TWI772020B - 影像定位裝置和方法 - Google Patents
影像定位裝置和方法 Download PDFInfo
- Publication number
- TWI772020B TWI772020B TW110117031A TW110117031A TWI772020B TW I772020 B TWI772020 B TW I772020B TW 110117031 A TW110117031 A TW 110117031A TW 110117031 A TW110117031 A TW 110117031A TW I772020 B TWI772020 B TW I772020B
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- algorithm
- main group
- circuit
- positioning
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 29
- 238000000605 extraction Methods 0.000 claims description 36
- 238000013135 deep learning Methods 0.000 claims description 14
- 238000005259 measurement Methods 0.000 claims description 11
- 238000004364 calculation method Methods 0.000 abstract 3
- 238000010586 diagram Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 210000000214 mouth Anatomy 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/243—Classification techniques relating to the number of classes
- G06F18/2431—Multiple classes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
- G06F18/232—Non-hierarchical techniques
- G06F18/2321—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
- G06F18/23213—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/762—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using clustering, e.g. of similar faces in social networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/40—Scenes; Scene-specific elements in video content
- G06V20/49—Segmenting video sequences, i.e. computational techniques such as parsing or cutting the sequence, low-level clustering or determining units such as shots or scenes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10016—Video; Image sequence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Molecular Biology (AREA)
- Mathematical Physics (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Probability & Statistics with Applications (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Image Analysis (AREA)
- Vehicle Body Suspensions (AREA)
- Die Bonding (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Supply And Installment Of Electrical Components (AREA)
- Image Processing (AREA)
Abstract
本發明提供了一種影像定位裝置。影像定位裝置包括運算電路和定位電路。運算電路可從一影像擷取裝置取得複數影像,以及根據一第一演算法,將複數影像分類成複數主群,其中每一主群分別對應複數區域之不同者。此外,運算電路根據每一主群所包含之每一影像之特徵和一分群演算法,將每一主群所包含之影像分類成複數子群。定位電路根據每一主群所包含之每一子群之相對位置關係,在每一主群所對應之區域,定位每一子群。
Description
本發明之實施例主要係有關於一影像定位技術,特別係有關於根據分群之影像進行影像定位之影像定位技術。
隨著科技的進步,定位之應用亦日益廣泛。因此,如何產生更精確之影像定位結果將是個值得研究之課題。
有鑑於上述先前技術之問題,本發明之實施例提供了一種影像定位裝置和方法。
根據本發明之一實施例提供了一種影像定位裝置。上述
影像定位裝置包括一運算電路和一定位電路。運算電路可從一影像擷取裝置取得複數影像,以及根據一第一演算法,將複數影像分類成複數主群,其中每一主群分別對應複數區域之不同者。此外,運算電路根據每一主群所包含之每一影像之特徵和一分群演算法,將每一主群所包含之影像分類成複數子群。定位電路耦接運算電路。定位電路根據每一主群所包含之每一子群之相對位置關係,在每一主群所對應之區域,定位每一子群。
在一些實施例中,第一演算法可係一深度學習演算法。
在一些實施例中,第一演算法可係一三角定位演算法。
在一些實施例中,影像定位裝置更包括一特徵擷取電路。特徵擷取電路耦接運算電路,且根據一深度學習演算法,產生述每一主群所包含之每一影像所對應之一特徵向量,以作為影像之特徵。定位電路根據每一主群所包含之每一影像之特徵向量和分群演算法,將每一主群所包含之影像分類成複數子群。定位電路根據一影像比對演算法,取得每一主群所包含之每一子群之相對位置關係,並根據相對位置關係,定位每一子群。
在一些實施例中,影像定位裝置更包括一特徵擷取電路。特徵擷取電路耦接運算電路。特徵擷取電路將每一主群所包含之影像依拍攝時間進行排序,且根據一第二演算法取得每一主群所包含之每一影像與前一影像之一第一相對移動距離。此外,特徵擷取電路根據每一主群所包含之每一影像所對應之第一相對移動距離,取得每一主群所包含之每一影像和上述每一主群所包含之一第一張影像之一第二相對移動距離,以作為影像之特徵,其中第二演算法可係一影像比對演算法或一慣性測量單元演算法。定位電路根據每一主群所包含之每一影像之第二相對移動距離和分群演算法,將每一主群所包含之影像分類成複數子群。定位電路根據每一主群所包含之每一影像之上述第二相對移動距離,取得每一主群所包含之上述每一子群之相對位置關係,並根據相對位置關係,定位每一子群。
在一些實施例中,分群演算法可係一k-平均(k-means)演算法。
根據本發明之一實施例提供了一種影像定位方法。上述影像定位方法適用一影像定位裝置。上述影像定位方法之步驟包括:藉由上述影像定位裝置之一運算電路根據一第一演算法,將上述複數影像分類成複數主群,其中上述每一主群分別對應上述複數區域之不同者;藉由上述運算電路根據上述每一主群所包含之每一影像之特徵和一分群演算法,將上述每一主群所包含之影像分類成複數子群;以及藉由上述影像定位裝置之一定位電路,根據上述每一主群所包含之上述每一子群之相對位置關係,在上述每一主群所對應之上述區域,定位上述每一子群。
關於本發明其他附加的特徵與優點,此領域之熟習技術人士,在不脫離本發明之精神和範圍內,當可根據本案實施方法中所揭露之影像定位裝置和方法,做些許的更動與潤飾而得到。
本章節所敘述的是實施本發明之較佳方式,目的在於說明本發明之精神而非用以限定本發明之保護範圍,本發明之保護範圍當視後附之申請專利範圍所界定者為準。
第1圖係顯示根據本發明之一實施例所述之一影像定位裝置100之方塊圖。如第1圖所示,影像定位裝置100可包括一儲存裝置110、一運算電路120、一特徵擷取電路130以及一定位電路140。注意地是,在第1圖中所示之方塊圖,僅係為了方便說明本發明之實施例,但本發明並不以第1圖為限。影像定位裝置100中亦可包含其他元件或其他連接方式。根據本發明一實施例,運算電路120、特徵擷取電路130和定位電路140部分或全部可整合於一晶片中。甚至,儲存裝置110、運算電路120、特徵擷取電路130和定位電路140亦可整合於一晶片中。
根據本發明之實施例,儲存裝置110可係一揮發性記憶體(volatile memory)(例如:隨機存取記憶體(Random Access Memory, RAM)),或一非揮發性記憶體(Non-volatile memory)(例如:快閃記憶體(flash memory)、唯讀記憶體(Read Only Memory, ROM))、一硬碟或上述裝置之組合。儲存裝置110可用以儲存要進行定位所需之檔案和資料,例如:一定位環境中所包含之複數區域所對應之資訊,但本發明不以此為限。
根據本發明之實施例,可預先將一定位環境分成複數區域,並將每一區域對應之資訊預先儲存在儲存裝置110。根據本發明之實施例,定位環境可係一口腔、一室內空間(例如:辦公室)或一室外空間,但本發明不以此為限。第2圖係根據本發明之一實施例所述之一定位環境所包含之複數區域之示意圖。如第2圖所示,可預先將定位環境A分成區域a1~區域a5,並將區域a1~區域a5對應之資訊預先儲存在儲存裝置110,但本發明不以此為限。
根據本發明之一實施例,每一區域對應之資訊可係每一區域所配置之一無線存取點(access point,AP)之資訊。也就是說,在此實施例中,每一區域可配置一無線存取點,且每一無線存取點會有其對應之資訊。根據本發明之實施例,儲存裝置110所預先儲存之每一區域對應之資訊可包含上述實施例之一或多者,但本發明不以此為限。
根據本發明一實施例,影像定位裝置100可從一影像擷取裝置200取得對應一定位環境之複數影像(即影像擷取裝置200拍攝定位環境的不同區域所產生之影像),並對從影像擷取裝置200所取得之複數影像進行定位。底下之實施例將會有更詳細之說明。
根據本發明一實施例,影像擷取裝置200可係一具有拍攝功能之電子裝置,例如:一手機、一相機或一齒鏡,但本發明不以此為限。根據本發明一實施例,影像擷取裝置200可包括一慣性測量單元(IMU),用以產生影像擷取裝置200取得之每一影像時所對應之慣性測量單元(IMU)資訊,例如方位和角度資訊。
根據本發明一實施例,影像擷取裝置200可透過無線通訊方式,例如藍芽、WIFI或行動通訊(蜂巢式網路),將所擷取之複數影像和每一影像對應之資訊傳送至影像定位裝置100。根據本發明之實施例,每一影像對應之資訊可包括每一影像對應之時間資訊、每一影像拍攝時,影像擷取裝置200所接收到之訊號強度資訊(例如:接收訊號強度指示(Received Signal Strength Indication,RSSI)),以及每一影像對應之慣性測量單元(IMU)資訊,但本發明不以此為限。
根據本發明一實施例,當影像定位裝置100從影像擷取裝置200取得對應一定位環境之複數影像後,影像定位裝置100之運算電路120可根據儲存裝置110所儲存之複數區域對應之資訊和一第一演算法,將複數影像分類成複數主群,其中每一主群會對應一區域。以第2圖為例,運算電路120可根據儲存之複數區域對應之資訊和第一演算法,將複數影像分類成對應區域a1~區域a5之影像,其中對應區域a1之影像可視為第一主群、對應區域a2之影像可視為第二主群、對應區域a3之影像可視為第三主群、對應區域a4之影像可視為第四主群,以及對應區域a5之影像可視為第五主群,但本發明不以此為限。
根據本發明一實施例,第一演算法可係一深度學習演算法。影像定位裝置100之運算電路120可根據儲存裝置110所儲存之機器學習結果和深度學習演算法,判斷複數影像中的每一影像對應何一區域,從而可將從影像擷取裝置200取得之複數影像分類成複數主群。
根據本發明另一實施例,當複數區域對應之資訊係每一區域所配置之無線存取點所對應之資訊時,第一演算法可係一三角定位演算法。運算電路120可根據三角定位演算法和每一影像拍攝時,影像擷取裝置200所接收到之訊號強度資訊(即影像擷取裝置200和不同無線存取點間的訊號強度資訊),將從影像擷取裝置200取得之複數影像分類成複數主群。
根據本發明一實施例,當運算電路120從影像擷取裝置200取得之複數影像分類成複數主群後,影像定位裝置100之特徵擷取電路130會去擷取每一主群所包含之影像之特徵。接著,運算電路120會根據每一主群所包含之影像之特徵和一分群演算法,將每一主群所包含之影像分類成複數子群。底下將會有詳細之說明。
根據本發明一實施例,分群演算法可係一k-平均(k-means)演算法,但本發明不以此為限。在k-means演算法中,使用者可預先決定要將一主群所包含之影像分成幾個子群(即預先決定每一主群所包含之子群之個數)。此外,在k-means演算法中,每一子群會對應k-means演算法中的一群心。也就是說,群心之數量會和子群之數量相同。
根據本發明一實施例,特徵擷取電路130可根據一深度學習演算法,產生每一主群所包含之每一影像所對應之一特徵向量,以作為每一影像之特徵。具體來說,特徵擷取電路130可將每一主群所包含之每一影像輸入一深度學習演算法模型,以取得每一影像對應之特徵向量。在此實施例中,深度學習演算法可係一卷積神經網路(Convolutional Neural Network,CNN)演算法(例如:EfficiebtNet、ResNet等),但本發明不以此為限。此外,在此實施例中,當特徵擷取電路130取得每一主群所包含之每一影像所對應之特徵向量後,運算電路120可根據每一主群所包含之每一影像所對應之特徵向量,藉由分群演算法(例如:k-means演算法)將每一主群所包含之影像分類成複數子群。
根據本發明另一實施例,特徵擷取電路130可先將每一主群所包含之影像依拍攝時間進行排序。接著,特徵擷取電路130可根據一第二演算法取得每一主群所包含之每一影像與前一影像之一第一相對移動距離。接著,在每一主群中,特徵擷取電路130可根據每一影像與前一影像之第一相對移動距離,取得每一影像與第一張影像之一第二相對移動距離,其中每一影像與第一張影像之第二相對移動距離會視為每一影像之特徵。
以第3圖為例,第3圖係根據本發明之一實施例所述之一主群所包含之每一影像之第一相對移動距離和第二相對移動距離之示意圖。如第3圖所示,特徵擷取電路130會將一主群所包含之影像I
1~影像I
6先依拍攝時間進行排序。接著,特徵擷取電路130會根據第二演算法取得影像I
1和影像I
2之第一相對移動距離(如1單位移動距離,移動距離例如為像素、公分、公尺等)、影像I
2和影像I
3之第一相對移動距離(如2單位移動距離)、影像I
3和影像I
4之第一相對移動距離(如3單位移動距離)、影像I
4和影像I
5之第一相對移動距離(如4單位移動距離),以及影像I
5和影像I
6之第一相對移動距離(如1單位移動距離)。最後,特徵擷取電路130會根據影像I
1~影像I
6對應之第一相對移動距離,取得影像I
1和影像I
1之第二相對移動距離(即0)、影像I
2和影像I
1之第二相對移動距離(即1)、影像I
3和影像I
1之第二相對移動距離(即3)、影像I
4和影像I
1之第二相對移動距離(即6)、影像I
5和影像I
1之第二相對移動距離(即10),以及影像I
6和影像I
1之第二相對移動距離(即11)。注意地是,第3圖僅係用以說明本發明之實施例,但本發明並不以此為限。第一相對移動距離和第二相對移動距離亦可是負數。
根據本發明之實施例,第二演算法可係一影像比對演算法或一慣性測量單元演算法,但本發明不以此為限。當第二演算法係影像比對演算法時,特徵擷取電路130可藉由影像比對演算法去比對每一主群所包含之每一影像與前一影像(例如:比對第3圖之影像I
2和影像I
1),以取得每一影像之第一相對移動距離。當第二演算法係慣性測量單元演算法時,特徵擷取電路130可藉由慣性測量單元演算法去計算每一主群所包含之每一影像與前一影像所對應之加速度值(例如:取得第3圖之影像I
2和影像I
1所對應之加速度值),以取得每一影像之第一相對移動距離。
此外,在此實施例中,當特徵擷取電路130取得每一影像所對應之第二相對移動距離後,運算電路120可根據每一主群所包含之每一影像所對應之第二相對移動距離,藉由分群演算法(例如:k-means演算法)將每一主群所包含之影像分類成複數子群。
根據本發明之實施例,當運算電路120將每一主群所包含之影像分類成複數子群後,定位電路140可去計算每一主群所包含之每一子群之相對位置關係,並根據每一主群所包含之每一子群之相對位置關係,在每一主群所對應之區域中,定位每一子群。底下將有更詳細之說明。
根據本發明一實施例,當運算電路120係根據每一主群所包含之每一影像所對應之特徵向量,藉由分群演算法(例如:k-means演算法)將每一主群所包含之影像分類成複數子群時,定位電路140可藉由一影像比對演算法(或一慣性測量單元演算法)去計算每一主群所包含之每一子群之相對位置關係。在此實施例中,相對位置關係可係一水平位置關係且/或一垂直位置關係。底下將以第4圖來做說明。在此實施例中,當定位電路140得知一主群中所包含之每一子群之相對位置關係後,定位電路140即可在該主群所對應之區域中,定位每一子群。
第4圖係根據本發明一實施例所述之一主群之一第一子群和一第二子群之示意圖。如第4圖所示,第一子群包含p張影像且第二子群包含q張影像。定位電路140可藉由影像比對演算法去計算第一子群之第一張影像P
1和第二子群之所有影像Q
1~Q
q之移動距離h
1,1, h
1,2…h
1,q,其中h
1,1即表示第一子群之第一張影像P
1和第二子群之第一張影像Q
1之移動距離。接著,定位電路140會將移動距離h
1,1, h
1,2…h
1,q取平均,以取得第一子群之第一張影像P
1和第二子群之所有影像Q
1~Q
q之一平均移動距離m
1(即m
1=(h
1,1+h
1,2+…+h
1,q)/q)。以此類推,定位電路140可計算出第一子群之每一影像P
1~P
p和和第二子群之所有影像Q
1~Q
q之平均移動距離m
1、m
2…m
p。接著,定位電路140可將平均移動距離m
1、m
2…m
p取平均,以取得一平均值r(即r=( m
1+ m
2+…+ m
p)/p)。定位電路140可根據平均值r得知第一子群和第二子群之相對位置關係。具體來說,當平均值r大於0時,即表示第一子群在第二子群之右邊(或上面),以及當平均值r小於0時,即表示第一子群在第二子群之左邊(或下面)。注意地是,第4圖僅係用以說明本發明之實施例,但本發明並不以此為限。
根據本發明另一實施例,當運算電路120係根據每一主群所包含之每一影像所對應之第二相對移動距離,藉由分群演算法(例如:k-means演算法)將每一主群所包含之影像分類成複數子群時,定位電路140可根據每一主群所包含之每一影像之第二相對移動距離,取得每一主群所包含之每一子群之相對位置關係,並根據相對位置關係,定位每一子群。在此實施例中,相對位置關係可係一水平位置關係且/或一垂直位置關係。底下將以第3圖為例來做說明。在此實施例中,當定位電路140得知一主群中所包含之每一子群之相對位置關係後,定位電路140即可在該主群所對應之區域中,定位每一子群。
如第3圖所示,假設影像I
1、影像I
2和影像I
3係第一子群、影像I
4係第二子群,以及影像I
5和影像I
6係第一子群,定位電路140即可根據每一子群之平均第二相對移動距離來判斷每一子群和影像I
1之相對位置關係,以得知該主群所包含之第一子群、第二子群和第三子群之相對位置關係。具體來說,當平均第二相對移動距離為正時,定位電路140可判斷該子群在影像I
1之右邊(或上面),以及當平均第二相對移動距離為負時,定位電路140可判斷該子群在影像I
1之左邊(或下面)。此外,當平均第二相對移動距離接近0時,定位電路140可判斷該子群接近影像I
1,以及當平均第二相對移動距離0越遠時,定位電路140可判斷該子群離影像I
1較遠。注意地是,第3圖僅係用以說明本發明之實施例,但本發明並不以此為限。
第5圖係根據本發明之一實施例所述之一影像定位方法之流程圖。影像定位方法可適用影像定位裝置100。如第5圖所示,在步驟S510,影像定位裝置100之一運算電路從一影像擷取裝置取得複數影像。
在步驟S520,影像定位裝置100之運算電路根據一第一演算法和儲存在影像定位裝置100之一儲存裝置之複數區域對應之資訊,將複數影像分類成複數主群,其中每一主群分別對應複數區域之不同者。
在步驟S530,影像定位裝置100之運算電路根據每一主群所包含之每一影像之特徵和一分群演算法,將每一主群所包含之影像分類成複數子群。
在步驟S540,影像定位裝置100之一定位電路根據每一主群所包含之每一子群之相對位置關係,在每一主群所對應之區域,定位每一子群。
根據本發明一些實施例,在影像定位方法中,第一演算法係一深度學習演算法。影像定位裝置100之運算電路可根據上述深度學習演算法將複數影像分類成複數主群。
根據本發明一些實施例,在影像定位方法中,複數區域對應之資訊包含每一複數區域所配置之一無線存取點之資訊,且第一演算法係一三角定位演算法。在影像定位方法中,影像定位裝置100之運算電路可根據每一複數區域對應之無線存取點所對應之一訊號強度和三角定位演算法將複數影像分類成複數主群。
根據本發明一些實施例,影像定位方法之步驟更包括,影像定位裝置100之一特徵擷取電路根據一深度學習演算法,產生每一主群所包含之每一影像所對應之一特徵向量,以作為影像之特徵。在該等實施例中,影像定位裝置100之定位電路根據每一主群所包含之每一影像之特徵向量和分群演算法,將每一主群所包含之影像分類成複數子群。在該等實施例中,影像定位裝置100之定位電路根據一影像比對演算法,取得每一主群所包含之每一子群之相對位置關係,並根據每一子群之相對位置關係,定位每一子群。
根據本發明一些實施例,影像定位方法之步驟更包括,影像定位裝置100之一特徵擷取電路將每一主群所包含之影像依拍攝時間進行排序。接著,影像定位裝置100之特徵擷取電路根據一第二演算法取得上述每一主群所包含之每一影像與前一影像之一第一相對移動距離。接著,影像定位裝置100之特徵擷取電路根據每一主群所包含之每一影像所對應之第一相對移動距離,取得每一主群所包含之每一影像和每一主群所包含之一第一張影像之一第二相對移動距離,以作為影像之特徵。
在該等實施例中,第二演算法可係一影像比對演算法或一慣性測量單元演算法。在該等實施例中,影像定位裝置100之定位電路根據每一主群所包含之每一影像之第二相對移動距離和分群演算法,將每一主群所包含之影像分類成複數子群。
在該等實施例中,影像定位裝置100之定位電路根據每一主群所包含之每一影像之第二相對移動距離,取得每一主群所包含之每一子群之相對位置關係,並根據每一子群之相對位置關係,定位每一子群。
根據本發明一些實施例,分群演算法可係一k-平均(k-means)演算法。
根據本發明提出之定位方法,可將複數影像先經過大區域之分類成不同主群,在將每一主群所包含之子群進行分類,並根據子群間的相對位置關係來定位每一子群。因此,透過本發明提出之定位方法將可更精確地去定位複數影像所對應之空間位置。
本說明書中以及申請專利範圍中的序號,例如「第一」、「第二」等等,僅係為了方便說明,彼此之間並沒有順序上的先後關係。
本發明之說明書所揭露之方法和演算法之步驟,可直接透過執行一處理器直接應用在硬體以及軟體模組或兩者之結合上。一軟體模組(包括執行指令和相關數據)和其它數據可儲存在數據記憶體中,像是隨機存取記憶體(RAM)、快閃記憶體(flash memory)、唯讀記憶體(ROM)、可抹除可規化唯讀記憶體(EPROM)、電子可抹除可規劃唯讀記憶體(EEPROM)、暫存器、硬碟、可攜式應碟、光碟唯讀記憶體(CD-ROM)、DVD或在此領域習之技術中任何其它電腦可讀取之儲存媒體格式。一儲存媒體可耦接至一機器裝置,舉例來說,像是電腦/處理器(爲了說明之方便,在本說明書以處理器來表示),上述處理器可透過來讀取資訊(像是程式碼),以及寫入資訊至儲存媒體。一儲存媒體可整合一處理器。一特殊應用積體電路(ASIC)包括處理器和儲存媒體。一用戶設備則包括一特殊應用積體電路。換句話說,處理器和儲存媒體以不直接連接用戶設備的方式,包含於用戶設備中。此外,在一些實施例中,任何適合電腦程序之產品包括可讀取之儲存媒體,其中可讀取之儲存媒體包括和一或多個所揭露實施例相關之程式碼。在一些實施例中,電腦程序之產品可包括封裝材料。
以上段落使用多種層面描述。顯然的,本文的教示可以多種方式實現,而在範例中揭露之任何特定架構或功能僅為一代表性之狀況。根據本文之教示,任何熟知此技藝之人士應理解在本文揭露之各層面可獨立實作或兩種以上之層面可以合併實作。
雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何熟習此技藝者,在不脫離本揭露之精神和範圍內,當可作些許之更動與潤飾,因此發明之保護範圍當視後附之申請專利範圍所界定者為準。
100:影像定位裝置
110:儲存裝置
120:運算電路
130:特徵擷取電路
140:定位電路
200:影像擷取裝置
I1~I6、P1~Pp、Q1~Qq:影像
A:定位環境分成
a1~a5:區域
S510~S540:步驟
第1圖係顯示根據本發明之一實施例所述之一影像定位裝置100之方塊圖。
第2圖係根據本發明之一實施例所述之一定位環境所包含之複數區域之示意圖。
第3圖係根據本發明之一實施例所述之一主群所包含之每一影像之第一相對移動距離和第二相對移動距離之示意圖。
第4圖係根據本發明一實施例所述之一主群之一第一子群和一第二子群之示意圖。
第5圖係根據本發明之一實施例所述之影像定位方法之流程圖。
100:影像定位裝置
110:儲存裝置
120:運算電路
130:特徵擷取電路
140:定位電路
200:影像擷取裝置
Claims (20)
- 一種影像定位裝置,包括:一運算電路,上述運算電路從一影像擷取裝置取得複數影像,以及根據一第一演算法,將上述複數影像分類成複數主群,其中上述每一主群分別對應複數區域之不同者,且上述運算電路根據上述每一主群所包含之每一影像之特徵和一分群演算法,將上述每一主群所包含之影像分類成複數子群;以及一定位電路,耦接上述運算電路,其中上述定位電路根據上述每一主群所包含之上述每一子群之相對位置關係,在上述每一主群所對應之上述區域,定位上述每一子群。
- 如請求項1之影像定位裝置,其中上述第一演算法係一深度學習演算法或一三角定位演算法。
- 如請求項1之影像定位裝置,更包括:一特徵擷取電路,耦接上述運算電路,且根據一深度學習演算法,產生上述每一主群所包含之每一影像所對應之一特徵向量,以作為上述影像之上述特徵。
- 如請求項3之影像定位裝置,其中上述定位電路根據上述每一主群所包含之每一影像之上述特徵向量和上述分群演算法,將上述每一主群所包含之影像分類成上述複數子群。
- 如請求項4之影像定位裝置,其中上述定位電路根據一影像比對演算法,取得上述每一主群所包含之上述每一子群之上述相對位置關係,並根據上述相對位置關係,定位上述每一子群。
- 如請求項1之影像定位裝置,更包括: 一特徵擷取電路,耦接上述運算電路,其中上述特徵擷取電路將上述每一主群所包含之影像依拍攝時間進行排序,且根據一第二演算法取得上述每一主群所包含之每一影像與前一影像之一第一相對移動距離,以及上述特徵擷取電路根據上述每一主群所包含之每一影像所對應之上述第一相對移動距離,取得上述每一主群所包含之每一影像和上述每一主群所包含之一第一張影像之一第二相對移動距離,以作為上述影像之上述特徵。
- 如請求項6之影像定位裝置,其中上述第二演算法係一影像比對演算法或一慣性測量單元演算法。
- 如請求項6之影像定位裝置,其中上述定位電路根據上述每一主群所包含之每一影像之上述第二相對移動距離和上述分群演算法,將上述每一主群所包含之影像分類成上述複數子群。
- 如請求項8之影像定位裝置,其中上述定位電路根據上述每一主群所包含之每一影像之上述第二相對移動距離,取得上述每一主群所包含之上述每一子群之上述相對位置關係,並根據上述相對位置關係,定位上述每一子群。
- 如請求項1之影像定位裝置,其中上述分群演算法係一k-平均(k-means)演算法。
- 一種影像定位方法,適用一影像定位裝置,包括: 藉由上述影像定位裝置之一運算電路從一影像擷取裝置取得複數影像; 藉由上述運算電路根據一第一演算法,將上述複數影像分類成複數主群,其中上述每一主群分別對應複數區域之不同者;藉由上述運算電路根據上述每一主群所包含之每一影像之特徵和一分群演算法,將上述每一主群所包含之影像分類成複數子群;以及藉由上述影像定位裝置之一定位電路,根據上述每一主群所包含之上述每一子群之相對位置關係,在上述每一主群所對應之上述區域,定位上述每一子群。
- 如請求項11之影像定位方法,其中上述第一演算法係一深度學習演算法或一三角定位演算法。
- 如請求項11之影像定位方法,更包括:藉由上述影像定位裝置之一特徵擷取電路根據一深度學習演算法,產生上述每一主群所包含之每一影像所對應之一特徵向量,以作為上述影像之上述特徵。
- 如請求項13之影像定位方法,更包括:藉由上述定位電路根據上述每一主群所包含之每一影像之上述特徵向量和上述分群演算法,將上述每一主群所包含之影像分類成上述複數子群。
- 如請求項14之影像定位方法,更包括:藉由上述定位電路根據一影像比對演算法,取得上述每一主群所包含之上述每一子群之上述相對位置關係,並根據上述相對位置關係,定位上述每一子群。
- 如請求項11之影像定位方法,更包括: 藉由上述影像定位裝置之一特徵擷取電路將上述每一主群所包含之影像依拍攝時間進行排序; 藉由上述特徵擷取電路根據一第二演算法取得上述每一主群所包含之每一影像與前一影像之一第一相對移動距離;以及 藉由上述特徵擷取電路根據上述每一主群所包含之每一影像所對應之上述第一相對移動距離,取得上述每一主群所包含之每一影像和上述每一主群所包含之一第一張影像之一第二相對移動距離,以作為上述影像之上述特徵。
- 如請求項16之影像定位方法,其中上述第二演算法係一影像比對演算法或一慣性測量單元演算法。
- 如請求項16之影像定位方法,更包括: 藉由上述定位電路根據上述每一主群所包含之每一影像之上述第二相對移動距離和上述分群演算法,將上述每一主群所包含之影像分類成上述複數子群。
- 如請求項18之影像定位方法,更包括: 藉由上述定位電路根據上述每一主群所包含之每一影像之上述第二相對移動距離,取得上述每一主群所包含之上述每一子群之上述相對位置關係,並根據上述相對位置關係,定位上述每一子群。
- 如請求項11之影像定位方法,其中上述分群演算法係一k-平均(k-means)演算法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110117031A TWI772020B (zh) | 2021-05-12 | 2021-05-12 | 影像定位裝置和方法 |
CN202110591096.3A CN115346103A (zh) | 2021-05-12 | 2021-05-28 | 图像定位装置和方法 |
US17/389,623 US11907340B2 (en) | 2021-05-12 | 2021-07-30 | Image positioning device and method |
EP21193161.3A EP4089646A1 (en) | 2021-05-12 | 2021-08-26 | Image positioning device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110117031A TWI772020B (zh) | 2021-05-12 | 2021-05-12 | 影像定位裝置和方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI772020B true TWI772020B (zh) | 2022-07-21 |
TW202244846A TW202244846A (zh) | 2022-11-16 |
Family
ID=77640346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110117031A TWI772020B (zh) | 2021-05-12 | 2021-05-12 | 影像定位裝置和方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11907340B2 (zh) |
EP (1) | EP4089646A1 (zh) |
CN (1) | CN115346103A (zh) |
TW (1) | TWI772020B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201415854A (zh) * | 2009-01-22 | 2014-04-16 | Htc Corp | 管理與顯示影像及關聯地理位置資料的方法、裝置及媒體 |
CN104616026A (zh) * | 2015-01-20 | 2015-05-13 | 衢州学院 | 一种面向智能视频监控的监控场景类型辨识方法 |
TW202022803A (zh) * | 2018-12-04 | 2020-06-16 | 中華電信股份有限公司 | 物體辨識與追蹤系統及其方法 |
US20210073547A1 (en) * | 2018-10-15 | 2021-03-11 | Kepler Vision Technologies B.V. | Method for categorizing a scene comprising a sub-scene with machine learning |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3140613B1 (en) * | 2014-05-05 | 2024-04-03 | Hexagon Technology Center GmbH | Surveying system |
WO2018078408A1 (en) * | 2016-10-28 | 2018-05-03 | The Nielsen Company (Us), Llc | Reducing scale estimate errors in shelf images |
-
2021
- 2021-05-12 TW TW110117031A patent/TWI772020B/zh active
- 2021-05-28 CN CN202110591096.3A patent/CN115346103A/zh active Pending
- 2021-07-30 US US17/389,623 patent/US11907340B2/en active Active
- 2021-08-26 EP EP21193161.3A patent/EP4089646A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201415854A (zh) * | 2009-01-22 | 2014-04-16 | Htc Corp | 管理與顯示影像及關聯地理位置資料的方法、裝置及媒體 |
CN104616026A (zh) * | 2015-01-20 | 2015-05-13 | 衢州学院 | 一种面向智能视频监控的监控场景类型辨识方法 |
US20210073547A1 (en) * | 2018-10-15 | 2021-03-11 | Kepler Vision Technologies B.V. | Method for categorizing a scene comprising a sub-scene with machine learning |
TW202022803A (zh) * | 2018-12-04 | 2020-06-16 | 中華電信股份有限公司 | 物體辨識與追蹤系統及其方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115346103A (zh) | 2022-11-15 |
US11907340B2 (en) | 2024-02-20 |
TW202244846A (zh) | 2022-11-16 |
EP4089646A1 (en) | 2022-11-16 |
US20220366183A1 (en) | 2022-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11285613B2 (en) | Robot vision image feature extraction method and apparatus and robot using the same | |
CN112767489B (zh) | 一种三维位姿确定方法、装置、电子设备及存储介质 | |
CN112258567B (zh) | 物体抓取点的视觉定位方法、装置、存储介质及电子设备 | |
US20190138791A1 (en) | Key point positioning method, terminal, and computer storage medium | |
CN105783917B (zh) | 基于地磁的移动终端定位方法及其装置 | |
US20190130216A1 (en) | Information processing apparatus, method for controlling information processing apparatus, and storage medium | |
WO2018068771A1 (zh) | 目标跟踪方法、系统、电子设备和计算机存储介质 | |
US8755562B2 (en) | Estimation apparatus, control method thereof, and program | |
US8995714B2 (en) | Information creation device for estimating object position and information creation method and program for estimating object position | |
CN110111389B (zh) | 一种基于slam的移动增强现实跟踪注册方法和系统 | |
TW201303656A (zh) | 運動型樣分類及手勢辨識 | |
CN110969045B (zh) | 一种行为检测方法、装置、电子设备和存储介质 | |
WO2018000881A1 (zh) | 一种定位方法、服务器及终端 | |
US20160104037A1 (en) | Method and device for generating motion signature on the basis of motion signature information | |
US20170262971A1 (en) | System and method for extrinsic camera parameters calibration by use of a three dimensional (3d) calibration object | |
TW202217662A (zh) | 視覺定位方法及相關模型的訓練方法、電子設備和電腦可讀儲存介質 | |
CN111753826B (zh) | 车辆与车牌的关联方法、装置和电子系统 | |
CN112907746A (zh) | 电子地图的生成方法、装置、电子设备及存储介质 | |
TWI772020B (zh) | 影像定位裝置和方法 | |
CN110415171B (zh) | 图像处理方法、装置及存储介质、电子设备 | |
An et al. | Image-based positioning system using LED Beacon based on IoT central management | |
TW201621273A (zh) | 行動定位裝置及其定位方法 | |
WO2021056450A1 (zh) | 图像模板的更新方法、设备及存储介质 | |
US20220245944A1 (en) | Image-based indoor positioning service system and method | |
EP3076370B1 (en) | Method and system for selecting optimum values for parameter set for disparity calculation |