TWI769735B - Spatial light modulator for suppressing fringe field effect - Google Patents

Spatial light modulator for suppressing fringe field effect Download PDF

Info

Publication number
TWI769735B
TWI769735B TW110108864A TW110108864A TWI769735B TW I769735 B TWI769735 B TW I769735B TW 110108864 A TW110108864 A TW 110108864A TW 110108864 A TW110108864 A TW 110108864A TW I769735 B TWI769735 B TW I769735B
Authority
TW
Taiwan
Prior art keywords
pixel
area
pattern
liquid crystal
alignment
Prior art date
Application number
TW110108864A
Other languages
Chinese (zh)
Other versions
TW202221390A (en
Inventor
廖正興
Original Assignee
廖正興
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 廖正興 filed Critical 廖正興
Priority to US17/455,602 priority Critical patent/US11650459B2/en
Publication of TW202221390A publication Critical patent/TW202221390A/en
Application granted granted Critical
Publication of TWI769735B publication Critical patent/TWI769735B/en
Priority to US17/952,172 priority patent/US11774763B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

The present invention discloses a spatial light modulator for suppressing fringe field effect, including: a transparent electrode layer; a reflective electrode layer, which includes a pixel electrode in which a pixel area is surrounded by a boundary of the pixel electrode; a liquid crystal layer, which is located between the transparent electrode layer and the reflective electrode layer to establish a pixel formed by the liquid crystal layer in the pixel area covering the pixel electrode; and an alignment film having a first pattern and a second pattern cover the pixel area. Due to the first pattern and the second pattern in the pixel area, the liquid crystal in the liquid crystal layer of the pixel generates a first azimuth angle and a second azimuth angle, respectively. The first azimuth angle is different from the second azimuth angle.

Description

抑制邊緣場效應的空間光調製器 Spatial Light Modulator for Suppressing Fringing Field Effects

本發明涉及一種空間光調製器(Spatial light modulator,以下簡稱SLM),尤指一種利用配向膜的圖案來抑制邊緣場效應(Fringe field effect,以下簡稱FFE)空間光調製器。 The present invention relates to a spatial light modulator (hereinafter referred to as SLM), in particular to a spatial light modulator that uses a pattern of an alignment film to suppress fringe field effect (hereinafter referred to as FFE).

FFE是像素電極邊界產生的電場洩漏到一個相鄰像素,影響相鄰像素的液晶(以下簡稱LC)對齊,從而對入射到相鄰像素上的光產生非預期的相移。相鄰像素不同位置上的相移都不同,並且在相鄰像素的邊界周圍最為明顯。由於FFE會極大地削弱SLM性能,例如顯著降低繞射效率和相位分佈精度。 FFE is the leakage of the electric field generated by the boundary of the pixel electrode to an adjacent pixel, which affects the alignment of the liquid crystal (hereinafter referred to as LC) of the adjacent pixel, thereby causing an unexpected phase shift to the light incident on the adjacent pixel. The phase shift is different at different locations of adjacent pixels and is most pronounced around the boundaries of adjacent pixels. Since FFE will greatly impair the SLM performance, for example, the diffraction efficiency and phase distribution accuracy will be significantly reduced.

本發明目的之一,在於空間光調製器利用配向膜上的圖案,使LC層以在像素電極上呈現不均勻分佈以抑制FFE。 One of the objectives of the present invention is that the spatial light modulator utilizes the pattern on the alignment film to make the LC layer exhibit uneven distribution on the pixel electrode to suppress FFE.

本發明目的之一,在於空間光調製器利用配向膜上的圖案,使LC層中每一個像素的LC具有至少兩種不同的配 向角。 One of the objectives of the present invention is that the spatial light modulator uses the pattern on the alignment film to make the LC of each pixel in the LC layer have at least two different alignments. angle.

本發明揭露一種抑制邊緣場效應的空間光調製器,包含:一透明電極層;一反射電極層,其包含一像素電極,該像素電極中一像素區域是由該像素電極邊界所圍繞;一液晶層,其位於該透明電極層和該反射電極層之間以建立一像素,該像素是由覆蓋該像素電極的該像素區域中的該液晶層形成;以及一配向膜,具有一第一圖案與一第二圖案並覆蓋於該像素區域,該像素區域中因該第一圖案與該第二圖案,使該像素的該液晶層內的液晶分別產生產生一第一配向角與一第二配向角的排列,且該第一配向角相異於該第二配向角。 The invention discloses a spatial light modulator for suppressing fringe field effect, comprising: a transparent electrode layer; a reflective electrode layer, which includes a pixel electrode, a pixel area in the pixel electrode is surrounded by the boundary of the pixel electrode; a liquid crystal layer, which is located between the transparent electrode layer and the reflective electrode layer to establish a pixel, the pixel is formed by the liquid crystal layer in the pixel area covering the pixel electrode; and an alignment film having a first pattern and A second pattern covers the pixel area. In the pixel area, a first alignment angle and a second alignment angle are generated by the liquid crystal in the liquid crystal layer of the pixel due to the first pattern and the second pattern, respectively. arrangement, and the first alignment angle is different from the second alignment angle.

本發明一種抑制邊緣場效應的空間光調製器於一實施例中,該第一配向角大於該第二配向角。 In an embodiment of the spatial light modulator for suppressing fringing field effect of the present invention, the first alignment angle is greater than the second alignment angle.

本發明一種抑制邊緣場效應的空間光調製器於一實施例中,該液晶層視為平行XY平面,則該第一區域中該液晶層中的每一個該液晶在XY平面與X軸之夾角為該第一配向角,且該第一配向角為大於0度且小於或等於5度。 In an embodiment of the spatial light modulator for suppressing fringe field effect of the present invention, the liquid crystal layer is regarded as parallel to the XY plane, then each liquid crystal in the liquid crystal layer in the first region is at the angle between the XY plane and the X axis is the first alignment angle, and the first alignment angle is greater than 0 degrees and less than or equal to 5 degrees.

1~9:像素電極 1~9: Pixel electrode

100:SLM 100: SLM

120:透明電極層 120: transparent electrode layer

130:反射電極層 130: Reflective electrode layer

110:LC層 110: LC layer

140:基板 140: Substrate

142:剛性板 142: rigid board

145:玻璃板 145: glass plate

182:像素區域 182: Pixel area

181:邊界 181: Border

111、112:像素 111, 112: pixels

101:入射光 101: Incident light

102:反射或繞射光線 102: Reflected or diffracted light

15:配向膜 15: Alignment film

15a、15b:區域 15a, 15b: Area

205、305:像素長度 205, 305: pixel length

210:一維典型分佈 210: One-dimensional canonical distribution

211:像素邊界 211: pixel boundaries

212:受影響部分 212: Affected Parts

240:理想相位延遲分佈 240: Ideal Phase Delay Profile

310、315、330、335、550:曲線 310, 315, 330, 335, 550: Curves

611~622:最佳化像素 611~622: Optimized pixels

631:外部區域 631: External Area

632:內部區域 632: Inner area

635:像素邊界 635: pixel boundaries

636:假想線 636: Imaginary Line

637:間隙 637: Gap

〔圖1〕係顯示本發明一實施例示意圖。 [FIG. 1] is a schematic diagram showing an embodiment of the present invention.

〔圖2〕是一個受FFE影響的相位延遲典型分佈,以及一個沒 有受FFE影響的理想相位延遲分佈。 [Figure 2] is a typical distribution of phase delay affected by FFE, and a There is an ideal phase delay profile affected by FFE.

〔圖3〕通過配向角修正的邊緣場效應之橫截面示意圖。 [FIG. 3] A schematic cross-sectional view of the fringing field effect through alignment angle correction.

〔圖4〕顯示一個液晶位於三維座標系統之示意圖。 [FIG. 4] shows a schematic diagram of a liquid crystal in a three-dimensional coordinate system.

〔圖5〕是一個不均勻分佈的FFE-抵消特徵之示意圖。 [Fig. 5] is a schematic diagram of a non-uniformly distributed FFE-cancellation feature.

〔圖6〕顯示FFE被配向角不均勻分佈有效抵消 [Fig. 6] shows that the FFE is effectively canceled by the uneven distribution of the alignment angle

請參閱圖1,圖1顯示本發明空間光調製器100(Spatial light modulator,以下簡稱SLM)的示意圖,SLM 100包含透明電極層120、反射電極層130、以及位於透明電極層120和反射電極層130之間的液晶(以下簡稱LC)層110與配向膜15。 Please refer to FIG. 1. FIG. 1 shows a schematic diagram of a spatial light modulator 100 (Spatial light modulator, hereinafter referred to as SLM) of the present invention. The SLM 100 includes a transparent electrode layer 120, a reflective electrode layer 130, and the transparent electrode layer 120 and the reflective electrode layer. The liquid crystal (hereinafter referred to as LC) layer 110 and the alignment film 15 between the 130 .

請注意,反射電極層130包含多個像素電極(包含像素電極1~9),排列成一個陣列,形成多個像素(Pixels),每個像素都包含一個像素電極及其上的一部分LC層110。像素電極1~9中的像素區域182是由像素電極邊界181所圍繞。 Please note that the reflective electrode layer 130 includes a plurality of pixel electrodes (including the pixel electrodes 1 to 9), which are arranged in an array to form a plurality of pixels (Pixels), and each pixel includes a pixel electrode and a part of the LC layer 110 thereon. . The pixel regions 182 in the pixel electrodes 1 to 9 are surrounded by the pixel electrode boundary 181 .

LC層110其位於透明電極層120和反射電極層130之間以建立一像素,像素是由覆蓋像素電極的像素區域182中的LC層110形成。 The LC layer 110 is located between the transparent electrode layer 120 and the reflective electrode layer 130 to create a pixel formed by the LC layer 110 in the pixel area 182 covering the pixel electrode.

配向膜15上具有一第一圖案與一第二圖案並覆蓋於像素區域,像素區域182因第一圖案與該第二圖案,使像素區域182像素的LC層110的液晶分別產生產生一第一配向角(azimuth angle)與一第二配向角的排列,且第一配向角相異於 第二配向角。 A first pattern and a second pattern are formed on the alignment film 15 and cover the pixel area. The pixel area 182 generates a first pattern due to the first pattern and the second pattern respectively in the liquid crystal of the LC layer 110 of the pixel area 182 The alignment angle (azimuth angle) and the arrangement of a second alignment angle, and the first alignment angle is different from second alignment angle.

在一實施例中,反射電極層130形成在基板140上,使得SLM 100是一個液晶覆矽(又稱矽基液晶或單晶矽反射式液晶,英文:Liquid Crystal On Silicon,LCoS)SLM。剛性板142如陶瓷基板或金屬板可以用於機械支撐基板140及其上的元件。玻璃板145安裝在透明電極層120上以提供機械保護,並允許光穿過到達LC層110(如果SLM 100是用於調製可見光的話)。 In one embodiment, the reflective electrode layer 130 is formed on the substrate 140 , so that the SLM 100 is a liquid crystal on silicon (also called liquid crystal on silicon or single crystal silicon reflective liquid crystal, English: Liquid Crystal On Silicon, LCoS) SLM. A rigid plate 142 such as a ceramic substrate or a metal plate may be used to mechanically support the substrate 140 and components thereon. Glass plate 145 is mounted on transparent electrode layer 120 to provide mechanical protection and allow light to pass through to LC layer 110 (if SLM 100 is used to modulate visible light).

氧化銦錫(ITO)可以用於形成透明電極層120,在大多數實際實施裡,LC層110是均勻平面型的(其中LC分子沿著平行于透明電極層120的方向排列)、垂直的(其中LC分子沿著垂直于透明電極層120的方向排列)、或扭轉的(LC分子以螺旋狀結構排列)。 Indium tin oxide (ITO) can be used to form the transparent electrode layer 120. In most practical implementations, the LC layer 110 is uniformly planar (wherein the LC molecules are aligned along a direction parallel to the transparent electrode layer 120), vertical ( The LC molecules are arranged in a direction perpendicular to the transparent electrode layer 120), or twisted (the LC molecules are arranged in a helical structure).

本發明的一個方面是提供一種用於調製入射光的SLM,其中SLM通過配置SLM的LC層以將像素電極上配向角顯示為不均勻分佈,即配向膜15上具有兩個不同圖案區域,而產生對應於區域之間的配向角具有差異以抑制FFE,故不需要改變像素電極的形狀。例如,如果在初始設計裡使用了矩形像素電極,在將本發明應用在初始設計上之後,仍然可以使用同樣的矩形像素電極。 One aspect of the present invention is to provide an SLM for modulating incident light, wherein the SLM displays an uneven distribution of the alignment angle on the pixel electrode by configuring the LC layer of the SLM, that is, the alignment film 15 has two different pattern regions, and The difference in alignment angle between the corresponding regions is generated to suppress FFE, so it is not necessary to change the shape of the pixel electrode. For example, if rectangular pixel electrodes are used in the initial design, the same rectangular pixel electrodes can still be used after applying the present invention to the initial design.

圖1描述本發明一個示例性SLM 100結構。SLM 100包含一個透明電極層120、一個反射電極層130、以及一個 位於透明電極層120和反射電極層130之間的LC層110。反射電極層130包含多個像素電極(包含像素電極1~9),排列成一個陣列,形成多個像素,每個像素都包含一個像素電極及其上的一部分LC層110。在一個實施例中,反射電極層130形成在基板140上,使得SLM 100是一個LCOS SLM。一個剛性板142如陶瓷基板或金屬板可以用於機械支撐基板140及其上的元件。優選地,一個玻璃板145安裝在透明電極層120上以提供機械保護,並允許光穿過到達LC層110(如果SLM 100是用於調製可見光的話)。本領域普通技術人員知道,氧化銦錫(ITO)可以用於形成透明電極層120。在大多數實際實施裡,LC層110是均勻平面型的(其中LC分子沿著平行于透明電極層120的方向排列)、垂直的(其中LC分子沿著垂直于透明電極層120的方向排列)、或扭轉的(LC分子以螺旋狀結構排列)。 FIG. 1 depicts an exemplary SLM 100 structure of the present invention. SLM 100 includes a transparent electrode layer 120, a reflective electrode layer 130, and a The LC layer 110 is located between the transparent electrode layer 120 and the reflective electrode layer 130 . The reflective electrode layer 130 includes a plurality of pixel electrodes (including pixel electrodes 1 to 9) arranged in an array to form a plurality of pixels, each pixel includes a pixel electrode and a part of the LC layer 110 thereon. In one embodiment, reflective electrode layer 130 is formed on substrate 140 such that SLM 100 is an LCOS SLM. A rigid plate 142 such as a ceramic substrate or metal plate may be used to mechanically support the substrate 140 and components thereon. Preferably, a glass plate 145 is mounted on the transparent electrode layer 120 to provide mechanical protection and allow light to pass through to the LC layer 110 (if the SLM 100 is used to modulate visible light). Those of ordinary skill in the art know that indium tin oxide (ITO) may be used to form the transparent electrode layer 120 . In most practical implementations, the LC layer 110 is uniformly planar (in which the LC molecules are aligned in a direction parallel to the transparent electrode layer 120 ), vertical (in which the LC molecules are aligned in a direction perpendicular to the transparent electrode layer 120 ) , or twisted (LC molecules arranged in a helical structure).

為求簡潔,下面僅以像素電極1~9作為代表像素電極來進行描述。像素電極1有一個像素區域182,其是一個由像素電極1的邊界181圍住的區域。像素111形成在像素電極1上,為覆蓋像素區域182的LC層110。由於像素111位於像素區域182上,故,像素111的像素邊界也是邊界181。一個包含像素111和一個相鄰像素的大像素112也被設定,當入射光線101進入像素111和112時,入射光線101經歷一次光相位延遲,延遲量取決於像素電極1、5(或3、7和9)和透明電極層120之間的電壓差。當入射光線101到達像素電極1、5(或3、 7和9)時,入射光線101被反射或繞射,形成反射或繞射光線102。當再次穿過LC層110期間,反射或繞射光線102還經歷另一次相位延遲,其延遲量基本上接近剛才所述的延遲量。因此總共有剛才所述延遲量兩倍的相位延遲。 For the sake of brevity, only pixel electrodes 1 to 9 are used as representative pixel electrodes for description below. The pixel electrode 1 has a pixel area 182 , which is an area surrounded by the border 181 of the pixel electrode 1 . The pixel 111 is formed on the pixel electrode 1 and is the LC layer 110 covering the pixel region 182 . Since the pixel 111 is located on the pixel area 182 , the pixel boundary of the pixel 111 is also the boundary 181 . A large pixel 112 including the pixel 111 and an adjacent pixel is also set. When the incident light 101 enters the pixels 111 and 112, the incident light 101 undergoes an optical phase delay, and the amount of delay depends on the pixel electrodes 1, 5 (or 3, 7 and 9) and the voltage difference between the transparent electrode layer 120. When the incident light 101 reaches the pixel electrodes 1, 5 (or 3, 7 and 9), the incident light 101 is reflected or diffracted to form a reflected or diffracted light 102. While passing through the LC layer 110 again, the reflected or diffracted light ray 102 also undergoes another phase delay, the amount of delay being substantially close to that just described. There is therefore a total of twice the phase delay just described.

像素111有緊靠像素111的相鄰像素,這些相鄰像素都由像素電極2~9上的一部分LC層110構成。當任何一個像素電極2~9上施加的電壓不同於像素電極1上施加的電壓時,會產生FFE,負面影響像素111。結果,像素111產生的相位延遲會在像素區域182上變得不均勻,使得像素111的相位延遲分佈在二維上不均勻。 The pixel 111 has adjacent pixels adjacent to the pixel 111, and these adjacent pixels are formed by a part of the LC layer 110 on the pixel electrodes 2-9. When the voltage applied to any one of the pixel electrodes 2 to 9 is different from the voltage applied to the pixel electrode 1 , FFE will be generated, which negatively affects the pixel 111 . As a result, the phase delay generated by the pixels 111 may become non-uniform on the pixel area 182, so that the phase delay distribution of the pixels 111 is two-dimensionally non-uniform.

請參考圖2,圖2描述了一個在FFE影響下沿著像素長度205的相位延遲的一維典型分佈210,和一個沒有受FFE影響的理想相位延遲分佈240。當典型分佈210與理想相位延遲分佈240進行比較時,可以看出,FFE在像素邊界211附近的像素長度205的某個受影響部分212上引起相位延遲的很大波動。 Please refer to FIG. 2, which depicts a typical one-dimensional distribution 210 of phase delay along a pixel length 205 under the influence of FFE, and an ideal phase delay distribution 240 that is not affected by FFE. When the typical profile 210 is compared to the ideal phase delay profile 240, it can be seen that the FFE causes large fluctuations in phase delay over some affected portion 212 of the pixel length 205 near the pixel boundary 211.

發明人已經發現,通過在受影響部分212上微調製“FFE-抵消特徵(FFE-opposing feature)”,能夠顯著降低相位延遲波動以抵消FFE。FFE-抵消特徵是LC層的一個可調諧屬性。如發明人所發現的,一個“FFE-抵消特徵”的可用集合包含一個配向角。配向角分別與LC的排列密度和排列強度有關。LC的排列密度和排列強度相應確定LC抵消FFE的 能力。 The inventors have discovered that by fine-tuning the "FFE-opposing feature" on the affected portion 212, the phase delay fluctuations can be significantly reduced to counteract the FFE. The FFE-cancellation feature is a tunable property of the LC layer. As discovered by the inventors, an available set of "FFE-cancellation features" contains an alignment angle. The alignment angle is related to the alignment density and alignment strength of LC, respectively. The arrangement density and arrangement strength of the LC determine the corresponding LC offset of the FFE ability.

根據本發明,LC層110裡至少一個像素被實現為最佳化像素,該像素是根據微調製一個選中的FFE-抵消特徵而被特定設置以抵消FFE的像素。LC層110裡的每個像素最好都被實現為最佳化像素。在以下的描述裡,在像素電極1上的像素111被視為一個實現為最佳化像素的示例性像素。選擇或確定像素區域182上不均勻分佈的FFE-抵消特徵(即非均勻分佈),以抵抗由像素電極2~9上的相鄰像素所引起的FFE。 In accordance with the present invention, at least one pixel in the LC layer 110 is implemented as an optimized pixel, which is a pixel specifically set to cancel the FFE in accordance with micro-modulation of a selected FFE-cancellation feature. Each pixel in the LC layer 110 is preferably implemented as an optimized pixel. In the following description, the pixel 111 on the pixel electrode 1 is regarded as an exemplary pixel implemented as an optimized pixel. Non-uniformly distributed FFE-cancelling features (ie, non-uniform distribution) on pixel region 182 are selected or determined to counteract FFE caused by adjacent pixels on pixel electrodes 2-9.

由於FFE主要影響像素111的像素邊界181,可以進一步簡化,像素111的受影響部分212是像素111的一個外部區域,其中外部區域是指像素邊界181和從該邊界181向內某個距離之間的區域。所述某個距離可以通過計算或電腦類比進行估計。 Since the FFE mainly affects the pixel boundary 181 of the pixel 111, it can be further simplified. The affected portion 212 of the pixel 111 is an outer area of the pixel 111, wherein the outer area refers to the distance between the pixel boundary 181 and a certain distance inward from the boundary 181. Area. The certain distance can be estimated by calculation or computer analogy.

請參考圖3,圖3顯示配向膜15上具有一第一圖案與一第二圖案的區域圖;其中每一個方型實框代表一個像素區域,每一個像素的像素區域中具有第一區域15a與第二區域15b(方形虛線框內);第一區域15a為第一圖案的位置,第一區域在本實施例中的俯視圖為方型環,且第一區域15a圍繞第二區域15b,第二區域15b為一方型區域填滿方型環之內部,且方型環的寬度為大於或等於該像素之邊緣場效應的範圍。 Please refer to FIG. 3 . FIG. 3 shows an area diagram of a first pattern and a second pattern on the alignment film 15 ; each square solid frame represents a pixel area, and the pixel area of each pixel has a first area 15 a and the second area 15b (inside the square dotted line frame); the first area 15a is the position of the first pattern, the top view of the first area in this embodiment is a square ring, and the first area 15a surrounds the second area 15b, the first area The two regions 15b are square-shaped regions that fill the interior of the square-shaped ring, and the width of the square-shaped ring is greater than or equal to the range of the fringe field effect of the pixel.

請同時參考圖1、3以及4,圖4顯示一個液晶位於三維座標系統之示意圖,其中該液晶層視為平行XY平面,則第一區域15a中該液晶層中的每一個液晶在XY平面與X軸之夾角為第一配向角α,且第一配向角α為大於0度且小於或等於5度。 Please refer to FIGS. 1 , 3 and 4 at the same time. FIG. 4 shows a schematic diagram of a liquid crystal in a three-dimensional coordinate system, wherein the liquid crystal layer is regarded as parallel to the XY plane, and each liquid crystal in the liquid crystal layer in the first region 15a is in the XY plane and the XY plane. The included angle of the X axis is the first alignment angle α, and the first alignment angle α is greater than 0 degrees and less than or equal to 5 degrees.

在一實施例中,同上所述,第二區域15b中之該第二配向角β(圖未示)為0度,第一配向角α與第二配向角β與Z軸夾角均為90度,即第一區域15a與第二區域15b位於在XY平面上。 In one embodiment, as described above, the second alignment angle β (not shown) in the second region 15b is 0 degrees, and the first alignment angle α, the second alignment angle β and the Z axis are both 90 degrees. , that is, the first area 15a and the second area 15b are located on the XY plane.

因每一個像素的像素區域均有兩個不同的圖案形成兩個不同的配向角α、β,換言之,每一個像素區域的液晶形成方型環狀的不均勻分布以抵消FFE,圖5作為一實施例描述了12個最佳化像素611~622的不均勻分佈的FFE-抵消特徵。下面以最佳化像素611作為一個代表性最佳化像素進行描述。像素611有一個像素邊界635。像素611的外部區域631是在像素邊界635和假想線636之間的一個區域。假想線636位於最佳化像素611上,並距離像素邊界635一個距離633。距離633的確定,要使得外部區域631是一個受影響部分(即上述的受影響部分212)。內部區域632是由假想線636所圍住的一個區域。像素611被配置,使得外部區域631有第一數值的FFE-抵消特徵,內部區域632有第二數值的FFE-抵消特徵。注意 到,像素611~622是在一個連續LC層上(如LC層110)形成。在兩個相鄰像素之間,有一個像素間間隙,例如在兩個像素611、612之間的間隙637;實際上,在間隙637上的LC層可以配置成具有第一數值的FFE-抵消特徵。因此,可以避免沿著像素邊界的635 FFE-抵消特徵的不連續性。 Because the pixel area of each pixel has two different patterns to form two different alignment angles α, β, in other words, the liquid crystal in each pixel area forms a square annular uneven distribution to offset the FFE, as shown in Figure 5. The embodiment describes the unevenly distributed FFE-cancellation feature of 12 optimized pixels 611-622. The following description takes the optimized pixel 611 as a representative optimized pixel. Pixel 611 has a pixel boundary 635. The outer area 631 of the pixel 611 is an area between the pixel boundary 635 and the imaginary line 636 . An imaginary line 636 is located on the optimized pixel 611 and a distance 633 from the pixel boundary 635. Distance 633 is determined such that outer region 631 is an affected portion (ie, affected portion 212 described above). The inner area 632 is an area enclosed by an imaginary line 636 . Pixels 611 are configured such that outer regions 631 have a first value of FFE-cancellation characteristics and inner regions 632 have a second value of FFE-cancellation characteristics. Notice Thus, the pixels 611-622 are formed on a continuous LC layer (eg, the LC layer 110). Between two adjacent pixels, there is an inter-pixel gap, such as gap 637 between two pixels 611, 612; in fact, the LC layer over gap 637 can be configured to have a first value of FFE-offset feature. Thus, discontinuities of 635 FFE-offset features along pixel boundaries can be avoided.

接著請參考圖6,圖6顯示FFE被配向角不均勻分佈有效抵消。在圖6,在像素長度305上相位延遲曲線310、315、320及等電位曲線330、335、340繪製了一個使用不均勻配向角分佈的案例和一個使用均勻分佈的參考案例。使用電腦類比獲得在以下條件下的曲線310、315、320、330、335、340:像素長度為6.2μm;像素間間隙0.2μm;在兩個相鄰像素之間最差情景的電壓差5V;外部區域在像素邊界和距其1μm之間。顯然,在像素長度305上,不均勻配向角分佈的相位延遲曲線320的平坦區域比均勻分佈情景的相位延遲曲線310、315裡對應平坦區域更長。當檢查等電位曲線330、335、340與相位延遲曲線時也能獲得類似結論。顯示了使用不均勻配向角分佈的有效性。 Next, please refer to FIG. 6 , which shows that the FFE is effectively canceled by the uneven distribution of the alignment angle. In Figure 6, phase delay curves 310, 315, 320 and equipotential curves 330, 335, 340 over pixel length 305 plot a case using a non-uniform alignment angle distribution and a reference case using a uniform distribution. Using computer analogy to obtain curves 310, 315, 320, 330, 335, 340 under the following conditions: pixel length 6.2 μm; inter-pixel gap 0.2 μm; worst-case voltage difference 5V between two adjacent pixels; The outer region is between the pixel boundary and 1 μm from it. Obviously, over the pixel length 305, the flat area of the phase delay curve 320 of the uneven alignment angle distribution is longer than the corresponding flat areas of the phase delay curves 310, 315 of the uniform distribution scenario. Similar conclusions can be obtained when examining the equipotential curves 330, 335, 340 and the phase delay curves. The effectiveness of using a non-uniform alignment angle distribution is shown.

一實施例中,奈米結構對齊層(圖未示)添加到配向膜15上,用於改變配向角,使液晶具有配向角不均勻分佈。其中,奈米結構對齊層被圖案化以在其配向膜15上形成奈米結構,奈米結構的尺寸和形狀用於實現該第一圖案與該第二圖案,使該像素區域所在的液晶具有不均勻配向角分佈;即, 奈米結構對齊層受到母板直接以奈米級壓印(nanoimprinting)進行圖案轉印,造成表面具有高低起伏之微溝槽結構,進而控制液晶分子的排列。 In one embodiment, a nanostructure alignment layer (not shown) is added on the alignment film 15 to change the alignment angle, so that the liquid crystal has an uneven distribution of the alignment angle. The nanostructure alignment layer is patterned to form nanostructures on its alignment film 15, and the size and shape of the nanostructures are used to realize the first pattern and the second pattern, so that the liquid crystal in which the pixel area is located has Non-uniform alignment angle distribution; i.e., The nanostructure alignment layer is directly patterned by nanoimprinting on the mother board, resulting in a micro-groove structure with high and low undulations on the surface, thereby controlling the arrangement of liquid crystal molecules.

圖3是顯示通過配向角修正的邊緣場效應之橫截面示意圖,其中放大顯示液晶分子的配向角的差異;基於光配向過程,預傾角和錨定能量方法難以精確控制;相對應地,基於光配向過程,配向角方法在生產過程中易於控制且更精確。另外,通過配向角方法可以減小並完全抑制邊緣場效應的雜訊(串擾)。 Fig. 3 is a schematic cross-sectional view showing fringe field effect through alignment angle correction, wherein the difference in alignment angle of liquid crystal molecules is shown enlarged; based on the photo-alignment process, it is difficult to precisely control the pretilt angle and the anchoring energy method; Alignment process, the alignment angle method is easier to control and more precise in the production process. In addition, the fringing field effect noise (crosstalk) can be reduced and completely suppressed by the alignment angle method.

於一實施例中,配向膜包含一液晶材料,以及通過單體聚合形成的一聚合材料,用於穩定該LC材料;其中,聚合材料是由在像素區域上具有不均勻分佈聚合度的單體形成;配向膜使用一個不具有梯度變化的強度的光束照射該單體而形成第一圖案與第二圖案,而使第一區域15a與第二區域15b的液晶層具有兩種不同的配向角。即光配向是以偏極化紫外光(UV)以特定的方向照射具有感光基的聚合物,使其產生分子鏈的破壞與重排,造成配向膜表面微溝槽或高分子主鏈有非等向性的分佈進而控制液晶分子的排列。 In one embodiment, the alignment film includes a liquid crystal material and a polymer material formed by polymerization of monomers for stabilizing the LC material; wherein the polymer material is composed of a monomer having a degree of polymerization unevenly distributed on the pixel area. forming; the alignment film uses a light beam with no gradient intensity to irradiate the monomer to form a first pattern and a second pattern, so that the liquid crystal layers in the first region 15a and the second region 15b have two different alignment angles. That is, photo-alignment is to irradiate the polymer with photosensitive groups in a specific direction with polarized ultraviolet light (UV), so that the molecular chain is destroyed and rearranged, resulting in micro-grooves on the surface of the alignment film or irregularities in the polymer main chain. The isotropic distribution in turn controls the alignment of the liquid crystal molecules.

請注意,本發明的配向膜15若使用光配向法,則配向膜15係使用一個不具有梯度變化的強度的光束照射單體而分次形成第一圖案與第二圖案,使該液晶層具有第一配向角與第二配向角以達到不均勻配向角分佈。 Please note that if the alignment film 15 of the present invention uses a photo-alignment method, the alignment film 15 uses a light beam with no gradient intensity to irradiate the monomer to form the first pattern and the second pattern in stages, so that the liquid crystal layer has The first alignment angle and the second alignment angle are used to achieve uneven alignment angle distribution.

綜上所述,本發明配向膜具有不同區域且對應不同圖案,使原FFE所在的區域的液晶具有一特定配向角,達到抑制邊緣場效應的目的。 To sum up, the alignment film of the present invention has different regions and corresponds to different patterns, so that the liquid crystal in the region where the original FFE is located has a specific alignment angle, so as to achieve the purpose of suppressing fringe field effects.

Claims (9)

一種抑制邊緣場效應的空間光調製器,包含:一透明電極層;一反射電極層,其包含一像素電極,該像素電極中一像素區域是由該像素電極邊界所圍繞;一液晶層,其位於該透明電極層和該反射電極層之間以建立一像素,該像素是由覆蓋該像素電極的該像素區域中的該液晶層形成;以及一配向膜,具有一第一圖案與一第二圖案並覆蓋於該像素區域;該像素區域因該第一圖案與該第二圖案,使該像素的該液晶層內的一液晶分別產生產生一第一配向角與一第二配向角的排列,且該第一配向角相異於該第二配向角;其中,該液晶層所在之平面為XY平面,該第一配向角與該第二配向角為該液晶層所在XY平面與X軸之夾角。 A spatial light modulator for suppressing fringe field effect, comprising: a transparent electrode layer; a reflective electrode layer, which includes a pixel electrode, a pixel area in the pixel electrode is surrounded by the boundary of the pixel electrode; a liquid crystal layer, which between the transparent electrode layer and the reflective electrode layer to establish a pixel, the pixel is formed by the liquid crystal layer in the pixel area covering the pixel electrode; and an alignment film having a first pattern and a second and cover the pixel area; the pixel area causes a liquid crystal in the liquid crystal layer of the pixel to generate a first alignment angle and a second alignment angle respectively due to the first pattern and the second pattern, And the first alignment angle is different from the second alignment angle; wherein, the plane where the liquid crystal layer is located is the XY plane, and the first alignment angle and the second alignment angle are the angle between the XY plane where the liquid crystal layer is located and the X axis . 根據請求項1所述的空間光調製器,其中,該像素之該像素區域具有一第一區域與一第二區域,該第一圖案設置於該第一區域,該第二圖案設置於該第二區域,且該第一圖案環繞該第二圖案。 The spatial light modulator according to claim 1, wherein the pixel area of the pixel has a first area and a second area, the first pattern is disposed in the first area, and the second pattern is disposed in the first area two regions, and the first pattern surrounds the second pattern. 根據請求項2所述的空間光調製器,其中,該第一配向角大於該第二配向角。 The spatial light modulator of claim 2, wherein the first alignment angle is greater than the second alignment angle. 根據請求項3所述的空間光調製器,其中,該第一配向角為大於0度且小於或等於5度。 The spatial light modulator according to claim 3, wherein the first alignment angle is greater than 0 degrees and less than or equal to 5 degrees. 根據請求項4所述的空間光調製器,其中,該液晶層是均勻平面型、或垂直型、或扭轉型。 The spatial light modulator according to claim 4, wherein the liquid crystal layer is of a uniform planar type, or a vertical type, or a twisted type. 根據請求項5所述的空間光調製器,其中,該配向膜受一個不具有梯度變化的強度的光束照射而分次形成該第一圖案與該第二圖案,以達到該液晶層具有該第一配向角與該第二配向角的不均勻分布。 The spatial light modulator according to claim 5, wherein the alignment film is irradiated by a light beam with no gradient intensity to form the first pattern and the second pattern in stages, so that the liquid crystal layer has the first pattern. A non-uniform distribution of the alignment angle and the second alignment angle. 根據請求項4所述的空間光調製器,其中,該第一區域為一方型環,且該第一區域圍繞該第二區域,且該第二區域為一方型區域填滿該方型環之內部。 The spatial light modulator according to claim 4, wherein the first area is a square ring, the first area surrounds the second area, and the second area is a square area that fills the square ring internal. 根據請求項7所述的空間光調製器,其中,該方型環的寬度為大於或等於該像素之邊緣場效應的範圍。 The spatial light modulator according to claim 7, wherein the width of the square ring is greater than or equal to the range of the fringe field effect of the pixel. 根據請求項5所述的的空間光調製器,其中,更包含:一個奈米結構對齊層,該奈米結構對齊層被圖案化以在其該配向膜上形成奈米結構,該奈米結構的尺寸和形狀用於實現該第一圖案與該第二圖案,使該像素區域所在的該液晶具有不均勻配向角分佈。 The spatial light modulator according to claim 5, further comprising: a nanostructure alignment layer, the nanostructure alignment layer is patterned to form nanostructures on the alignment film, the nanostructures The size and shape of are used to realize the first pattern and the second pattern, so that the liquid crystal in which the pixel area is located has a non-uniform alignment angle distribution.
TW110108864A 2020-11-18 2021-03-12 Spatial light modulator for suppressing fringe field effect TWI769735B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/455,602 US11650459B2 (en) 2020-11-18 2021-11-18 Spatial light modulator for suppressing fringe field effect
US17/952,172 US11774763B2 (en) 2020-11-18 2022-09-23 Optical device utilizing LCoS substrate and spatial light modulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW109140379 2020-11-18
TW109140379 2020-11-18

Publications (2)

Publication Number Publication Date
TW202221390A TW202221390A (en) 2022-06-01
TWI769735B true TWI769735B (en) 2022-07-01

Family

ID=81594677

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110108864A TWI769735B (en) 2020-11-18 2021-03-12 Spatial light modulator for suppressing fringe field effect

Country Status (2)

Country Link
CN (1) CN114518665A (en)
TW (1) TWI769735B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106716238A (en) * 2016-12-13 2017-05-24 香港应用科技研究院有限公司 Spatial light modulator reducing fringing field effect
CN111458914A (en) * 2020-04-20 2020-07-28 深圳市科创数字显示技术有限公司 Liquid crystal on silicon spatial light modulator and wavelength selective switch
TW202028835A (en) * 2018-12-07 2020-08-01 美商複合光子股份有限公司 Display system, spatial light modulator system and method of forming display system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7339641B2 (en) * 2005-04-20 2008-03-04 Research Foundation Of The University Of Central Florida Transflective liquid crystal display with fringing and longitudinal electric field
KR100928146B1 (en) * 2007-09-11 2009-11-24 전북대학교산학협력단 Single gap transflective liquid crystal display device
KR101829454B1 (en) * 2010-07-30 2018-02-20 삼성디스플레이 주식회사 Liquid crystal display panel equipped with unit-pixels having multi-domain and optical mask for manufacturing the same
CN104503143B (en) * 2014-12-17 2017-09-26 深圳市华星光电技术有限公司 A kind of transflective liquid crystal display and its manufacture method
CN104570513A (en) * 2014-12-29 2015-04-29 深圳市华星光电技术有限公司 Pixel structure and liquid crystal display panel
US10416498B2 (en) * 2016-12-13 2019-09-17 Hong Kong Applied Science and Technology Research Institute Company Limited Reducing fringe field effect for spatial light modulator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106716238A (en) * 2016-12-13 2017-05-24 香港应用科技研究院有限公司 Spatial light modulator reducing fringing field effect
TW202028835A (en) * 2018-12-07 2020-08-01 美商複合光子股份有限公司 Display system, spatial light modulator system and method of forming display system
CN111458914A (en) * 2020-04-20 2020-07-28 深圳市科创数字显示技术有限公司 Liquid crystal on silicon spatial light modulator and wavelength selective switch

Also Published As

Publication number Publication date
CN114518665A (en) 2022-05-20
TW202221390A (en) 2022-06-01

Similar Documents

Publication Publication Date Title
US11726366B2 (en) Liquid crystal display apparatus
CN110297354B (en) Color film substrate, liquid crystal display device and preparation method
JPWO2008062682A1 (en) Liquid crystal display panel and method for manufacturing liquid crystal display panel
TWI438536B (en) Liquid crystal display and method of manufacturing the same
TWI391759B (en) Liquid crystal display and method of manufacturing the same
US20130183612A1 (en) Method for producing substrate for liquid crystal display panel, and photomask
CN106716238B (en) Spatial light modulator with reduced edge field effect
JP2009014885A (en) Liquid crystal display and manufacturing method therefor
KR101097345B1 (en) An liquid crystal display device and the manufacturing method thereof
US10416498B2 (en) Reducing fringe field effect for spatial light modulator
CN110320709B (en) Liquid crystal panel and method for manufacturing same
US11086166B2 (en) Liquid crystal panel and method of manufacturing thereof
JP7165556B2 (en) Liquid crystal optical modulators, liquid crystal display devices, and holographic devices
US20160011472A1 (en) Liquid crystal display device
TWI769735B (en) Spatial light modulator for suppressing fringe field effect
CN106773255A (en) Display panel and display device
KR20090105019A (en) Method of manufacturing liquid crystal display
WO2010100920A1 (en) Liquid crystal display apparatus and manufacturing method thereof
US11650459B2 (en) Spatial light modulator for suppressing fringe field effect
US10551681B2 (en) Liquid crystal panel and method of manufacturing thereof
US20190302541A1 (en) Liquid crystal panel and method of manufacturing thereof
KR102133871B1 (en) Liquid crystal panel and liquid crystal device
JP2008241959A (en) Liquid crystal display
JP2009098476A (en) Liquid crystal display device and method for manufacturing the same