TWI772015B - Pixel structure and fabrication method thereof - Google Patents

Pixel structure and fabrication method thereof Download PDF

Info

Publication number
TWI772015B
TWI772015B TW110116276A TW110116276A TWI772015B TW I772015 B TWI772015 B TW I772015B TW 110116276 A TW110116276 A TW 110116276A TW 110116276 A TW110116276 A TW 110116276A TW I772015 B TWI772015 B TW I772015B
Authority
TW
Taiwan
Prior art keywords
layer
electrode
conductive bumps
conductive
light
Prior art date
Application number
TW110116276A
Other languages
Chinese (zh)
Other versions
TW202244578A (en
Inventor
楊謹嘉
陳文斌
吳尚霖
陳祖偉
陳國光
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW110116276A priority Critical patent/TWI772015B/en
Application granted granted Critical
Publication of TWI772015B publication Critical patent/TWI772015B/en
Publication of TW202244578A publication Critical patent/TW202244578A/en

Links

Images

Abstract

A pixel structure includes a substrate, an interlayer dielectric (ILD) layer, an active device, a plurality of conductive bumps, a planarization layer, a first electrode, a pixel defining layer (PDL), a light emitting layer and a second electrode. The ILD layer is on the substrate. The active device is on the substrate and includes a drain and a channel layer. The drain passes through the ILD layer to be electrically connected to the channel layer. The conductive bumps are on the ILD layer and separated from each other. The planarization layer is on the drain and the conductive bumps. The first electrode passes through the planarization layer and is electrically connected to the drain of the active device. The first electrode has a plurality of electrode protrusions. Each of the electrode protrusions overlaps each of the conductive bumps, respectively. The PDL has an opening overlapping the first electrode. The opening overlaps at least one of the conductive bumps. The light emitting layer is disposed in the opening and on the first electrode. The second electrode is disposed on the light emitting layer.

Description

畫素結構及其製作方法Pixel structure and method of making the same

本發明是有關於一種畫素結構及其製作方法。The present invention relates to a pixel structure and a manufacturing method thereof.

在現今的電子產品中,提供主動發光的有機發光二極體(OLED)顯示裝置以及微發光二極體(micro LED)顯示裝置,逐漸成為產品主流。In today's electronic products, organic light emitting diode (OLED) display devices and micro light emitting diode (micro LED) display devices that provide active light emission have gradually become the mainstream of products.

有機發光二極體的出光受到各層界面折射率及膜厚差異所影響,而產生波導限制。目前多數改善方式是在發光二極體製程中,透過在有機發光層中添加奈米粒子來產生散射,或是在其上方製作微透鏡陣列來解決此問題。然而,有機發光層多採用噴墨印刷製程來製作,其限制較為嚴苛,如表面平坦度。因此,如何在不影響有機發光層之製程下,改善波導限制實為相關領域的開發重點。The light output of the organic light emitting diode is affected by the difference in the refractive index and film thickness of the interface of each layer, resulting in the limitation of the waveguide. At present, most of the improvement methods are in the light-emitting diode process, by adding nanoparticles in the organic light-emitting layer to generate scattering, or fabricating a micro-lens array above it to solve this problem. However, the organic light-emitting layer is mostly fabricated by an inkjet printing process, which has severe limitations, such as surface flatness. Therefore, how to improve the confinement of the waveguide without affecting the process of the organic light-emitting layer is the focus of development in related fields.

本發明提供一種畫素結構及其製作方法,其可以提升出光效率。The present invention provides a pixel structure and a manufacturing method thereof, which can improve light extraction efficiency.

本發明一實施例的畫素結構,包括基板、層間介電層、主動元件、多個導電凸塊、平坦層、第一電極、畫素定義層、發光層及第二電極。層間介電層位於基板上。主動元件位於基板上並具有汲極與通道層,汲極貫穿層間介電層以與通道層電性連接。導電凸塊位於層間介電層上且彼此隔開。平坦層位於汲極及導電凸塊上。第一電極貫穿平坦層且與主動元件的汲極電性連接,第一電極具有多個電極突出部,各電極突出部分別重疊於各導電凸塊。畫素定義層具有開口重疊於第一電極,且開口重疊於至少一個導電凸塊。發光層配置於開口內並位於第一電極上。第二電極配置於發光層上。A pixel structure according to an embodiment of the present invention includes a substrate, an interlayer dielectric layer, an active element, a plurality of conductive bumps, a flat layer, a first electrode, a pixel definition layer, a light-emitting layer, and a second electrode. An interlayer dielectric layer is on the substrate. The active element is located on the substrate and has a drain electrode and a channel layer, and the drain electrode penetrates the interlayer dielectric layer to be electrically connected with the channel layer. The conductive bumps are on the interlayer dielectric layer and are spaced apart from each other. The flat layer is located on the drain electrode and the conductive bump. The first electrode penetrates through the flat layer and is electrically connected to the drain electrode of the active element. The first electrode has a plurality of electrode protrusions, and each electrode protrusion is respectively overlapped with each conductive bump. The pixel definition layer has an opening overlapping the first electrode, and the opening overlapping at least one conductive bump. The light-emitting layer is disposed in the opening and on the first electrode. The second electrode is disposed on the light-emitting layer.

本發明一實施例的畫素結構包括基板、層間介電層、主動元件、第一平坦層、第二平坦層、第一電極、畫素定義層、發光層及第二電極。層間介電層位於基板上。主動元件位於基板上並具有汲極與通道層,汲極貫穿層間介電層以與通道層電性連接。第一平坦層位於層間介電層上,且具有彼此隔開的多個絕緣凸塊。第二平坦層位於第一平坦層上,其中第二平坦層具有多個絕緣突出部。第一電極與主動元件的汲極電性連接且具有多個電極突出部,各電極突出部分別重疊於各絕緣突出部及各絕緣凸塊。畫素定義層具有開口重疊於第一電極,且開口重疊於至少一個絕緣凸塊。發光層配置於開口內並位於第一電極上。第二電極配置於發光層上。A pixel structure according to an embodiment of the present invention includes a substrate, an interlayer dielectric layer, an active element, a first planarization layer, a second planarization layer, a first electrode, a pixel definition layer, a light-emitting layer, and a second electrode. An interlayer dielectric layer is on the substrate. The active element is located on the substrate and has a drain electrode and a channel layer, and the drain electrode penetrates the interlayer dielectric layer to be electrically connected with the channel layer. The first planar layer is on the interlayer dielectric layer and has a plurality of insulating bumps spaced apart from each other. The second planar layer is located on the first planar layer, wherein the second planar layer has a plurality of insulating protrusions. The first electrode is electrically connected to the drain of the active element and has a plurality of electrode protrusions, and each electrode protrusion is respectively overlapped with each insulating protrusion and each insulating bump. The pixel definition layer has an opening overlapping the first electrode, and the opening overlapping at least one insulating bump. The light-emitting layer is disposed in the opening and on the first electrode. The second electrode is disposed on the light-emitting layer.

本發明一實施例的畫素結構的製作方法,包括以下步驟。形成通道層於基板上。形成閘絕緣層於通道層上。形成閘極於閘絕緣層上。形成層間介電層覆蓋閘極及通道層,其中層間介電層具有多個通孔。整面地形成導電層於層間介電層上,其中導電層填入通孔中。圖案化導電層,以形成源極、汲極與多個導電凸塊,其中源極、汲極、閘極及通道層構成主動元件,且導電凸塊彼此隔開。形成平坦層於源極、汲極與導電凸塊上。形成第一電極於平坦層上,第一電極貫穿平坦層且與汲極電性連接。形成畫素定義層於第一電極上,畫素定義層具有開口重疊於第一電極,且開口重疊於至少一個導電凸塊。形成發光層於開口內。形成第二電極於發光層上。A method for fabricating a pixel structure according to an embodiment of the present invention includes the following steps. A channel layer is formed on the substrate. A gate insulating layer is formed on the channel layer. A gate is formed on the gate insulating layer. An interlayer dielectric layer is formed to cover the gate electrode and the channel layer, wherein the interlayer dielectric layer has a plurality of through holes. A conductive layer is formed on the entire surface on the interlayer dielectric layer, wherein the conductive layer is filled into the through holes. The conductive layer is patterned to form a source electrode, a drain electrode and a plurality of conductive bumps, wherein the source electrode, the drain electrode, the gate electrode and the channel layer constitute an active element, and the conductive bumps are separated from each other. A flat layer is formed on the source electrode, the drain electrode and the conductive bump. A first electrode is formed on the flat layer, the first electrode penetrates the flat layer and is electrically connected to the drain electrode. A pixel definition layer is formed on the first electrode, the pixel definition layer has an opening overlapping the first electrode, and the opening overlaps at least one conductive bump. A light-emitting layer is formed in the opening. A second electrode is formed on the light emitting layer.

基於上述,在本發明一實施例的畫素結構及其製作方法中,透過導電凸塊位於層間介電層上且彼此隔開,第一電極具有多個電極突出部,各電極突出部分別重疊於各導電凸塊。畫素定義層具有開口重疊於第一電極,且開口重疊於至少一個導電凸塊。發光層配置於開口內並位於第一電極上,可有效降低第一電極的波導限制所造成的出光耗損,藉此,可提升出光效率。Based on the above, in the pixel structure and the manufacturing method thereof according to an embodiment of the present invention, the conductive bumps are located on the interlayer dielectric layer and are separated from each other, the first electrode has a plurality of electrode protrusions, and the electrode protrusions are respectively overlapped on each conductive bump. The pixel definition layer has an opening overlapping the first electrode, and the opening overlapping at least one conductive bump. The light-emitting layer is disposed in the opening and located on the first electrode, which can effectively reduce the light-extraction loss caused by the limitation of the waveguide of the first electrode, thereby improving the light-extraction efficiency.

第1圖是依照本發明一實施例的畫素結構10的剖面示意圖。請參照第1圖,畫素結構10包括基板100。在本實施例中,基板100的材質可為玻璃、石英、有機聚合物或是其他可適用的材料。FIG. 1 is a schematic cross-sectional view of a pixel structure 10 according to an embodiment of the present invention. Referring to FIG. 1 , the pixel structure 10 includes a substrate 100 . In this embodiment, the material of the substrate 100 may be glass, quartz, organic polymer or other applicable materials.

畫素結構10還包括緩衝層102、閘絕緣層104、主動元件T及層間介電層106。緩衝層102配置於基板100上。主動元件T位於基板100上,可為低溫多晶矽型薄膜電晶體(LTPS-TFT)且具有通道層CH、源極S、汲極D與閘極G。通道層CH配置於緩衝層102上,且通道層CH的材料為多晶矽,但本發明不以此為限。於其他實施例中,通道層CH的材料例如為非晶矽、金屬氧化物半導體或其他半導體材料。閘絕緣層104配置於通道層CH及閘極G之間。舉例而言,在本實施例中,主動元件T的閘極G配置於通道層CH的上方,以形成頂部閘極型薄膜電晶體(top-gate TFT),但本發明不以此為限。根據其他的實施例,主動元件T的閘極G亦可配置在通道層CH的下方,即閘極G位於通道層CH與基板100之間,以形成底部閘極型薄膜電晶體(bottom-gate TFT)。The pixel structure 10 further includes a buffer layer 102 , a gate insulating layer 104 , an active element T and an interlayer dielectric layer 106 . The buffer layer 102 is disposed on the substrate 100 . The active element T is located on the substrate 100 and can be a low temperature polysilicon type thin film transistor (LTPS-TFT) and has a channel layer CH, a source electrode S, a drain electrode D and a gate electrode G. The channel layer CH is disposed on the buffer layer 102, and the material of the channel layer CH is polysilicon, but the invention is not limited to this. In other embodiments, the material of the channel layer CH is, for example, amorphous silicon, metal oxide semiconductor or other semiconductor materials. The gate insulating layer 104 is disposed between the channel layer CH and the gate electrode G. For example, in this embodiment, the gate G of the active element T is disposed above the channel layer CH to form a top-gate TFT, but the invention is not limited thereto. According to other embodiments, the gate G of the active element T can also be disposed below the channel layer CH, that is, the gate G is located between the channel layer CH and the substrate 100 to form a bottom-gate thin film transistor (bottom-gate thin film transistor). TFT).

通道層CH可為單層或多層結構,且其材料包含非晶矽、微晶矽、奈米晶矽、多晶矽、單晶矽、有機半導體材料、氧化物半導體材料、奈米碳管/桿、其它合適的材料、或前述之組合。緩衝層102及閘絕緣層104可為無機材料所構成的無機薄膜,且無機材料為絕緣材料,例如氮化矽、氧化矽、氮氧化矽或其他絕緣材料,但本發明不以此為限。The channel layer CH can be a single-layer or multi-layer structure, and its materials include amorphous silicon, microcrystalline silicon, nanocrystalline silicon, polycrystalline silicon, monocrystalline silicon, organic semiconductor materials, oxide semiconductor materials, carbon nanotubes/rods, Other suitable materials, or a combination of the foregoing. The buffer layer 102 and the gate insulating layer 104 can be inorganic thin films formed of inorganic materials, and the inorganic materials are insulating materials such as silicon nitride, silicon oxide, silicon oxynitride or other insulating materials, but the invention is not limited thereto.

層間介電層106位於閘絕緣層104上,且覆蓋主動元件T的閘極G。主動元件T的源極S與汲極D配置在層間介電層106上,且分別重疊於通道層CH的不同兩區。舉例而言,汲極D貫穿層間介電層106以與通道層CH電性連接,源極S貫穿層間介電層106以與通道層CH電性連接。畫素結構10包括多個導電凸塊108。導電凸塊108位於層間介電層106上且彼此隔開,導電凸塊108可與源極S、汲極D為同一膜層所形成,且可包括相同材料。The interlayer dielectric layer 106 is located on the gate insulating layer 104 and covers the gate electrode G of the active element T. As shown in FIG. The source electrode S and the drain electrode D of the active element T are disposed on the interlayer dielectric layer 106 and respectively overlap with two different regions of the channel layer CH. For example, the drain electrode D penetrates the interlayer dielectric layer 106 to be electrically connected to the channel layer CH, and the source electrode S penetrates the interlayer dielectric layer 106 to be electrically connected to the channel layer CH. The pixel structure 10 includes a plurality of conductive bumps 108 . The conductive bumps 108 are located on the interlayer dielectric layer 106 and are spaced apart from each other. The conductive bumps 108 and the source electrode S and the drain electrode D may be formed of the same film layer and may include the same material.

於本實施例中,畫素結構10還可包括絕緣層110及電容電極112。閘極G可與電容電極112為同一膜層所形成,且可包括相同材料。絕緣層110可與閘絕緣層104為同一膜層所形成,且可包括相同材料。導電凸塊108與電容電極112位於層間介電層106的相對二側(例如:上下兩側),並被層間介電層106隔開。由於電容電極112與導電凸塊108的分隔,電容電極112與導電凸塊108可以平行板電容器的形式共同形成一儲存電容。In this embodiment, the pixel structure 10 may further include an insulating layer 110 and a capacitor electrode 112 . The gate electrode G and the capacitor electrode 112 may be formed of the same film layer and may include the same material. The insulating layer 110 and the gate insulating layer 104 may be formed of the same film layer and may include the same material. The conductive bumps 108 and the capacitor electrodes 112 are located on opposite sides (eg, upper and lower sides) of the interlayer dielectric layer 106 and are separated by the interlayer dielectric layer 106 . Due to the separation between the capacitor electrodes 112 and the conductive bumps 108 , the capacitor electrodes 112 and the conductive bumps 108 may together form a storage capacitor in the form of a parallel plate capacitor.

畫素結構10還包括鈍化層114、平坦層116、第一電極118、畫素定義層120、發光層122及第二電極124。鈍化層114及平坦層116位於汲極D與導電凸塊108上,舉例而言,鈍化層114填入相鄰的導電凸塊108之間的空間。導電凸塊108使得鈍化層114具有地形變化,舉例而言,鈍化層114具有多個凹部R1及多個突出部P1。凹部R1的頂面低於突出部P1的頂面,各突出部P1重疊於各導電凸塊108。平坦層116位於鈍化層114上,且填入鈍化層114的凹部R1。導電凸塊108間接使得平坦層116具有地形變化,舉例而言,平坦層116具有多個凹部R2及多個突出部P2,凹部R2的頂面低於突出部P2的頂面。 平坦層116的各突出部P2分別重疊於鈍化層114的突出部P1,平坦層116的凹部R2分別重疊於鈍化層114的凹部R1。The pixel structure 10 further includes a passivation layer 114 , a planarization layer 116 , a first electrode 118 , a pixel definition layer 120 , a light-emitting layer 122 and a second electrode 124 . The passivation layer 114 and the planarization layer 116 are located on the drain electrode D and the conductive bumps 108 . For example, the passivation layer 114 fills the space between the adjacent conductive bumps 108 . The conductive bumps 108 cause the passivation layer 114 to have topographical changes. For example, the passivation layer 114 has a plurality of recesses R1 and a plurality of protrusions P1. The top surface of the concave portion R1 is lower than the top surface of the protruding portion P1 , and each of the protruding portions P1 overlaps each of the conductive bumps 108 . The flat layer 116 is located on the passivation layer 114 and fills the recess R1 of the passivation layer 114 . The conductive bumps 108 indirectly cause the planarization layer 116 to have topographical changes. For example, the planarization layer 116 has a plurality of recesses R2 and a plurality of protrusions P2, and the top surface of the recesses R2 is lower than the top surface of the protrusions P2. Each protruding portion P2 of the flat layer 116 overlaps the protruding portion P1 of the passivation layer 114 , respectively, and the concave portion R2 of the flat layer 116 overlaps the concave portion R1 of the passivation layer 114 , respectively.

畫素定義層120位於第一電極118及平坦層116上,且具有開口OP重疊於第一電極118,開口OP重疊於至少一個導電凸塊108。發光層122配置於開口OP內並位於第一電極118上。第二電極124配置於發光層122上。第一電極118貫穿平坦層116及鈍化層114,且與主動元件T的汲極D電性連接。第一電極118、發光層122及第二電極124共同構成發光元件126。舉例而言,第一電極118作為反射層,使發光層122朝上方出射光線,因此,發光元件126為上出光元件。在一些實施例中,畫素定義層120的材質可為疏水性材料,例如是含氟(fluorine-rich)的負型光阻材料。在一些實施例中,第一電極118可作為發光層122的陽極(anode),但本發明不以此為限。在一些實施例中,第二電極124可作為發光層122的陰極(cathode) ,但本發明不以此為限。發光元件126例如是有機發光二極體(organic light emitting diode,OLED)。The pixel definition layer 120 is located on the first electrode 118 and the flat layer 116 , and has an opening OP overlapping the first electrode 118 , and the opening OP overlapping at least one conductive bump 108 . The light emitting layer 122 is disposed in the opening OP and on the first electrode 118 . The second electrode 124 is disposed on the light emitting layer 122 . The first electrode 118 penetrates through the planarization layer 116 and the passivation layer 114 and is electrically connected to the drain electrode D of the active element T. As shown in FIG. The first electrode 118 , the light-emitting layer 122 and the second electrode 124 together constitute the light-emitting element 126 . For example, the first electrode 118 serves as a reflective layer, so that the light-emitting layer 122 emits light upward, so the light-emitting element 126 is an upper light-emitting element. In some embodiments, the material of the pixel definition layer 120 may be a hydrophobic material, such as a fluorine-rich negative photoresist material. In some embodiments, the first electrode 118 may serve as an anode of the light emitting layer 122, but the invention is not limited thereto. In some embodiments, the second electrode 124 may serve as a cathode of the light emitting layer 122, but the invention is not limited thereto. The light emitting element 126 is, for example, an organic light emitting diode (organic light emitting diode, OLED).

第一電極118填入平坦層116的凹部R2,導電凸塊108間接使得第一電極118具有地形變化,舉例而言,第一電極118具有多個電極突出部P3,各電極突出部P3分別重疊於各導電凸塊108。於一實施例中,第一電極118可具有多個凹部R3,各凹部R3分別重疊於平坦層116的凹部R2。當發光層122所發出的一部分光線L1朝向第一電極118的方向行進時,藉由於層間介電層106上配置彼此間隔的多個導電凸塊108,間接使得第一電極118具有電極突出部P3,可避免被第一電極118反射回發光層122的光線L1在第一電極118與發光層122之間的界面發生全反射,如此一來,可有效降低第一電極118的波導(waveguide)限制所造成的出光耗損,藉此,可提升出光效率。The first electrode 118 is filled into the concave portion R2 of the flat layer 116, and the conductive bump 108 indirectly causes the first electrode 118 to have a topographical change. For example, the first electrode 118 has a plurality of electrode protrusions P3, and the electrode protrusions P3 overlap respectively. on each conductive bump 108 . In one embodiment, the first electrode 118 may have a plurality of concave portions R3 , and each concave portion R3 overlaps with the concave portion R2 of the flat layer 116 respectively. When a part of the light L1 emitted by the light emitting layer 122 travels toward the direction of the first electrode 118 , the first electrode 118 has an electrode protrusion P3 indirectly by disposing a plurality of conductive bumps 108 spaced apart from each other on the interlayer dielectric layer 106 . , the light L1 reflected by the first electrode 118 back to the light-emitting layer 122 can be prevented from being totally reflected at the interface between the first electrode 118 and the light-emitting layer 122 , so that the limitation of the waveguide of the first electrode 118 can be effectively reduced The resulting light output loss, thereby improving the light output efficiency.

於一些實施例中,第一電極118的材料為導體材料,例如鋁(Al)、銀(Ag)、鉻(Cr)、銅(Cu)、鎳(Ni)、鈦(Ti)、鉬(Mo)、鎂(Mg)、鉑(Pt)、金(Au)或其組合。在一些實施例中,第一電極118的材料也可以包括透明或半透明導電材料,例如:氧化鋅(ZnO)、氧化銦錫(ITO)、氧化銦鋅(IZO)、氧化銦鎵鋅(IGZO)、氧化銦鎵(IGO)、氧化鋅鎵(ZGO)、或其它合適的材料。第一電極118可以是單層、雙層或多層結構。在第一電極118為三層結構的實施例中,第一電極118可以包括第一導電層118a、第二導電層118b及第三導電層118c。以下將以第一電極118為三層結構進行說明。In some embodiments, the material of the first electrode 118 is a conductor material, such as aluminum (Al), silver (Ag), chromium (Cr), copper (Cu), nickel (Ni), titanium (Ti), molybdenum (Mo) ), magnesium (Mg), platinum (Pt), gold (Au), or a combination thereof. In some embodiments, the material of the first electrode 118 may also include transparent or semi-transparent conductive materials, such as zinc oxide (ZnO), indium tin oxide (ITO), indium zinc oxide (IZO), indium gallium zinc oxide (IGZO) ), indium gallium oxide (IGO), zinc gallium oxide (ZGO), or other suitable materials. The first electrode 118 may be a single-layer, double-layer or multi-layer structure. In the embodiment in which the first electrode 118 has a three-layer structure, the first electrode 118 may include a first conductive layer 118a, a second conductive layer 118b, and a third conductive layer 118c. The following description will be given by taking the first electrode 118 as a three-layer structure.

在一些實施例中,第一電極118例如是ITO/Ag/ITO所構成的三層結構。換言之,第一導電層118a為氧化銦錫(ITO),第二導電層118b為銀(Ag),第三導電層118c為氧化銦錫(ITO)。ITO的折射率與發光層122的折射率不同,例如,ITO的折射率大於發光層122的折射率。電極突出部P3可避免被第二導電層118b反射回發光層122的光線L1在第三導電層118c與發光層122之間的界面發生全反射。如此一來,可有效降低第三導電層118c的波導限制所造成的出光耗損,藉此,可提升出光效率。在其他實施例中,第一電極118也可以是Ti/Al/Ti或是由Mo/Al/Mo所構成的三層結構。In some embodiments, the first electrode 118 is, for example, a three-layer structure composed of ITO/Ag/ITO. In other words, the first conductive layer 118a is indium tin oxide (ITO), the second conductive layer 118b is silver (Ag), and the third conductive layer 118c is indium tin oxide (ITO). The refractive index of ITO is different from the refractive index of the light emitting layer 122 , for example, the refractive index of ITO is larger than that of the light emitting layer 122 . The electrode protrusion P3 can avoid total reflection of the light L1 reflected by the second conductive layer 118b back to the light emitting layer 122 at the interface between the third conductive layer 118c and the light emitting layer 122 . In this way, the light extraction loss caused by the limitation of the waveguide of the third conductive layer 118c can be effectively reduced, thereby improving the light extraction efficiency. In other embodiments, the first electrode 118 may also be Ti/Al/Ti or a three-layer structure composed of Mo/Al/Mo.

第二電極124的材料可為透明的導體材料,例如銦錫氧化物、銦鋅氧化物、鋁錫氧化物、鋁鋅氧化物或銦鍺鋅氧化物等金屬氧化物。The material of the second electrode 124 can be a transparent conductive material, such as metal oxides such as indium tin oxide, indium zinc oxide, aluminum tin oxide, aluminum zinc oxide, or indium germanium zinc oxide.

於一實施例中,導電凸塊108及汲極D、源極S接觸層間介電層106之頂面。導電凸塊108與汲極D、源極S為同一膜層所形成,且包括相同材料。換言之,導電凸塊108與汲極D、源極S可由同一道光罩製程進行圖案化,因此導電凸塊108的製作與現有製程相容。In one embodiment, the conductive bumps 108 and the drain electrodes D and the source electrodes S are in contact with the top surface of the interlayer dielectric layer 106 . The conductive bump 108, the drain electrode D and the source electrode S are formed of the same film layer and include the same material. In other words, the conductive bumps 108 and the drain electrodes D and the source electrodes S can be patterned by the same mask process, so the fabrication of the conductive bumps 108 is compatible with the existing process.

需說明的是,閘極G、源極S、汲極D、閘絕緣層104、層間介電層106及平坦層116分別可由任何所屬技術領域中具有通常知識者所周知的用於顯示面板的任一閘極、任一源極、任一汲極、任一閘絕緣層、任一層間介電層及任一平坦層來實現,且閘極G、源極S、汲極D、閘絕緣層104、層間介電層106及平坦層116分別可藉由任何所屬技術領域中具有通常知識者所周知的任一方法來形成,故於此不加以贅述。平坦層116材料為有機材料,例如:光阻或其它合適的材料。平坦層116可以是單層、雙層或多層結構,可為相同材料或相異材料。It should be noted that the gate electrode G, the source electrode S, the drain electrode D, the gate insulating layer 104 , the interlayer dielectric layer 106 and the planarization layer 116 can be selected from any of the methods known to those skilled in the art for display panels. Any gate, any source, any drain, any gate insulating layer, any interlayer dielectric layer and any flat layer are implemented, and the gate G, source S, drain D, gate insulation The layer 104 , the interlayer dielectric layer 106 and the planarization layer 116 can be formed by any method known to those skilled in the art, and thus will not be described in detail here. The material of the flat layer 116 is an organic material, such as photoresist or other suitable materials. The planarization layer 116 may be a single-layer, double-layer, or multi-layer structure, and may be the same material or different materials.

第2圖至第7圖是依照本發明一實施例的導電凸塊108的上視示意圖。請先參照第2圖,導電凸塊108呈規則排列,例如,導電凸塊108呈點對稱分布。藉此,可使導電凸塊108所導回發光層122的光線均勻分布,使發光層122亮度均勻。舉例而言,各導電凸塊108等間距排列,例如以間距x1呈陣列排列。於本實施例中,導電凸塊108的俯視形狀為矩形,例如為正方形。然而本發明不限於此,於其他實施例中,導電凸塊108a(見第3圖)的俯視形狀可為圓形或三角形,請參照第4圖,本實施例的導電凸塊108b的俯視形狀為三角形,例如為正三角形,且相鄰的導電凸塊108b的俯視形狀上下相反。接著,請參照第5圖,導電凸塊108c可具有不同的大小,舉例而言,導電凸塊108c具有第一組1080及第二組1082,第一組1080的尺寸大於第二組1082的尺寸。於其他實施例中,各導電凸塊108d(見第6圖)的間距x2大於第2圖至第4圖的間距x1。可透過設計導電凸塊108的形狀、尺寸及間距來調整第一電極118(見第1圖)的表面形貌,以達到不同產品的需求。接著,請參照第7圖,於其他實施例中,導電凸塊108e可呈不規則排列。換言之,導電凸塊108e為隨機地分布。且導電凸塊108e可具有第一組1084及第二組1086,第一組1084的尺寸大於第二組1086的尺寸。2 to 7 are schematic top views of the conductive bump 108 according to an embodiment of the present invention. Please refer to FIG. 2 first, the conductive bumps 108 are regularly arranged, for example, the conductive bumps 108 are distributed in point symmetry. In this way, the light guided back to the light emitting layer 122 by the conductive bumps 108 can be uniformly distributed, so that the brightness of the light emitting layer 122 can be uniform. For example, the conductive bumps 108 are arranged at equal intervals, for example, arranged in an array with a distance x1. In this embodiment, the top view shape of the conductive bump 108 is a rectangle, for example, a square. However, the present invention is not limited thereto. In other embodiments, the top-view shape of the conductive bump 108a (see FIG. 3 ) may be a circle or a triangle. Please refer to FIG. 4 for the top-view shape of the conductive bump 108b in this embodiment. It is a triangle, for example, an equilateral triangle, and the top-view shapes of the adjacent conductive bumps 108b are opposite up and down. Next, referring to FIG. 5, the conductive bumps 108c may have different sizes. For example, the conductive bumps 108c have a first group 1080 and a second group 1082, and the size of the first group 1080 is larger than that of the second group 1082 . In other embodiments, the pitch x2 of each conductive bump 108d (see FIG. 6 ) is greater than the pitch x1 of FIGS. 2 to 4 . The surface topography of the first electrode 118 (see FIG. 1 ) can be adjusted by designing the shape, size and spacing of the conductive bumps 108 to meet the requirements of different products. Next, referring to FIG. 7 , in other embodiments, the conductive bumps 108e may be arranged irregularly. In other words, the conductive bumps 108e are randomly distributed. And the conductive bumps 108e may have a first group 1084 and a second group 1086 , and the size of the first group 1084 is larger than that of the second group 1086 .

第8A圖是依照本發明另一實施例的畫素結構20的剖面示意圖,請參照第8A圖,本實施例的畫素結構20與第1圖的畫素結構10的差異在於畫素結構20的鈍化層214具有彼此分開的多個絕緣凸塊214P,各絕緣凸塊214P分別重疊且包覆各導電凸塊108。鈍化層214位於平坦層116及導電凸塊108之間,平坦層116填入相鄰的導電凸塊108之間。透過設計絕緣凸塊214P,可使得填入相鄰的導電凸塊108之間的平坦層116的深寬比增加,因此,平坦層116仍具有地形變化,換言之,平坦層116的凹部R2及突出部P2可被保留。藉此,在平坦層116的厚度t1較厚的狀況下,第一電極118仍具有地形變化,換言之,第一電極118的電極突出部P3不會被平坦化而可被保留。舉例而言,平坦層116的厚度t1為1微米至10微米。8A is a schematic cross-sectional view of a pixel structure 20 according to another embodiment of the present invention. Please refer to FIG. 8A. The difference between the pixel structure 20 of this embodiment and the pixel structure 10 of FIG. 1 lies in the pixel structure 20 The passivation layer 214 has a plurality of insulating bumps 214P separated from each other, and the insulating bumps 214P overlap and cover the conductive bumps 108 respectively. The passivation layer 214 is located between the planar layer 116 and the conductive bumps 108 , and the planar layer 116 is filled between adjacent conductive bumps 108 . By designing the insulating bumps 214P, the aspect ratio of the flat layer 116 filled between the adjacent conductive bumps 108 can be increased. Therefore, the flat layer 116 still has topographical changes. In other words, the concave portion R2 and the protrusion of the flat layer 116 Part P2 can be reserved. Therefore, when the thickness t1 of the flat layer 116 is relatively thick, the first electrode 118 still has a topographical change, in other words, the electrode protrusion P3 of the first electrode 118 will not be flattened and can be retained. For example, the thickness t1 of the flat layer 116 is 1 to 10 microns.

第8B圖是依照本發明另一實施例的畫素結構30的剖面示意圖,請參照第8B圖,畫素結構30包括基板100、層間介電層106、主動元件T、第一平坦層316、第二平坦層318、第一電極118、畫素定義層120、發光層122及第二電極124。層間介電層106位於基板100上。主動元件T位於基板100上並具有汲極D與通道層CH,汲極D貫穿層間介電層106以與通道層CH電性連接。第一平坦層316位於層間介電層106上,且具有彼此隔開的多個絕緣凸塊316P。8B is a schematic cross-sectional view of a pixel structure 30 according to another embodiment of the present invention. Please refer to FIG. 8B. The pixel structure 30 includes a substrate 100, an interlayer dielectric layer 106, an active element T, a first planar layer 316, The second flat layer 318 , the first electrode 118 , the pixel definition layer 120 , the light emitting layer 122 and the second electrode 124 . The interlayer dielectric layer 106 is on the substrate 100 . The active device T is located on the substrate 100 and has a drain electrode D and a channel layer CH. The drain electrode D penetrates through the interlayer dielectric layer 106 to be electrically connected to the channel layer CH. The first planarization layer 316 is on the interlayer dielectric layer 106 and has a plurality of insulating bumps 316P spaced apart from each other.

第二平坦層318位於第一平坦層316上。第二平坦層318填入相鄰的絕緣凸塊316P之間。絕緣凸塊316P使得第二平坦層318具有地形變化,舉例而言,第二平坦層318具有多個凹部R4及多個絕緣突出部P4。凹部R4的頂面低於絕緣突出部P4的頂面,絕緣突出部P4重疊於絕緣凸塊316P。The second planarization layer 318 is located on the first planarization layer 316 . The second planar layer 318 is filled between the adjacent insulating bumps 316P. The insulating bumps 316P cause the second planar layer 318 to have topographical variations, for example, the second planar layer 318 has a plurality of recesses R4 and a plurality of insulating protrusions P4. The top surface of the concave portion R4 is lower than the top surface of the insulating protruding portion P4, and the insulating protruding portion P4 overlaps the insulating bump 316P.

第一電極118與主動元件T的汲極D電性連接,且第一電極118填入第二平坦層318的凹部R4,絕緣凸塊316P間接使得第一電極118具有地形變化,舉例而言,第一電極118具有多個電極突出部P3,各電極突出部P3分別重疊於各絕緣凸塊316P。於一實施例中,第一電極118可具有多個凹部R3,各凹部R3分別重疊於第二平坦層318的凹部R4。The first electrode 118 is electrically connected to the drain electrode D of the active element T, and the first electrode 118 is filled in the concave portion R4 of the second flat layer 318 , and the insulating bump 316P indirectly causes the first electrode 118 to have a topographical change. For example, The first electrode 118 has a plurality of electrode protrusions P3, and each of the electrode protrusions P3 overlaps each of the insulating bumps 316P, respectively. In one embodiment, the first electrode 118 may have a plurality of recesses R3 , and each of the recesses R3 overlaps with the recesses R4 of the second flat layer 318 respectively.

各電極突出部P3分別重疊於各絕緣突出部P4及各絕緣凸塊316P。畫素定義層120具有開口OP重疊於第一電極118,且開口OP重疊於至少一個絕緣凸塊316P。發光層122配置於開口OP內並位於第一電極118上。第二電極124配置於發光層122上。Each electrode protrusion P3 overlaps each insulating protrusion P4 and each insulating bump 316P, respectively. The pixel definition layer 120 has an opening OP overlapping the first electrode 118 , and the opening OP overlapping at least one insulating bump 316P. The light emitting layer 122 is disposed in the opening OP and on the first electrode 118 . The second electrode 124 is disposed on the light emitting layer 122 .

當發光層122所發出的一部分光線L1朝向第一電極118的方向行進時,藉由於層間介電層106上配置彼此間隔的多個絕緣凸塊316P,間接使得第一電極118具有電極突出部P3,可避免被第一電極118反射回發光層122的光線L1在第一電極118與發光層122之間的界面發生全反射,如此一來,可有效降低第一電極118的波導(waveguide)限制所造成的出光耗損,藉此,可提升出光效率。When a part of the light L1 emitted by the light emitting layer 122 travels toward the direction of the first electrode 118 , the first electrode 118 has an electrode protrusion P3 indirectly by disposing a plurality of insulating bumps 316P spaced apart from each other on the interlayer dielectric layer 106 . , the light L1 reflected by the first electrode 118 back to the light-emitting layer 122 can be prevented from being totally reflected at the interface between the first electrode 118 and the light-emitting layer 122 , so that the limitation of the waveguide of the first electrode 118 can be effectively reduced The resulting light output loss, thereby improving the light output efficiency.

在畫素結構30具有多層平坦層(例如第一平坦層316、第二平坦層318)的狀況下,第一電極118的電極突出部P3不會被平坦化而可被保留。於一實施例中,第一平坦層316的厚度t2為1微米至30微米,第二平坦層318的厚度t3為1微米至30微米。於本實施例中,絕緣凸塊316P呈點對稱分布。舉例而言,絕緣凸塊316P的分布相同於第2圖至第6圖,故於此不再贅述。因此,可透過設計絕緣凸塊316P的形狀、尺寸及間距來調整第一電極118的表面形貌,以達到不同產品的需求。In the case where the pixel structure 30 has multiple planar layers (eg, the first planar layer 316 and the second planar layer 318 ), the electrode protrusion P3 of the first electrode 118 will not be planarized and can be retained. In one embodiment, the thickness t2 of the first planarization layer 316 is 1 μm to 30 μm, and the thickness t3 of the second planarization layer 318 is 1 μm to 30 μm. In this embodiment, the insulating bumps 316P are point-symmetrically distributed. For example, the distribution of the insulating bumps 316P is the same as that in FIG. 2 to FIG. 6 , so it is not repeated here. Therefore, the surface topography of the first electrode 118 can be adjusted by designing the shape, size and spacing of the insulating bumps 316P to meet the requirements of different products.

第8C圖是依照本發明另一實施例的畫素結構40的剖面示意圖,請參照第8C圖,本實施例的畫素結構40與第1圖的畫素結構10的差異在於畫素結構40的畫素定義層120a的開口OP的一部分重疊於電容電極112a及絕緣層110a,開口OP的另一部分不重疊於電容電極112a及絕緣層110a。換言之,開口OP的側壁sw位於電容電極112a的正上方,也就是說,開口OP的側壁sw重疊於電容電極112a。於其他實施例中,開口OP的側壁sw可重疊於其他電路(未示),例如閘極或任意金屬走線。藉由設置導電凸塊108於層間介電層106上且彼此隔開,可以減少電容電極112a或其他電路(未示)所造成的開口OP的下方的疊構之高低段差,藉此,可減少第一電極118的第三導電層118c的電極突出部P3及凹部R3之間的垂直距離128,如此一來,使發光層122的表面平坦度提升。進一步而言,由於畫素定義層120a的開口OP毋須避開電容電極112a或其他電路(未示),可以增加開口OP的大小,使開口率提升。8C is a schematic cross-sectional view of a pixel structure 40 according to another embodiment of the present invention. Please refer to FIG. 8C. The difference between the pixel structure 40 of this embodiment and the pixel structure 10 of FIG. 1 lies in the pixel structure 40 A part of the opening OP of the pixel definition layer 120a overlaps the capacitor electrode 112a and the insulating layer 110a, and another part of the opening OP does not overlap the capacitor electrode 112a and the insulating layer 110a. In other words, the sidewall sw of the opening OP is located directly above the capacitor electrode 112a, that is, the sidewall sw of the opening OP overlaps the capacitor electrode 112a. In other embodiments, the sidewall sw of the opening OP may overlap with other circuits (not shown), such as gate electrodes or any metal traces. By arranging the conductive bumps 108 on the interlayer dielectric layer 106 and separated from each other, the height difference of the stack structure below the opening OP caused by the capacitor electrode 112a or other circuits (not shown) can be reduced, thereby reducing the height difference. The vertical distance 128 between the electrode protruding portion P3 and the concave portion R3 of the third conductive layer 118c of the first electrode 118 is such that the surface flatness of the light-emitting layer 122 is improved. Furthermore, since the opening OP of the pixel definition layer 120a does not need to avoid the capacitor electrode 112a or other circuits (not shown), the size of the opening OP can be increased, and the opening ratio can be improved.

第9圖至第21圖是依照本發明一實施例的畫素結構50的製作方法的剖面示意圖。請先參照第9圖,首先,形成通道層CH於基板100上。於一實施例中,可在形成通道層CH之前,形成緩衝層102於基板100上。接著,請參照第10圖,形成閘絕緣層104於通道層CH上,且形成絕緣層110於緩衝層102上。閘絕緣層104及絕緣層110的形成方法例如是整面地沉積絕緣材料(未示)於通道層CH及緩衝層102上,再圖案化絕緣材料(未示)所形成。FIGS. 9 to 21 are schematic cross-sectional views of a method for fabricating a pixel structure 50 according to an embodiment of the present invention. Referring to FIG. 9 , first, a channel layer CH is formed on the substrate 100 . In one embodiment, the buffer layer 102 may be formed on the substrate 100 before the channel layer CH is formed. Next, referring to FIG. 10 , a gate insulating layer 104 is formed on the channel layer CH, and an insulating layer 110 is formed on the buffer layer 102 . The gate insulating layer 104 and the insulating layer 110 are formed by, for example, depositing an insulating material (not shown) on the channel layer CH and the buffer layer 102 over the entire surface, and then patterning the insulating material (not shown).

參照第11圖,形成閘極G於閘絕緣層104上,且形成電容電極112於絕緣層110上。閘極G與電容電極112的形成方法例如是整面地沉積導電材料(未示)於緩衝層102、通道層CH、閘絕緣層104與絕緣層110上,再圖案化導電材料(未示)所形成。接著,參照第12圖,形成層間介電層106覆蓋閘極G及通道層CH,層間介電層106具有多個通孔V1,通孔V1露出一部分的通道層CH。Referring to FIG. 11 , the gate electrode G is formed on the gate insulating layer 104 , and the capacitor electrode 112 is formed on the insulating layer 110 . The gate electrode G and the capacitor electrode 112 are formed by, for example, depositing a conductive material (not shown) on the buffer layer 102 , the channel layer CH, the gate insulating layer 104 and the insulating layer 110 on the entire surface, and then patterning the conductive material (not shown) formed. Next, referring to FIG. 12, an interlayer dielectric layer 106 is formed to cover the gate electrode G and the channel layer CH, and the interlayer dielectric layer 106 has a plurality of through holes V1, and the through holes V1 expose a part of the channel layer CH.

參照第13圖,整面地形成導電層108A於層間介電層106上,導電層108A填入通孔V1中。在導電層108A上塗佈光阻PR,以光罩MK對光阻PR進行曝光。光罩MK具有多個圖案PN,曝光後,可使得光阻PR具有對應於圖案PN的多個曝光部PR1。參照第14圖,對光阻PR進行顯影,以留下曝光部PR1。Referring to FIG. 13, a conductive layer 108A is formed over the entire surface on the interlayer dielectric layer 106, and the conductive layer 108A is filled into the via hole V1. A photoresist PR is coated on the conductive layer 108A, and the photoresist PR is exposed by a photomask MK. The mask MK has a plurality of patterns PN, and after exposure, the photoresist PR can have a plurality of exposure portions PR1 corresponding to the patterns PN. Referring to FIG. 14, the photoresist PR is developed to leave an exposed portion PR1.

參照第15圖,藉由曝光部PR1來圖案化導電層108A,以形成源極S、汲極D與多個導電凸塊108,源極S、汲極D、閘極G及通道層CH構成主動元件T,且導電凸塊108彼此隔開。導電凸塊108的分布以及高度可透過光罩MK(見第13圖)來定義,舉例而言,導電凸塊108的分布可如第2圖至第6圖所示。圖案化的方法例如是採用蝕刻法。參照第16圖,將光阻PR的曝光部PR1移除,例如可採用去光阻液(stripper)移除。由於導電凸塊108是透過和源極S與汲極D在同一道光罩製程所定義,因此,可在不需改變發光元件126(例如發光層122)的製程下,製作出導電凸塊108,所以不會影響到發光元件126(例如發光層122)的製程。Referring to FIG. 15, the conductive layer 108A is patterned by the exposure portion PR1 to form a source electrode S, a drain electrode D and a plurality of conductive bumps 108, which are composed of a source electrode S, a drain electrode D, a gate electrode G and a channel layer CH. The active element T, and the conductive bumps 108 are spaced apart from each other. The distribution and height of the conductive bumps 108 can be defined by the mask MK (see FIG. 13 ). For example, the distribution of the conductive bumps 108 can be as shown in FIGS. 2 to 6 . The patterning method is, for example, an etching method. Referring to FIG. 16 , the exposed portion PR1 of the photoresist PR is removed, for example, by using a stripper. Since the conductive bumps 108 are defined through the same mask process as the source S and the drain D, the conductive bumps 108 can be fabricated without changing the process of the light-emitting element 126 (eg, the light-emitting layer 122 ). Therefore, the manufacturing process of the light-emitting element 126 (eg, the light-emitting layer 122 ) will not be affected.

由於電容電極112與導電凸塊108的分隔,電容電極112與導電凸塊108可以平行板電容器的形式共同形成一儲存電容。Due to the separation between the capacitor electrodes 112 and the conductive bumps 108 , the capacitor electrodes 112 and the conductive bumps 108 may together form a storage capacitor in the form of a parallel plate capacitor.

接著,參照第17圖,形成鈍化層114、平坦層116於源極S、汲極D、導電凸塊108上。導電凸塊108使得鈍化層114具有地形變化,舉例而言,鈍化層114具有多個凹部R1及多個突出部P1。平坦層116位於鈍化層114上,且填入鈍化層114的凹部R1。導電凸塊108間接使得平坦層116具有地形變化,舉例而言,平坦層116具有多個凹部R2及多個突出部P2。Next, referring to FIG. 17 , a passivation layer 114 and a flat layer 116 are formed on the source electrode S, the drain electrode D, and the conductive bump 108 . The conductive bumps 108 cause the passivation layer 114 to have topographical changes. For example, the passivation layer 114 has a plurality of recesses R1 and a plurality of protrusions P1. The flat layer 116 is located on the passivation layer 114 and fills the recess R1 of the passivation layer 114 . The conductive bumps 108 indirectly cause the planarization layer 116 to have topographical changes. For example, the planarization layer 116 has a plurality of recesses R2 and a plurality of protrusions P2.

請參照第18圖,形成第一電極118於平坦層116上,第一電極118貫穿平坦層116且與汲極D電性連接。第一電極118填入平坦層116的凹部R2,導電凸塊108間接使得第一電極118具有地形變化,舉例而言,第一電極118具有多個電極突出部P3,各電極突出部P3分別重疊於各導電凸塊108。於一實施例中,第一電極118可具有多個凹部R3,各凹部R3重疊於平坦層116的凹部R2。於一實施例中,在第一電極118為三層結構的實施例中,第一電極118可以包括第一導電層118a、第二導電層118b及第三導電層118c,同對第1圖所描述,於此為了版面簡潔不再贅述。在一些實施例中,第一電極118的形成方法可以是化學氣相沉積(CVD)、物理氣相沉積(PVD)、原子層沉積(ALD)、蒸鍍(VTE)、濺鍍(SPT)或其組合。Referring to FIG. 18 , a first electrode 118 is formed on the flat layer 116 , and the first electrode 118 penetrates through the flat layer 116 and is electrically connected to the drain electrode D. As shown in FIG. The first electrode 118 is filled into the concave portion R2 of the flat layer 116, and the conductive bump 108 indirectly causes the first electrode 118 to have a topographical change. For example, the first electrode 118 has a plurality of electrode protrusions P3, and the electrode protrusions P3 overlap respectively. on each conductive bump 108 . In one embodiment, the first electrode 118 may have a plurality of concave portions R3 , and each concave portion R3 overlaps with the concave portion R2 of the flat layer 116 . In one embodiment, in the embodiment in which the first electrode 118 has a three-layer structure, the first electrode 118 may include a first conductive layer 118a, a second conductive layer 118b and a third conductive layer 118c, which are the same as those shown in FIG. 1 . The description will not be repeated here for the sake of brevity. In some embodiments, the formation method of the first electrode 118 may be chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), evaporation (VTE), sputtering (SPT) or its combination.

請參照第19圖,接著,形成畫素定義層120於第一電極118上,畫素定義層120具有開口OP重疊於第一電極118,且開口OP重疊於至少一個導電凸塊108。Referring to FIG. 19 , next, a pixel definition layer 120 is formed on the first electrode 118 . The pixel definition layer 120 has an opening OP overlapping the first electrode 118 , and the opening OP overlapping at least one conductive bump 108 .

請參照第20圖,形成發光層122於開口OP內。於一實施例中,發光層122可藉由噴墨塗佈技術(ink jet printing;IJP)所形成。舉例而言,液態的有機發光材料(未繪示)可透過噴墨塗佈製程設置於第一電極118上且位於開口OP中,再藉由一乾燥程序形成薄膜的發光層122。在一些實施例中,發光層122可為多層結構,包括電洞注入層(hole injection layer,HIL)、電洞傳輸層(hole transfer layer,HTL)、發光層(emission layer,EL)和電子傳輸層(electron transfer layer,ETL)。第20圖為了方便說明及清楚表示,僅以一層結構表示。在本實施例中,可透過重覆進行噴墨塗佈製程以及固化程序以形成所需厚度的發光層122,但本發明不以此為限。Referring to FIG. 20, the light emitting layer 122 is formed in the opening OP. In one embodiment, the light emitting layer 122 may be formed by ink jet printing (IJP). For example, a liquid organic light-emitting material (not shown) can be disposed on the first electrode 118 and located in the opening OP through an inkjet coating process, and then a thin-film light-emitting layer 122 can be formed by a drying process. In some embodiments, the light emitting layer 122 may be a multi-layer structure including a hole injection layer (HIL), a hole transfer layer (HTL), an emission layer (EL), and an electron transport layer. layer (electron transfer layer, ETL). Fig. 20 is only shown in a one-layer structure for convenience of description and clear representation. In this embodiment, the light emitting layer 122 with a desired thickness can be formed by repeating the inkjet coating process and the curing process, but the invention is not limited thereto.

當發光層122所發出的一部分光線L1朝向第一電極118的方向行進時,藉由於層間介電層106上配置彼此間隔的多個導電凸塊108,間接使得第一電極118具有電極突出部P3,可避免被第一電極118反射回發光層122的光線L1在第一電極118與發光層122之間的界面發生全反射,如此一來,可有效降低第一電極118的波導(waveguide)限制所造成的出光耗損,藉此,可提升出光效率。When a part of the light L1 emitted by the light emitting layer 122 travels toward the direction of the first electrode 118 , the first electrode 118 has an electrode protrusion P3 indirectly by disposing a plurality of conductive bumps 108 spaced apart from each other on the interlayer dielectric layer 106 . , the light L1 reflected by the first electrode 118 back to the light-emitting layer 122 can be prevented from being totally reflected at the interface between the first electrode 118 and the light-emitting layer 122 , so that the limitation of the waveguide of the first electrode 118 can be effectively reduced The resulting light output loss, thereby improving the light output efficiency.

參照第21圖,形成第二電極124於發光層122上,第一電極118、發光層122及第二電極124共同構成發光元件126。於此,完成畫素結構50。在一些實施例中,第二電極124的形成方法可以是化學氣相沉積(CVD)、物理氣相沉積(PVD)、原子層沉積(ALD)、蒸鍍(VTE)、濺鍍(SPT)或其組合。Referring to FIG. 21 , the second electrode 124 is formed on the light-emitting layer 122 , and the first electrode 118 , the light-emitting layer 122 and the second electrode 124 together constitute the light-emitting element 126 . Here, the pixel structure 50 is completed. In some embodiments, the formation method of the second electrode 124 may be chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), evaporation (VTE), sputtering (SPT) or its combination.

綜上所述,在本發明一實施例之畫素結構及其製作方法中,當發光層所發出的一部分光線朝向第一電極的方向行進時,藉由於層間介電層上配置彼此間隔的多個導電凸塊,間接使得第一電極具有電極突出部,可避免被第一電極反射回發光層的光線在第一電極與發光層之間的界面發生全反射,如此一來,可有效降低第一電極的波導(waveguide)限制所造成的出光耗損,藉此,可提升出光效率。To sum up, in the pixel structure and the manufacturing method thereof according to an embodiment of the present invention, when a part of the light emitted by the light-emitting layer travels toward the direction of the first electrode, the interlayer dielectric layer is provided with a plurality of spaced apart A conductive bump indirectly makes the first electrode have an electrode protrusion, which can avoid total reflection of the light reflected by the first electrode back to the light-emitting layer at the interface between the first electrode and the light-emitting layer. The waveguide of an electrode limits the light-extraction loss caused by the light-extraction efficiency, thereby improving the light-extraction efficiency.

10,20,30,40,50:畫素結構 100:基板 102:緩衝層 104:閘絕緣層 106:層間介電層 108,108b,108c,108d:導電凸塊 108e:導電凸塊 108A:導電層 110,110a:絕緣層 112,112a:電容電極 114:鈍化層 116:平坦層 118:第一電極 118a:第一導電層 118b:第二導電層 118c:第三導電層 120,120a:畫素定義層 122:發光層 124:第二電極 126:發光元件 128:垂直距離 214:鈍化層 214P:絕緣凸塊 316:第一平坦層 316P:絕緣凸塊 318:第二平坦層 1080,1084:第一組 1082,1086:第二組 CH:通道層 D:汲極 G:閘極 L1:光線 MK:光罩 OP:開口 P1,P2:突出部 P3:電極突出部 P4:突出部 PN:圖案 PR:光阻 PR1:曝光部 R1,R2,R3,R4:凹部 S:源極 sw:側壁 T:主動元件 t1,t2,t3:厚度 V1:通孔 x1,x2:間距 10, 20, 30, 40, 50: pixel structure 100: Substrate 102: Buffer layer 104: Gate insulating layer 106: Interlayer dielectric layer 108, 108b, 108c, 108d: Conductive bumps 108e: Conductive bumps 108A: Conductive layer 110,110a: Insulation layer 112, 112a: Capacitor electrodes 114: Passivation layer 116: flat layer 118: The first electrode 118a: first conductive layer 118b: second conductive layer 118c: the third conductive layer 120,120a: pixel definition layer 122: light-emitting layer 124: Second electrode 126: Light-emitting element 128: vertical distance 214: Passivation layer 214P: Insulation bump 316: First flat layer 316P: Insulation bump 318: Second flat layer 1080, 1084: Group 1 1082, 1086: The second group CH: channel layer D: drain G: gate L1: light MK: photomask OP: opening P1, P2: Protrusions P3: Electrode protrusion P4: Protrusion PN: Pattern PR: Photoresist PR1: Exposure Department R1, R2, R3, R4: Recess S: source sw: sidewall T: Active element t1, t2, t3: thickness V1: Through hole x1,x2: spacing

閱讀以下詳細敘述並搭配對應之圖式,可了解本揭露之多個樣態。需留意的是,圖式中的多個特徵並未依照該業界領域之標準作法繪製實際比例。事實上,所述之特徵的尺寸可以任意的增加或減少以利於討論的清晰性。 第1圖是依照本發明一實施例的畫素結構的剖面示意圖。 第2圖至第7圖是依照本發明一實施例的導電凸塊的上視示意圖。 第8A圖是依照本發明另一實施例的畫素結構的剖面示意圖。 第8B圖是依照本發明另一實施例的畫素結構的剖面示意圖。 第8C圖是依照本發明另一實施例的畫素結構的剖面示意圖。 第9圖至第21圖是依照本發明一實施例的畫素結構的製作方法的剖面示意圖。 Various aspects of the present disclosure can be understood by reading the following detailed description and corresponding drawings. It should be noted that various features in the drawings are not drawn to scale according to standard practice in the industry. In fact, the dimensions of the described features may be arbitrarily increased or decreased to facilitate clarity of discussion. FIG. 1 is a schematic cross-sectional view of a pixel structure according to an embodiment of the present invention. 2 to 7 are schematic top views of a conductive bump according to an embodiment of the present invention. FIG. 8A is a schematic cross-sectional view of a pixel structure according to another embodiment of the present invention. FIG. 8B is a schematic cross-sectional view of a pixel structure according to another embodiment of the present invention. FIG. 8C is a schematic cross-sectional view of a pixel structure according to another embodiment of the present invention. 9 to 21 are schematic cross-sectional views of a method for fabricating a pixel structure according to an embodiment of the present invention.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in the order of storage institution, date and number) none Foreign deposit information (please note in the order of deposit country, institution, date and number) none

10:畫素結構 10: Pixel structure

100:基板 100: Substrate

102:緩衝層 102: Buffer layer

104:閘絕緣層 104: Gate insulating layer

106:層間介電層 106: Interlayer dielectric layer

108:導電凸塊 108: Conductive bumps

110:絕緣層 110: Insulation layer

112:電容電極 112: Capacitor electrode

114:鈍化層 114: Passivation layer

116:平坦層 116: flat layer

118:第一電極 118: The first electrode

118a:第一導電層 118a: first conductive layer

118b:第二導電層 118b: second conductive layer

118c:第三導電層 118c: the third conductive layer

120:畫素定義層 120: Pixel Definition Layer

122:發光層 122: light-emitting layer

124:第二電極 124: Second electrode

126:發光元件 126: Light-emitting element

CH:通道層 CH: channel layer

D:汲極 D: drain

G:閘極 G: gate

L1:光線 L1: light

OP:開口 OP: opening

P1,P2:突出部 P1, P2: Protrusions

P3:電極突出部 P3: Electrode protrusion

R1,R2,R3:凹部 R1, R2, R3: Recess

S:源極 S: source

T:主動元件 T: Active element

Claims (10)

一種畫素結構,包括:一基板;一層間介電層,位於該基板上;一主動元件,位於該基板上並具有一汲極與一通道層,該汲極貫穿該層間介電層以與該通道層電性連接;多個導電凸塊,位於該層間介電層上且彼此隔開;一平坦層,位於該汲極及該些導電凸塊上;一第一電極,貫穿該平坦層且與該主動元件的汲極電性連接,該第一電極具有多個電極突出部,各該電極突出部分別重疊於各該導電凸塊;一畫素定義層,具有一開口重疊於該第一電極,且該開口重疊於至少一個該些導電凸塊;一發光層,配置於該開口內並位於該第一電極上;及一第二電極,配置於該發光層上。 A pixel structure, comprising: a substrate; an interlayer dielectric layer on the substrate; an active element on the substrate and having a drain electrode and a channel layer, the drain electrode penetrating the interlayer dielectric layer to communicate with The channel layer is electrically connected; a plurality of conductive bumps are located on the interlayer dielectric layer and are separated from each other; a flat layer is located on the drain electrode and the conductive bumps; a first electrode penetrates the flat layer and is electrically connected to the drain of the active element, the first electrode has a plurality of electrode protrusions, each of the electrode protrusions is respectively overlapped with each of the conductive bumps; a pixel definition layer has an opening overlapping the first an electrode, and the opening overlaps at least one of the conductive bumps; a light-emitting layer is disposed in the opening and on the first electrode; and a second electrode is disposed on the light-emitting layer. 如請求項1所述之畫素結構,其中該些導電凸塊及該汲極接觸該層間介電層之頂面。 The pixel structure of claim 1, wherein the conductive bumps and the drain contact a top surface of the interlayer dielectric layer. 如請求項1所述之畫素結構,其中該些導電凸塊呈點對稱分布。 The pixel structure of claim 1, wherein the conductive bumps are distributed in point symmetry. 如請求項1所述之畫素結構,還包括:一鈍化層,位於該平坦層及該些導電凸塊之間,其中該 鈍化層具有彼此分開的多個絕緣凸塊,各該絕緣凸塊分別重疊且包覆各該導電凸塊。 The pixel structure of claim 1, further comprising: a passivation layer located between the flat layer and the conductive bumps, wherein the The passivation layer has a plurality of insulating bumps separated from each other, and each of the insulating bumps respectively overlaps and covers each of the conductive bumps. 如請求項1所述之畫素結構,其中該平坦層的厚度為1微米至10微米。 The pixel structure of claim 1, wherein the thickness of the flat layer is 1 to 10 microns. 一種畫素結構,包括一基板;一層間介電層,位於該基板上;一主動元件,位於該基板上並具有一汲極與一通道層,該汲極貫穿該層間介電層以與該通道層電性連接;一第一平坦層,位於該層間介電層上,且具有彼此隔開的多個絕緣凸塊;一第二平坦層,位於該第一平坦層上,其中該第二平坦層具有多個絕緣突出部;一第一電極,與該主動元件的該汲極電性連接,且具有多個電極突出部,各該電極突出部分別重疊於各該絕緣突出部及各該絕緣凸塊;一畫素定義層,具有一開口重疊於該第一電極,且該開口重疊於至少一個該些絕緣凸塊;一發光層,配置於該開口內並位於該第一電極上;及一第二電極,配置於該發光層上。 A pixel structure includes a substrate; an interlayer dielectric layer on the substrate; an active element on the substrate and has a drain electrode and a channel layer, the drain electrode penetrates the interlayer dielectric layer to communicate with the The channel layer is electrically connected; a first flat layer is located on the interlayer dielectric layer and has a plurality of insulating bumps spaced apart from each other; a second flat layer is located on the first flat layer, wherein the second The flat layer has a plurality of insulating protrusions; a first electrode is electrically connected to the drain of the active element, and has a plurality of electrode protrusions, each of which is overlapped on each of the insulating protrusions and each of the insulating bumps; a pixel definition layer with an opening overlapping the first electrode, and the opening overlapping at least one of the insulating bumps; a light-emitting layer disposed in the opening and on the first electrode; and a second electrode disposed on the light-emitting layer. 如請求項6所述之畫素結構,其中該第一平 坦層的厚度為1微米至30微米,該第二平坦層的厚度為1微米至30微米。 The pixel structure of claim 6, wherein the first level The thickness of the flat layer is 1 to 30 microns, and the thickness of the second flat layer is 1 to 30 microns. 如請求項6所述之畫素結構,其中該些絕緣凸塊呈點對稱分布。 The pixel structure of claim 6, wherein the insulating bumps are distributed in point symmetry. 一種畫素結構的製作方法,包括形成一通道層於一基板上;形成一閘絕緣層於該通道層上;形成一閘極於該閘絕緣層上;形成一層間介電層覆蓋該閘極及該通道層,其中該層間介電層具有多個通孔;整面地形成一導電層於該層間介電層上,其中該導電層填入該些通孔中;圖案化該導電層,以形成一源極、一汲極與多個導電凸塊,其中該源極、該汲極、該閘極及該通道層構成一主動元件,且該些導電凸塊彼此隔開;形成一平坦層於該源極、該汲極與該些導電凸塊上;形成一第一電極於該平坦層上,該第一電極貫穿該平坦層且與該汲極電性連接;形成一畫素定義層於該第一電極上,該畫素定義層具有一開口重疊於該第一電極,且該開口重疊於至少一個該些導電凸塊;形成一發光層於該開口內;及 形成一第二電極於該發光層上。 A manufacturing method of a pixel structure, comprising forming a channel layer on a substrate; forming a gate insulating layer on the channel layer; forming a gate electrode on the gate insulating layer; forming an interlayer dielectric layer to cover the gate electrode and the channel layer, wherein the interlayer dielectric layer has a plurality of through holes; a conductive layer is formed on the entire surface of the interlayer dielectric layer, wherein the conductive layer is filled in the through holes; the conductive layer is patterned, to form a source electrode, a drain electrode and a plurality of conductive bumps, wherein the source electrode, the drain electrode, the gate electrode and the channel layer constitute an active element, and the conductive bumps are separated from each other; forming a flat layer on the source electrode, the drain electrode and the conductive bumps; form a first electrode on the flat layer, the first electrode penetrates the flat layer and is electrically connected to the drain electrode; forms a pixel definition layer on the first electrode, the pixel definition layer has an opening overlapping the first electrode, and the opening overlaps at least one of the conductive bumps; forming a light-emitting layer in the opening; and A second electrode is formed on the light emitting layer. 如請求項9所述之方法,其中該些導電凸塊呈點對稱分布。 The method of claim 9, wherein the conductive bumps are distributed point-symmetrically.
TW110116276A 2021-05-05 2021-05-05 Pixel structure and fabrication method thereof TWI772015B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110116276A TWI772015B (en) 2021-05-05 2021-05-05 Pixel structure and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110116276A TWI772015B (en) 2021-05-05 2021-05-05 Pixel structure and fabrication method thereof

Publications (2)

Publication Number Publication Date
TWI772015B true TWI772015B (en) 2022-07-21
TW202244578A TW202244578A (en) 2022-11-16

Family

ID=83439673

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110116276A TWI772015B (en) 2021-05-05 2021-05-05 Pixel structure and fabrication method thereof

Country Status (1)

Country Link
TW (1) TWI772015B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI345307B (en) * 2007-02-16 2011-07-11 Chi Mei El Corp Display device and method of manufacturing the same
US20170207292A1 (en) * 2002-09-20 2017-07-20 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
TW201802785A (en) * 2016-07-11 2018-01-16 友達光電股份有限公司 Display panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170207292A1 (en) * 2002-09-20 2017-07-20 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
TWI345307B (en) * 2007-02-16 2011-07-11 Chi Mei El Corp Display device and method of manufacturing the same
TW201802785A (en) * 2016-07-11 2018-01-16 友達光電股份有限公司 Display panel

Also Published As

Publication number Publication date
TW202244578A (en) 2022-11-16

Similar Documents

Publication Publication Date Title
TWI549329B (en) Organic light-emitting device and method of manufacturing the same
CN105609521B (en) Organic light emitting display device and method of manufacturing the same
WO2020233525A1 (en) Array substrate and manufacturing method thereof, display panel and display device
CN108417609B (en) Display substrate, preparation method thereof and display device
TWI695527B (en) Display panel
TWI627744B (en) Organic light emitting display device and method of fabricating the same
WO2020077842A1 (en) Oled panel and manufacturing method therefor
US9178183B2 (en) Organic light emitting diode display panel and method for manufacturing the same
CN112470287A (en) Display substrate and related device
KR102651358B1 (en) Methods of manufacturing a mirror substrate and display devices including the same
US9698173B2 (en) Thin film transistor, display, and method for fabricating the same
KR102024098B1 (en) Display device and method of manufacturing the same
KR20120138037A (en) Luminescence dispaly panel and method of fabricating the same
CN110112142B (en) Array substrate, manufacturing method thereof, display panel and electronic device
US20110031478A1 (en) Organic light emitting diode display device and method of fabricating the same
WO2022088948A1 (en) Display panel, display apparatus, and manufacturing method for display panel
CN110690257A (en) TFT array substrate and manufacturing method thereof
CN104022137A (en) Organic light-emitting display apparatus and method of manufacturing same
TWI772015B (en) Pixel structure and fabrication method thereof
CN213304143U (en) Display panel
KR102555788B1 (en) Thin film transistor substrate, method of manufacturing the same, and display device including the same
CN106128960B (en) Thin film transistor, array substrate, respective preparation methods and display device
CN110718556A (en) Flexible array substrate and manufacturing method
CN110112198B (en) Display panel
TWI513001B (en) Thin film transistor substrate, display panel using the same and manufacturing method thereof