TWI770605B - 微機電陀螺儀 - Google Patents
微機電陀螺儀 Download PDFInfo
- Publication number
- TWI770605B TWI770605B TW109131196A TW109131196A TWI770605B TW I770605 B TWI770605 B TW I770605B TW 109131196 A TW109131196 A TW 109131196A TW 109131196 A TW109131196 A TW 109131196A TW I770605 B TWI770605 B TW I770605B
- Authority
- TW
- Taiwan
- Prior art keywords
- frame
- sensing
- axis
- driving
- flexible connecting
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/5705—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis
- G01C19/5712—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis the devices involving a micromechanical structure
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/5719—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
- G01C19/5733—Structural details or topology
- G01C19/5755—Structural details or topology the devices having a single sensing mass
- G01C19/5762—Structural details or topology the devices having a single sensing mass the sensing mass being connected to a driving mass, e.g. driving frames
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/02—Rotary gyroscopes
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Gyroscopes (AREA)
Abstract
本發明係有關一種微機電陀螺儀,其包含複數個感測模組感測三軸向之角速度,複數個外框設置於該些感測模組之外側,複數個驅動軸分別設置於該些外框之間,該些驅動軸分別以一第一可撓性連接件與一第二可撓性連接件連接二相鄰外框,再由該些外框經複數個傳動元件連接該些感測模組,藉此提供三軸感測。
Description
本發明係有關一種感測器,尤其是一種微機電陀螺儀,其提供三軸角速度測定功能。
微機電(Microelectromechanical Systems,MEMS)陀螺儀通常用於測定一系統於x-y-z坐標軸中每一軸線上的旋轉運動,其中當一質量塊沿著一軸向線性運動並且該承受一角速度時,該質量塊得以感應到一科氏力(Coriolis Force)。該力驅使質量塊在與該軸向垂直的方向上產生位移,進而供感測該質量塊承受的角度速值。然而,該質量塊無法感測與該軸向平行的旋轉,因此如果要感測三軸角速度,至少必須提供二組沿不同方向運動的質量塊,然而如何在微小的微機電構造中穩定驅動質量塊沿不同方向運動,又能將微機電陀螺儀的成本控制在合理範圍,同時還要避免雜訊、非理想訊號影響感測結果,成為各家廠商亟欲解決的問題。基於上述之問題,本發明提供一種微機電陀螺儀,其藉由外框耦合微機電陀螺儀所承受的外力,進而提高三軸測定之精確度,解決上述之問題。
本發明之一目的,提供一種微機電陀螺儀,其藉由複數個驅動軸設置於複數個外框之間,該些驅動軸透過可撓性連接件連接所有外框,並由該些外框經複數個傳動件連接複數個感測模組,故,所有外框經該些驅動軸所連接之可撓性連接件耦合,以耦合該些驅動軸所提供之外力。
本發明揭示了一種微機電陀螺儀,其包含複數個感測模組,感測三軸向之角速度;複數個外框設置於該些感測模組之外側,經複數個傳動元件連接該些感測模組;以及複數個驅動軸分別設置該些外框之間,該些驅動軸分別經一第一可撓性連接件與一第二可撓性連接件連接該些外框之二相鄰外框。藉此,所有外框之間分別經該第一可撓性連接件與該第二可撓性連接件而耦合該些驅動軸所提供之外力,進而提高三軸測定之精確度。
1:微機電陀螺儀
2:微機電陀螺儀
10:感測模組
10A:第一感測模組
10B:第二感測模組
12:驅動結構
14:質量塊
142:可撓性連接件
16:第一感測元件
16A:第一感測元件
16B:第一感測元件
18:第二感測元件
18A:第二感測元件
18B:第二感測元件
20:外框
22:傳動元件
24:抑制件
30:驅動軸
32:梳狀單元
M:致動單元
34A:第一驅動桿件
34B:第二驅動桿件
36A:第一驅動器
36B:第二驅動器
B1:第一緩衝件
B2:第二緩衝件
C:固定點
E:延伸部
E1:第一延伸部
E2:第二延伸部
F1A:第一邊框
F2A:增幅邊框
F3A:第二邊框
F1B:第一邊框
F2B:增幅邊框
F3B:第二邊框
R:旋轉抑制件
SUB:基板
X:X軸
Y:Y軸
Z:Z軸
第一圖:其為本發明之微機電陀螺儀之一實施例之結構示意圖;第二圖:其為本發明之微機電陀螺儀之一實施例之驅動示意圖;第三圖:其為本發明之微機電陀螺儀之另一實施例之結構示意圖;第四圖:其為本發明之微機電陀螺儀之另一實施例之結構示意圖;第五圖:其為本發明之微機電陀螺儀之另一實施例之結構示意圖;第六圖:其為本發明之微機電陀螺儀之另一實施例之驅動示意圖;以及第七圖:其為本發明之微機電陀螺儀之另一實施例之結構示意圖。
為使 貴審查委員對本發明之特徵及所達成之功效有更進一步之瞭解與認識,謹佐以實施例及配合說明,說明如後:在說明書及請求項當中使用了某些詞彙指稱特定的元件,然,所屬本發明技術領域中具有通常知識者應可理解,製造商可能會用不同的名詞稱呼同一個元件,而且,本說明書及請求項並不以名稱的差異作為區分元件的方式,而是以元件在整體技術上的差異作為區分的準則。在通篇說明書及請求項當中所提及的「包含」、「具有」、「設有」為一開放式用語,故應解釋成「包含但不限定於」。再者,「耦接」一詞在此包含直接及間接的連接手段。因此,若
文中描述一第一裝置耦接一第二裝置,則代表第一裝置可直接連接第二裝置,或可透過其他裝置或其他連接手段間接地連接至第二裝置。
以下,將進一步說明本發明揭示一種微機電陀螺儀所包含之特性、所搭配之結構:首先,請參閱第一圖,其為本發明之微機電陀螺儀之一實施例之結構示意圖。如圖所示,本發明之微機電陀螺儀1包含複數個感測模組10、複數個外框20與複數個驅動軸30,該些感測模組10中設有質量塊,供感測三軸向之角速度,即感測X-Y-Z軸之角速度;該些外框20分別設置於該些感測模組10外側,並經複數個傳動元件22分別連接該些感測模組10;以及該些驅動軸30分別設置該些外框20之間,該些驅動軸30分別經一第一可撓性連接件C1與一第二可撓性連接件C2連接該些外框20中的二相鄰外框。
如前所述,如果要感測三軸角速度,至少必須提供二組沿不同方向運動的質量塊,因此本發明實施例至少設有第一感測模組10A及第二感測模組10B,且第一感測模組10A及第二感測模組B中的質量塊分別被驅使沿Y軸及X軸線性運動。又一般而言,微機電陀螺儀通常會形成對稱式構造,因此本發明實施例較佳還設有和第三感測模組10C及第四感測模組10D,且第三感測模組10C和第一感測模組10A中的質量塊同樣別被驅使沿Y軸線性運動;第四感測模組10D和第二感測模組B中的質量塊同樣被驅使沿X軸線性運動。第一~第四感測模組10A、10B、10C、10D外側分別設有外框20A、20B、20C、20D,且四個驅動軸30分別設置該些外框20A、20B、20C、20D之間,並經由第一可撓性連接件C1與一第二可撓性連接件C2該些外框20A、20B、20C、20D。如此所有外框20即可藉由四個驅動軸30上的第一可撓性連接件C1與第二可撓性連接件C2形成連接,以耦合驅動軸30給予之驅動力以及微機電陀螺儀所承受的其他外力。
進一步參閱第一圖,該些感測模組10分別包含一驅動結構12、一質量塊14、至少一第一感測元件16及至少一第二感測元件18,本實施例之驅動結構12以框形架構為例說明,惟不以此為限。驅動結構12並經由傳動元件22連接對應之外框20。以下針對第一感測模組10A進行說明,其他感測模組10B、10C、10D
具有類似的構造僅方向配置不同,恕不逐一複述。第一感測模組10A中的質量塊14需要被驅使沿Y軸線性運動,而質量塊14是經由驅動結構12被外框20A帶動方可沿Y軸線性運動,然而,為了讓外框20與驅動結構12能夠有效沿Y軸驅動質量塊14,在本實施例中,主要利用一傳動元件22來連接第一感測模組10A的驅動結構12及外框20A,而傳動元件22於Y軸向(平行於外框20A與驅動結構12之連接方向)剛性較佳,且傳動元件22於垂直Y軸之X軸向與Z軸向(垂直於外框20A與驅動結構12之連接方向)上具可撓性,因而當外框20A沿Y軸向驅動結構12施力時,可以有效經由驅動結構12沿Y軸驅動質量塊14;然而若外框20A形成X軸向或Z軸向上的非理想位移時,傳動元件22可以緩衝吸收這些非理想位移,以避免外框20A沿X軸或Z軸朝驅動結構12施力。上述在Y軸向上剛性較佳但在垂直Y軸向的平面上卻具可撓性的傳動元件22可以由數種構造完成,例如第一圖中所示的傳動元件22包含以沿Y軸延伸的數個長直構造,使其在Y軸向上剛性較佳;且該數個長直構造以數個彎折部連接而形成立體構造,使其在垂直Y軸向的平面上具可撓性。又或者,以硬直材料配合於Y軸向上較薄的緩衝材質亦可組成具有類似效果的傳動元件22,本發明並不以此為限。
該傳動元件22較佳連接於傳動元件22的中央,此外,外框20與驅動結構12之間可以進一步設有至少一抑制件24,該至少一抑制件24可以設置於傳動元件22的外側,且該至少一抑制件24連接外框20與驅動結構12。以下仍然針對第一感測模組10A進行說明,該至少一抑制件24於Y軸向上具可撓性,且於X軸向與Z軸向剛性較佳。據此,透過額外設置抑制件24來連接第一感測模組10A的驅動結構12與外框20A,其允許驅動結構12與外框20A於Y軸向上產生相對位移,但會限制驅動結構12與外框20A於X軸向或Z軸向上產生相對位移,故可以抵消相對於外框20A於X軸向或Z軸向所承受的外力。其中,外框20A兩側的驅動軸30施力不均、行程不同步;或者外框20A承受非預期外力,都有可能使外框20A於X軸向或Z軸向上承受不當外力,而傳動元件22與至少一抑制件24的配合可以更有效地緩衝吸收外框20A於X軸向或Z軸向上的非理想位移。上述在Y軸向上具可撓性但在垂直Y軸向的平面上剛性較佳的至少一抑制件24可以由數種構造完
成,例如在外框20與驅動結構12設置一固定支點,並且利用可撓性元件連接外框20和固定支點,利用另一可撓性元件連接驅動結構12和固定支點,本發明並不加以限制該至少一抑制件24的細部構造。
復參閱第一圖,質量塊14經至少一可撓性連接件142連接至驅動結構12,例如二側分別以一可撓性連接件142連接驅動結構12,如此質量塊14可相對於驅動結構12產生位移。以下仍然針對第一感測模組10A進行說明,一般而言,可撓性連接件142需使第一感測模組10A的質量塊14可相對於驅動結構12於X軸向與Z軸向上產生位移,但為了使驅動結構12能夠有效率地Y軸驅動質量塊14,該可撓性連接件142較佳限制使的質量塊14難以相對於驅動結構12於Y軸向上產生位移。而該些第一感測元件16與該些第二感測元件18設置於質量塊14上,且其中可包含感應線圈、電極或其他位移感測元件,而感測不同座標軸系之外力,例如:X軸與Z軸(第一感測模組10A、第三感測模組10C),或Y軸與Z軸(第二感測模組10B、第四感測模組10D)。進一步地,該些感測模組10連接至一固定點C,位於該些感測模組之相對中心位置,且固定點C更相對於該些驅動軸30連接複數個旋轉抑制件R,固定點C與該些感測模組10之間進一步設有一耦合件B,該些感測模組10分別經由耦合件B耦合至該固定點C,可提供緩衝空間讓第一~第四感測模組10A、10B、10C、10D能夠被驅動以相對該固定點C運動,本實施例耦合件B係包含具可撓性的緩衝件B1、B2作為舉例說明,但可依據設計需求改用其他構造作為耦合件B。旋轉抑制件R由固定支點與可撓性元件組成,用以抑制避免感測模組10相對於固定點C旋轉。
更詳言之,請進一步參閱第二圖,本實施例之感測模組包含第一感測模組10A與個第二感測模組10B,該些第一感測模組10A與該些第二感測模組10B皆感測垂直圖面之Z軸的角速度,更分別感測水平於圖片之不同軸向(即X軸與Y軸)的角速度,其中,該些該第一感測模組10A之第一感測元件16A感測其質量塊14A於Z軸向的位移,當質量塊14A沿Y軸向被驅動且承受X軸的角速度時會形成該位移,故第一感測元件16A得以感測X軸的角速度;該些該第一感測模組10A之第二感測元件18A感測其質量塊14A於X軸向的位移,當質量塊14A沿Y
軸向被驅動且承受Z軸的角速度時會形成該位移,故第二感測元件18A得以感測Z軸的角速度;該些該第二感測模組10B之第一感測元件16B感測其質量塊14B於Z軸向的位移,當質量塊14B沿X軸向被驅動且承受Y軸的角速度時會形成該位移,故第一感測元件16B得以感測Y軸的角速度;該第二感測模組10B之第二感測元件18B感測其質量塊14B於Y軸向的位移,當質量塊14B沿X軸向被驅動且承受Z軸的角速度時會形成該位移,故第二感測元件18B得以感測Z軸的角速度。該些
在本實施例中,驅動軸30可由梳狀單元32所組成之致動單元M進行驅動,分別以梳狀單元32帶動驅動軸30向內推而施加外力F,驅動軸30分別經由第一可撓性連接件C1與第二可撓性連接件C2傳遞至相鄰之外框20A、20B,因而經由傳動元件22分別傳遞分力至該些第一感測模組10A與該些第二感測模組10B,本實施例之該些外框20A、20B為同時受該些驅動軸30向內擠壓,除此之外,亦可同時連動向外擴張,而形成往復運動。當圖面左上的驅動軸30向內推時,可經由第一可撓性連接件C1驅動該第一感測元件16A的質量塊14A沿Y軸朝固定點C移動,而雖然驅動軸30也會沿著X軸推動外框20A,但圖面右上的驅動軸30會同步沿著X軸推動外框20A而抵銷X軸向上的外力,故質量塊14A不會受驅動軸30影響而在X軸向上產生不當位移。反之,當驅動軸30向外張時,即可驅動該的質量塊14A沿Y軸遠離固定點C。故經由該些驅動軸30的反覆作動,即可使該第一感測元件16A的質量塊14A沿Y軸往復運動,並使該第一感測元件16B的質量塊14B沿X軸往復運動。
在本實施例中的微機電陀螺儀可以形成對稱式構造,上述說明已經描述了第一感測模組10A與個第二感測模組10B及其對應外框20A、20B的作動,故不再對第三感測模組10C與個第四感測模組10D及其對應外框20C、20D的作動進行重複描述。
本實施例中的微機電陀螺儀透過外框20及設置於外框20之間的驅動軸30來致動感測模組10,相較於習知技術一般採取直接驅動感測模組10的方式,存在以下幾個重要效果:驅動軸30驅動、外框20傳動、而感測模組10單純進行感測的設計方式,使得本發明實施例的設計難度大幅降低且成本易於控制;再
者,由於本發明額外設置了外框20,且所有外框20藉由個驅動軸30上的可撓性連接件與可撓性連接件形成連接,因此任一外框20所承受的不當外力可以相互耦合,易於利用緩衝結構吸收抵銷,也容易透過後端電路消除;而且,由於驅動軸30不是直接驅動感測模組10,而必須經由額外設置的外框20來傳動,本發明實施例可以在外框20與感測模組10之間設置前述傳動元件22或抑制件24來有效地緩衝吸收外框20上的非理想位移,使得本發明實施例的微機電陀螺儀具有低雜訊、高精確度的優點。
如第三圖所示,其為本發明之微機電陀螺儀之另一實施例之結構示意圖。相較於前述驅動軸30直接由第一可撓性連接件C1與第二可撓性連接件C2連接外框20,本發明也可以在驅動軸30之前端形成一延伸部E,該延伸部E延伸超出二側相鄰之外框20,並由延伸部E連接第一可撓性連接件C1與第二可撓性連接件C2,以對應連接相鄰之二外框20,如此可提升驅動軸30的活動空間,並可供設置尺寸更大的撓性連接件,有效增加第一可撓性連接件C1與第二可撓性連接件C2的活動幅度。藉由上述特徵,本實施例可以在驅動軸30位移量不變的情況下,驅使感測模組10的質量塊14產生更大幅度的位移。
如第四圖所示,其為本發明之微機電陀螺儀之另一實施例之結構示意圖。本實施例可以由驅動軸30之不同端面延伸出一第一延伸部E1與一第二延伸部E2,且第一延伸部E1與該側外框20的距離不同於第二延伸部E2與該側外框20的距離,據此,第一延伸部E1與第二延伸部E2所連接之第一可撓性連接件C1與第二可撓性連接件C2為不同長度,因而具有不同的活動幅度,因此即使第一延伸部E1與一第二延伸部E2受同一個驅動軸30驅動,本實施例卻可以驅使二側外框20對應的感測模組10產生不同幅度的位移,以提升本發明的設計靈活性。
請參閱第五圖,其為本發明之微機電陀螺儀之另一實施例之結構示意圖。與前述各實施例不同之處在於:本發明更可以將外框20的部分結構改為可撓性結構。舉例而言,設置於第一感測模組10A外側之第一外框20A包含一第一邊框F1A、一增幅邊框F2A與一第二邊框F3A,其中第一邊框F1A之一端為連接第一可撓性連接件C1,第一邊框F1A之另一端連接增幅邊框F2A之一端,增幅
邊框F2A之另一端連接第二邊框F3A之一端;相對於設置於第二感測模組10B外側之第二外框20B包含一第一邊框F1B、一增幅邊框F2B與一第二邊框F3B,其中第一邊框F1B之一端連接增幅邊框F2B之一端,增幅邊框F2B之另一端連接第二邊框F3B之一端,第二邊框F3B之另一端為連接第二可撓性連接件C2。第一感測模組10A與第二感測模組10B分別經由傳動元件22連接於增幅邊框F2A與增幅邊框F2B,增幅邊框F2A與增幅邊框F2B均由可撓性結構組成,其差異之處在於:增幅邊框F2A與傳動元件22之連接位置位於第一邊框F1A與第二邊框F3A的連線外側,然而增幅邊框F2B與傳動元件22之連接位置位於第一邊框F1B與第二邊框F3B的連線內側。藉此,位於第二外框20B之增幅邊框F2B增幅方向不同於位於第一外框20A之增幅邊框F2A之增幅方向。
更詳沿之,如第六圖所示,當有驅動軸30向內推而施加外力F時,由於第一外框20A設有具可撓性的增幅邊框F2A,第一邊框F1A與第二邊框F3A可以產生向兩側外展的位移,此時由於增幅邊框F2A與傳動元件22之連接位置位於第一邊框F1A與第二邊框F3A的連線外側,會使得增幅邊框F2A本身形成沿Y軸方向朝固定點C移動的位移,故可進一步增加該第一感測模組10A的質量塊14朝該固定點C移動的位移量。反之;雖然第二外框20B也設有具可撓性的增幅邊框F2B,使第一邊框F1B與第二邊框F3B可以產生向兩側外展的位移,但是增幅邊框F2B與傳動元件22之連接位置位於第一邊框F1A與第二邊框F3A的連線內側,這會使得增幅邊框F2B本身形成沿X軸方向遠離固定點C的位移,故將減少該第二感測模組10B的質量塊14朝該固定點C移動的位移量。甚至,在部分實施例中,倘若增幅邊框F2B本身沿X軸方向遠離固定點C的位移量較大,將有可使第二感測模組10B的質量塊14沿X軸遠離固定點C,從而實現讓第一感測模組10A朝固定點C移動,同時讓第二感測模組B遠離固定點C的致動構造。
由上述可知,藉由設置不同形式的增幅邊框,本發明得以自由控制各感測模組10授受到驅動軸30驅動的位移量,並使本發明除了可為全部外框20連動向外或向內,更可區分為第一外框20A與第二外框20B,而第一外框20A
與第二外框20B可分別向內或向外移動,如此大大地增加了本發明之微機電陀螺儀的數計靈活性。
請參閱第七圖,其為本發明之微機電陀螺儀之另一實施例之結構示意圖。相較於前述之微機電陀螺儀1中的驅動軸30受到梳狀單元32帶動,本發明之微機電陀螺儀2也可以將驅動軸30分別經由第三可撓性連接件C3與第四可撓性連接件C4連接對應之第一驅動桿件34A與第二驅動桿件34B,而第一驅動桿件34A與第二驅動桿件34B分別設有複數個第一驅動器36A與複數個第二驅動器36B。透過該些第一驅動器36A帶動第一驅動桿件34A沿其徑向移動及透過該些第二驅動器36B帶動第二驅動桿件36B沿其徑向移動即可對應帶動驅動軸30內推或外展,從而帶動外框20A、20B。如此,由於致動第一驅動桿件34A、第二第二驅動桿件34B沿其徑向作動所需要的驅動器尺寸會小於直接致動驅動軸30徑向作動所需要的梳狀單元32尺寸,本實施例得以在額外降低微機電陀螺儀之成本。
綜上所述,本發明為一種微機電陀螺儀,其包含複數個感測模組,該些感測模組透過複數個傳動元件連接外側之複數個外框,複數個驅動軸設置於該些外框之間,並分別透過一第一可撓性連接件與一第二可撓性連接件連接至二相鄰外框,因而讓所有外框串聯,以耦合驅動軸所施加之外力或微機電陀螺儀所承受的其他外力。
故本發明實為一具有新穎性、進步性及可供產業上利用者,應符合我國專利法專利申請要件無疑,爰依法提出發明專利申請,祈 鈞局早日賜准專利,至感為禱。
惟以上所述者,僅為本發明之較佳實施例而已,並非用來限定本發明實施之範圍,舉凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本發明之申請專利範圍內。
1:微機電陀螺儀
2:微機電陀螺儀
10:感測模組
12:驅動結構
14:質量塊
142:可撓性連接件
16:第一感測元件
18:第二感測元件
20:外框
22:傳動元件
24:抑制件
30:驅動軸
32:梳狀單元
B1:第一緩衝件
B2:第二緩衝件
C:固定點
R:旋轉抑制件
SUB:基板
X:X軸
Y:Y軸
Z:Z軸
Claims (12)
- 一種微機電陀螺儀,其包含:複數個感測模組,供感測三軸向之角速度;複數個外框,設置於該些感測模組外側,並分別經一傳動元件連接該些感測模組;以及複數個驅動軸,分別設置該些外框之間,該些驅動軸分別經一第一可撓性連接件與一第二可撓性連接件連接該些外框中的二相鄰外框;其中,該些外框受該些驅動軸向內擠壓或向外擴張而形成往復運動,且帶動其中兩感測模組分別沿一第一軸向及一第二軸向往復運動,該第一軸向垂直於該第二軸向。
- 如申請專利範圍第1項所述之微機電陀螺儀,其中該些感測模組分別包含:一驅動結構,經該傳動元件連接對應之該外框;一質量塊,位於該驅動結構之內側,經至少一可撓性連接件連接該驅動結構。
- 如請求項2所述之微機電陀螺儀,其中:該傳動元件在平行於外框與驅動結構之連接方向剛性較佳,且該傳動元件在垂直於外框與驅動結構之連接方向上具可撓性。
- 如請求項2所述之微機電陀螺儀,其中:外框與驅動結構之間設有一抑制件,該抑制件連接外框與驅動結構,該抑制件在平行於外框與驅動結構之連接方向具可撓性,且該傳動元件在垂直於外框與驅動結構之連接方向上剛性較佳。
- 如請求項2所述之微機電陀螺儀,其中該些感測模組分別另包含:一第一感測元件,設置於該質量塊上;以及一第二感測元件,設置於該質量塊上,該第一感測元件與該第二感測元件感測不同軸向之角速度。
- 如請求項1所述之微機電陀螺儀,其中另包含:一固定點,該固定點與該些感測模組之間分別設有一耦合件,以提供緩衝空間使該些感測模組能夠被驅動以相對該固定點運動。
- 如請求項1所述之微機電陀螺儀,其中:該些驅動軸之分別形成一延伸部,該延伸部延伸超出二側相鄰之外框,且該延伸部分別連接該第一可撓性連接件與該第二可撓性連接件。
- 如請求項1所述之微機電陀螺儀,其中:該些驅動軸之不同端面分別延伸出一第一延伸部與一第二延伸部,且該第一延伸部與相鄰之外框的距離不同於該第二延伸部相鄰之另一外框的距離,該第一延伸部連接該第一可撓性連接件,該第二延伸部連接該第二可撓性連接件。
- 如請求項1所述之微機電陀螺儀,其中:其中一外框包含一第一邊框、一增幅邊框與一第二邊框,該第一邊框之一端為連接該第一可撓性連接件,該第一邊框之另一端連接該增幅邊框之一端,增幅邊框該之另一端連接該第二邊框之一端,其中一感測模組經由其中一傳動元件連接該增幅邊框。
- 如請求項9所述之微機電陀螺儀,其中:該增幅邊框與該傳動元件之連接位置位於該第一邊框與該第二邊框的連線外側。
- 如請求項9所述之微機電陀螺儀,其中:該增幅邊框與該傳動元件之連接位置位於該第一邊框與該第二邊框的連線外內側。
- 如請求項1所述之微機電陀螺儀,其中更包含: 複數個驅動桿件,分別經一第三可撓性連接件與一第四可撓性連接件連接該些個驅動軸,每一驅動桿件經數驅動器致動以沿其徑向作動。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962898144P | 2019-09-10 | 2019-09-10 | |
US62/898,144 | 2019-09-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202113360A TW202113360A (zh) | 2021-04-01 |
TWI770605B true TWI770605B (zh) | 2022-07-11 |
Family
ID=74881771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109131196A TWI770605B (zh) | 2019-09-10 | 2020-09-10 | 微機電陀螺儀 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11193770B2 (zh) |
CN (1) | CN112556675B (zh) |
TW (1) | TWI770605B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8459110B2 (en) * | 2009-12-24 | 2013-06-11 | Stmicroelectronics S.R.L. | Integrated microelectromechanical gyroscope with improved driving structure |
US20150377624A1 (en) * | 2014-06-30 | 2015-12-31 | Stmicroelectronics, S.R.L. | Micro-electro-mechanical device with compensation of errors due to disturbance forces, such as quadrature components |
US9360319B2 (en) * | 2013-09-05 | 2016-06-07 | Freescale Semiconductor, Inc. | Multiple sense axis MEMS gyroscope having a single drive mode |
US20190078887A1 (en) * | 2017-09-12 | 2019-03-14 | Robert Bosch Gmbh | Micromechanical rotational rate sensor system and corresponding production method |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5083466A (en) * | 1988-07-14 | 1992-01-28 | University Of Hawaii | Multidimensional force sensor |
US6367326B1 (en) * | 1996-07-10 | 2002-04-09 | Wacoh Corporation | Angular velocity sensor |
JP4011626B2 (ja) * | 1996-07-10 | 2007-11-21 | 株式会社ワコー | 角速度センサ |
US6122961A (en) * | 1997-09-02 | 2000-09-26 | Analog Devices, Inc. | Micromachined gyros |
US6481283B1 (en) * | 1999-04-05 | 2002-11-19 | Milli Sensor Systems & Actuators, Inc. | Coriolis oscillating gyroscopic instrument |
AU2002308545A1 (en) * | 2001-05-02 | 2002-11-11 | The Regents Of The University Of California | Non-resonant four degrees-of-freedom micromachined gyroscope |
CN100561126C (zh) * | 2003-03-06 | 2009-11-18 | Bei科技公司 | 利用静电耦合的微加工振动陀螺仪 |
US6981416B2 (en) * | 2003-11-21 | 2006-01-03 | Chung-Shan Institute Of Science And Technology | Multi-axis solid state accelerometer |
TWI255341B (en) * | 2004-06-10 | 2006-05-21 | Chung Shan Inst Of Science | Miniature accelerator |
US7100446B1 (en) * | 2004-07-20 | 2006-09-05 | The Regents Of The University Of California | Distributed-mass micromachined gyroscopes operated with drive-mode bandwidth enhancement |
US7205867B2 (en) * | 2005-05-19 | 2007-04-17 | Robert Bosch Gmbh | Microelectromechanical resonator structure, and method of designing, operating and using same |
FR2894661B1 (fr) * | 2005-12-13 | 2008-01-18 | Thales Sa | Gyrometre vibrant equilibre par un dispositif electrostatique |
US8113050B2 (en) * | 2006-01-25 | 2012-02-14 | The Regents Of The University Of California | Robust six degree-of-freedom micromachined gyroscope with anti-phase drive scheme and method of operation of the same |
JP4631992B2 (ja) * | 2008-01-07 | 2011-02-16 | 株式会社村田製作所 | 角速度センサ |
FI122397B (fi) * | 2008-04-16 | 2011-12-30 | Vti Technologies Oy | Värähtelevä mikromekaaninen kulmanopeusanturi |
DE102008043796B4 (de) * | 2008-11-17 | 2023-12-21 | Robert Bosch Gmbh | Drehratensensor |
US8322213B2 (en) * | 2009-06-12 | 2012-12-04 | The Regents Of The University Of California | Micromachined tuning fork gyroscopes with ultra-high sensitivity and shock rejection |
CN101592489B (zh) * | 2009-07-01 | 2011-02-09 | 电子科技大学 | 一种微机械音叉陀螺仪 |
US8710599B2 (en) * | 2009-08-04 | 2014-04-29 | Fairchild Semiconductor Corporation | Micromachined devices and fabricating the same |
US8534127B2 (en) * | 2009-09-11 | 2013-09-17 | Invensense, Inc. | Extension-mode angular velocity sensor |
US8516886B2 (en) * | 2010-04-30 | 2013-08-27 | Qualcomm Mems Technologies, Inc. | Micromachined piezoelectric X-Axis gyroscope |
US10914584B2 (en) * | 2011-09-16 | 2021-02-09 | Invensense, Inc. | Drive and sense balanced, semi-coupled 3-axis gyroscope |
TWI453371B (zh) * | 2011-12-30 | 2014-09-21 | Ind Tech Res Inst | 一種具振盪模組的微機電系統裝置 |
US8689632B2 (en) * | 2012-01-17 | 2014-04-08 | Freescale Semiconductor, Inc. | Fully decoupled lateral axis gyroscope with thickness-insensitive Z-axis spring and symmetric teeter totter sensing element |
JP6127377B2 (ja) * | 2012-04-10 | 2017-05-17 | セイコーエプソン株式会社 | ジャイロセンサーおよび電子機器 |
CN103234536B (zh) * | 2013-04-15 | 2017-02-08 | 北方工业大学 | 一种压电驱动三自由度扭转振动mems陀螺的设计方法 |
EP2808295B1 (en) * | 2013-05-31 | 2015-12-30 | Tronics Microsystems S.A. | MEMS-Sensor |
US9546868B2 (en) * | 2013-07-26 | 2017-01-17 | The Charles Stark Draper Laboratory, Inc. | Modal decoupling via flexure-based transmissions as applied to a micromachined tuning fork gyroscope |
CN104457726B (zh) * | 2014-11-27 | 2017-07-04 | 歌尔股份有限公司 | 一种三轴微机电陀螺仪 |
FI20155095A (fi) * | 2015-02-11 | 2016-08-12 | Murata Manufacturing Co | Mikromekaaninen kulmanopeusanturi |
FI20155094A (fi) * | 2015-02-11 | 2016-08-12 | Murata Manufacturing Co | Mikromekaaninen kulmanopeusanturi |
FI127203B (en) * | 2015-05-15 | 2018-01-31 | Murata Manufacturing Co | Vibrating micromechanical sensor for angular velocity |
US10113873B2 (en) * | 2015-05-22 | 2018-10-30 | The Charles Stark Draper Laboratory, Inc. | Whole angle MEMS gyroscope |
US20180031602A1 (en) * | 2016-07-27 | 2018-02-01 | Lumedyne Technologies Incorporated | Converting rotational motion to linear motion |
US11118907B2 (en) * | 2018-09-21 | 2021-09-14 | Invensense, Inc. | Drive and sense balanced, fully-coupled 3-axis gyroscope |
JP6922961B2 (ja) * | 2018-10-18 | 2021-08-18 | 株式会社村田製作所 | 回転運動検出用微小電気機械デバイス |
EP3696503B1 (en) * | 2019-02-15 | 2022-10-26 | Murata Manufacturing Co., Ltd. | Vibration-robust multiaxis gyroscope |
US10823569B1 (en) * | 2019-08-22 | 2020-11-03 | Nxp Usa, Inc. | Multiple axis sensing device based on frequency modulation and method of operation |
-
2020
- 2020-09-10 US US17/016,870 patent/US11193770B2/en active Active
- 2020-09-10 CN CN202010947885.1A patent/CN112556675B/zh active Active
- 2020-09-10 TW TW109131196A patent/TWI770605B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8459110B2 (en) * | 2009-12-24 | 2013-06-11 | Stmicroelectronics S.R.L. | Integrated microelectromechanical gyroscope with improved driving structure |
US9360319B2 (en) * | 2013-09-05 | 2016-06-07 | Freescale Semiconductor, Inc. | Multiple sense axis MEMS gyroscope having a single drive mode |
US20150377624A1 (en) * | 2014-06-30 | 2015-12-31 | Stmicroelectronics, S.R.L. | Micro-electro-mechanical device with compensation of errors due to disturbance forces, such as quadrature components |
US20190078887A1 (en) * | 2017-09-12 | 2019-03-14 | Robert Bosch Gmbh | Micromechanical rotational rate sensor system and corresponding production method |
Also Published As
Publication number | Publication date |
---|---|
TW202113360A (zh) | 2021-04-01 |
US20210088335A1 (en) | 2021-03-25 |
CN112556675A (zh) | 2021-03-26 |
CN112556675B (zh) | 2023-03-07 |
US11193770B2 (en) | 2021-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2846132B1 (en) | Multiple sense axis MEMS gyroscope having a single drive mode | |
US11085767B2 (en) | Three-axis MEMS gyroscope | |
US20140230549A1 (en) | Spring system for mems device | |
CN104964679A (zh) | 陀螺仪传感器和电子设备 | |
CN110926445B (zh) | 一种三轴mems陀螺仪 | |
CN109798886B (zh) | 一种陀螺仪结构 | |
CN108955663B (zh) | 一种谐振式双轴微机械轮式陀螺 | |
CN111693036A (zh) | 三轴mems陀螺仪 | |
EP3561451A1 (en) | Triaxial micro-electromechanical gyroscope | |
CN109737943B (zh) | 高精度mems陀螺仪 | |
CN107923751B (zh) | 用于汽车应用的双轴超稳健转速传感器 | |
KR101531093B1 (ko) | 가속도 센서 및 각속도 센서 | |
CN103438878A (zh) | 一种三轴微机械陀螺仪 | |
US20230314139A1 (en) | Three-axis mems gyroscope | |
US20230266124A1 (en) | Mems gyroscope | |
CN102064021B (zh) | 一种微机械梳齿电容器 | |
TWI770605B (zh) | 微機電陀螺儀 | |
CN105424020A (zh) | 一种带解耦功能的音叉型微机电陀螺敏感结构 | |
CN212320730U (zh) | 三轴mems陀螺仪 | |
CN110702088A (zh) | 一种轮式双轴微机械陀螺 | |
CN117330043A (zh) | 一种带杠杆的陀螺仪 | |
CN103424110B (zh) | 微型角速度传感器 | |
CN110253137A (zh) | 一种多光子聚合三维纳米直写的运动定位系统 | |
CN108061546A (zh) | 四质量双解耦陀螺仪 | |
KR20140128706A (ko) | Mems 소자 |