TWI770959B - Composite oxide target and manufacturing method thereof - Google Patents

Composite oxide target and manufacturing method thereof Download PDF

Info

Publication number
TWI770959B
TWI770959B TW110115003A TW110115003A TWI770959B TW I770959 B TWI770959 B TW I770959B TW 110115003 A TW110115003 A TW 110115003A TW 110115003 A TW110115003 A TW 110115003A TW I770959 B TWI770959 B TW I770959B
Authority
TW
Taiwan
Prior art keywords
powder
composite oxide
equal
oxide target
less
Prior art date
Application number
TW110115003A
Other languages
Chinese (zh)
Other versions
TW202241828A (en
Inventor
蔡登安
陳衍任
鄭惠文
Original Assignee
光洋應用材料科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光洋應用材料科技股份有限公司 filed Critical 光洋應用材料科技股份有限公司
Priority to TW110115003A priority Critical patent/TWI770959B/en
Priority to JP2021117535A priority patent/JP7165787B1/en
Application granted granted Critical
Publication of TWI770959B publication Critical patent/TWI770959B/en
Publication of TW202241828A publication Critical patent/TW202241828A/en

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The present invention provides a composite oxide target, which includes magnesium oxide and titanium (II) oxide. Based on a total amount of the composite oxide target, the total amount of the magnesium oxide is from 5 atomic percent to 90 atomic percent, and the total amount of the titanium (II) oxide is from 10 atomic percent to 95 atomic percent. The average grain size of the black phases containing magnesium oxide in the composite oxide target is less than or equal to 2 micrometers and the variance of the grain size of the black phases is smaller than 0.2. The present invention further provides a method of producing the above composite oxide target, which comprises: preparing magnesium oxide powder and titanium(II) oxide powder, wherein the grain size of the magnesium oxide powder is less than or equal to 5 μm and the grain size of the titanium(II) oxide powder is less than or equal to 10 μm; mixing the magnesium oxide powder and the titanium(II) oxide powder to obtain a mixed powder; grinding the mixed powder for more than 48 hours to obtain a fine powder; preforming the fine powder into a green compact; and sintering the green compact at a temperature ranging from 900°C to 1400°C to obtain the composite oxide target.

Description

複合氧化物靶材及其製法Composite oxide target and method for producing the same

本創作係關於一種複合氧化物靶材及其製法,特別是關於一種可應用於熱輔助磁記錄媒體之阻障層的複合氧化物靶材及其製法。This creation relates to a composite oxide target and its production method, especially a composite oxide target that can be applied to the barrier layer of a thermally assisted magnetic recording medium and its production method.

電腦的所有資料皆利用磁性方式記錄於磁盤的磁軌,在過去,硬碟碟片主要以水平磁性記錄媒體為主,但近來已改採垂直磁性記錄媒體以進一步增加硬碟的儲存容量。然而,目前垂直磁性記錄媒體的設計,在熱穩定性、可寫入性及訊雜比的條件限制下已發展至接近理論儲存容量的極限。為了持續提升硬碟儲存容量以符合現今大量儲存資訊的需求,目前另發展出熱輔助磁記錄技術(Heat-Assisted Magnetic Recording,HAMR)以改善上述關鍵問題。All data in a computer is recorded magnetically on the tracks of a magnetic disk. In the past, hard disks were mainly based on horizontal magnetic recording media, but recently they have switched to vertical magnetic recording media to further increase the storage capacity of hard disks. However, the current design of perpendicular magnetic recording media has been developed to approach the limit of theoretical storage capacity under the constraints of thermal stability, writeability and signal-to-noise ratio. In order to continuously increase the storage capacity of hard disks to meet today's demand for mass storage of information, a heat-assisted magnetic recording (HAMR) technology has been developed to improve the above-mentioned key problems.

熱輔助磁記錄媒體利用雷射光束精確地聚焦磁記錄層進行加熱,磁記錄層中的磁性複合材料在被雷射加熱到居禮溫度以上後會暫時失去磁性,待資料寫入後,雷射光束不再聚焦於磁記錄層,致使磁記錄層冷卻以穩定寫入的資料。The thermally assisted magnetic recording medium uses a laser beam to precisely focus the magnetic recording layer for heating. The magnetic composite material in the magnetic recording layer will temporarily lose its magnetism after being heated by the laser to above the Curie temperature. After the data is written, the laser The beam is no longer focused on the magnetic recording layer, causing the magnetic recording layer to cool to stabilize the written data.

熱輔助磁記錄媒體之層狀結構由下至上包含基板、基底層、軟磁層、晶向控制層、散熱層、阻障層、磁記錄層、潤滑層及覆蓋層,其中磁記錄層需要像鐵鉑合金之高度穩定的磁性複合材料以承受雷射光束的聚焦加熱,但鐵鉑合金在高溫環境下容易擴散至磁記錄層下方的層體,故需要在磁記錄層下方設置阻障層,以減緩或抑制鐵鉑合金之擴散現象。The layered structure of the thermally assisted magnetic recording medium includes a substrate, a base layer, a soft magnetic layer, a crystal orientation control layer, a heat dissipation layer, a barrier layer, a magnetic recording layer, a lubricating layer and a cover layer from bottom to top, wherein the magnetic recording layer needs to be like iron The highly stable magnetic composite material of platinum alloy can withstand the focused heating of the laser beam, but the iron-platinum alloy is easily diffused to the layer below the magnetic recording layer in a high temperature environment, so a barrier layer needs to be set under the magnetic recording layer to prevent Slow down or inhibit the diffusion of iron-platinum alloys.

熱輔助磁記錄媒體的阻障層通常選用如一氧化鎂(MgO)之具耐熱性的材料,由於其不具導電性,故通常必須使用射頻磁控濺鍍法(RF magnetron sputtering)濺鍍成膜,但射頻磁控濺鍍法存在成膜速度慢、產率低的問題,目前已知可添加一氧化鈦(TiO)增加導電性,進而可改採用直流磁控濺鍍法(DC magnetron sputtering)製得阻障層。然而,現有以MgO粉末和TiO粉末製作複合氧化物靶材時,在燒結後,該複合氧化物靶材中無可避免會形成MgO團聚,致使複合氧化物靶材的特性被劣化、且在濺鍍成膜的過程易掉落大量微粒,進而影響所製成薄膜的性質及良率。The barrier layer of the thermally assisted magnetic recording medium is usually made of materials with heat resistance such as magnesium monoxide (MgO). Since it has no electrical conductivity, it is usually necessary to use RF magnetron sputtering to form a film. However, the RF magnetron sputtering method has the problems of slow film formation speed and low yield. At present, it is known that titanium monoxide (TiO) can be added to increase the conductivity, and then DC magnetron sputtering method can be used instead. Get a barrier layer. However, when using MgO powder and TiO powder to make a composite oxide target, after sintering, MgO agglomeration is inevitably formed in the composite oxide target, so that the properties of the composite oxide target are deteriorated and the sputtering A large number of particles are easily dropped during the plating process, which affects the properties and yield of the fabricated film.

為克服先前技術所面臨之問題,本創作之其中一目的在於抑制及/或減緩複合氧化物靶材中一氧化鎂的團聚程度。To overcome the problems faced by the prior art, one of the objectives of the present invention is to inhibit and/or slow down the degree of agglomeration of magnesium monoxide in the composite oxide target.

本創作之另一目的在於有效抑制及/或降低複合氧化物靶材在濺鍍過程中掉落的微粒數。Another objective of the present invention is to effectively suppress and/or reduce the number of particles dropped from the composite oxide target during the sputtering process.

本創作之又一目的在於提升複合氧化物靶材的抗折強度及熱導率。Another purpose of this creation is to improve the flexural strength and thermal conductivity of the composite oxide target.

為達成前述目的,本創作提供一種複合氧化物靶材,其包含一氧化鎂及一氧化鈦,以該複合氧化物靶材之原子總數為基準,該一氧化鎂之總量為大於或等於5原子百分比且小於或等於90原子百分比,且該一氧化鈦之總量為大於或等於10原子百分比且小於或等於95原子百分比;其中,該複合氧化物靶材具有複數含該一氧化鎂之黑色相,該等黑色相的平均粒徑可小於或等於2微米,且該等黑色相的粒徑變異度小於0.2。In order to achieve the aforementioned purpose, the present invention provides a composite oxide target material, which comprises magnesium monoxide and titanium monoxide. Based on the total number of atoms of the composite oxide target material, the total amount of magnesium monoxide is greater than or equal to 5 atomic percent and less than or equal to 90 atomic percent, and the total amount of the titanium monoxide is greater than or equal to 10 atomic percent and less than or equal to 95 atomic percent; wherein, the composite oxide target has a plurality of blacks containing the magnesium monoxide The average particle size of the black phases can be less than or equal to 2 microns, and the particle size variation of the black phases is less than 0.2.

藉由控制前述複合氧化物靶材之成分組成及其金相微結構中黑色相的平均粒徑及粒徑變異度,本創作之複合氧化物靶材能抑制及/或減緩複合氧化物靶材中一氧化鎂的團聚程度、有效抑制及/或降低複合氧化物靶材在濺鍍過程中掉落的微粒數、並同時提升複合氧化物靶材的抗折強度及熱導率。By controlling the composition of the aforementioned composite oxide target and the average particle size and particle size variation of the black phase in the metallographic microstructure, the composite oxide target of the present invention can inhibit and/or slow down one of the composite oxide targets. The degree of agglomeration of magnesium oxide can effectively inhibit and/or reduce the number of particles dropped by the composite oxide target during the sputtering process, and at the same time improve the flexural strength and thermal conductivity of the composite oxide target.

在一實施態樣中,本創作之複合氧化物靶材中該等黑色相的平均粒徑可大於或等於0.05微米且小於或等於2微米。在另一實施態樣中,本創作之複合氧化物靶材中該等黑色相的平均粒徑可大於或等於0.3微米且小於或等於2微米。In one embodiment, the average particle size of the black phases in the composite oxide target of the present invention may be greater than or equal to 0.05 microns and less than or equal to 2 microns. In another embodiment, the average particle size of the black phases in the composite oxide target of the present invention may be greater than or equal to 0.3 micrometers and less than or equal to 2 micrometers.

在一實施態樣中,本創作之複合氧化物靶材中該等黑色相的粒徑變異度可大於或等於1.00×10 -5且小於0.2。在另一實施態樣中,本創作之複合氧化物靶材中該等黑色相的粒徑變異度可大於或等於5.00×10 -5且小於0.2。 In one embodiment, the particle size variation of the black phases in the composite oxide target of the present invention may be greater than or equal to 1.00×10 −5 and less than 0.2. In another embodiment, the particle size variation of the black phases in the composite oxide target of the present invention may be greater than or equal to 5.00×10 −5 and less than 0.2.

在一實施態樣中,本創作之複合氧化物靶材可更包含一添加成分,該添加成分可為一第一添加成分、一第二添加成分或其組合。具體來說,該第一添加成分可選自由三氧化二鋁、二氧化鋯、三氧化二鉻、二氧化矽及其組合所組成之群組,該第二添加成分可選自由鋁、鋯、鉻、矽及其組合所組成之群組。依據本創作,於複合氧化物靶材中添加第一添加成分及/或第二添加成分有利於抑制黑色相的成長及/或控制黑色相的粒徑變異度。In one embodiment, the composite oxide target of the present invention may further include an additive component, and the additive component may be a first additive component, a second additive component, or a combination thereof. Specifically, the first additive component can be selected from the group consisting of aluminum oxide, zirconium dioxide, chromium oxide, silicon dioxide and combinations thereof, and the second additive component can be selected from aluminum, zirconium, A group consisting of chromium, silicon and their combinations. According to the present invention, adding the first additive component and/or the second additive component to the composite oxide target is beneficial to inhibit the growth of the black phase and/or control the particle size variation of the black phase.

於本說明書中,所述添加成分之總量為該第一添加成分之總量、該第二添加成分之總量、或該第一添加成分之總量與該第二添加成分之總量的總合。In this specification, the total amount of the said additive component is the total amount of the first additive component, the total amount of the second additive component, or the total amount of the first additive component and the total amount of the second additive component. total.

所述「第一添加成分之總量」係指當第一添加成分為三氧化二鋁、二氧化鋯、三氧化二鉻及二氧化矽時,第一添加成分之總量為三氧化二鋁、二氧化鋯、三氧化二鉻及二氧化矽之個別含量的總和;而當該第一添加成分係單獨的三氧化二鋁、二氧化鋯、三氧化二鉻或二氧化矽時,該第一添加成分之總量即為三氧化二鋁的個別含量、二氧化鋯的個別含量、三氧化二鉻的個別含量或二氧化矽的個別含量。The "total amount of the first additive component" means that when the first additive component is aluminum oxide, zirconium dioxide, chromium oxide and silicon dioxide, the total amount of the first additive component is aluminum oxide. The sum of the individual contents of , zirconium dioxide, chromium dioxide and silicon dioxide; and when the first additive component is separate aluminum oxide, zirconium dioxide, chromium oxide or silicon dioxide, the first addition The total amount of an added component is the individual content of aluminum oxide, the individual content of zirconium dioxide, the individual content of chromium oxide, or the individual content of silicon dioxide.

所述「第二添加成分之總量」係指當第二添加成分為鋁、鋯、鉻及矽時,該第二添加成分之總量為鋁、鋯、鉻及矽之個別含量的總和;而當該第二添加成分係單獨的鋁、鋯、鉻或矽時,該第二添加成分之總量即為鋁的個別含量、鋯的個別含量、鉻的個別含量或矽的個別含量。The "total amount of the second additive component" refers to when the second additive component is aluminum, zirconium, chromium and silicon, the total amount of the second additive component is the sum of the individual contents of aluminum, zirconium, chromium and silicon; When the second additive component is aluminum, zirconium, chromium or silicon alone, the total amount of the second additive component is the individual content of aluminum, the individual content of zirconium, the individual content of chromium, or the individual content of silicon.

在一實施態樣中,以本創作之複合氧化物靶材之原子總數為基準,該添加成分之總量為大於或等於1原子百分比且小於或等於6原子百分比。在另一實施態樣中,以本創作之複合氧化物靶材之原子總數為基準,該添加成分之總量可大於或等於3原子百分比且小於或等於6原子百分比;據此,本創作能更進一步降低複合氧化物靶材中黑色相的平均粒徑及其粒徑變異度。In one embodiment, based on the total number of atoms of the composite oxide target of the present invention, the total amount of the additive components is greater than or equal to 1 atomic percent and less than or equal to 6 atomic percent. In another embodiment, based on the total number of atoms of the composite oxide target of the present invention, the total amount of the added components may be greater than or equal to 3 atomic percent and less than or equal to 6 atomic percent; accordingly, the present invention can The average particle size and particle size variation of the black phase in the composite oxide target are further reduced.

依據本創作,前述複合氧化物靶材可適用於磁控濺鍍製程,例如射頻磁控濺鍍製程(RF magnetron sputtering process)或直流磁控濺鍍製程(DC magnetron sputtering process)。藉由抑制及/或減緩複合氧化物靶材中一氧化鎂的團聚程度,本創作能使複合氧化物靶材在濺鍍過程中掉落的微粒數少於50顆。較佳地,本創作之複合氧化物靶材利用直流磁控濺鍍製程製膜時所掉落的微粒數可少於40顆、少於30顆、少於20顆、甚至是少於10顆。因此,利用本創作之複合氧化物靶材所濺鍍而成之薄膜能具有較佳的薄膜性質及良率,故能適用於熱輔助磁記錄媒體(Heat-Assisted Magnetic Recording media,HAMR media)的阻障層使用。According to the present invention, the aforementioned composite oxide target can be applied to a magnetron sputtering process, such as an RF magnetron sputtering process or a DC magnetron sputtering process. By inhibiting and/or slowing down the degree of agglomeration of magnesium monoxide in the composite oxide target, the present invention enables the composite oxide target to drop less than 50 particles during the sputtering process. Preferably, the number of particles dropped when the composite oxide target of the present invention is formed by the DC magnetron sputtering process can be less than 40 particles, less than 30 particles, less than 20 particles, or even less than 10 particles. . Therefore, the thin film sputtered by using the composite oxide target of the present invention can have better film properties and yield, so it can be suitable for heat-assisted magnetic recording media (Heat-Assisted Magnetic Recording media, HAMR media). Barrier layers are used.

於本說明書中,「抗折強度」係指一靶材於單位面積下受到彎曲負荷時的極限折斷應力大小,其單位以百萬帕斯卡(MPa)示之。依據本創作,前述複合氧化物靶材的抗折強度大於或等於100 MPa。具體來說,複合氧化物靶材的抗折強度可大於或等於100 MPa且小於或等於200 MPa;較佳地,前述複合氧化物靶材的抗折強度可大於或等於110 MPa且小於或等於180 MPa;更佳地,前述複合氧化物靶材的抗折強度可大於或等於120 MPa且小於或等於170 MPa;再更佳地,前述複合氧化物靶材的抗折強度可大於或等於130 MPa且小於或等於170 MPa。In this specification, "flexural strength" refers to the ultimate breaking stress when a target is subjected to a bending load under a unit area, and its unit is expressed in megapascals (MPa). According to the present invention, the flexural strength of the aforementioned composite oxide target is greater than or equal to 100 MPa. Specifically, the flexural strength of the composite oxide target can be greater than or equal to 100 MPa and less than or equal to 200 MPa; preferably, the flexural strength of the aforementioned composite oxide target can be greater than or equal to 110 MPa and less than or equal to 180 MPa; more preferably, the flexural strength of the aforementioned composite oxide target can be greater than or equal to 120 MPa and less than or equal to 170 MPa; even more preferably, the flexural strength of the aforementioned composite oxide target can be greater than or equal to 130 MPa and less than or equal to 170 MPa.

依據本創作,前述複合氧化物靶材的熱導率可大於或等於10瓦/(公尺·克耳文)(W/m·K);具體來說,前述複合氧化物靶材的熱導率可大於或等於10 W/m·K且小於或等於30 W/m·K。較佳地,前述複合氧化物靶材的熱導率可大於或等於15 W/m·K且小於或等於30 W/m·K;更佳地,前述複合氧化物靶材的熱導率可大於或等於20 W/m·K且小於或等於25 W/m·K。According to the present invention, the thermal conductivity of the aforementioned composite oxide target can be greater than or equal to 10 watts/(meter·Kelvin) (W/m·K); specifically, the thermal conductivity of the aforementioned composite oxide target can be The rate may be greater than or equal to 10 W/m·K and less than or equal to 30 W/m·K. Preferably, the thermal conductivity of the aforementioned composite oxide target can be greater than or equal to 15 W/m·K and less than or equal to 30 W/m·K; more preferably, the thermal conductivity of the aforementioned composite oxide target can be Greater than or equal to 20 W/m·K and less than or equal to 25 W/m·K.

此外,本創作另提供一種製造複合氧化物靶材之方法,其包括以下步驟: 齊備一氧化鎂粉末及一氧化鈦粉末,該一氧化鎂粉末的粒徑可小於或等於5微米,且該一氧化鈦粉末的粒徑可小於或等於10微米; 混合該一氧化鎂粉末及該一氧化鈦粉末,得到一混合粉末,其中以該混合粉末的原子總數為基準,該一氧化鎂粉末之總量為大於或等於5原子百分比且小於或等於90原子百分比,且該一氧化鈦粉末之總量為大於或等於10原子百分比且小於或等於95原子百分比; 研磨該混合粉末48小時以上,以得到一細化粉末; 將該細化粉末進行預成型,得到一靶胚;及 將該靶胚於900°C至1400°C下燒結,以獲得該複合氧化物靶材。 In addition, the present invention provides a method for manufacturing a composite oxide target, which includes the following steps: Prepare magnesium monoxide powder and titanium monoxide powder, the particle size of the magnesium monoxide powder may be less than or equal to 5 microns, and the particle size of the titanium monoxide powder may be less than or equal to 10 microns; Mixing the magnesium monoxide powder and the titanium monoxide powder to obtain a mixed powder, wherein based on the total number of atoms of the mixed powder, the total amount of the magnesium monoxide powder is greater than or equal to 5 atomic percent and less than or equal to 90 atoms percentage, and the total amount of the titanium monoxide powder is greater than or equal to 10 atomic percent and less than or equal to 95 atomic percent; Grinding the mixed powder for more than 48 hours to obtain a fine powder; preforming the refined powder to obtain a target blank; and The target blank is sintered at 900°C to 1400°C to obtain the composite oxide target.

依據本創作,藉由控制複合氧化物靶材之原料粉末的粒徑及原料粉末的混合比例、研磨時間及燒結溫度,能使所製得的複合氧化物靶材之金相微結構中黑色相的粒徑減小且粒徑變異度降低,即,本創作能抑制及/或減緩複合氧化物靶材中一氧化鎂的團聚程度,故可有效抑制及/或降低複合氧化物靶材在濺鍍過程中掉落的微粒數,同時提升複合氧化物靶材的抗折強度及熱導率。According to the present invention, by controlling the particle size of the raw material powder of the composite oxide target, the mixing ratio of the raw material powder, the grinding time and the sintering temperature, the particles of the black phase in the metallographic microstructure of the composite oxide target can be obtained. The diameter is reduced and the particle size variation is reduced, that is, the present invention can inhibit and/or slow down the agglomeration degree of magnesium monoxide in the composite oxide target, so it can effectively inhibit and/or reduce the composite oxide target in the sputtering process. The number of particles dropped in the medium and at the same time improve the flexural strength and thermal conductivity of the composite oxide target.

在一實施態樣中,於前述製造複合氧化物靶材之方法中,一氧化鎂粉末的粒徑可大於或等於0.5微米且小於或等於5.0微米,一氧化鈦粉末的粒徑可大於或等於0.5微米且小於或等於10.0微米。較佳地,一氧化鎂粉末的粒徑可大於或等於1.0微米且小於或等於5.0微米,一氧化鈦粉末的粒徑可大於或等於1.0微米且小於或等於10.0微米;更佳地,一氧化鎂粉末的粒徑可大於或等於2.0微米且小於或等於5微米,一氧化鈦粉末的粒徑可大於或等於2.0微米且小於或等於10.0微米。In one embodiment, in the aforementioned method of manufacturing a composite oxide target, the particle size of the magnesium monoxide powder may be greater than or equal to 0.5 microns and less than or equal to 5.0 microns, and the particle size of the titanium monoxide powder may be greater than or equal to 0.5 microns and less than or equal to 10.0 microns. Preferably, the particle size of the magnesium monoxide powder may be greater than or equal to 1.0 microns and less than or equal to 5.0 microns, and the particle size of the titanium monoxide powder may be greater than or equal to 1.0 microns and less than or equal to 10.0 microns; The particle size of the magnesium powder may be greater than or equal to 2.0 microns and less than or equal to 5 microns, and the particle size of the titanium monoxide powder may be greater than or equal to 2.0 microns and less than or equal to 10.0 microns.

可選地,前述製造複合氧化物靶材之方法更包括齊備一添加粉末,並且混合該一氧化鎂粉末、該一氧化鈦粉末及該添加粉末,得到該混合粉末;其中,該添加粉末包含一第一添加粉末、一第二添加粉末或其組合,該第一添加粉末可選自由三氧化二鋁粉末、二氧化鋯粉末、三氧化二鉻粉末、二氧化矽粉末及其組合所組成之群組,且該第一添加粉末的粒徑可小於或等於3微米,該第二添加粉末可選自由鋁粉末、鋯粉末、鉻粉末、矽粉末及其組合所組成之群組,且該第二添加粉末的粒徑可小於或等於50微米;以該混合粉末的原子總數為基準,該添加粉末之總量可大於或等於1原子百分比且小於或等於6原子百分比。具體而言,第一添加粉末的粒徑可大於或等於0.1微米且小於或等於3微米,第二添加粉末的粒徑可大於或等於1微米且小於或等於50微米。較佳地,第一添加粉末的粒徑可大於或等於0.1微米且小於或等於1微米,第二添加粉末的粒徑可大於或等於10微米且小於或等於50微米。Optionally, the aforementioned method for manufacturing a composite oxide target further comprises preparing an additive powder, and mixing the magnesium monoxide powder, the titanium monoxide powder and the additive powder to obtain the mixed powder; wherein the additive powder comprises a A first additive powder, a second additive powder or a combination thereof, the first additive powder can be selected from the group consisting of aluminum oxide powder, zirconium dioxide powder, chromium oxide powder, silicon dioxide powder and combinations thereof group, and the particle size of the first additive powder may be less than or equal to 3 microns, the second additive powder may be selected from the group consisting of aluminum powder, zirconium powder, chromium powder, silicon powder and combinations thereof, and the second additive powder The particle size of the added powder can be less than or equal to 50 microns; based on the total atomic number of the mixed powder, the total amount of the added powder can be greater than or equal to 1 atomic percent and less than or equal to 6 atomic percent. Specifically, the particle size of the first additive powder may be greater than or equal to 0.1 micrometer and less than or equal to 3 micrometers, and the particle diameter of the second additive powder may be greater than or equal to 1 micrometer and less than or equal to 50 micrometers. Preferably, the particle size of the first additive powder may be greater than or equal to 0.1 micrometer and less than or equal to 1 micrometer, and the particle size of the second additive powder may be greater than or equal to 10 micrometers and less than or equal to 50 micrometers.

在一實施態樣中,於前述製造複合氧化物靶材之方法中,一氧化鎂粉末的粒徑可大於或等於0.5微米且小於或等於5.0微米,一氧化鈦粉末的粒徑可大於或等於0.5微米且小於或等於10.0微米,且二氧化鋯粉末的粒徑可大於或等於0.1微米且小於或等於1.0微米。較佳地,一氧化鎂粉末的粒徑可大於或等於1.0微米且小於或等於5.0微米,一氧化鈦粉末的粒徑可大於或等於1.0微米且小於或等於10.0微米,且二氧化鋯粉末的粒徑可大於或等於0.2微米且小於或等於0.8微米;更佳地,一氧化鎂粉末的粒徑可大於或等於2.0微米且小於或等於5.0微米,一氧化鈦粉末的粒徑可大於或等於2.0微米且小於或等於10.0微米,且二氧化鋯粉末的粒徑可大於或等於0.3微米且小於或等於0.6微米。In one embodiment, in the aforementioned method of manufacturing a composite oxide target, the particle size of the magnesium monoxide powder may be greater than or equal to 0.5 microns and less than or equal to 5.0 microns, and the particle size of the titanium monoxide powder may be greater than or equal to 0.5 microns and less than or equal to 10.0 microns, and the particle size of the zirconium dioxide powder may be greater than or equal to 0.1 microns and less than or equal to 1.0 microns. Preferably, the particle size of the magnesium monoxide powder may be greater than or equal to 1.0 μm and less than or equal to 5.0 μm, the particle size of the titanium monoxide powder may be greater than or equal to 1.0 μm and less than or equal to 10.0 μm, and the particle size of the zirconia powder The particle size may be greater than or equal to 0.2 microns and less than or equal to 0.8 microns; more preferably, the particle size of the magnesium monoxide powder may be greater than or equal to 2.0 microns and less than or equal to 5.0 microns, and the particle size of the titanium monoxide powder may be greater than or equal to 2.0 micrometers and less than or equal to 10.0 micrometers, and the particle size of the zirconium dioxide powder may be greater than or equal to 0.3 micrometers and less than or equal to 0.6 micrometers.

在一實施態樣中,於前述製造複合氧化物靶材之方法中,一氧化鎂粉末的粒徑可大於或等於0.5微米且小於或等於5.0微米,一氧化鈦粉末的粒徑可大於或等於0.5微米且小於或等於10.0微米,且鋁粉末的粒徑可大於或等於10微米且小於或等於70微米。較佳地,一氧化鎂粉末的粒徑可大於或等於1.0微米且小於或等於5.0微米,一氧化鈦粉末的粒徑可大於或等於1.0微米且小於或等於10.0微米,且鋁粉末的粒徑可大於或等於20微米且小於或等於60微米;更佳地,一氧化鎂粉末的粒徑可大於或等於2.0微米且小於或等於5.0微米,一氧化鈦粉末的粒徑可大於或等於2.0微米且小於或等於10.0微米,且鋁粉末的粒徑可大於或等於30微米且小於或等於50微米。In one embodiment, in the aforementioned method of manufacturing a composite oxide target, the particle size of the magnesium monoxide powder may be greater than or equal to 0.5 microns and less than or equal to 5.0 microns, and the particle size of the titanium monoxide powder may be greater than or equal to 0.5 micrometers and less than or equal to 10.0 micrometers, and the particle size of the aluminum powder may be greater than or equal to 10 micrometers and less than or equal to 70 micrometers. Preferably, the particle size of the magnesium monoxide powder may be greater than or equal to 1.0 microns and less than or equal to 5.0 microns, the particle size of the titanium monoxide powder may be greater than or equal to 1.0 microns and less than or equal to 10.0 microns, and the particle size of the aluminum powder May be greater than or equal to 20 microns and less than or equal to 60 microns; more preferably, the particle size of the magnesium monoxide powder may be greater than or equal to 2.0 microns and less than or equal to 5.0 microns, and the particle size of the titanium monoxide powder may be greater than or equal to 2.0 microns and less than or equal to 10.0 microns, and the particle size of the aluminum powder may be greater than or equal to 30 microns and less than or equal to 50 microns.

較佳地,前述製造複合氧化物靶材之方法中,研磨時間可大於或等於48小時且小於或等於120小時;在某些實施態樣中,前述製造複合氧化物靶材之方法中,研磨時間可大於或等於60小時且小於或等於120小時。Preferably, in the aforementioned method of manufacturing a composite oxide target, the grinding time may be greater than or equal to 48 hours and less than or equal to 120 hours; in some embodiments, in the aforementioned method of manufacturing a composite oxide target, grinding The time may be greater than or equal to 60 hours and less than or equal to 120 hours.

可選地,前述製造複合氧化物靶材之方法中,研磨該混合粉末48小時以上之後,可再以一篩網進行過篩以得到該細化粉末,該篩網之目數可為400目至600目。Optionally, in the aforementioned method of manufacturing a composite oxide target, after grinding the mixed powder for more than 48 hours, it can be sieved with a mesh to obtain the refined powder, and the mesh of the mesh can be 400 meshes. to 600 mesh.

可以理解的是,所述預成型的條件並無特別限制,只要能夠將前述細化粉末於適當條件下預成型為一靶胚即可。在一實施態樣中,前述細化粉末可均勻填充於一模具中,以50公斤/平方公分(kg/cm 2)至100 kg/cm 2之壓力,將該細化粉末預成型為一靶胚。 It can be understood that the pre-forming conditions are not particularly limited, as long as the aforementioned refined powder can be pre-shaped into a target blank under appropriate conditions. In one embodiment, the aforementioned refined powder can be uniformly filled in a mold, and the refined powder can be pre-shaped into a target at a pressure of 50 kg/cm 2 (kg/cm 2 ) to 100 kg/cm 2 embryo.

較佳地,於前述製造複合氧化物靶材之方法中,靶胚的燒結溫度可為1000°C至1300°C。Preferably, in the aforementioned method of manufacturing a composite oxide target, the sintering temperature of the target blank may be 1000°C to 1300°C.

依據本創作,前述製造複合氧化物靶材之方法中的燒結時間為1.5小時至5小時;較佳地,前述製造複合氧化物靶材之方法中的燒結時間可為1.5小時至4小時;更佳地,前述製造複合氧化物靶材之方法中的燒結時間為1.5小時至3小時。According to the present invention, the sintering time in the aforementioned method of manufacturing a composite oxide target is 1.5 hours to 5 hours; preferably, the sintering time in the aforementioned method of manufacturing a composite oxide target may be 1.5 hours to 4 hours; more Preferably, the sintering time in the aforementioned method for manufacturing the composite oxide target is 1.5 hours to 3 hours.

依據本創作,前述製造複合氧化物靶材之方法中的燒結壓力為300 kg/cm 2至510 kg/cm 2;更佳地,前述製造複合氧化物靶材之方法中的燒結壓力為300 kg/cm 2至400 kg/cm 2According to the present invention, the sintering pressure in the aforementioned method for manufacturing a composite oxide target is 300 kg/cm 2 to 510 kg/cm 2 ; more preferably, the sintering pressure in the aforementioned method for manufacturing a composite oxide target is 300 kg /cm 2 to 400 kg/cm 2 .

依據本創作,所述燒結方法可為熱壓法(Hot Pressing,HP)、火花電漿燒結法(Spark Plasma Sintering,SPS)、熱等靜壓法(Hot Isostatic Pressing,HIP)、或其等之組合。在一實施態樣中,選用熱壓法之燒結溫度可為1000°C至1300°C、燒結壓力可為300 kg/cm 2至450 kg/cm 2;在另一實施態樣中,選用火花電漿燒結法之燒結溫度可為950°C至1150°C、燒結壓力可為400 kg/cm 2至510 kg/cm 2;在又一實施態樣中,選用熱等靜壓法之燒結溫度可為1050°C至1150°C、燒結壓力可為350 kg/cm 2至510 kg/cm 2According to the present invention, the sintering method may be a hot pressing method (Hot Pressing, HP), a spark plasma sintering method (Spark Plasma Sintering, SPS), a hot isostatic pressing method (Hot Isostatic Pressing, HIP), or any of them. combination. In one embodiment, the sintering temperature of the hot pressing method can be 1000°C to 1300°C, and the sintering pressure can be 300 kg/cm 2 to 450 kg/cm 2 ; The sintering temperature of the plasma sintering method can be 950°C to 1150°C, and the sintering pressure can be 400 kg/cm 2 to 510 kg/cm 2 ; in another embodiment, the sintering temperature of the hot isostatic pressing method is selected. It can be 1050°C to 1150°C, and the sintering pressure can be 350 kg/cm 2 to 510 kg/cm 2 .

為驗證本創作之技術手段能抑制及/或減緩複合氧化物靶材中黑色相之團聚及降低其粒徑大小及粒徑變異度,以提升複合氧化物靶材的特性,並抑制及/或減少濺鍍過程中掉落的微粒數,以下列舉數種複合氧化物靶材作為例示,說明本創作之實施方式;熟習此技藝者可經由本說明書之內容輕易地了解本創作所能達成之優點與功效,並且於不悖離本創作之精神下進行各種修飾與變更,以施行或應用本創作之內容。In order to verify that the technical means of this creation can inhibit and/or slow down the agglomeration of the black phase in the complex oxide target and reduce its particle size and particle size variation, so as to improve the characteristics of the complex oxide target, and inhibit and/or To reduce the number of particles dropped during the sputtering process, several types of composite oxide targets are listed below as examples to illustrate the implementation of the present invention; those skilled in the art can easily understand the advantages that the present invention can achieve through the content of this specification. and effects, and make various modifications and changes without departing from the spirit of this creation to implement or apply the content of this creation.

實施例Example 11 to 23twenty three :複合氧化物靶材: Composite oxide target

首先,取用適量的一氧化鎂粉末(純度99.99%、粒徑3.0 μm至4.5 μm)、一氧化鈦粉末(純度99.9%、粒徑7.0 μm至9.5 μm)、二氧化鋯粉末(純度99.9%、粒徑0.5 μm)、鋁粉末(純度99.5%、粒徑45 μm)等原料,其中二氧化鋯粉末可作為第一添加粉末,而鋁粉末可作為第二添加粉末。各實施例中所採用之原料粉末的用量及其粒徑尺寸如下表1所示。First, take an appropriate amount of magnesium monoxide powder (purity 99.99%, particle size 3.0 μm to 4.5 μm), titanium monoxide powder (purity 99.9%, particle size 7.0 μm to 9.5 μm), zirconium dioxide powder (purity 99.9% , particle size 0.5 μm), aluminum powder (purity 99.5%, particle size 45 μm) and other raw materials, of which zirconium dioxide powder can be used as the first additive powder, and aluminum powder can be used as the second additive powder. The amount and particle size of the raw material powder used in each example are shown in Table 1 below.

接著,將上述原料混合,得到混合粉末。於下表1中,各原料粉末之用量係以混合粉末的原子總數為基準計算其個別總量,其單位以原子百分比(at%)表示。Next, the above-mentioned raw materials are mixed to obtain a mixed powder. In Table 1 below, the dosage of each raw powder is calculated based on the total atomic amount of the mixed powder, and its unit is expressed in atomic percent (at%).

之後,依下表1所示的研磨時間研磨前述混合粉末至少48小時,並將經研磨之混合粉末通過400目的篩網,得到細化粉末。於其他實施態樣中,所屬技術領域中具有通常知識者亦可視需求省略前述過篩步驟,於研磨步驟完成後獲得細化粉末。After that, the aforementioned mixed powder was ground for at least 48 hours according to the grinding time shown in Table 1, and the ground mixed powder was passed through a 400-mesh sieve to obtain a refined powder. In other embodiments, those with ordinary knowledge in the art can also omit the aforementioned sieving step as required, and obtain refined powder after the grinding step is completed.

之後,將前述細化粉末均勻填充於選定模具中,並設定70.31 kg/cm 2之壓力,以油壓機進行預成型,得到靶胚。 After that, the above-mentioned refined powder is uniformly filled in the selected mold, and the pressure of 70.31 kg/cm 2 is set, and the preform is carried out with a hydraulic press to obtain a target blank.

最後,以熱壓(HP)、火花電漿燒結(SPS)或熱等靜壓(HIP)等燒結方法,於1000°C至1300°C的燒結溫度及400 kg/cm 2的燒結壓力持續燒結2小時,以製得實施例1至23的複合氧化物靶材。 Finally, continuous sintering is performed at a sintering temperature of 1000°C to 1300°C and a sintering pressure of 400 kg/ cm2 by sintering methods such as hot pressing (HP), spark plasma sintering (SPS) or hot isostatic pressing (HIP). 2 hours to prepare the composite oxide targets of Examples 1 to 23.

可以理解的是,表1所示之原料粉末的用量實質上等同於或近似於由前述製法所製得之複合氧化物靶材的組成。以實施例1為例,根據其原料粉末的用量,以實施例1之複合氧化物靶材之原子總數為基準,實施例1之複合氧化物靶材大致上含有50 at%的一氧化鎂和50 at%的一氧化鈦。It can be understood that the amount of the raw material powder shown in Table 1 is substantially equal to or similar to the composition of the composite oxide target prepared by the aforementioned preparation method. Taking Example 1 as an example, according to the amount of the raw material powder, based on the total number of atoms of the composite oxide target of Example 1, the composite oxide target of Example 1 roughly contains 50 at% of magnesium monoxide and 50 at% titanium monoxide.

比較例Comparative example 11 to 99 :複合氧化物靶材: Composite oxide target

首先,取用適量的一氧化鎂粉末(純度99.99%、粒徑12.5 μm至14.0 μm)、一氧化鈦粉末(純度99.9%、粒徑29.5 μm至38.5 μm)、二氧化鋯粉末(純度99.9%、粒徑1.2 μm)、鋁粉末(純度99.5%、粒徑60 μm)等原料,其中二氧化鋯粉末可作為第一添加粉末,而鋁粉末可作為第二添加粉末。各比較例中所採用之原料粉末的用量及其粒徑尺寸如下表1所示。First, take an appropriate amount of magnesium monoxide powder (purity 99.99%, particle size 12.5 μm to 14.0 μm), titanium monoxide powder (purity 99.9%, particle size 29.5 μm to 38.5 μm), zirconium dioxide powder (purity 99.9% , particle size 1.2 μm), aluminum powder (purity 99.5%, particle size 60 μm) and other raw materials, of which zirconium dioxide powder can be used as the first additive powder, and aluminum powder can be used as the second additive powder. The amount and particle size of the raw material powder used in each comparative example are shown in Table 1 below.

接著,將上述原料混合,得到混合粉末。於下表1中,各原料粉末之用量係以混合粉末的原子總數為基準計算其個別總量,其單位以at%表示。Next, the above-mentioned raw materials are mixed to obtain a mixed powder. In Table 1 below, the dosage of each raw material powder is calculated based on the total number of atoms of the mixed powder, and its unit is expressed in at%.

之後,依下表1所示的研磨時間研磨前述混合粉末24至36小時,得到細化粉末。After that, the aforementioned mixed powder was ground for 24 to 36 hours according to the grinding time shown in Table 1 to obtain a refined powder.

之後,將前述細化粉末均勻填充於選定模具中,並設定70.31 kg/cm 2之壓力,以油壓機進行預成型,得到靶胚。 After that, the above-mentioned refined powder is uniformly filled in the selected mold, and the pressure of 70.31 kg/cm 2 is set, and the preform is carried out with a hydraulic press to obtain a target blank.

最後,以HP、SPS或HIP等燒結方法,於1000°C至1300°C的燒結溫度及400 kg/cm 2的燒結壓力持續燒結2小時,以製得比較例1至9的複合氧化物靶材。 表1:實施例1至23及比較例1至9之複合氧化物靶材的原料用量與粒徑尺寸、製程參數、複合氧化物靶材的特性、及複合氧化物靶材濺鍍時掉落的微粒數。 樣品編號 原料粉末用量(at%) 原料粉末粒徑(μm) 研磨 時間 (h) 燒結 方法   燒結 溫度(°C) 黑色相 平均粒徑 (μm) 黑色相 粒徑變異度   抗折 強度 (MPa) 熱導率(W/m·K) 掉落的微粒數(顆) MgO TiO ZrO 2 Al MgO TiO ZrO 2 Al 實施例1 50 50 0 0 3.5 7.5 - - 72 HP 1100 1.28 5.35×10 -2 145 15.06 25 實施例2 54 46 0 0 3.0 7.5 - - 72 HP 1100 1.45 3.04×10 -3 135 17.25 23 實施例3 60 40 0 0 4.0 9.0 - - 60 HP 1100 1.61 7.25×10 -2 139 18.58 21 實施例4 55 45 0 0 4.0 7.5 - - 60 HP 1100 1.39 5.44×10 -2 140 17.39 21 實施例5 70 30 0 0 4.0 9.5 - - 60 HP 1150 1.68 7.73×10 -2 131 20.51 41 實施例6 90 10 0 0 3.5 8.5 - - 48 HP 1200 1.86 7.35×10 -2 128 21.23 46 實施例7 65 35 0 0 4.0 9.0 - - 60 HP 1150 1.75 6.57×10 -2 129 19.34 38 實施例8 40 60 0 0 3.5 7.0 - - 72 HP 1100 0.96 8.73×10 -3 131 14.87 30 實施例9 35 65 0 0 3.5 8.0 - - 84 HP 1100 1.22 8.26×10 -3 139 14.84 27 實施例10 20 80 0 0 4.5 9.0 - - 96 HP 1300 1.81 8.66×10 -4 152 13.21 22 實施例11 5 95 0 0 4.0 7.0 - - 120 HP 1000 0.76 9.74×10 -5 149 10.65 12 實施例12 20 80 0 0 4.0 9.0 - - 96 HP 1100 0.91 9.25×10 -5 141 14.38 9 實施例13 10 90 0 0 4.0 9.5 - - 120 HP 1100 0.89 7.52×10 -5 168 13.91 13 實施例14 50 50 0 0 4.0 7.0 - - 72 HP 1000 1.09 4.02×10 -3 131 16.65 19 實施例15 48.5 48.5 3 0 4.0 8.0 0.5 - 84 HP 1200 1.09 3.05×10 -3 129 12.22 30 實施例16 47 47 6 0 4.5 9.5 0.5 - 96 HP 1200 0.98 2.18×10 -3 125 11.84 34 實施例17 50 49 1 0 4.0 9.5 0.5 - 72 HP 1100 1.22 4.74×10 -3 132 12.89 26 實施例18 48.5 48.5 0 3 4.0 9.0 - 45 96 HP 1100 1.11 1.46×10 -3 128 18.07 24 實施例19 47 47 0 6 4.5 9.5 - 45 120 HP 1100 1.01 6.71×10 -4 115 19.98 28 實施例20 50 49 0 1 4.0 9.5 - 45 84 HP 1100 1.26 2.94×10 -3 141 16.12 23 實施例21 75 25 0 0 4.0 7.0 - - 60 SPS 1100 1.58 6.36×10 -2 128 20.15 38 實施例22 50 50 0 0 4.0 7.0 - - 72 SPS 1000 0.97 3.00×10 -2 143 16.20 42 實施例23 30 70 0 0 3.0 7.0 - - 72 HIP 1100 1.06 5.09×10 -4 155 14.71 18 比較例1 50 50 0 0 13.5 33.0 - - 36 HP 1000 4.85 5.01×10 -1 80 8.07 127 比較例2 45 55 0 0 13.5 38.5 - - 36 HP 1000 4.75 3.41×10 -1 79 7.69 105 比較例3 95 5 0 0 14.0 29.5 - - 24 HP 1200 6.41 9.84×10 -1 81 9.27 151 比較例4 50 50 0 0 14.0 29.5 - - 24 HP 1300 6.08 7.67×10 -1 88 9.01 96 比較例5 3 97 0 0 13.5 31.0 - - 24 HP 1100 5.11 2.93×10 -1 97 7.91 78 比較例6 46 46 8 0 12.5 35.5 1.2 - 36 HP 1150 3.15 8.57×10 -1 99 8.91 83 比較例7 46 46 0 8 12.5 33.0 - 60 36 HP 1100 3.67 7.26×10 -1 89 9.11 91 比較例8 30 70 0 0 12.5 31.0 - - 36 SPS 1000 4.27 2.19×10 -1 87 8.31 84 比較例9 50 50 0 0 14.0 38.5 - - 24 HIP 1100 5.81 5.52×10 -1 91 8.48 70 Finally, by sintering methods such as HP, SPS or HIP, the sintering temperature is 1000°C to 1300°C and the sintering pressure is 400 kg/cm 2 for 2 hours to obtain the composite oxide targets of Comparative Examples 1 to 9. material. Table 1: Raw material dosage and particle size, process parameters, properties of the composite oxide targets, and drop of the composite oxide targets during sputtering of the composite oxide targets of Examples 1 to 23 and Comparative Examples 1 to 9 number of particles. Sample serial number Raw material powder dosage (at%) Raw material powder particle size (μm) Grinding time (h) Sintering method Sintering temperature (°C) Average particle size of black phase (μm) Black phase particle size variability Flexural strength (MPa) Thermal conductivity (W/m·K) Number of particles dropped (pieces) MgO TiO ZrO 2 Al MgO TiO ZrO 2 Al Example 1 50 50 0 0 3.5 7.5 - - 72 HP 1100 1.28 5.35× 10-2 145 15.06 25 Example 2 54 46 0 0 3.0 7.5 - - 72 HP 1100 1.45 3.04× 10-3 135 17.25 twenty three Example 3 60 40 0 0 4.0 9.0 - - 60 HP 1100 1.61 7.25× 10-2 139 18.58 twenty one Example 4 55 45 0 0 4.0 7.5 - - 60 HP 1100 1.39 5.44× 10-2 140 17.39 twenty one Example 5 70 30 0 0 4.0 9.5 - - 60 HP 1150 1.68 7.73× 10-2 131 20.51 41 Example 6 90 10 0 0 3.5 8.5 - - 48 HP 1200 1.86 7.35× 10-2 128 21.23 46 Example 7 65 35 0 0 4.0 9.0 - - 60 HP 1150 1.75 6.57× 10-2 129 19.34 38 Example 8 40 60 0 0 3.5 7.0 - - 72 HP 1100 0.96 8.73× 10-3 131 14.87 30 Example 9 35 65 0 0 3.5 8.0 - - 84 HP 1100 1.22 8.26× 10-3 139 14.84 27 Example 10 20 80 0 0 4.5 9.0 - - 96 HP 1300 1.81 8.66× 10-4 152 13.21 twenty two Example 11 5 95 0 0 4.0 7.0 - - 120 HP 1000 0.76 9.74× 10-5 149 10.65 12 Example 12 20 80 0 0 4.0 9.0 - - 96 HP 1100 0.91 9.25× 10-5 141 14.38 9 Example 13 10 90 0 0 4.0 9.5 - - 120 HP 1100 0.89 7.52× 10-5 168 13.91 13 Example 14 50 50 0 0 4.0 7.0 - - 72 HP 1000 1.09 4.02× 10-3 131 16.65 19 Example 15 48.5 48.5 3 0 4.0 8.0 0.5 - 84 HP 1200 1.09 3.05× 10-3 129 12.22 30 Example 16 47 47 6 0 4.5 9.5 0.5 - 96 HP 1200 0.98 2.18× 10-3 125 11.84 34 Example 17 50 49 1 0 4.0 9.5 0.5 - 72 HP 1100 1.22 4.74× 10-3 132 12.89 26 Example 18 48.5 48.5 0 3 4.0 9.0 - 45 96 HP 1100 1.11 1.46× 10-3 128 18.07 twenty four Example 19 47 47 0 6 4.5 9.5 - 45 120 HP 1100 1.01 6.71× 10-4 115 19.98 28 Example 20 50 49 0 1 4.0 9.5 - 45 84 HP 1100 1.26 2.94× 10-3 141 16.12 twenty three Example 21 75 25 0 0 4.0 7.0 - - 60 SPS 1100 1.58 6.36× 10-2 128 20.15 38 Example 22 50 50 0 0 4.0 7.0 - - 72 SPS 1000 0.97 3.00× 10-2 143 16.20 42 Example 23 30 70 0 0 3.0 7.0 - - 72 HIP 1100 1.06 5.09× 10-4 155 14.71 18 Comparative Example 1 50 50 0 0 13.5 33.0 - - 36 HP 1000 4.85 5.01× 10-1 80 8.07 127 Comparative Example 2 45 55 0 0 13.5 38.5 - - 36 HP 1000 4.75 3.41× 10-1 79 7.69 105 Comparative Example 3 95 5 0 0 14.0 29.5 - - twenty four HP 1200 6.41 9.84× 10-1 81 9.27 151 Comparative Example 4 50 50 0 0 14.0 29.5 - - twenty four HP 1300 6.08 7.67× 10-1 88 9.01 96 Comparative Example 5 3 97 0 0 13.5 31.0 - - twenty four HP 1100 5.11 2.93× 10-1 97 7.91 78 Comparative Example 6 46 46 8 0 12.5 35.5 1.2 - 36 HP 1150 3.15 8.57× 10-1 99 8.91 83 Comparative Example 7 46 46 0 8 12.5 33.0 - 60 36 HP 1100 3.67 7.26× 10-1 89 9.11 91 Comparative Example 8 30 70 0 0 12.5 31.0 - - 36 SPS 1000 4.27 2.19× 10-1 87 8.31 84 Comparative Example 9 50 50 0 0 14.0 38.5 - - twenty four HIP 1100 5.81 5.52× 10-1 91 8.48 70

試驗例Test example 11 :黑色相平均粒徑及粒徑變異度: Black phase average particle size and particle size variation

本試驗例係採用掃描式電子顯微鏡觀察複合氧化物靶材的金相微結構,輔以能量色散X射線光譜儀確認複合氧化物靶材之金相微結構中黑色相與白色相的成分,並以影像分析軟體分析複合氧化物靶材中黑色相的尺寸。In this test example, a scanning electron microscope was used to observe the metallographic microstructure of the composite oxide target, supplemented by an energy dispersive X-ray spectrometer to confirm the components of the black phase and the white phase in the metallographic microstructure of the composite oxide target, and the image analysis software was used to analyze the components. The size of the black phase in the composite oxide target.

將實施例1至23及比較例1至9之複合氧化物靶材以水刀與磨床加工方式製成直徑152毫米、厚度6毫米的圓餅形複合氧化物靶材,並於上述複合氧化物靶材的中心至圓周之一半處(即,半徑的二分之一處)線切割10毫米*10毫米的試片。The composite oxide targets of Examples 1 to 23 and Comparative Examples 1 to 9 were processed by water jet and grinder into a round cake-shaped composite oxide target with a diameter of 152 mm and a thickness of 6 mm, and the above composite oxide targets were prepared. A 10mm*10mm test piece is cut from the center of the target to half of the circumference (ie, half of the radius).

於此,以實施例1之試片為例,說明實施例1之複合氧化物靶材之黑色相的成分、和黑色相平均粒徑及粒徑變異度的算法,其他實施例2至23及比較例1至9之複合氧化物靶材則以相同的方法計算黑色相的平均粒徑及粒徑變異度。Here, taking the test piece of Example 1 as an example, the composition of the black phase of the composite oxide target of Example 1, and the algorithm of the average particle size and particle size variation of the black phase are described. Other Examples 2 to 23 and For the composite oxide targets of Comparative Examples 1 to 9, the average particle size and particle size variation of the black phase were calculated in the same way.

首先,使用掃描式電子顯微鏡(廠牌:HITACHI,型號:S-3400N),以2000倍之放大倍率觀察實施例1之試片的金相微結構;再以能量色散X射線光譜儀分析複合氧化物靶材中白色相及黑色相的成分。如圖1所示,於實施例1之試片的金相微結構中分別選取兩處位置,所選取之位置分別以「A」及「B」標示,以分析黑色相及白色相的成分,詳細偵測結果如下表2所示。 表2:實施例1之複合氧化物靶材中白色相與黑色相中各成分的含量,單位為at%。   選取位置 相說明 Mg Ti O 實施例1 A 黑色相 37.61 0 62.39 B 白色相 0 37.06 62.94 First, use a scanning electron microscope (brand: HITACHI, model: S-3400N) to observe the metallographic microstructure of the test piece of Example 1 at a magnification of 2000 times; then use an energy dispersive X-ray spectrometer to analyze the composite oxide target material The composition of the medium white and black phases. As shown in Figure 1, two positions were selected respectively in the metallographic microstructure of the test piece of Example 1, and the selected positions were marked with "A" and "B" respectively, to analyze the components of the black phase and the white phase, and to detect the details in detail. The test results are shown in Table 2 below. Table 2: The content of each component in the white phase and the black phase in the composite oxide target of Example 1, the unit is at%. Pick a location Phase description Mg Ti O Example 1 A black phase 37.61 0 62.39 B white phase 0 37.06 62.94

如上表2所示,實施例1之複合氧化物靶材中黑色相之成分為一氧化鎂,白色相為一氧化鈦。之後,依EDX的分析結果,以影像分析軟體分析實施例1之複合氧化物靶材中黑色相的平均粒徑及粒徑變異度,以評估實施例1之複合氧化物靶材中一氧化鎂的團聚程度。As shown in Table 2 above, the component of the black phase in the composite oxide target of Example 1 is magnesium monoxide, and the white phase is titanium monoxide. Then, according to the analysis results of EDX, the average particle size and particle size variation of the black phase in the composite oxide target of Example 1 were analyzed with image analysis software to evaluate the magnesium monoxide in the composite oxide target of Example 1 degree of agglomeration.

具體來說,分析時先以SEM觀察前述實施例1之10毫米*10毫米試片,並從中任選五處觀察位置拍攝得到五張SEM金相圖。接著,以影像分析軟體Image J內建之「Color Threshold」功能將實施例1所得之五張SEM金相圖處理成高解析度的影像圖。圖2A和2B、3A和3B、4A和4B、5A和5B、6A和6B、及7A和7B,其分別為實施例1、實施例8、實施例10、實施例17、比較例1及比較例9之複合氧化物靶材之SEM金相圖及高解析度影像圖;將圖2B、3B、4B、5B與圖6B、圖7B之高解析度影像圖相比,可知實施例1、實施例8、實施例10及實施例17的複合氧化物靶材具有粒徑較小及均一的黑色相。Specifically, the 10 mm*10 mm test piece of the aforementioned Example 1 was first observed with SEM during the analysis, and five SEM metallographic images were obtained by taking pictures at five observation positions. Next, the five SEM metallographic images obtained in Example 1 were processed into high-resolution images by the built-in "Color Threshold" function of the image analysis software Image J. Figures 2A and 2B, 3A and 3B, 4A and 4B, 5A and 5B, 6A and 6B, and 7A and 7B, which are Example 1, Example 8, Example 10, Example 17, Comparative Example 1 and Comparison, respectively The SEM metallographic image and high-resolution image of the composite oxide target of Example 9; comparing Figures 2B, 3B, 4B, and 5B with the high-resolution images of Figures 6B and 7B, it can be seen that Example 1, the implementation of The composite oxide targets of Example 8, Example 10 and Example 17 have a small particle size and a uniform black phase.

為客觀評估實施例1之複合氧化物靶材中一氧化鎂的團聚程度,以影像分析軟體Image J內建之「Analyze Particles」功能分析上述五張SEM金相圖中各自複數黑色相的平均粒徑,結果分別為1.16 μm、1.10 μm、1.61 μm、1.02 μm及1.49 μm,再對上述五個平均粒徑取平均值,即將上述五個數值相加再除以五,得到實施例1之複合氧化物靶材之黑色相的平均粒徑為1.28 μm,並將結果列於上表1中。In order to objectively evaluate the degree of agglomeration of magnesium monoxide in the composite oxide target of Example 1, the “Analyze Particles” function built into the image analysis software Image J was used to analyze the average particle size of the black phases in each of the above five SEM metallographic images. The results were 1.16 μm, 1.10 μm, 1.61 μm, 1.02 μm and 1.49 μm respectively, and then the average of the above five average particle diameters was taken, that is, the above five numerical values were added and divided by five to obtain the composite of Example 1. The average particle size of the black phase of the oxide target was 1.28 μm, and the results are listed in Table 1 above.

之後,再依下列公式:

Figure 02_image001
, 即可算出實施例1之複合氧化物靶材之黑色相的粒徑變異度。 After that, follow the formula:
Figure 02_image001
, the particle size variation of the black phase of the composite oxide target of Example 1 can be calculated.

具體而言,詳細的算式如下:

Figure 02_image003
。 Specifically, the detailed formula is as follows:
Figure 02_image003
.

實施例1之複合氧化物靶材之黑色相的粒徑變異度之結果列於上表1中,實施例2至23及比較例1至9之複合氧化物靶材之黑色相的平均粒徑及粒徑變異度亦以如上所述方法分析,並將結果列於上表1中。The results of the particle size variation of the black phase of the composite oxide target of Example 1 are listed in Table 1 above. The average particle size of the black phase of the composite oxide targets of Examples 2 to 23 and Comparative Examples 1 to 9 and particle size variability were also analyzed as described above, and the results are listed in Table 1 above.

如上表1所示,實施例1至23之複合氧化物靶材由於採用特定粒徑尺寸及適量的原料粉末進行混合,並控制合適的研磨時間及燒結溫度條件,所以製得之實施例1至23之複合氧化物靶材能具有特定的組成,其黑色相的平均粒徑皆小於或等於2 μm、且黑色相的粒徑變異度皆小於0.2。As shown in Table 1 above, the composite oxide targets of Examples 1 to 23 were mixed with a specific particle size and an appropriate amount of raw material powder, and the appropriate grinding time and sintering temperature were controlled, so Examples 1 to 23 were prepared. The composite oxide target of 23 can have a specific composition, the average particle size of the black phase is all less than or equal to 2 μm, and the particle size variation of the black phase is all less than 0.2.

反觀比較例1至9,由於比較例1至9之複合氧化物靶材未控制合適的研磨時間,使得比較例1至9之複合氧化物靶材的原料粉末粒徑尺寸較大,所以製得之比較例1至9之複合氧化物靶材之黑色相的平均粒徑皆大於3 μm、且黑色相的粒徑變異度皆大於0.2。In contrast to Comparative Examples 1 to 9, since the composite oxide targets of Comparative Examples 1 to 9 did not control the appropriate grinding time, the particle size of the raw material powders of the composite oxide targets of Comparative Examples 1 to 9 was larger, so the composite oxide targets of Comparative Examples 1 to 9 were prepared. The average particle diameters of the black phases of the composite oxide targets of Comparative Examples 1 to 9 are all greater than 3 μm, and the particle diameter variations of the black phases are all greater than 0.2.

由以上實驗結果可知,利用本創作之製造方法所製得的複合氧化物靶材能具有較小平均粒徑及較低粒徑變異度的黑色相。It can be seen from the above experimental results that the composite oxide target prepared by the manufacturing method of the present invention can have a black phase with a smaller average particle size and a lower particle size variation.

再觀實施例15至17及實施例18至20,在視需要添加第一添加成分或第二添加成分時,隨著添加成分之總量的增加,複合氧化物靶材之黑色相的平均粒徑可隨之減小,且粒徑變異度亦有隨之降低的趨勢。Looking at Examples 15 to 17 and Examples 18 to 20 again, when the first additive component or the second additive component is added as needed, with the increase of the total amount of the additive components, the average particle size of the black phase of the composite oxide target The particle diameter can be reduced accordingly, and the particle size variability also tends to decrease accordingly.

試驗例Test example 22 :抗折強度:Flexural strength

將實施例1至23及比較例1至9之複合氧化物靶材以水刀與磨床加工方式,製成直徑152毫米、厚度6毫米的圓餅形複合氧化物靶材,並於上述各圓餅形複合氧化物靶材的中心至圓周之一半處(即,半徑的二分之一處)線切割三個長、寬、高為50毫米*3毫米*4毫米的試片。The composite oxide targets of Examples 1 to 23 and Comparative Examples 1 to 9 were processed by water jet and grinder to make round cake-shaped composite oxide targets with a diameter of 152 mm and a thickness of 6 mm. Three test pieces with length, width and height of 50mm*3mm*4mm were cut by line from the center of the pie-shaped composite oxide target to half of the circumference (ie, half of the radius).

於此,以實施例1之試片為例,說明實施例1之複合氧化物靶材之抗折強度的分析方法,其他實施例2至23及比較例1至9之複合氧化物靶材以相同的方法得出各自的抗折強度。Here, the test piece of Example 1 is taken as an example to illustrate the method for analyzing the flexural strength of the composite oxide target of Example 1. The composite oxide targets of other Examples 2 to 23 and Comparative Examples 1 to 9 are The same method was used to derive the respective flexural strengths.

以萬能試驗機(廠牌:Instron;型號:3365系列;加壓速度:0.008毫米/秒(mm/sec))量測實施例1之三個試片的四點抗折強度得到三個數據,並取上述三個數據的平均值,做為評估實施例1之複合氧化物靶材的機械強度。實施例1之複合氧化物靶材之抗折強度的結果列於上表1中,單位為百萬帕斯卡(MPa);而實施例2至23及比較例1至9之複合氧化物靶材之抗折強度亦以如上所述之方法分析,並將結果列於上表1中。Using a universal testing machine (brand: Instron; model: 3365 series; pressing speed: 0.008 millimeters/second (mm/sec)) to measure the four-point flexural strength of the three test pieces of Example 1 to obtain three data, The average value of the above three data is taken as the mechanical strength of the composite oxide target of Example 1 to be evaluated. The results of the flexural strength of the composite oxide targets of Example 1 are listed in Table 1 above, in megapascals (MPa); while the composite oxide targets of Examples 2 to 23 and Comparative Examples 1 to 9 have Flexural strength was also analyzed as described above and the results are presented in Table 1 above.

由上表1可知,實施例1至23之複合氧化物靶材的抗折強度皆大於110 MPa;較佳地,實施例1至5、8至14、17、20、22及23之複合氧化物靶材的抗折強度皆大於130 MPa;更佳地,實施例10、13及23之複合氧化物靶材的抗折強度皆大於150 MPa。As can be seen from Table 1 above, the flexural strengths of the composite oxide targets of Examples 1 to 23 are all greater than 110 MPa; preferably, the composite oxide targets of Examples 1 to 5, 8 to 14, 17, 20, 22 and 23 The flexural strengths of the target targets are all greater than 130 MPa; more preferably, the flexural strengths of the composite oxide targets of Examples 10, 13 and 23 are all greater than 150 MPa.

反觀比較例1至9的複合氧化物靶材,其抗折強度皆小於100 MPa;尤其比較例1至4、7及8之複合氧化物靶材的抗折強度皆小於90 MPa;更甚者,比較例2之複合氧化物靶材的抗折強度甚至未能達到80 MPa。In contrast, the composite oxide targets of Comparative Examples 1 to 9, their flexural strengths are all less than 100 MPa; in particular, the flexural strengths of the composite oxide targets of Comparative Examples 1 to 4, 7 and 8 are all less than 90 MPa; , the flexural strength of the composite oxide target of Comparative Example 2 did not even reach 80 MPa.

由以上實驗結果可知,利用本創作所製得的複合氧化物靶材具有優異的抗折強度。It can be seen from the above experimental results that the composite oxide target prepared by the present invention has excellent flexural strength.

試驗例Test example 33 :熱導率:Thermal conductivity

將實施例1至23及比較例1至9之複合氧化物靶材製成直徑152毫米、厚度6毫米的圓餅形複合氧化物靶材。於此,以實施例1為例,說明實施例1之複合氧化物靶材之熱導率的計算方法,其他實施例2至23及比較例1至9之複合氧化物靶材皆以相同的方法得出各自的熱導率。The composite oxide targets of Examples 1 to 23 and Comparative Examples 1 to 9 were made into pie-shaped composite oxide targets with a diameter of 152 mm and a thickness of 6 mm. Here, take Example 1 as an example to illustrate the calculation method of the thermal conductivity of the composite oxide target of Example 1. The composite oxide targets of other Examples 2 to 23 and Comparative Examples 1 to 9 are all the same method to obtain the respective thermal conductivity.

首先,於實施例1之圓餅形複合氧化物靶材的中心至圓周之一半處(即,半徑的二分之一處)線切割一個長、寬、高為15毫米*15毫米*5毫米的試片,並以阿基米德法量測該試片在空氣及液體中的重量,並依下列公式計算實施例1之複合氧化物靶材的實際密度(以ρ表示,單位為公斤/立方公尺(kg/m 3)):

Figure 02_image005
。 First, from the center of the round cake-shaped composite oxide target of Example 1 to half of the circumference (ie, half of the radius), a line with a length, width and height of 15 mm * 15 mm * 5 mm is cut. The weight of the test piece in air and liquid was measured by Archimedes method, and the actual density of the composite oxide target of Example 1 was calculated according to the following formula (represented by ρ, the unit is kg / Cubic meter (kg/m 3 )):
Figure 02_image005
.

接著,再於實施例1之圓餅形複合氧化物靶材的中心至圓周之一半處(即,半徑的二分之一處)線切割一個直徑12.7毫米、高度為2毫米的圓餅形試片。之後,對此試片以雷射閃光法(Laser Flash Method)求出熱擴散率(Thermal Diffusivity,以α表示,單位為平方公尺/秒(m 2/s))、並以差示掃描量熱法(Differential Scanning Calorimetry,DSC)求出比熱容量(Specific Heat Capacity,以c p表示,單位為焦耳/公斤·克耳文(J/kg·K))。 Next, cut a circular pie-shaped test piece with a diameter of 12.7 mm and a height of 2 mm from the center of the pie-shaped composite oxide target of Example 1 to half of the circumference (ie, half of the radius). piece. After that, the thermal diffusivity (Thermal Diffusivity, represented by α, in square meters/second (m 2 /s)) was obtained by the Laser Flash Method for this test piece, and the differential scanning amount was used to calculate the thermal diffusivity. Thermal method (Differential Scanning Calorimetry, DSC) to obtain the specific heat capacity (Specific Heat Capacity, expressed in cp , the unit is Joule/kg·Kelvin (J/kg·K)).

最後,再將上述所得之熱擴散率(α)、實際密度(ρ)及比熱容量(c p)之數值代入下方公式:

Figure 02_image007
, 即可得到實施例1之複合氧化物靶材的熱導率(k,單位為瓦特/公尺·克耳文(W/m·K)),並將結果列於上表1中。 Finally, substitute the values of thermal diffusivity (α), actual density (ρ) and specific heat capacity (c p ) obtained above into the following formula:
Figure 02_image007
, the thermal conductivity (k, in watts/meter·Kelvin (W/m·K)) of the composite oxide target of Example 1 can be obtained, and the results are listed in Table 1 above.

實施例2至23及比較例1至9之複合氧化物靶材之熱導率亦以如上所述之方法分析,並將結果列於上表1中。The thermal conductivity of the composite oxide targets of Examples 2 to 23 and Comparative Examples 1 to 9 was also analyzed by the method described above, and the results are listed in Table 1 above.

由上表1可知,實施例1至23之複合氧化物靶材的熱導率皆大於10 W/m·K;較佳地,實施例1至7、14及18至22之複合氧化物靶材的熱導率皆大於15 W/m·K;更佳地,實施例5、6及21之複合氧化物靶材的熱導率皆大於20 W/m·K。It can be seen from the above Table 1 that the thermal conductivity of the composite oxide targets of Examples 1 to 23 are all greater than 10 W/m·K; preferably, the composite oxide targets of Examples 1 to 7, 14 and 18 to 22 The thermal conductivity of the target materials is greater than 15 W/m·K; more preferably, the thermal conductivity of the composite oxide targets of Examples 5, 6 and 21 are all greater than 20 W/m·K.

反觀比較例1至9的複合氧化物靶材,其熱導率皆小於10 W/m·K;尤其比較例1、2、5、6、8及9之複合氧化物靶材的熱導率皆小於9 W/m·K;更甚者,比較例2及5之複合氧化物靶材的熱導率甚至未達8 W/m·K。In contrast, the thermal conductivity of the composite oxide targets of Comparative Examples 1 to 9 is less than 10 W/m·K; especially the thermal conductivity of the composite oxide targets of Comparative Examples 1, 2, 5, 6, 8 and 9 All are less than 9 W/m·K; what's more, the thermal conductivity of the composite oxide targets of Comparative Examples 2 and 5 does not even reach 8 W/m·K.

由以上實驗結果可知,利用本創作所製得的複合氧化物靶材具有優異的熱導率。It can be seen from the above experimental results that the composite oxide target prepared by the present invention has excellent thermal conductivity.

此外,進一步比較上表1中僅含一氧化鎂及一氧化鈦之複合氧化物靶材(實施例1至14及21至23)之結果可見,隨著複合氧化物靶材中一氧化鎂的含量增加,其熱導率大致上有隨之提高的趨勢。再者,觀察實施例18至20,在視需要添加第二添加成分時,隨著第二添加成分之總量的增加,複合氧化物靶材之熱導率亦有隨之提高的趨勢。In addition, by further comparing the results of the composite oxide targets (Examples 1 to 14 and 21 to 23) containing only magnesium monoxide and titanium monoxide in Table 1, it can be seen that with the increase of magnesium monoxide in the composite oxide targets As the content increases, the thermal conductivity generally tends to increase accordingly. Furthermore, observing Examples 18 to 20, when the second additive component is added as needed, the thermal conductivity of the composite oxide target tends to increase as the total amount of the second additive component increases.

試驗例Test example 44 :掉落微粒數: Number of particles dropped

首先,將實施例1至23及比較例1至9之複合氧化物靶材製成直徑5.08公分、厚度4毫米的圓餅形複合氧化物靶材,將各複合氧化物靶材分別置入磁控濺鍍機台中,先以預濺鍍製程清除表面髒汙後,於10 -3托至10 -7托的真空下,以250瓦/平方公分(W/cm 2)的濺鍍功率,對尺寸為2公分*2公分的晶圓進行直流濺鍍300秒,並計算於該時間內掉落的微粒數。實施例1至23及比較例1至9之複合氧化物靶材之濺鍍結果列於上表1中。 First, the composite oxide targets of Examples 1 to 23 and Comparative Examples 1 to 9 were made into round cake-shaped composite oxide targets with a diameter of 5.08 cm and a thickness of 4 mm, and each composite oxide target was placed in a magnetic In the control sputtering machine, first remove the surface contamination by the pre-sputtering process, then under the vacuum of 10 -3 Torr to 10 -7 Torr, with a sputtering power of 250 watts/square centimeter (W/cm 2 ), A wafer with a size of 2cm*2cm was DC sputtered for 300 seconds, and the number of particles dropped during that time was counted. The sputtering results of the composite oxide targets of Examples 1 to 23 and Comparative Examples 1 to 9 are listed in Table 1 above.

由上表1可知,以實施例1至23之複合氧化物靶材進行直流濺鍍後所掉落的微粒數皆少於50顆;較佳地,以實施例1至4、9至14、17至20及23之複合氧化物靶材進行直流濺鍍後所產生的微粒數少於30顆;更佳地,以實施例11至14及23之複合氧化物靶材進行直流濺鍍後所掉落的微粒數少於20顆;再更佳地,以實施例12之複合氧化物靶材進行直流濺鍍後所掉落的微粒數甚至少於10顆。It can be seen from Table 1 above that the number of particles dropped by the composite oxide targets of Examples 1 to 23 after DC sputtering is all less than 50; The number of particles produced by the DC sputtering of the composite oxide targets of 17 to 20 and 23 is less than 30; The number of dropped particles is less than 20; more preferably, the number of dropped particles is even less than 10 after DC sputtering is performed with the composite oxide target of Example 12.

反觀比較例1至9,以其複合氧化物靶材進行直流濺鍍後所掉落的微粒數多於或等於70顆;尤其以比較例1至4及7之複合氧化物靶材進行直流濺鍍後所掉落的微粒數多於90顆;更甚者,以比較例1至3之複合氧化物靶材進行直流濺鍍後所掉落的微粒數多於100顆,其中以比較例3之複合氧化物靶材進行直流濺鍍後所掉落的微粒數甚至多於150顆,其掉落的微粒數為實施例1至23之複合氧化物靶材進行直流濺鍍後所掉落的微粒數的至少三倍。In contrast, in Comparative Examples 1 to 9, the number of particles dropped after DC sputtering with their composite oxide targets was more than or equal to 70; The number of particles dropped after plating is more than 90; what's more, the number of particles dropped after DC sputtering with the composite oxide targets of Comparative Examples 1 to 3 is more than 100, among which Comparative Example 3 The number of particles dropped by the composite oxide targets of Examples 1 to 23 after DC sputtering was even more than 150, and the number of particles dropped by the composite oxide targets of Examples 1 to 23 after DC sputtering. At least three times the number of particles.

由以上實驗結果可知,以本創作所製得的複合氧化物靶材進行直流濺鍍能顯著降低所掉落的微粒數,進而有利於提升濺鍍薄膜的性質及良率。It can be seen from the above experimental results that DC sputtering with the composite oxide target prepared in the present invention can significantly reduce the number of particles dropped, thereby improving the properties and yield of the sputtered film.

綜合上述試驗結果,藉由控制原料粉末的粒徑及原料粉末的混合比例、研磨時間及燒結溫度,能使所製得的複合氧化物靶材之金相微結構中黑色相的粒徑小於或等於2微米且粒徑變異度小於0.2,故能有效抑制及/或降低複合氧化物靶材在濺鍍過程中掉落的微粒數低於50顆,並使複合氧化物靶材具有100 MPa以上的抗折強度及10 W/m·K以上的熱導率。Based on the above test results, by controlling the particle size of the raw material powder, the mixing ratio of the raw material powder, the grinding time and the sintering temperature, the particle size of the black phase in the metallographic microstructure of the prepared composite oxide target can be made less than or equal to 2. Micron and particle size variation is less than 0.2, so it can effectively suppress and/or reduce the number of particles dropped by the composite oxide target during the sputtering process to less than 50, and make the composite oxide target have a resistance of more than 100 MPa. Folding strength and thermal conductivity above 10 W/m·K.

無。none.

圖1係表示為了利用能量色散X射線光譜儀(Energy Dispersive X-ray Spectrometer,EDS或EDX)偵測實施例1之複合氧化物靶材中白色相及黑色相的成分,於實施例1之複合氧化物靶材之掃描式電子顯微鏡(Scanning Electronic Microscope,SEM)金相圖上標示所選取的偵測位置。Fig. 1 shows that in order to use an energy dispersive X-ray spectrometer (Energy Dispersive X-ray Spectrometer, EDS or EDX) to detect the components of the white phase and the black phase in the composite oxide target of Example 1, the composite oxide in Example 1 The selected detection position is marked on the metallographic diagram of the scanning electron microscope (SEM) of the target material.

圖2A係實施例1之複合氧化物靶材的SEM金相圖。FIG. 2A is a SEM metallographic image of the composite oxide target of Example 1. FIG.

圖2B係將圖2A以影像分析軟體Image J處理後所得的高解析度影像圖。FIG. 2B is a high-resolution image obtained by processing FIG. 2A with the image analysis software Image J.

圖3A係實施例8之複合氧化物靶材的SEM金相圖。FIG. 3A is a SEM metallographic image of the composite oxide target of Example 8. FIG.

圖3B係將圖3A以影像分析軟體Image J處理後所得的高解析度影像圖。FIG. 3B is a high-resolution image obtained by processing FIG. 3A with the image analysis software Image J.

圖4A係實施例10之複合氧化物靶材的SEM金相圖。FIG. 4A is a SEM metallographic image of the composite oxide target of Example 10. FIG.

圖4B係將圖4A以影像分析軟體Image J處理後所得的高解析度影像圖。FIG. 4B is a high-resolution image obtained by processing FIG. 4A with the image analysis software Image J.

圖5A係實施例17之複合氧化物靶材的SEM金相圖。FIG. 5A is a SEM metallographic image of the composite oxide target of Example 17. FIG.

圖5B係將圖5A以影像分析軟體Image J處理後所得的高解析度影像圖。FIG. 5B is a high-resolution image obtained by processing FIG. 5A with the image analysis software Image J.

圖6A係比較例1之複合氧化物靶材的SEM金相圖。FIG. 6A is a SEM metallographic image of the composite oxide target of Comparative Example 1. FIG.

圖6B係將圖6A以影像分析軟體Image J處理後所得的高解析度影像圖。FIG. 6B is a high-resolution image obtained by processing FIG. 6A with the image analysis software Image J.

圖7A係比較例9之複合氧化物靶材的SEM金相圖。FIG. 7A is a SEM metallographic image of the composite oxide target of Comparative Example 9. FIG.

圖7B係將圖7A以影像分析軟體Image J處理後所得的高解析度影像圖。FIG. 7B is a high-resolution image obtained by processing FIG. 7A with the image analysis software Image J.

無。none.

Claims (10)

一種複合氧化物靶材,其包含一氧化鎂及一氧化鈦,以該複合氧化物靶材之原子總數為基準,該一氧化鎂之總量為大於或等於5原子百分比且小於或等於90原子百分比,且該一氧化鈦之總量為大於或等於10原子百分比且小於或等於95原子百分比;其中,該複合氧化物靶材具有複數含該一氧化鎂之黑色相,該等黑色相的平均粒徑小於或等於2微米,且該等黑色相的粒徑變異度小於0.2。 A composite oxide target, comprising magnesium monoxide and titanium monoxide, and based on the total number of atoms of the composite oxide target, the total amount of magnesium monoxide is greater than or equal to 5 atomic percent and less than or equal to 90 atoms percentage, and the total amount of the titanium monoxide is greater than or equal to 10 atomic percent and less than or equal to 95 atomic percent; wherein, the composite oxide target has a plurality of black phases containing the magnesium monoxide, and the average of the black phases is The particle size is less than or equal to 2 microns, and the particle size variation of the black phases is less than 0.2. 如請求項1所述之複合氧化物靶材,其包含一添加成分,該添加成分為一第一添加成分、一第二添加成分或其組合,該第一添加成分係選自由三氧化二鋁、二氧化鋯、三氧化二鉻、二氧化矽及其組合所組成之群組,該第二添加成分係選自由鋁、鋯、鉻、矽及其組合所組成之群組。 The composite oxide target as claimed in claim 1, comprising an additive component, the additive component is a first additive component, a second additive component or a combination thereof, and the first additive component is selected from Al2O3 , zirconium dioxide, chromium dioxide, silicon dioxide and the group consisting of combinations thereof, the second additive component is selected from the group consisting of aluminum, zirconium, chromium, silicon and combinations thereof. 如請求項2所述之複合氧化物靶材,以該複合氧化物靶材之原子總數為基準,該添加成分之總量為大於或等於1原子百分比且小於或等於6原子百分比。 The composite oxide target according to claim 2, based on the total number of atoms of the composite oxide target, the total amount of the additive components is greater than or equal to 1 atomic percent and less than or equal to 6 atomic percent. 如請求項1至3中任一項所述之複合氧化物靶材,其中該複合氧化物靶材的抗折強度為大於100百萬帕斯卡。 The composite oxide target according to any one of claims 1 to 3, wherein the flexural strength of the composite oxide target is greater than 100 megapascals. 如請求項1至3中任一項所述之複合氧化物靶材,其中該複合氧化物靶材的熱導率為大於10瓦/(公尺.克耳文)。 The composite oxide target according to any one of claims 1 to 3, wherein the thermal conductivity of the composite oxide target is greater than 10 watts/(m·Kelvin). 一種製造複合氧化物靶材之方法,其包括以下步驟:齊備一氧化鎂粉末及一氧化鈦粉末,該一氧化鎂粉末的粒徑係大於或等於2微米且小於或等於5微米,且該一氧化鈦粉末的粒徑係大於或等於2微米且小於或等於10微米;混合該一氧化鎂粉末及該一氧化鈦粉末,得到一混合粉末,其中以該混合粉末的原子總數為基準,該一氧化鎂粉末之總量為大於或等於5原子百分比且 小於或等於90原子百分比,且該一氧化鈦粉末之總量為大於或等於10原子百分比且小於或等於95原子百分比;研磨該混合粉末48小時以上,以得到一細化粉末;將該細化粉末進行預成型,得到一靶胚;及將該靶胚於900℃至1400℃下燒結,以獲得該複合氧化物靶材。 A method of manufacturing a composite oxide target, comprising the steps of: preparing magnesium monoxide powder and titanium monoxide powder, the magnesium monoxide powder having a particle size greater than or equal to 2 microns and less than or equal to 5 microns, and the one The particle size of the titanium oxide powder is greater than or equal to 2 microns and less than or equal to 10 microns; mixing the magnesium monoxide powder and the titanium monoxide powder to obtain a mixed powder, wherein based on the total number of atoms of the mixed powder, the one The total amount of magnesium oxide powder is greater than or equal to 5 atomic percent and less than or equal to 90 atomic percent, and the total amount of the titanium monoxide powder is greater than or equal to 10 atomic percent and less than or equal to 95 atomic percent; grinding the mixed powder for more than 48 hours to obtain a refined powder; the refinement The powder is preformed to obtain a target blank; and the target blank is sintered at 900° C. to 1400° C. to obtain the composite oxide target material. 如請求項6所述之製造複合氧化物靶材之方法,其中於研磨該混合粉末48小時以上之後,再以一篩網進行過篩以得到該細化粉末,該篩網之目數為400目至600目。 The method for manufacturing a composite oxide target as claimed in claim 6, wherein after grinding the mixed powder for more than 48 hours, sieving through a mesh to obtain the refined powder, and the mesh number of the mesh is 400 Mesh to 600 mesh. 如請求項7所述之製造複合氧化物靶材之方法,其中該靶胚之燒結時間為1.5小時至5小時,且該靶胚之燒結壓力為300公斤/平方公分至510公斤/平方公分。 The method for manufacturing a composite oxide target according to claim 7, wherein the sintering time of the target blank is 1.5 hours to 5 hours, and the sintering pressure of the target blank is 300 kg/cm 2 to 510 kg/cm 2 . 如請求項8所述之製造複合氧化物靶材之方法,其中該方法包括齊備一添加粉末,並且混合該一氧化鎂粉末、該一氧化鈦粉末及該添加粉末,得到該混合粉末;其中,該添加粉末包含一第一添加粉末、一第二添加粉末或其組合,該第一添加粉末係選自由三氧化二鋁粉末、二氧化鋯粉末、三氧化二鉻粉末、二氧化矽粉末及其組合所組成之群組,且該第一添加粉末的粒徑小於或等於3微米,該第二添加粉末係選自由鋁粉末、鋯粉末、鉻粉末、矽粉末及其組合所組成之群組,且該第二添加粉末的粒徑小於或等於50微米;以該混合粉末的原子總數為基準,該添加粉末之總量為大於或等於1原子百分比且小於或等於6原子百分比。 The method for manufacturing a composite oxide target as claimed in claim 8, wherein the method comprises preparing an additive powder, and mixing the magnesium monoxide powder, the titanium monoxide powder and the additive powder to obtain the mixed powder; wherein, The additive powder comprises a first additive powder, a second additive powder or a combination thereof, the first additive powder is selected from the group consisting of aluminum oxide powder, zirconium dioxide powder, chromium oxide powder, silicon dioxide powder and the like. The group formed by the combination, and the particle size of the first additive powder is less than or equal to 3 microns, the second additive powder is selected from the group consisting of aluminum powder, zirconium powder, chromium powder, silicon powder and combinations thereof, And the particle size of the second added powder is less than or equal to 50 microns; based on the total number of atoms of the mixed powder, the total amount of the added powder is greater than or equal to 1 atomic percent and less than or equal to 6 atomic percent. 如請求項6至9中任一項所述之製造複合氧化物靶材之方法,其中該混合粉末之研磨時間係大於或等於48小時且小於或等於120小時。 The method for manufacturing a composite oxide target according to any one of claims 6 to 9, wherein the grinding time of the mixed powder is greater than or equal to 48 hours and less than or equal to 120 hours.
TW110115003A 2021-04-26 2021-04-26 Composite oxide target and manufacturing method thereof TWI770959B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110115003A TWI770959B (en) 2021-04-26 2021-04-26 Composite oxide target and manufacturing method thereof
JP2021117535A JP7165787B1 (en) 2021-04-26 2021-07-16 Composite oxide target and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110115003A TWI770959B (en) 2021-04-26 2021-04-26 Composite oxide target and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI770959B true TWI770959B (en) 2022-07-11
TW202241828A TW202241828A (en) 2022-11-01

Family

ID=83439339

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110115003A TWI770959B (en) 2021-04-26 2021-04-26 Composite oxide target and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP7165787B1 (en)
TW (1) TWI770959B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115448360A (en) * 2022-09-27 2022-12-09 攀枝花学院 Method for preparing TiO material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101481246A (en) * 2009-02-24 2009-07-15 河北理工大学 Preparation of ZrO2-Al2TiO5-MgO composite nano powder
TW201011453A (en) * 2008-09-05 2010-03-16 Sumitomo Metal Mining Co Black coationg, process for producing the same, light shading black plate and diaphragm, diaphragm device for adjusting a light intensity, shutter and heat-resistant light shading tape using the same
TW201500323A (en) * 2013-03-29 2015-01-01 Jx Nippon Mining & Metals Corp Mgo-tio sintered compact target and method for producing same
TW201527566A (en) * 2014-01-06 2015-07-16 Kojundo Chemical Lab Co Ltd Sputtering target
TW201632482A (en) * 2014-12-05 2016-09-16 宇部材料股份有限公司 MgO SPUTTERING TARGET MATERIAL AND THIN FILM

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201011453A (en) * 2008-09-05 2010-03-16 Sumitomo Metal Mining Co Black coationg, process for producing the same, light shading black plate and diaphragm, diaphragm device for adjusting a light intensity, shutter and heat-resistant light shading tape using the same
CN101481246A (en) * 2009-02-24 2009-07-15 河北理工大学 Preparation of ZrO2-Al2TiO5-MgO composite nano powder
TW201500323A (en) * 2013-03-29 2015-01-01 Jx Nippon Mining & Metals Corp Mgo-tio sintered compact target and method for producing same
TW201527566A (en) * 2014-01-06 2015-07-16 Kojundo Chemical Lab Co Ltd Sputtering target
TW201632482A (en) * 2014-12-05 2016-09-16 宇部材料股份有限公司 MgO SPUTTERING TARGET MATERIAL AND THIN FILM

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115448360A (en) * 2022-09-27 2022-12-09 攀枝花学院 Method for preparing TiO material
CN115448360B (en) * 2022-09-27 2024-01-16 攀枝花学院 Method for preparing TiO material

Also Published As

Publication number Publication date
JP2022172036A (en) 2022-11-14
TW202241828A (en) 2022-11-01
JP7165787B1 (en) 2022-11-04

Similar Documents

Publication Publication Date Title
US8784729B2 (en) High density refractory metals and alloys sputtering targets
TWI547579B (en) Fe-Pt sputtering target with dispersed C particles
JP5913620B2 (en) Fe-Pt sintered sputtering target and method for producing the same
JP2006144124A (en) Method for fabricating precious metal magnetic sputtering target and precious metal magnetic sputtering target fabricated by using the method
TWI770959B (en) Composite oxide target and manufacturing method thereof
TW202117033A (en) Molybdenum alloy target and method of preparing the same and molybdenum alloy layer
TWI753073B (en) Magnetic material sputtering target and manufacturing method thereof
TWI692536B (en) Fe-pt based sputtering target and method for producing the same
TWI593810B (en) Sputtering target
CN104126026A (en) Ferromagnetic material sputtering target containing chrome oxide
CN115246732A (en) Composite oxide target material and method for producing the same
TWI752655B (en) Fe-pt based sputtering target and method of preparing the same
JP2000096220A (en) Cobalt-chromium sputtering target and its manufacture
JP2006176810A (en) METHOD FOR PRODUCING CoCrPt-SiO2 SPUTTERING TARGET FOR DEPOSITING MAGNETIC RECORDING FILM
TWI716166B (en) Fe-co-based alloy target and method for producing the same
TWI715182B (en) Nickel-tantalum sputtering target material and manufacturing method thereof
JP6755910B2 (en) Co-Pt-Re based sputtering target, its manufacturing method and magnetic recording layer
TW202405198A (en) Molybdenum alloy target and method of preparing the same
TWI761264B (en) Fe-pt-ag based sputtering target and method of preparing the same
JP2013104079A (en) TARGET, UNDERLYING MATERIAL FOR Co-BASED OR Fe-BASED MAGNETIC RECORDING MEDIUM, AND MAGNETIC RECORDING MEDIUM
TWI856716B (en) Composite target and method of preparing the same
TWI461557B (en) Fe-co-ta alloy sputtering target
TW201928082A (en) RuRe-containing sputtering target, RuRe-containing membrane, and method of preparing the same
JP2009221608A (en) Sputtering target
TW201912821A (en) Nickel-Rhenium Alloy Sputtering Target And Method of Preparing the Same