為與本發明之實施例和變形例有關之半導體記憶裝置中晶片選擇訊號的輸入時序之說明示例圖。 (a) to (b) of FIG. 1 are timing charts showing temporal changes of signals in a conventional semiconductor memory device when a write command is input. FIG. 2 is a block diagram showing the configuration of the input/output interface (I/O) part and the control logic part of the semiconductor memory device according to the first embodiment of the present invention. (a) of FIG. 3 is a diagram showing an example of the arrangement of a part of the clock (CK) buffer, and (b) of FIG. 3 is a timing chart of a time change of a signal in a part of the CK buffer. FIG. 4 is a timing chart of signal changes in the semiconductor memory device when a write command is input. FIG. 5 is a block diagram showing the configuration of the I/O part and the control logic part of the semiconductor memory device according to the second embodiment of the present invention. (a) of FIG. 6 is a diagram showing an example of the arrangement of a part of the clock (CK) buffer, and (b) of FIG. 6 is a timing chart of a time change of a signal in a part of the CK buffer. FIG. 7 is a timing chart of temporal changes of signals in the semiconductor memory device when a write command is input. FIG. 8 is a block diagram showing the arrangement of the I/O section and the control logic section of the semiconductor memory device according to the modification of the present invention. (a) of FIG. 9 is a diagram showing an example of the arrangement of a part of the command decoder, and (b) of FIG. 9 is a diagram of an example of the arrangement of a part of the CK buffer. (a) to (b) of FIG. 10 are timing charts showing time changes of signals in a part of the command decoder and a part of the CK buffer. (a) of FIG. 11 is a diagram illustrating an example of the input timing of the chip selection signal based on the specifications of the conventional semiconductor memory device, and (b) of FIG. 11 is based on the conventional semiconductor memory device for inputting a fixed frequency Figure 11 (c) is an illustration of the input timing of the chip selection signal in the semiconductor memory device related to the embodiment and modification of the present invention. sample graph.

10:I/O部 11:接收器 12:DCK緩衝器 13:DFF 14:接收器 15:CS緩衝器 16:接收器 17:CK緩衝器 20:控制邏輯部 21:指令解碼器 22:記憶體陣列控制電路 DQ:資料訊號 CS#:晶片選擇訊號 CK:外部時鐘訊號 ENCADRV:用於活化DCK緩衝器12的訊號 ENDQDRV:用於活化DCK緩衝器12的訊號 CLK1:內部時鐘訊號 ADQINX:從接收器11輸出的訊號 CSADQX:用於活化接收器11的訊號 CSINX:內部晶片選擇訊號 CSACTB:第一控制訊號 CSCLKX:用於活化接收器16的訊號 CSACT:反相晶片選擇訊號 CLKX:CK緩衝器17從接收器16輸入的訊號 ADD:從DFF 13所輸入的訊號 ACLKE:從DCK緩衝器12所輸入的訊號 ACLKO:從DCK緩衝器12所輸入的訊號 DCLK:資料時鐘訊號 RAS:列控制訊號 CASP:欄控制訊號 PRE:預充電訊號 10: I/O department 11: Receiver 12: DCK buffer 13: DFF 14: Receiver 15: CS buffer 16: Receiver 17: CK buffer 20: Control Logic Department 21: Instruction Decoder 22: Memory array control circuit DQ: data signal CS#: Chip Select Signal CK: External clock signal ENCADRV: Signal for activating DCK buffer 12 ENDQDRV: Signal for activating DCK buffer 12 CLK1: Internal clock signal ADQINX: Signal output from receiver 11 CSADQX: Signal for activating receiver 11 CSINX: Internal Chip Select Signal CSACTB: The first control signal CSCLKX: Signal used to activate receiver 16 CSACT: Inverting chip select signal CLKX: CK buffer 17 input signal from receiver 16 ADD: Signal input from DFF 13 ACLKE: Signal input from DCK buffer 12 ACLKO: Signal input from DCK buffer 12 DCLK: data clock signal RAS: row control signal CASP: Column Control Signal PRE: Precharge signal

Claims (17)

一種半導體記憶裝置,響應於有效狀態的晶片選擇訊號而執行寫入操作,包括: 記憶體單元陣列,包括多個記憶體單元; 傳輸電路,當該晶片選擇訊號為該有效狀態時,根據外部時鐘訊號取得寫入資料,並且傳輸到該記憶體單元陣列;以及 控制電路,根據該外部時鐘訊號,在該寫入資料的第一寫入資料輸入期間,在該晶片選擇訊號從該有效狀態變為無效狀態後,維持該傳輸電路的運作,以使該第一寫入資料傳輸到該記憶體單元陣列。 A semiconductor memory device that performs a write operation in response to a chip select signal in an active state, comprising: an array of memory cells, including a plurality of memory cells; a transmission circuit, when the chip selection signal is in the valid state, obtains write data according to an external clock signal, and transmits it to the memory cell array; and The control circuit, according to the external clock signal, maintains the operation of the transmission circuit after the chip selection signal changes from the active state to the inactive state during the first write data input period of the write data, so as to make the first write data input Write data is transferred to the array of memory cells. 如請求項1之半導體記憶裝置; 其中,該第一寫入資料為在寫入指令中最後的寫入資料。 The semiconductor memory device of claim 1; Wherein, the first written data is the last written data in the write command. 如請求項1之半導體記憶裝置; 其中,該控制電路被配置為根據反向的該晶片選擇訊號產生第一控制訊號,且該控制電路被配置為即使在該晶片選擇訊號變為該無效狀態後,藉由將用以活化該傳輸電路的該第一控制訊號維持在有效狀態,而使該傳輸電路維持運作。 The semiconductor memory device of claim 1; Wherein, the control circuit is configured to generate a first control signal according to the reversed chip select signal, and the control circuit is configured to activate the transmission even after the chip select signal becomes the inactive state The first control signal of the circuit is maintained in an active state, so that the transmission circuit maintains operation. 如請求項3之半導體記憶裝置; 其中,該控制電路還被配置為根據該外部時鐘訊號產生內部時鐘訊號,且在用於產生資料時鐘訊號的該內部時鐘訊號為有效狀態的期間,該控制電路維持該第一控制訊號在該有效狀態;該資料時鐘訊號係用於傳輸該第一寫入資料到該記憶體單元陣列的訊號。 The semiconductor memory device of claim 3; Wherein, the control circuit is further configured to generate an internal clock signal according to the external clock signal, and when the internal clock signal for generating the data clock signal is in a valid state, the control circuit maintains the first control signal in the valid state state; the data clock signal is a signal used to transmit the first write data to the memory cell array. 如請求項1之半導體記憶裝置; 其中,該控制電路操作該傳輸電路,直到該第一寫入資料寫入到該記憶體單元陣列中的任何的記憶體單元為止。 The semiconductor memory device of claim 1; Wherein, the control circuit operates the transmission circuit until the first write data is written to any memory cell in the memory cell array. 如請求項5之半導體記憶裝置; 其中,該控制電路被配置為接收欄控制訊號,且在該欄控制訊號為有效狀態的期間,該控制電路操作該傳輸電路;該欄控制訊號係用於選擇該第一寫入資料被寫入之記憶體單元的位元線的訊號。 The semiconductor memory device of claim 5; Wherein, the control circuit is configured to receive a column control signal, and when the column control signal is in an active state, the control circuit operates the transmission circuit; the column control signal is used to select the first write data to be written The signal of the bit line of the memory cell. 如請求項5或6之半導體記憶裝置; 其中,藉由該第一寫入資料寫入到任何的該記憶體單元,該控制電路操作該傳輸電路,直到在寫入指令中寫入到任何的該記憶體單元的寫入資料的數量達到在該寫入指令中輸入的寫入資料的數量為止。 The semiconductor memory device of claim 5 or 6; Wherein, by writing the first write data to any of the memory cells, the control circuit operates the transmission circuit until the number of write data written to any of the memory cells in the write command reaches Up to the number of write data entered in the write command. 如請求項1之半導體記憶裝置; 其中,在該晶片選擇訊號從該有效狀態變為該無效狀態之後;再到使下一次該晶片選擇訊號變為該有效狀態之期間,該控制電路結束該傳輸電路的運作。 The semiconductor memory device of claim 1; Wherein, after the chip selection signal changes from the valid state to the invalid state; and during the next time the chip selection signal becomes the valid state, the control circuit ends the operation of the transmission circuit. 如請求項1之半導體記憶裝置; 其中,該外部時鐘訊號是以固定頻率輸入。 The semiconductor memory device of claim 1; Wherein, the external clock signal is input at a fixed frequency. 如請求項4之半導體記憶裝置,更包括: 指令解碼器,耦接至該控制電路以接收該內部時鐘訊號與該第一控制訊號,且被配置以產生資料時鐘緩衝器控制訊號;以及 資料時鐘緩衝器,耦接至該傳輸電路,該資料時鐘緩衝器被配置為根據有效狀態的該資料時鐘緩衝器控制訊號被活化,在該資料時鐘緩衝器被活化的期間,響應於該內部時鐘訊號產生用於取得該寫入資料的訊號與該資料時鐘訊號。 As claimed in claim 4, the semiconductor memory device further includes: an instruction decoder, coupled to the control circuit to receive the internal clock signal and the first control signal, and configured to generate a data clock buffer control signal; and a data clock buffer, coupled to the transmission circuit, the data clock buffer is configured to be activated according to the data clock buffer control signal of the active state, during the period when the data clock buffer is activated, in response to the internal clock The signal generates a signal for obtaining the written data and the data clock signal. 如請求項10之半導體記憶裝置,更包括: 晶片選擇訊號接收器,被配置以根據該晶片選擇訊號產生內部晶片選擇訊號; 晶片選擇緩衝器,耦接至該晶片選擇訊號接收器,且被配置以輸出資料接收器控制訊號與外部時鐘訊號接收器控制訊號; 資料接收器,耦接至該傳輸電路與該晶片選擇緩衝器,該資料接收器被配置為根據有效狀態的該資料接收器控制訊號被活化以接收來自外部裝置的該寫入資料;以及 外部時鐘訊號接收器,耦接該控制電路與該晶片選擇緩衝器;且被配置為根據該外部時鐘訊號接收器控制訊號被活化,以將該外部時鐘訊號輸出到該控制電路。 As claimed in claim 10, the semiconductor memory device further includes: a chip select signal receiver configured to generate an internal chip select signal according to the chip select signal; a chip select buffer, coupled to the chip select signal receiver, and configured to output the data receiver control signal and the external clock signal receiver control signal; a data receiver, coupled to the transmission circuit and the chip select buffer, the data receiver configured to be activated according to the data receiver control signal in a valid state to receive the write data from an external device; and The external clock signal receiver is coupled to the control circuit and the chip selection buffer; and is configured to be activated according to the external clock signal receiver control signal to output the external clock signal to the control circuit. 如請求項10之半導體記憶裝置; 其中,當該資料時鐘緩衝器控制訊號為該有效狀態時,每當從該資料時鐘緩衝器接收用於取得該寫入資料的該訊號時,該傳輸電路從該資料接收器取得該寫入資料,然後將所取得的該寫入資料中的位址訊號輸出到該指令解碼器。 The semiconductor memory device of claim 10; Wherein, when the data clock buffer control signal is in the active state, the transmission circuit obtains the write data from the data receiver whenever the signal for obtaining the write data is received from the data clock buffer , and then output the obtained address signal in the written data to the instruction decoder. 如請求項10之半導體記憶裝置; 其中,在該傳輸電路從該資料接收器取得該寫入資料的同時;每當從該資料時鐘緩衝器接收該資料時鐘訊號時,平行轉換並儲存該寫入資料,然後根據該資料時鐘訊號將該寫入資料傳輸到該記憶體單元陣列。 The semiconductor memory device of claim 10; Wherein, when the transmission circuit obtains the written data from the data receiver; every time the data clock signal is received from the data clock buffer, the written data is converted and stored in parallel, and then according to the data clock signal The write data is transmitted to the memory cell array. 如請求項10之半導體記憶裝置; 其中,該控制電路根據該反相的該晶片選擇訊號產生有效狀態的第二控制訊號,並且將該第二控制訊號輸出至該指令解碼器,當該指令解碼器所接收的該第一控制訊號或該第二控制訊號的任一者為該有效狀態,該指令解碼器產生該有效狀態的該資料時鐘緩衝器控制訊號。 The semiconductor memory device of claim 10; Wherein, the control circuit generates a second control signal in a valid state according to the inverted chip selection signal, and outputs the second control signal to the command decoder, when the command decoder receives the first control signal Either one of the second control signals is in the active state, and the instruction decoder generates the data clock buffer control signal in the active state. 如請求項1之半導體記憶裝置; 其中,該控制電路包括延遲電路,根據內部時鐘訊號將該晶片選擇訊號提供至該延遲電路,該延遲電路被配置為將所接收的該晶片選擇訊號進行延遲,以產生第一控制訊號,且自該晶片選擇訊號從該有效狀態變成該無效狀態起,在該內部時鐘訊號維持為有效狀態的期間,該延遲電路將該第一控制訊號維持在有效狀態,而使該傳輸電路維持運作。 The semiconductor memory device of claim 1; Wherein, the control circuit includes a delay circuit, the chip selection signal is provided to the delay circuit according to the internal clock signal, and the delay circuit is configured to delay the received chip selection signal to generate a first control signal, and automatically The delay circuit maintains the first control signal in an active state while the internal clock signal is maintained in an active state from the active state into the inactive state, so that the transmission circuit maintains operation. 如請求項15之半導體記憶裝置; 其中,自該晶片選擇訊號與該內部時鐘訊號變成該無效狀態後,在該延遲電路進行延遲的期間,該延遲電路將該第一控制訊號維持在有效狀態,而使該傳輸電路維持運作。 The semiconductor memory device of claim 15; Wherein, after the chip selection signal and the internal clock signal become the inactive state, during the delay period of the delay circuit, the delay circuit maintains the first control signal in an active state, so that the transmission circuit maintains operation. 如請求項10之半導體記憶裝置; 其中,該指令解碼器更被配置為根據該內部時鐘訊號與欄控制訊號產生計算結果訊號,且該控制電路被配置為根據計算結果訊號產生第二控制訊號,其中該控制電路將該第二控制訊號維持為該有效狀態的期間配置為大於該第一控制訊號維持為該有效狀態的期間。 The semiconductor memory device of claim 10; The instruction decoder is further configured to generate a calculation result signal according to the internal clock signal and the column control signal, and the control circuit is configured to generate a second control signal according to the calculation result signal, wherein the control circuit controls the second control signal. The period during which the signal maintains the valid state is configured to be longer than the period during which the first control signal maintains the valid state.
TW110148858A 2020-12-28 2021-12-27 Semiconductor memory device TWI773616B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020218907A JP6999791B1 (en) 2020-12-28 2020-12-28 Semiconductor storage device
JP2020-218907 2020-12-28

Publications (2)

Publication Number Publication Date
TW202226243A TW202226243A (en) 2022-07-01
TWI773616B true TWI773616B (en) 2022-08-01

Family

ID=80490516

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110148858A TWI773616B (en) 2020-12-28 2021-12-27 Semiconductor memory device

Country Status (5)

Country Link
US (1) US11842765B2 (en)
JP (1) JP6999791B1 (en)
KR (1) KR20220094165A (en)
CN (1) CN114694708A (en)
TW (1) TWI773616B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6667927B2 (en) * 2002-02-11 2003-12-23 United Memories, Inc. Refresh initiated precharge technique for dynamic random access memory arrays using look-ahead refresh
US20040186948A1 (en) * 1991-07-26 2004-09-23 Lofgren Karl M. J. Device and method for controlling solid-state memory system
TW200707456A (en) * 2005-08-11 2007-02-16 Samsung Electronics Co Ltd Wrapper circuit and method for interfacing between non-muxed type memory controller and muxed type memory
US9477619B2 (en) * 2013-06-10 2016-10-25 Cypress Semiconductor Corporation Programmable latency count to achieve higher memory bandwidth
TWI623940B (en) * 2015-08-28 2018-05-11 東芝記憶體股份有限公司 Memory system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594704A (en) 1992-04-27 1997-01-14 Mitsubishi Denki Kabushiki Kaisha Synchronous semiconductor memory device
JP3400824B2 (en) 1992-11-06 2003-04-28 三菱電機株式会社 Semiconductor storage device
JPH07130166A (en) 1993-09-13 1995-05-19 Mitsubishi Electric Corp Semiconductor storage device and synchronization type semiconductor storage device
JP4187346B2 (en) * 1999-03-31 2008-11-26 富士通マイクロエレクトロニクス株式会社 Synchronous semiconductor memory device
JP4370507B2 (en) * 2003-11-27 2009-11-25 エルピーダメモリ株式会社 Semiconductor integrated circuit device
JP2005222581A (en) * 2004-02-03 2005-08-18 Renesas Technology Corp Semiconductor memory device
JP4859440B2 (en) * 2005-01-19 2012-01-25 ルネサスエレクトロニクス株式会社 Semiconductor memory device
JP2009020953A (en) * 2007-07-11 2009-01-29 Elpida Memory Inc Synchronous semiconductor device and data processing system provided with the same
JP5063337B2 (en) * 2007-12-27 2012-10-31 株式会社日立製作所 Semiconductor device
KR20090100540A (en) * 2008-03-20 2009-09-24 삼성전자주식회사 Semiconductor memory device adjusting preamble of dqs
JP5627197B2 (en) * 2009-05-26 2014-11-19 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. Semiconductor memory device, information processing system including the same, and controller
KR101789077B1 (en) * 2010-02-23 2017-11-20 삼성전자주식회사 On-die termination circuit, data output buffer, semiconductor memory device, memory module, method of operating an on-die termination circuit, method of operating a data output buffer and method of training on-die termination
KR101894469B1 (en) * 2012-02-24 2018-10-04 에스케이하이닉스 주식회사 Control signal generation circuit and semiconductor module and semiconductor system using the same
KR20190033318A (en) * 2017-09-21 2019-03-29 에스케이하이닉스 주식회사 Memory chip with reduced power consumption, buffer chip module contrlling the same and memory module including the same
JP6476325B1 (en) * 2018-02-01 2019-02-27 華邦電子股▲ふん▼有限公司Winbond Electronics Corp. Pseudo SRAM and control method thereof
KR20200071396A (en) * 2018-12-11 2020-06-19 에스케이하이닉스 주식회사 Semiconductor device and semiconductor system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040186948A1 (en) * 1991-07-26 2004-09-23 Lofgren Karl M. J. Device and method for controlling solid-state memory system
US6667927B2 (en) * 2002-02-11 2003-12-23 United Memories, Inc. Refresh initiated precharge technique for dynamic random access memory arrays using look-ahead refresh
TW200707456A (en) * 2005-08-11 2007-02-16 Samsung Electronics Co Ltd Wrapper circuit and method for interfacing between non-muxed type memory controller and muxed type memory
US9477619B2 (en) * 2013-06-10 2016-10-25 Cypress Semiconductor Corporation Programmable latency count to achieve higher memory bandwidth
TWI623940B (en) * 2015-08-28 2018-05-11 東芝記憶體股份有限公司 Memory system

Also Published As

Publication number Publication date
JP6999791B1 (en) 2022-01-19
US11842765B2 (en) 2023-12-12
TW202226243A (en) 2022-07-01
CN114694708A (en) 2022-07-01
US20220208255A1 (en) 2022-06-30
JP2022103973A (en) 2022-07-08
KR20220094165A (en) 2022-07-05

Similar Documents

Publication Publication Date Title
US10354704B2 (en) Semiconductor memory device and memory system
CN110366754B (en) Apparatus and method for determining phase relationship between input clock signal and multiphase clock signal
KR100673904B1 (en) Semiconductor memory device
JPH09198875A (en) Synchronous type semiconductor memory
KR20080026664A (en) Semiconductor memory with reset function
JP3341710B2 (en) Semiconductor storage device
KR100638748B1 (en) Semiconductor memory device
KR100649826B1 (en) Auto precharge apparatus of semiconductor memory device
KR100615413B1 (en) Semiconductor memory
US8483005B2 (en) Internal signal generator for use in semiconductor memory device
KR101046998B1 (en) Buffer control signal generation circuit and semiconductor memory device using same
US6188640B1 (en) Data output circuits for semiconductor memory devices
JP2004005933A (en) Refresh circuit having restoration time variable by operation mode of semiconductor memory device and its refresh method
US9336844B2 (en) Semiconductor device
TWI773616B (en) Semiconductor memory device
US6310825B1 (en) Data writing method for semiconductor memory device
JP2005222574A (en) Semiconductor memory device
JP2003281890A (en) Synchronous semiconductor memory device
JP2009124532A (en) Semiconductor integrated circuit
KR100798795B1 (en) Internal address generator and operation method
JP2012098779A (en) Data output device, data input/output device, storage device, data processing system, and control method of data output device
US11328756B1 (en) Semiconductor device and semiconductor system performing auto-precharge operation
CN111800126B (en) Resetting clock divider circuits prior to clock restart
KR20110045394A (en) Semiconductor memory device and operating method thereof
KR20110000224A (en) Data buffer control circuit and semiconductor memory device