TW202028835A - Display system, spatial light modulator system and method of forming display system - Google Patents

Display system, spatial light modulator system and method of forming display system Download PDF

Info

Publication number
TW202028835A
TW202028835A TW108144770A TW108144770A TW202028835A TW 202028835 A TW202028835 A TW 202028835A TW 108144770 A TW108144770 A TW 108144770A TW 108144770 A TW108144770 A TW 108144770A TW 202028835 A TW202028835 A TW 202028835A
Authority
TW
Taiwan
Prior art keywords
spatial light
retarder
light modulator
display system
wavelengths
Prior art date
Application number
TW108144770A
Other languages
Chinese (zh)
Other versions
TWI826607B (en
Inventor
尼古拉斯威廉 梅莉娜
泰利詹姆斯 謝弗
Original Assignee
美商複合光子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商複合光子股份有限公司 filed Critical 美商複合光子股份有限公司
Publication of TW202028835A publication Critical patent/TW202028835A/en
Application granted granted Critical
Publication of TWI826607B publication Critical patent/TWI826607B/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136277Active matrix addressed cells formed on a semiconductor substrate, e.g. of silicon
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/006Projectors using an electronic spatial light modulator but not peculiar thereto using LCD's
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/02Function characteristic reflective
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/04Function characteristic wavelength independent
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/12Function characteristic spatial light modulator
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/05Single plate on one side of the LC cell

Abstract

A display system includes a spatial light modulator comprising a first substrate, a second substrate, and a liquid crystal layer between the first substrate and the second substrate. The spatial light modulator is characterized by a first retardation and a first phase retardation and has a first slow axis for light propagation. A voltage source is configured to apply a drive voltage to the spatial light modulator and the first retardation of the spatial light modulator is a function of the drive voltage. A retarder is positioned external to the spatial light modulator and is characterized by a second retardation and a second phase retardation. The retarder includes a second slow axis for light propagation. The second retardation has a value such that all illumination wavelengths in a set of illumination wavelengths are above or below a phase retardation value of 0.25. The set of illumination wavelengths includes at least one illumination wavelength in each of at least three different color spectrums.

Description

顯示系統、空間光調變器系統及顯示系統的形成方法Display system, spatial light modulator system and method for forming display system

本發明係關於空間光調變器(Spatial Light Modulators,SLMs)(如顯示器、液晶顯示器(液晶Displays,LCDs)、液晶微顯示器(液晶Microdisplays)以及液晶空間光調變器),其具有可獨立操作的像素。更特別地,本發明係針對例如為矽基液晶(液晶on Silicon,LCoS)空間光調變器或顯示器的空間光調變器,應用在但不限於是投影器、抬頭顯示器以及例如為頭戴式裝置的擴增實境(Augmented Reality,AR)、混合實境(Mixed Reality)及虛擬實境(Virtual Reality,VR)系統或裝置。The present invention relates to Spatial Light Modulators (SLMs) (such as displays, liquid crystal displays (LCDs), liquid crystal microdisplays and liquid crystal spatial light modulators), which have independent operations Of pixels. More particularly, the present invention is directed to, for example, liquid crystal on silicon (liquid crystal on Silicon, LCoS) spatial light modulator or display spatial light modulator, which is applied to, but not limited to, projectors, head-up displays and, for example, head-mounted displays. Augmented Reality (AR), Mixed Reality (Mixed Reality) and Virtual Reality (Virtual Reality, VR) systems or devices that can be used as devices.

應用於取像的液晶空間光調變器包含使用鐵電液晶(Ferroelectric Liquid Crystal)的類型和使用向列型液晶(Nematic Liquid Crystal)的類型。向列型類型中的液晶可具有正或負介電異向性。負異向性類型一般具有較高對比度且較適於投影及近眼的應用,例如應用於AR和VR頭戴式裝置。使用有負介電異向性之液晶的空間光調變器使用包含垂直配向(Vertically Aligned Nematic,VAN)顯示模式和扭轉垂直配向(Twisted Vertically Aligned Nematic,TVAN)顯示模式的電光模式(Electro-Optic Mode)。扭轉垂直配向描述於美國專利號8,724,059和9,551,901中,其透過引用併入本文。The liquid crystal spatial light modulator used in image capturing includes a type using ferroelectric liquid crystal (Ferroelectric Liquid Crystal) and a type using nematic liquid crystal (Nematic Liquid Crystal). The liquid crystal in the nematic type may have positive or negative dielectric anisotropy. The negative anisotropy type generally has higher contrast and is more suitable for projection and near-eye applications, such as AR and VR head-mounted devices. The spatial light modulator using liquid crystals with negative dielectric anisotropy uses an electro-optical mode (Electro-Optic) including a vertical alignment (Vertically Aligned Nematic, VAN) display mode and a twisted vertical alignment (Twisted Vertically Aligned Nematic, TVAN) display mode Mode). The twisted vertical alignment is described in US Patent Nos. 8,724,059 and 9,551,901, which are incorporated herein by reference.

習知從反射式液晶空間光調變器觀看影像的光學設計使用線性偏光與金屬線(Wire-grid)柵型和MacNeille-cube型的偏光分光器(Polarizing Beam Splitters,PBS)相結合以達成高對比度影像。使用這些類型的偏光分光器的缺點是它們佔用相對較大的體積,使得難以獲得用在AR和VR頭戴式裝置流線和小型的產品設計。此外,已知偏光分光器的使用會降低影像亮度、增加動態切換時間,且增加相鄰像素間邊緣場效應的可見性,特別是在具有短像素間距的高解析度空間光調變器裝置中。The conventional optical design for viewing images from reflective liquid crystal spatial light modulators uses linear polarization in combination with wire-grid and MacNeille-cube polarizing beam splitters (PBS) to achieve high Contrast image. The disadvantage of using these types of polarizing beam splitters is that they occupy a relatively large volume, making it difficult to obtain streamlined and small product designs for AR and VR headsets. In addition, it is known that the use of a polarizing beam splitter will reduce image brightness, increase dynamic switching time, and increase the visibility of fringing field effects between adjacent pixels, especially in high-resolution spatial light modulator devices with short pixel pitch .

為了克服這些使用偏光分光器設計的不足,Kuan-Hsu Fan-Chiang、Shu-Hsia Chen和Shin-Tson Wu在應用物理學快報(Applied Physics Letters, Volume 87, pp. 031110-1 to 031110-3 (2005))中說明了一種不使用偏光分光器的光學設計。其垂直配向模式矽基液晶空間光調變器受到寬帶(Broadband)圓偏光(Circular Polarization,CP)照射(例如取代線性偏光)以克服長久存在的清晰度差、亮度低和響應時間慢的問題。Chiang et al.出版物沒有介紹電光(Electro-optic,EO)曲線,也沒有給出照明波長。此外,作者僅考慮了圓偏光器的一個方向。In order to overcome these deficiencies in the design of polarizing beam splitters, Kuan-Hsu Fan-Chiang, Shu-Hsia Chen, and Shin-Tson Wu reported in Applied Physics Letters, Volume 87, pp. 031110-1 to 031110-3 ( 2005)) describes an optical design that does not use a polarizing beam splitter. Its vertical alignment mode silicon-based liquid crystal spatial light modulator is exposed to broadband (Broadband) Circular Polarization (CP) (for example, instead of linear polarization) to overcome the long-standing problems of poor definition, low brightness and slow response time. The Chiang et al. publication does not introduce the electro-optic (EO) curve, nor does it give the illumination wavelength. In addition, the author only considered one direction of the circular polarizer.

本領域通常知識者可瞭解寬帶圓偏光可由具有偏光軸平行或垂直於寬帶圓偏光器之輸入軸的線性偏光器產生。寬帶圓偏光亦可由具有偏光軸與寬帶四分之一波片(Quarter-Wave Plate,四分之一波片)的慢軸設置成±45度角的線性偏光器產生,其包含具有多個雙折射層的延遲器。Those skilled in the art can understand that broadband circularly polarized light can be produced by a linear polarizer having a polarization axis parallel to or perpendicular to the input axis of the broadband circular polarizer. Broadband circularly polarized light can also be generated by a linear polarizer with a polarization axis and a broadband quarter-wave plate (Quarter-Wave Plate, quarter-wave plate) slow axis set at an angle of ±45 degrees. Retarder of the refractive layer.

相位延遲(φ)為一無因次的量,定義為延遲長度(Γ)除以照光波長λ(亦即φ = Γ/ λ)。延遲長度Γ為通過雙折射材料後之入射光的快光(Fast Ray)的波前和慢光(Slow Ray)的波前之間的距離。The phase retardation (φ) is a dimensionless quantity defined as the retardation length (Γ) divided by the illuminating wavelength λ (that is, φ = Γ/ λ). The retardation length Γ is the distance between the wavefront of the fast light (Fast Ray) and the wavefront of the slow light (Slow Ray) of the incident light after passing through the birefringent material.

實際市售之寬帶四分之一波片並非理想的寬帶四分之一波片。舉例來說,日商帝人株式會社(Teijin, Ltd., Tokyo, Japan)供應一種FM-143單層寬帶四分之一波片。FM-143寬帶四分之一波片的相位延遲之波長分布曲線繪示於圖2。由圖2可見,在波長短於555奈米時相位延遲φ大於0.25,但在波長長於555奈米時相位延遲φ小於0.25。將可見的是,相位延遲φ從0.25的偏差對於電光曲線的形狀及對比度有顯著的影響。The actual broadband quarter wave plates on the market are not ideal broadband quarter wave plates. For example, Teijin, Ltd. (Tokyo, Japan) supplies an FM-143 single-layer broadband quarter-wave plate. The wavelength distribution curve of the phase retardation of the FM-143 broadband quarter-wave plate is shown in Figure 2. It can be seen from Fig. 2 that when the wavelength is shorter than 555 nm, the phase retardation φ is greater than 0.25, but when the wavelength is longer than 555 nm, the phase retardation φ is less than 0.25. It will be seen that the deviation of the phase delay φ from 0.25 has a significant influence on the shape and contrast of the electro-optical curve.

圖3和圖4繪示了本發明基於Kuan-Hsu Fan-Chiang出版物中說明的方法所做之電腦模擬。這些628奈米紅光波長、513奈米綠光波長和453奈米藍光波長的電光曲線是分別繪示於線性和對數通過率(Throughput)的刻度。通過率為假定線性偏振輸入光、具有透射比為1和0的理想偏光器以及具有反射比為1的理想反射器的反射係數。Figures 3 and 4 illustrate the computer simulation of the present invention based on the method described in the Kuan-Hsu Fan-Chiang publication. The electro-optical curves for the red wavelength of 628nm, the green wavelength of 513nm and the blue wavelength of 453nm are plotted on the scale of linear and logarithmic pass rate (Throughput) respectively. The pass rate assumes that linearly polarized input light, an ideal polarizer with a transmittance of 1 and 0, and an ideal reflector with a reflectance of 1.

於此,FM-143寬帶四分之一波片的慢軸定向為垂直於垂直配向模式空間光調變器的慢軸,其平行於在空間光調變器之透明的第一基板和反射的第二基板二者的內表面上的表面接觸液晶指向矢(Surface-Contacting 液晶指向矢)的方位對準方向。對數刻度的圖4中藍色和綠色照光的電光曲線顯示出在驅動電壓下近於零而非零的通過率最小值,而紅色照光的電光曲線則未如此顯示。Here, the slow axis of the FM-143 broadband quarter-wave plate is oriented perpendicular to the slow axis of the vertical alignment mode spatial light modulator, which is parallel to the transparent first substrate and reflective of the spatial light modulator. The surface-contacting liquid crystal directors (Surface-Contacting liquid crystal directors) on the inner surfaces of the second substrates are aligned with the azimuth direction. The electro-optical curves of blue and green illumination in Fig. 4 on a logarithmic scale show a minimum pass rate near zero rather than zero under the driving voltage, while the electro-optical curves of red illumination are not shown.

在藍色和綠色照光的電光曲線中近於零的通過率最小值可被用來達成對比度大於2000。尤其,驅動電壓的值被設定為或接近於達到在藍和綠照光顏色的電光曲線中近於零通過率最小值的電壓以達到暗像素。為實現在灰階連續光譜的亮像素,驅動電壓的值被設定成大於為達到近於零通過率最小值的電壓。In the electro-optical curve of blue and green illumination, the minimum pass rate near zero can be used to achieve a contrast greater than 2000. In particular, the value of the driving voltage is set to or close to a voltage close to the minimum value of the zero pass rate in the electro-optical curve of the blue and green illumination colors to reach the dark pixel. In order to realize bright pixels in the continuous spectrum of gray scale, the value of the driving voltage is set to be greater than the voltage to achieve the minimum value of near zero pass rate.

暫參圖3和圖4,其橫軸為從0至10伏特的連續電壓。像素在對應於近於零的通過率最小值的電壓是處於其最暗狀態。透過在通過率增加的連續區域上施加高於此近於零的通過率最小值電壓的電壓以實現灰度等級(Gray Level)。Temporarily refer to Figures 3 and 4, the horizontal axis is a continuous voltage from 0 to 10 volts. The pixel is in its darkest state at the voltage corresponding to the minimum pass rate close to zero. The gray level (Gray Level) is achieved by applying a voltage higher than the minimum voltage of the pass rate close to zero on the continuous area where the pass rate increases.

然而,對於紅色照光,在電光曲線中沒有近於零的通過率最小值,且對比度僅約為50。對比度是定義為在電光曲線中最大通過率除以通過率最小值的比值。However, for red illumination, there is no near zero pass rate minimum in the electro-optical curve, and the contrast is only about 50. Contrast is defined as the ratio of the maximum pass rate divided by the minimum pass rate in the electro-optical curve.

類似地,圖5和圖6中在FM-143寬帶四分之一波片的慢軸被定向為平行於垂直配向模式空間光調變器的慢軸下,其中電光曲線是繪示於線性和對數刻度。對數刻度的圖6中紅色照光電光曲線的通過率顯示出在驅動電壓下近於零而非零的通過率最小值。相較下,藍色和綠色照光電光曲線則未顯示在驅動電壓下近於零而非零的通過率最小值。Similarly, in Figures 5 and 6, the slow axis of the FM-143 broadband quarter-wave plate is oriented parallel to the slow axis of the vertical alignment mode spatial light modulator, where the electro-optic curve is shown in linear and Logarithmic scale. The pass rate of the red illumination curve in Fig. 6 on a logarithmic scale shows the minimum pass rate that is close to zero instead of zero under the driving voltage. In comparison, the blue and green photoelectric light curves do not show the minimum pass rate that is close to zero instead of zero under the driving voltage.

透過採用在紅色照光電光曲線中近於零的通過率最小值,紅色對比度可以超過2000。然而,由於藍色和綠色照光在電光曲線中沒有近於零的通過率最小值,故藍色和綠色照光的對比度為不令人滿意地分別低於110和210。因此,寬帶四分之一波片不適合對於所有照光波長要求高品質及全彩影像之高對比需求(如大於2000)的應用。Through adopting the minimum pass rate in the red photoelectric light curve which is close to zero, the red contrast can exceed 2000. However, since the blue and green illuminating light does not have a pass rate minimum near zero in the electro-optical curve, the contrast of the blue and green illuminating light is unsatisfactorily lower than 110 and 210, respectively. Therefore, broadband quarter-wave plates are not suitable for applications that require high-quality and high-contrast full-color images (such as greater than 2000) for all illumination wavelengths.

本發明維持寬帶四分之一波片方法之相關技術的優點的包含小型流線設計、短動態切換時間,以及像素間缺陷幾乎不可見的優點。此外,本發明克服無法實現對於所有照光波長高對比度的要求以達高對比及全彩運行的缺點。The present invention maintains the advantages of the related technologies of the broadband quarter-wave plate method, including the advantages of small streamline design, short dynamic switching time, and almost invisible defects between pixels. In addition, the present invention overcomes the shortcomings of being unable to achieve high contrast requirements for all illumination wavelengths to achieve high contrast and full-color operation.

根據本發明的一種系統,包含位於空間光調變器(如反射式液晶顯示器之顯示器或反射式矽基液晶顯示器之矽基液晶顯示器)外部的一個或多個延遲器。延遲器產生對於用於形成彩色影像(如全彩影像)的至少三個照光波長為大於0.25的相位延遲φ。舉例來說,相位延遲φ在0.26和0.40(包括0.26和0.40)之間變化。A system according to the present invention includes one or more retarders located outside a spatial light modulator (such as a reflective liquid crystal display or a reflective silicon-based liquid crystal display). The retarder generates a phase retardation φ greater than 0.25 for at least three wavelengths of illumination light used to form a color image (such as a full-color image). For example, the phase delay φ varies between 0.26 and 0.40 (including 0.26 and 0.40).

或者,延遲器產生對於用於形成彩色影像(如全彩影像)的至少三個照光波長為小於0.25的相位延遲。舉例來說,相位延遲在0.10和0.24(包括0.10和0.24)之間變化。Alternatively, the retarder generates a phase retardation of less than 0.25 for at least three wavelengths of illumination light used to form a color image (such as a full-color image). For example, the phase delay varies between 0.10 and 0.24 (including 0.10 and 0.24).

在本發明的一實施例中,至少三個照光波長包含對應至少紅色、綠色和藍色的波長,但亦可包含其他例如為黃色的顏色之波長。舉例來說,在本發明的一實施例中,位於空間光調變器外部的一個延遲器或具有不同延遲長度Γ的多個延遲器的結合產生對於所有照光波長為大於或小於0.25的相位延遲φ。照光波長用來獲得影像,其包含例如為全彩影像的彩色影像。In an embodiment of the present invention, the at least three illumination wavelengths include wavelengths corresponding to at least red, green, and blue, but may also include wavelengths of other colors such as yellow. For example, in an embodiment of the present invention, a retarder located outside the spatial light modulator or a combination of multiple retarders with different retardation lengths Γ produces a phase retardation greater than or less than 0.25 for all illumination wavelengths. φ. The illumination wavelength is used to obtain images, which include color images such as full-color images.

在本發明的一實施例中,外部延遲器的相位延遲φ對於三個不同的照光波長或顏色為大於0.25。舉例來說,在本發明的一實施例中,不同的照光波長或顏色其例如為對應紅色、綠色和藍色照光波長帶(亦即625~740奈米的紅色波長帶、500~565奈米的綠色波長帶,又及450~485奈米的藍色波長帶)中各自的一波長的照光波長,用於例如為全彩顯示器的一顯示器中。因此,在這些波長下任何入射在空間光調變器的光不是被圓偏振(如0.25之相位延遲產生圓偏振光)。本領域通常知識者可理解的是,照光例如亦可包含黃色照光。In an embodiment of the present invention, the phase retardation φ of the external retarder is greater than 0.25 for three different illumination wavelengths or colors. For example, in an embodiment of the present invention, different illumination wavelengths or colors correspond to red, green, and blue illumination wavelength bands (that is, the red wavelength band from 625 to 740 nanometers, and the wavelength from 500 to 565 nanometers. The illuminating wavelength of one wavelength in each of the green wavelength band of 450-485 nm and the blue wavelength band of 450-485 nanometers is used in a display such as a full-color display. Therefore, any light incident on the spatial light modulator at these wavelengths is not circularly polarized (for example, a phase retardation of 0.25 produces circularly polarized light). Those skilled in the art can understand that the illumination may also include yellow illumination, for example.

在一實施例中,延遲器的慢軸為配置成垂直於或實質上垂直於例如為垂直配向或扭轉垂直配向空間光調變器的一空間光調變器的慢軸。在對空間光調變器施加零伏特下,空間光調變器的延遲長度Γ的任何殘餘值(如透過液晶空間光調變器內的表面接觸指向矢的預傾角引入)從外部延遲器產生的延遲長度Γ中減去。於此,由空間光調變器和延遲器產生之結合的相位延遲φ可大於0.25,從而導致非零的通過率。當施加於空間光調變器的電壓從零增加時,空間光調變器的延遲長度Γ增加且從外部延遲器的延遲長度Γ減去直到達到延遲器和空間光調變器之結合的相位延遲φ等於0.25之處。在此處,因為輸入偏振旋轉90度且在反射時被吸收入偏光器,這個結合的通過率為零。當電壓進一步增加,因為偏振旋轉不再是90度,結合的相位延遲φ隨著通過率的增加同時從0.25降低。In one embodiment, the slow axis of the retarder is configured to be perpendicular or substantially perpendicular to the slow axis of a spatial light modulator, such as a vertical alignment or a twisted vertical alignment spatial light modulator. When zero volts is applied to the spatial light modulator, any residual value of the retardation length Γ of the spatial light modulator (such as introduced through the pretilt angle of the surface contact director in the liquid crystal spatial light modulator) is generated from the external retarder Subtracted from the delay length Γ. Here, the combined phase delay φ generated by the spatial light modulator and the retarder can be greater than 0.25, resulting in a non-zero pass rate. When the voltage applied to the spatial light modulator increases from zero, the delay length Γ of the spatial light modulator increases and is subtracted from the delay length Γ of the external retarder until the combined phase of the retarder and the spatial light modulator is reached Where the delay φ is equal to 0.25. Here, because the input polarization is rotated 90 degrees and is absorbed into the polarizer when reflected, the pass rate of this combination is zero. When the voltage is further increased, because the polarization rotation is no longer 90 degrees, the combined phase delay φ decreases from 0.25 as the pass rate increases.

因此,在零伏特下通過率不為零。在結合的相位延遲φ為0.25的電壓下,通過率下降至一近於零的最小值,且接著在較高的電壓下再度增加(如高於在近於零的通過率最小值發生處的電壓)。使用這種的電光曲線,可藉由設定像素驅動電壓為或接近於在電光曲線中近於零的通過率最小值發生處的電壓以達到暗像素來實現高通過率和對比度(例如大於2000)。像素驅動電壓增加為高於近於零的通過率最小值發生處的電壓以實現亮度增加的像素灰度等級。對比度定義為在電光曲線中最大通過率除以在近於零最小值的通過率的比值。Therefore, the pass rate is not zero at zero volts. At a voltage where the combined phase delay φ is 0.25, the pass rate drops to a minimum value close to zero, and then increases again at a higher voltage (e.g. higher than where the pass rate minimum value close to zero occurs) Voltage). Using this kind of electro-optical curve, the pixel driving voltage can be set to or close to the voltage at which the minimum pass rate in the electro-optical curve occurs to achieve dark pixels to achieve high pass rate and contrast (for example, greater than 2000) . The pixel drive voltage is increased to be higher than the voltage at which the pass rate minimum value near zero occurs to achieve a pixel gray scale with increased brightness. Contrast is defined as the ratio of the maximum pass rate in the electro-optical curve divided by the pass rate near zero minimum.

在本發明另一實施例中,外部延遲器的相位延遲φ對於用於彩色顯示器(如全彩顯示器)的紅色、綠色和藍色波長為小於0.25,其代表在這些波長下入射於矽基液晶成像單元的光不是被圓偏振(如0.25之相位延遲產生圓偏振光)。在本實施例中,延遲器的慢軸係配置為平行或實施上平行於垂直配向或扭轉垂直配向空間光調變器的慢軸。在施加零伏特下,透過在液晶空間光調變器內表面接觸指向矢的非90度預傾角引入的空間光調變器的殘餘的延遲長度Γ加在外部延遲器的延遲長度。於此,延遲器和空間光調變器的結合的相位延遲φ可小於0.25,從而導致非零的通過率。In another embodiment of the present invention, the phase retardation φ of the external retarder is less than 0.25 for the red, green, and blue wavelengths used in color displays (such as full-color displays), which represents incident on the silicon-based liquid crystal at these wavelengths. The light of the imaging unit is not circularly polarized (for example, a phase retardation of 0.25 produces circularly polarized light). In this embodiment, the slow axis of the retarder is configured to be parallel or parallel to the slow axis of the vertical alignment or twisted vertical alignment spatial light modulator. Under the application of zero volts, the residual retardation length Γ of the spatial light modulator introduced through the non-90-degree pretilt angle of the contact vector on the inner surface of the liquid crystal spatial light modulator is added to the retardation length of the external retarder. Here, the phase delay φ of the combination of the retarder and the spatial light modulator can be less than 0.25, resulting in a non-zero pass rate.

當施加於空間光調變器的電壓從零增加時,空間光調變器的延遲長度Γ空間光調變器的延遲長度Γ增加且加在外部延遲器的延遲長度Γ直到達到延遲器和空間光調變器的結合的相位延遲φ等於0.25之處。在此處,因為輸入偏振旋轉90度且在反射時被吸收入偏光器,這個結合的通過率為零。當電壓進一步增加,因為偏振旋轉不再是90度,結合的相位延遲φ隨著通過率的增加同時從0.25提升。When the voltage applied to the spatial light modulator increases from zero, the delay length Γ of the spatial light modulator increases and the delay length Γ is added to the external retarder until it reaches the retarder and the space Where the combined phase delay φ of the optical modulator is equal to 0.25. Here, because the input polarization is rotated 90 degrees and is absorbed into the polarizer when reflected, the pass rate of this combination is zero. When the voltage is further increased, because the polarization rotation is no longer 90 degrees, the combined phase delay φ increases from 0.25 as the pass rate increases.

因此,在零伏特下通過率不為零。在結合的相位延遲φ為0.25的電壓下,通過率下降至一近於零的最小值,且接著在較高的電壓下再度增加。使用這種的電光曲線,可藉由設定像素驅動電壓為或接近於在電光曲線中近於零的通過率最小值發生處的電壓以達到暗像素來實現高通過率和大於2000的對比度。Therefore, the pass rate is not zero at zero volts. At a voltage where the combined phase delay φ is 0.25, the pass rate drops to a minimum value close to zero, and then increases again at a higher voltage. Using this kind of electro-optical curve, the pixel driving voltage can be set to or close to the voltage at which the minimum pass-through rate occurs in the electro-optical curve to achieve a high pass rate and a contrast greater than 2000.

前述內容已概括地描述了各種實施例的一些觀點和特徵,其應被解釋為僅說明本發明的各種潛在應用。其他有益的結果可以透過以不同的方式應用所揭露的資訊或透過組合所揭露的實施例的各個觀點獲得。因此,除了由申請專利範圍所限定的範圍之外,透過結合圖式參考示例性實施例的詳細描述,可以獲得其他觀點和更全面的理解。The foregoing content has generally described some viewpoints and features of various embodiments, which should be interpreted as merely illustrating various potential applications of the present invention. Other beneficial results can be obtained by applying the disclosed information in different ways or by combining various viewpoints of the disclosed embodiments. Therefore, in addition to the scope defined by the scope of the patent application, by referring to the detailed description of the exemplary embodiments in conjunction with the drawings, other viewpoints and a more comprehensive understanding can be obtained.

根據要求,在此揭露詳細的實施例。必須理解的是,所揭露的實施例僅是不同和替代形式的示例。如本文中所使用的,“示例性”一詞是廣泛地用於指代用做圖示、樣本、模型或圖案的實施例。圖式不一定按比例繪製,並且某些特徵可能被放大或縮小以示出特定組件的細節。在其他情況下,沒有詳細描述本領域通常知識者已知的習知組件、系統、材料或方法,以避免使本揭露內容不清楚。因此,本文揭露的具體結構和功能細節不應解釋為限制性的,而僅僅是作為申請專利範圍的基礎和做為教示本領域通常知識者的代表基礎。Upon request, detailed embodiments are disclosed here. It must be understood that the disclosed embodiments are only examples of different and alternative forms. As used herein, the term "exemplary" is used broadly to refer to embodiments used as illustrations, samples, models, or patterns. The drawings are not necessarily drawn to scale, and certain features may be enlarged or reduced to show details of specific components. In other cases, the conventional components, systems, materials, or methods known to those skilled in the art are not described in detail to avoid making the content of the disclosure unclear. Therefore, the specific structure and function details disclosed in this article should not be construed as restrictive, but merely serve as a basis for the scope of patent application and as a representative basis for teaching ordinary knowledge in the field.

根據本發明的一種系統,其包含位於一空間光調變器外部的具有延遲長度Γ的一個延遲器或多個延遲器的結合。延遲器或多個延遲器的結合產生對於所有照光波長的一相位延遲φ,其對於所有照光波長為大於0.25或對於所有照光波長為小於0.25。照光波長產生影像。舉例而言,影像例如是全彩影像的彩色影像。A system according to the present invention includes a retarder or a combination of retarders with a delay length Γ outside a spatial light modulator. The retarder or the combination of multiple retarders produces a phase retardation φ for all illumination wavelengths, which is greater than 0.25 for all illumination wavelengths or less than 0.25 for all illumination wavelengths. The light wavelength produces an image. For example, the image is a color image of a full-color image.

根據本發明的一種系統,空間光調變器例如為反射式液晶顯示器的一液晶顯示器。According to a system of the present invention, the spatial light modulator is, for example, a liquid crystal display of a reflective liquid crystal display.

圖1為根據本發明所述的空間光調變器顯示系統10的立體展開示意圖。在本發明的一實施例中,一空間光調變器顯示系統10包含一線性偏光器100、一外部延遲器200以及一反射式空間光調變器300。來自一光源400的紅色、綠色和藍色照光120可被引導到空間光調變器顯示系統10的像素,使得來自一個或多個光源的照光可被至少一部分像素或所有像素以時間順序的方式(例如係以紅光被導引一段時間,接著綠光可被導引一段時間,且接著藍光可被導引一段時間的順序)接收。可以理解的是,可以採用這些顏色的其他種順序。照光120入射至線性偏光器100且在通過線性偏光器100時沿著偏光軸160線性偏振。FIG. 1 is a three-dimensional expanded schematic diagram of a display system 10 of a spatial light modulator according to the present invention. In an embodiment of the present invention, a spatial light modulator display system 10 includes a linear polarizer 100, an external retarder 200, and a reflective spatial light modulator 300. The red, green, and blue light 120 from a light source 400 can be guided to the pixels of the spatial light modulator display system 10, so that the light from one or more light sources can be used by at least a part of the pixels or all the pixels in a chronological manner. (For example, red light can be guided for a period of time, then green light can be guided for a period of time, and then blue light can be guided for a period of time). It is understood that other sequences of these colors can be used. The illumination light 120 is incident on the linear polarizer 100 and linearly polarized along the polarization axis 160 when passing through the linear polarizer 100.

此偏振光繼而入射至其平面上慢軸220與入射偏振方向或偏光軸160成正45度角(或實質上正45度角)的外部延遲器200。在通過延遲器200時,此線性偏振光轉換為橢圓偏振光,而不是圓偏振光,其入射於空間光調變器300。圓偏振光可在45度角及0.25之相位延遲產生。在相位延遲為不同於0.25時,光將被橢圓偏振。This polarized light is then incident on the external retarder 200 whose slow axis 220 and the incident polarization direction or polarization axis 160 form a positive 45 degree angle (or substantially a positive 45 degree angle) on its plane. When passing through the retarder 200, the linearly polarized light is converted into elliptically polarized light instead of circularly polarized light, which is incident on the spatial light modulator 300. Circularly polarized light can be generated at an angle of 45 degrees and a phase retardation of 0.25. When the phase retardation is different from 0.25, the light will be elliptically polarized.

在一實施例中,空間光調變器300其平面上慢軸340的方向垂直(或實質上垂直)於外部延遲器200的慢軸220的方向,且延遲器具有對於所有照光波長為0.25以上的一相位延遲值。在另一實施例中,空間光調變器300其平面上慢軸320的方向平行(或實質上平行)於外部延遲器200的慢軸220的方向,且延遲器具有對於所有照光波長為0.25以下的一相位延遲值。In one embodiment, the direction of the slow axis 340 on the plane of the spatial light modulator 300 is perpendicular (or substantially perpendicular) to the direction of the slow axis 220 of the external retarder 200, and the retarder has a wavelength of 0.25 or more for all illumination. A phase delay value of. In another embodiment, the direction of the slow axis 320 on the plane of the spatial light modulator 300 is parallel (or substantially parallel) to the direction of the slow axis 220 of the external retarder 200, and the retarder has a wavelength of 0.25 for all illumination. The following is a phase delay value.

從空間光調變器300反射的光140以相反的方向再次通過外部延遲器200和偏光器100,其中反射光180自偏光器100顯出或出射以被眼睛或其他偵測器感測。反射光180的強度取決於施加在空間光調變器300上各別像素的電壓。The light 140 reflected from the spatial light modulator 300 passes through the external retarder 200 and the polarizer 100 again in the opposite direction, wherein the reflected light 180 emerges or exits from the polarizer 100 to be sensed by the eyes or other detectors. The intensity of the reflected light 180 depends on the voltage applied to each pixel of the spatial light modulator 300.

詳細來說,參照圖1,空間光調變器300包含一第一對準層302、一第二對準層304以及位於第一對準層302和第二對準層304之間的一液晶材料層306。液晶層306包含在第一對準層302和第二對準層304上的多個表面接觸液晶指向矢308以及位於液晶層306主體上的非表面接觸液晶指向矢309。這些表面接觸指向矢308具有例如為根據對準層302和304之預先設定方向的方位對準方向。舉例來說,這些預先設定方向可以由傾斜方向上沉積在表面上的材料、傾斜入射且偏振的UV光照射的表面上的光敏材料,或用絲絨狀的布單向摩擦表面來生成。In detail, referring to FIG. 1, the spatial light modulator 300 includes a first alignment layer 302, a second alignment layer 304, and a liquid crystal located between the first alignment layer 302 and the second alignment layer 304 Material layer 306. The liquid crystal layer 306 includes a plurality of surface contact liquid crystal directors 308 on the first alignment layer 302 and the second alignment layer 304 and a non-surface contact liquid crystal director 309 on the main body of the liquid crystal layer 306. These surface contact directors 308 have, for example, an azimuth alignment direction according to the preset directions of the alignment layers 302 and 304. For example, these preset directions can be generated by materials deposited on the surface in an oblique direction, photosensitive materials on the surface irradiated with obliquely incident and polarized UV light, or unidirectionally rubbing the surface with a velvet-like cloth.

在垂直配向模式中,空間光調變器300的慢軸平行於表面接觸液晶指向矢308的方位對準方向(如45度)。在扭轉垂直配向模式中,空間光調變器300的慢軸平行於將表面接觸指向矢308的方位對準方向(如0度和90度)分為二的一線。雖然液晶層在下方的對準層304和上方的對準層302各包含多個表面接觸液晶指向矢,然為了便於繪示,僅在下方的對準層304上示出一個表面接觸液晶指向矢。類似地,液晶層306的主體(如除了對準層302和304外的內部和中間部)在液晶層306的整個厚度上包含多個指向矢。In the vertical alignment mode, the slow axis of the spatial light modulator 300 is parallel to the azimuth alignment direction of the surface contact liquid crystal director 308 (for example, 45 degrees). In the twisted vertical alignment mode, the slow axis of the spatial light modulator 300 is parallel to a line that divides the azimuth alignment direction (such as 0 degrees and 90 degrees) of the surface contact director 308 into two. Although the alignment layer 304 below the liquid crystal layer and the alignment layer 302 above each contain multiple surface contact liquid crystal directors, for ease of illustration, only one surface contact liquid crystal director is shown on the lower alignment layer 304 . Similarly, the main body of the liquid crystal layer 306 (such as the inner and middle portions except for the alignment layers 302 and 304) includes a plurality of directors over the entire thickness of the liquid crystal layer 306.

此外,表面接觸液晶指向矢308具有一預傾角310的特徵。預傾角310和在液晶層306主體中的指向矢309的傾角311判斷空間光調變器300的延遲長度Γ。根據一實施例,液晶材料306具有負介電異向性。In addition, the surface contact liquid crystal director 308 has a characteristic of a pretilt angle 310. The pretilt angle 310 and the tilt angle 311 of the director 309 in the main body of the liquid crystal layer 306 determine the retardation length Γ of the spatial light modulator 300. According to an embodiment, the liquid crystal material 306 has negative dielectric anisotropy.

此外,空間光調變器300包含多個像素電極,其包含連接於一電壓源316的一第一電極312以及一第二電極314。電壓源316用以對電極312和314提供一電壓317,且從而施加一電壓317通過空間光調變器300的第二電極314的各個像素的液晶層306。通過液晶層306的電壓317改變液晶層306主體中的指向矢309的傾角311並從而改變空間光調變器300的整體延遲長度Γ。電壓源316儲存預定的電壓或者或者以其他方式生成對於各波長和像素與暗態和亮態相關的電壓。In addition, the spatial light modulator 300 includes a plurality of pixel electrodes, including a first electrode 312 and a second electrode 314 connected to a voltage source 316. The voltage source 316 is used to provide a voltage 317 to the electrodes 312 and 314 and thereby apply a voltage 317 to the liquid crystal layer 306 of each pixel of the second electrode 314 of the spatial light modulator 300. The voltage 317 of the liquid crystal layer 306 changes the tilt angle 311 of the director 309 in the main body of the liquid crystal layer 306 and thereby changes the overall retardation length Γ of the spatial light modulator 300. The voltage source 316 stores predetermined voltages or otherwise generates voltages related to the dark state and the bright state for each wavelength and pixel.

空間光調變器300更包含在電極312和314外的基板層318和319。詳細來說,基板層318係在電極312上方,且基板層319係在電極314下方。The spatial light modulator 300 further includes substrate layers 318 and 319 outside the electrodes 312 and 314. In detail, the substrate layer 318 is above the electrode 312, and the substrate layer 319 is below the electrode 314.

如以下進一步詳細描述,對於各別像素的電光曲線係可透過與非零波長相關的驅動電壓317運作。對於各波長之斷開狀態或暗狀態與波長相關的驅動電壓317被確定為在對於該波長之通過率的電光曲線具有一最小值,近於零(如小於0.001)通過率值處之電壓。高於斷開狀態與波長相關的驅動電壓的導通狀態或亮狀態與波長相關的像素驅動電壓317被施加於各個像素以增加像素通過率並提供灰度等級。As described in further detail below, the electro-optical curve for each pixel can be operated through the driving voltage 317 related to a non-zero wavelength. The wavelength-dependent driving voltage 317 for the off state or the dark state of each wavelength is determined to be the voltage at which the electro-optical curve of the pass rate for the wavelength has a minimum value, which is close to zero (eg, less than 0.001). The on-state or bright-state, wavelength-dependent pixel drive voltage 317, which is higher than the off-state wavelength-dependent drive voltage, is applied to each pixel to increase the pixel throughput rate and provide gray levels.

因此,對於自光源400接收的一照光波長,各像素藉由對應於該照光波長的一導通狀態波長相關的驅動電壓317或一斷開狀態波長相關的驅動電壓317來控制。Therefore, for a wavelength of the illumination light received from the light source 400, each pixel is controlled by an on-state wavelength-dependent drive voltage 317 or an off-state wavelength-dependent drive voltage 317 corresponding to the illumination wavelength.

對於本領或通常知識者來說為顯而易見的是,偏光器100、延遲器200和空間光調變器300(例如繪示於圖1中的矽基液晶空間光調變器)僅為根據本發明的一光學結構示例。舉例來說,外部延遲器200的慢軸220亦可與入射偏振方向或偏光軸160成負45度角(或實質上負45度角)。為了抑制可能導致或加劇對比度降低之從光源400前表面的反射,偏光器100和延遲器200可在一側或兩側沉積有抗反射塗層110,且空間光調變器300可在其基板層318的頂面具有一抗反射塗層110。或者,元件100、200和300中的二者(甚或三者全部)可選擇性地耦合,舉例來說,層壓在一起,以減少在交界處的反射。It is obvious to those with skill or general knowledge that the polarizer 100, retarder 200, and spatial light modulator 300 (for example, the liquid crystal on silicon spatial light modulator shown in FIG. 1) are only in accordance with the present invention An example of an optical structure. For example, the slow axis 220 of the external retarder 200 may also form a negative 45 degree angle (or substantially a negative 45 degree angle) with the incident polarization direction or the polarization axis 160. In order to suppress the reflection from the front surface of the light source 400 that may cause or aggravate the contrast reduction, the polarizer 100 and the retarder 200 may be deposited with an anti-reflection coating 110 on one or both sides, and the spatial light modulator 300 may be on its substrate The top surface of layer 318 has an anti-reflective coating 110. Alternatively, two (or even all three) of the elements 100, 200, and 300 may be selectively coupled, for example, laminated together to reduce reflection at the interface.

為了清楚起見,例如為鏡片、稜鏡和鏡子之相關光學元件並未繪示於圖1中。根據本發明的一實施例,紅色、綠色和藍色光源400或者用於全彩作用的光源可包含固態全彩二極體、發光二極體(如有機發光二極體)、固態雷射且氣體雷射,和/或其他例如為從氙、金屬鹵化物或鎢鹵素燈過濾的光的電磁輻射的光源。若光源已線性偏振,例如一些氣體雷射和固態雷射二極體的案例,則在入射照光路徑中的偏光器可省略而在反射路徑中保留一偏光器。在這樣的實施例中(入射照光路徑中的偏光器省略而在反射路徑中保留偏光器的實施例),在反射路徑中的偏光器的偏振方向平行於或實質上平行於入射光源的偏振方向。For the sake of clarity, related optical elements such as lenses, mirrors, and mirrors are not shown in FIG. 1. According to an embodiment of the present invention, the red, green, and blue light sources 400 or light sources for full-color effects may include solid-state full-color diodes, light-emitting diodes (such as organic light-emitting diodes), solid-state lasers, and Gas lasers, and/or other sources of electromagnetic radiation such as light filtered from xenon, metal halide or tungsten halogen lamps. If the light source has been linearly polarized, such as some gas lasers and solid-state laser diodes, the polarizer in the incident light path can be omitted and a polarizer is retained in the reflection path. In such an embodiment (an embodiment in which the polarizer in the incident illumination path is omitted and the polarizer is retained in the reflection path), the polarization direction of the polarizer in the reflection path is parallel or substantially parallel to the polarization direction of the incident light source .

外部延遲器–延遲性的選取External retarder-delay selection

如下所述,具有一選取延遲性的一外部延遲器可改善空間光調變器顯示系統的性能。外部延遲器的延遲性的選取係參考圖7進行討論。As described below, an external retarder with a selected delay can improve the performance of the spatial light modulator display system. The selection of the delay of the external retarder is discussed with reference to FIG. 7.

圖7繪示根據本發明一實施例之166奈米外部延遲器200的相位延遲φ的波長分布曲線以及根據本發明另一實施例之107奈米外部延遲器200的相位延遲的波長分布曲線。7 illustrates the wavelength distribution curve of the phase retardation φ of the 166nm external retarder 200 according to an embodiment of the present invention and the wavelength distribution curve of the phase retardation of the 107nm external retarder 200 according to another embodiment of the present invention.

相位延遲φ為一無因次的量,其特徵為傳播通過一雙折射層或多個雙折射層組合的光線的快軸和慢軸之間的相位差,且其定義為延遲長度Γ除以照光波長λ(即φ = Γ/ λ)。延遲長度為通過一雙折射材料或多個雙折射材料組合後之入射偏振光的快光的波前和慢光的波前之間的距離。The phase retardation φ is a dimensionless quantity characterized by the phase difference between the fast axis and the slow axis of light propagating through a birefringent layer or a combination of multiple birefringent layers, and it is defined as the retardation length Γ divided by Illumination wavelength λ (ie φ = Γ/ λ). The retardation length is the distance between the wavefront of the fast light and the wavefront of the slow light of the incident polarized light after passing through a birefringent material or a combination of multiple birefringent materials.

在一實施例中,外部延遲器200具有一延遲長度Γ值,其大於傳輸至空間光調變器300的電磁輻射(例如光)之最長波長的四分之一(且例如為小於或等於175奈米)。舉例來說,若最長照光波長為628奈米的紅光波長,則在所述波長下,外部延遲器200的延遲長度Γ應大於628/4奈米,即157奈米。以此對應本發明一實施例為示例繪示於圖7,其中由外部延遲器200完成的延遲長度Γ為166奈米且由外部延遲器200接收的最長波長為628奈米的紅光波長。舉例來說,延遲長度Γ值是在最長波長的四分之一至175奈米的範圍中。在圖7中,對於具有為166奈米的一延遲長度Γ值的外部延遲器200,相位延遲φ對於453奈米波長、513奈米波長和628奈米波長的每個為大於0.25。本領域通常知識者可理解的是,波長和延遲長度可交替選擇以使外部延遲器200的延遲長度Γ具有一相位延遲φ其對於不同顏色的至少三個波長為大於0.25。舉例來說,外部延遲器200的延遲長度Γ係根據將由上述光源400產生的一最長波長來選擇。In one embodiment, the external retarder 200 has a retardation length Γ value, which is greater than a quarter of the longest wavelength of the electromagnetic radiation (such as light) transmitted to the spatial light modulator 300 (and, for example, less than or equal to 175 Nano). For example, if the longest illuminating wavelength is a red wavelength of 628 nm, the retardation length Γ of the external retarder 200 should be greater than 628/4 nm, that is, 157 nm at the wavelength. Taking this embodiment of the present invention as an example, it is shown in FIG. 7, where the delay length Γ completed by the external retarder 200 is 166 nm and the longest wavelength received by the external retarder 200 is a red light wavelength of 628 nm. For example, the value of the retardation length Γ is in the range of a quarter of the longest wavelength to 175 nm. In FIG. 7, for the external retarder 200 having a retardation length Γ value of 166 nm, the phase retardation φ is greater than 0.25 for each of the 453 nm wavelength, 513 nm wavelength, and 628 nm wavelength. Those skilled in the art can understand that the wavelength and the retardation length can be alternately selected so that the retardation length Γ of the external retarder 200 has a phase retardation φ which is greater than 0.25 for at least three wavelengths of different colors. For example, the delay length Γ of the external retarder 200 is selected according to a longest wavelength to be generated by the light source 400 described above.

在另一實施例中,外部延遲器200具有一延遲長度Γ值,其小於用於顯示器照光的最短波長的四分之一(且例如為大於或等於100奈米)。舉例來說,若最短照光波長為453奈米的藍光波長,則外部延遲器200的延遲長度Γ應小於453/4奈米,即113.25奈米。以此為示例繪示於圖7,其中由外部延遲器200完成的延遲長度為107奈米且最短波長為453奈米的藍光波長。舉例來說,延遲長度Γ值是在100奈米至最短波長的四分之一的範圍中。在圖7中,對於具有為107奈米的一延遲長度Γ值的外部延遲器200,相位延遲φ對於453奈米波長、513奈米波長和628奈米波長的每個為小於0.25。本領域通常知識者可理解的是,波長和延遲長度可交替選擇以使外部延遲器200的延遲長度Γ具有一相位延遲φ其對於不同顏色的至少三個波長為小於0.25。舉例來說,外部延遲器200的延遲長度Γ係根據將由上述光源400產生的一最短波長來選擇。In another embodiment, the external retarder 200 has a retardation length Γ value, which is less than a quarter of the shortest wavelength used for display illumination (and, for example, greater than or equal to 100 nanometers). For example, if the shortest illuminating light wavelength is a blue wavelength of 453 nanometers, the retardation length Γ of the external retarder 200 should be less than 453/4 nanometers, that is, 113.25 nanometers. Taking this as an example, it is shown in FIG. 7, where the retardation length completed by the external retarder 200 is 107 nm and the shortest wavelength is a blue light wavelength of 453 nm. For example, the retardation length Γ value is in the range of 100 nanometers to a quarter of the shortest wavelength. In FIG. 7, for the external retarder 200 having a retardation length Γ value of 107 nm, the phase retardation φ is less than 0.25 for each of the 453 nm wavelength, 513 nm wavelength, and 628 nm wavelength. Those skilled in the art can understand that the wavelength and the retardation length can be alternately selected so that the retardation length Γ of the external retarder 200 has a phase retardation φ which is less than 0.25 for at least three wavelengths of different colors. For example, the delay length Γ of the external retarder 200 is selected according to a shortest wavelength to be generated by the light source 400 described above.

下表1列出至少三個波長的相位延遲φ做為本發明實施例的示例。舉例來說,本發明一實施例包含具有166奈米的一延遲長度Γ的一外部延遲器200,且另一實施例包含具有107奈米的一延遲長度Γ的一外部延遲器200。應注意的是,相位延遲φ在包含具有166奈米的一延遲長度Γ的一外部延遲器200的實施例中對於全部三個波長λ為大於0.25,且在包含具有107奈米的一延遲長度Γ的一外部延遲器200的實施例中對於全部三個波長為小於0.25。Table 1 below lists the phase retardation φ of at least three wavelengths as an example of the embodiment of the present invention. For example, one embodiment of the present invention includes an external retarder 200 with a delay length Γ of 166 nm, and another embodiment includes an external retarder 200 with a delay length Γ of 107 nm. It should be noted that the phase retardation φ in the embodiment including an external retarder 200 having a retardation length Γ of 166 nm is greater than 0.25 for all three wavelengths λ, and when including a retardation length of 107 nm An embodiment of an external retarder 200 of Γ is less than 0.25 for all three wavelengths.

表1Table 1

 To Γ = 166奈米Γ = 166 nm Γ = 107奈米Γ = 107nm λλ φφ ΔφΔφ ΦΦ ΔφΔφ 453奈米453nm 0.3670.367 0.1170.117 0.2360.236 -0.014-0.014 513奈米513nm 0.3230.323 0.0730.073 0.2090.209 -0.041-0.041 628奈米628nm 0.2640.264 0.0140.014 0.1710.171 -0.079-0.079

列於上表1的本發明實施例中,藍光、綠光和紅光波長係分別選擇為453奈米、513奈米和628奈米。對於本領或通常知識者來說為顯而易見的是,亦可採用其他具有藍、綠和紅色光的波長,且亦可增加其他例如但不限於是黃色的顏色以增加全彩顯示器的色域。In the embodiment of the present invention listed in Table 1 above, the wavelengths of blue light, green light and red light are selected as 453 nm, 513 nm and 628 nm, respectively. It is obvious to those skilled or general knowledge that other wavelengths of blue, green and red light can also be used, and other colors such as but not limited to yellow can also be added to increase the color gamut of a full-color display.

相位延遲差Δφ為外部延遲器200組合的相位延遲φ與0.25的相位延遲φ(即光在0.25的一相位延遲φ下圓偏振)之間的差。相位延遲差Δφ在外部延遲器200的延遲長度Γ為166奈米的實施例中為正,且在外部延遲器200的延遲長度Γ為107奈米的實施例中為負。在本發明的一實施例中,根據本發明的一空間光調變器(例如一顯示器)對於例如為三個波長的所有波長實現2000或以上的高對比度,當相位延遲差Δφ的量值(即|Δφ|)對於全部三個波長為等於或大於0.01時,此|Δφ|值實現或確保相位延遲對於為166奈米之外部延遲器200的所有波長為0.25以上,或對於為107奈米之外部延遲器200的所有波長為0.25以下。The phase delay difference Δφ is the difference between the phase delay φ of the combination of the external retarder 200 and the phase delay φ of 0.25 (that is, the light is circularly polarized at a phase delay φ of 0.25). The phase delay difference Δφ is positive in the embodiment where the delay length Γ of the external retarder 200 is 166 nm, and is negative in the embodiment where the delay length Γ of the external retarder 200 is 107 nm. In an embodiment of the present invention, a spatial light modulator (e.g., a display) according to the present invention achieves a high contrast ratio of 2000 or more for all wavelengths, for example, three wavelengths, when the magnitude of the phase retardation difference Δφ ( That is, when |Δφ|) is equal to or greater than 0.01 for all three wavelengths, this value of |Δφ| realizes or ensures that the phase retardation is above 0.25 for all wavelengths of the external retarder 200 of 166 nm, or for 107 nm All wavelengths of the external retarder 200 are below 0.25.

空間光調變器顯示系統之改善的性能–在電光曲線中的最小通過率The improved performance of the spatial light modulator display system-the minimum pass rate in the electro-optical curve

使用具有在一空間光調變器顯示器裝置中如上述所選取的一延遲性的一外部延遲器使空間光調變器顯示系統的性能改善,其可透過觀看空間光調變器顯示系統的電光曲線來證實。電光曲線示出了對於來自光源400的一波長的空間光調變器顯示系統10的通過率為電壓源316所施加電壓的一函數。對比度定義為電光曲線的最大通過率除以電光曲線的通過率在電光曲線中近於零(例如小於0.001)的通過率最小值之比值。The use of an external retarder with a retardation selected as described above in a spatial light modulator display device improves the performance of the spatial light modulator display system, which can be viewed through the electro-optics of the spatial light modulator display system Curve to confirm. The electro-optical curve shows the throughput rate of the spatial light modulator display system 10 for a wavelength from the light source 400 as a function of the voltage applied by the voltage source 316. Contrast is defined as the ratio of the maximum pass rate of the electro-optical curve divided by the minimum pass rate of the electro-optical curve that is close to zero (for example, less than 0.001).

模擬可藉由商用套裝軟體來進行,例如LCDBench Version 6.42和Analyzer Version 6.60,二者皆可從Shintech, Tokyo, Japan取得。在本發明的一實施例中,一空間光調變器的一單元間隙(亦即第一和第二對準層302和304朝向液晶層306像素的表面之間的距離)為0.9微米;液晶雙折射係數Δn在453奈米下為0.2206,在513奈米下為0.2016,且在628奈米下為0.1859;預傾角為84度;光為垂直地入射;且反射器和偏光器為理想反射器和偏光器。Simulation can be performed by commercial software packages, such as LCDBench Version 6.42 and Analyzer Version 6.60, both of which are available from Shintech, Tokyo, Japan. In an embodiment of the present invention, a cell gap of a spatial light modulator (that is, the distance between the surfaces of the first and second alignment layers 302 and 304 facing the liquid crystal layer 306 pixels) is 0.9 microns; The birefringence coefficient Δn is 0.2206 at 453 nm, 0.2016 at 513 nm, and 0.1859 at 628 nm; the pretilt angle is 84 degrees; the light is incident vertically; and the reflector and polarizer are ideal reflections And polarizer.

對於本發明中所有的模擬,包含那些繪於圖3至圖6中對先前技術模擬的電光曲線,矽基液晶單元間隙為0.9微米,且液晶雙折射係數Δn在453奈米下為0.2206,在513奈米下為0.2016,且在628奈米下為0.1859。預傾角(亦即在空間光調變器300內的液晶層306的表面接觸指向矢308與空間光調變器300的平面所成之角度310)從空間光調變器300的平面量測為84度。這些模擬以垂直入射光進行且假定一理想100% 反射器及一理想偏光器100。本領域通常知識者可理解的是,此僅為用來代表本發明之多個示例中所選的一個。舉例來說,在本發明實施例中,單元間隙可依據所用液晶的折射率在0.5微米至3.0微米之間改變(包含0.5微米和3.0微米);且預傾角限制可在89度至75度之間改變(包含89度和75度)。For all the simulations in the present invention, including the electro-optical curves drawn in Figures 3 to 6 for the prior art simulation, the gap of the silicon-based liquid crystal cell is 0.9 microns, and the liquid crystal birefringence coefficient Δn is 0.2206 at 453 nm. It is 0.2016 at 513nm and 0.1859 at 628nm. The pretilt angle (that is, the angle 310 formed by the surface contact director 308 of the liquid crystal layer 306 in the spatial light modulator 300 and the plane of the spatial light modulator 300) is measured from the plane of the spatial light modulator 300 as 84 degrees. These simulations were performed with normal incident light and assumed an ideal 100% reflector and an ideal polarizer 100. Those skilled in the art can understand that this is only used to represent a selected one of the multiple examples of the present invention. For example, in the embodiment of the present invention, the cell gap can be changed between 0.5 microns and 3.0 microns (including 0.5 microns and 3.0 microns) depending on the refractive index of the liquid crystal used; and the pretilt angle can be limited to 89 degrees to 75 degrees. Change between (including 89 degrees and 75 degrees).

圖8和圖9為根據本發明一實施例模擬之453奈米藍光波長、513奈米綠光波長和628奈米紅光波長繪製於線性和對數刻度的電光曲線,其中外部延遲器200具有166奈米的一延遲長度Γ且其慢軸220定向為垂直於垂直配向模式空間光調變器300的慢軸340。8 and 9 are electro-optical curves plotted on linear and logarithmic scales with 453 nm blue wavelength, 513 nm green wavelength and 628 nm red wavelength simulated according to an embodiment of the present invention, wherein the external retarder 200 has 166 A delay length Γ of nanometers and its slow axis 220 are oriented perpendicular to the slow axis 340 of the vertical alignment mode spatial light modulator 300.

為對數刻度的圖9示出空間光調變器顯示系統10的一示例性實施例對於全部三個顏色在電光曲線中近於零的通過率最小值為小於0.00001。這些對於照光顏色為0.001以下近於零的通過率最小值係透過本發明實現,例如本發明所採用的例如上述具有166奈米的延遲長度Γ的一延遲器200,且其在使用外部寬帶四分之一波片的現有技術方案中不存在。(如圖4和圖6所示,其僅示出一些通過率最小值在0.001以下)。FIG. 9, which is a logarithmic scale, shows that an exemplary embodiment of the spatial light modulator display system 10 has a minimum pass rate of nearly zero in the electro-optical curve for all three colors of less than 0.00001. These minimum pass rates close to zero for the illumination color below 0.001 are achieved through the present invention. For example, the present invention uses the above-mentioned retarder 200 with a retardation length Γ of 166 nm, and it uses an external broadband four. There is no existing technical solution for a half-wave plate. (As shown in Figure 4 and Figure 6, it only shows that some pass rates have a minimum value below 0.001).

圖10和圖11為根據本發明一實施例之包含具有107奈米的一延遲長度Γ的一外部延遲器200的空間光調變器顯示系統10繪製於線性和對數刻度的模擬的電光曲線,其中外部延遲器200的慢軸220定向為平行於垂直配向模式空間光調變器300的慢軸320。10 and FIG. 11 are the simulated electro-optical curves of the spatial light modulator display system 10 including an external retarder 200 with a retardation length Γ of 107 nm, drawn on linear and logarithmic scales according to an embodiment of the present invention. The slow axis 220 of the external retarder 200 is oriented parallel to the slow axis 320 of the vertical alignment mode spatial light modulator 300.

為對數刻度的圖11示出根據本發明的空間光調變器顯示系統10的一示例對於全部三個顏色(亦即紅、藍和綠)在電光曲線中近於零的通過率最小值為小於0.00001。這些對於所有照光顏色為0.001或小於0.001的近於零的通過率最小值係為本發明的特徵,且其在使用外部寬帶四分之一波片的現有技術方案中不存在。Fig. 11, which is a logarithmic scale, shows an example of the spatial light modulator display system 10 according to the present invention. For all three colors (i.e., red, blue, and green), the minimum value of the pass rate near zero in the electro-optical curve is Less than 0.00001. These near zero pass rate minimum values of 0.001 or less for all illumination colors are the characteristics of the present invention, and they do not exist in the prior art solution using an external broadband quarter-wave plate.

圖12和圖13為根據本發明一實施例之繪製於線性和對數刻度的模擬的電光曲線,其中外部延遲器200具有為166奈米的一延遲長度Γ且其慢軸220定向為垂直於一90度扭轉垂直配向模式空間光調變器300的慢軸340。對於電腦模擬,扭轉垂直配向模式的慢軸340平行於在空間光調變器300的對準層302和304上的方位對準方向的等分線。Figures 12 and 13 are simulated electro-optical curves drawn on linear and logarithmic scales according to an embodiment of the present invention, wherein the external retarder 200 has a retardation length Γ of 166 nm and its slow axis 220 is oriented perpendicular to a The slow axis 340 of the vertical alignment mode spatial light modulator 300 is twisted 90 degrees. For the computer simulation, the slow axis 340 of the twisted vertical alignment mode is parallel to the bisector of the azimuth alignment direction on the alignment layers 302 and 304 of the spatial light modulator 300.

為對數刻度的圖13示出在電光曲線中對於全部三個顏色近於零的通過率最小值為小於0.00014。這些對於所有照光顏色的通過率最小值為本發明的特徵,且其在使用外部寬帶四分之一波片的現有技術方案中不存在。Fig. 13, which is a logarithmic scale, shows that in the electro-optical curve, the minimum pass rate for all three colors near zero is less than 0.00014. These minimum pass rates for all illuminating colors are the characteristics of the present invention, and they do not exist in the prior art solution using an external broadband quarter-wave plate.

圖14和圖15為根據本發明一扭轉垂直配向實施例之繪製於線性和對數刻度的模擬的電光曲線,其中外部延遲器200具有為107奈米的一延遲長度Γ且其慢軸220定向為平行於一扭轉垂直配向模式空間光調變器300的慢軸340。14 and 15 are simulated electro-optical curves drawn on linear and logarithmic scales according to an embodiment of the twisted vertical alignment of the present invention, where the external retarder 200 has a retardation length Γ of 107 nm and its slow axis 220 is oriented as Parallel to the slow axis 340 of the spatial light modulator 300 in a twisted vertical alignment mode.

為對數刻度的圖15示出在電光曲線中對於全部三個顏色近於零的通過率最小值為小於0.0001。這些對於所有照光顏色的通過率最小值為本發明的特徵,且其在使用外部寬帶四分之一波片的現有技術方案中不存在。Figure 15, which is a logarithmic scale, shows that the minimum pass rate for all three colors in the electro-optical curve is less than 0.0001. These minimum pass rates for all illuminating colors are the characteristics of the present invention, and they do not exist in the prior art solution using an external broadband quarter-wave plate.

暗狀態和亮狀態的驅動電壓Dark state and bright state drive voltage

在一實施例中,液晶顯示器10可透過驅動電壓317運作以維持液晶顯示器10的各別像素對於各照光波長在一斷開狀態中。在一電光曲線中對於各照光波長存在零或近於零的通過率最小值處的電壓下,液晶顯示器10係處於斷開狀態。In one embodiment, the liquid crystal display 10 can be operated through the driving voltage 317 to maintain the respective pixels of the liquid crystal display 10 in an off state for each light wavelength. In an electro-optical curve, the liquid crystal display 10 is in an off state when there is a voltage at which the pass rate minimum value is zero or close to zero for each illuminating wavelength.

液晶顯示器10亦可透過一驅動電壓317運作和/或操作以維持液晶顯示器10的各別像素對於各照光波長在一運作狀態(ON State)中。在電壓為停止狀態(OFF State)電壓之上的情況,液晶顯示器係處於運作狀態中。The liquid crystal display 10 can also be operated and/or operated by a driving voltage 317 to maintain the respective pixels of the liquid crystal display 10 in an ON state for each light wavelength. When the voltage is above the OFF State voltage, the liquid crystal display is in an operating state.

在本發明的實施例中,電光曲線中的通過率最小值在結合的相位延遲φ為0.25處之電壓發生。外部延遲器的延遲長度和空間光調變器的延遲長度的結合在近於零的通過率最小值處的電壓下產生圓偏振。此在對於各照光波長的不同電壓下發明。相較下,如上述具有選取的延遲性的外部延遲器在用於確定所選延遲性的波長處產生橢圓偏振。In the embodiment of the present invention, the minimum pass rate in the electro-optical curve occurs at the voltage where the combined phase delay φ is 0.25. The combination of the retardation length of the external retarder and the retardation length of the spatial light modulator produces circular polarization at a voltage close to zero at the minimum pass rate. This was invented under different voltages for each illuminating wavelength. In contrast, the external retarder with selected retardation as described above produces elliptical polarization at the wavelength used to determine the selected retardation.

在本發明圖11和圖15的實施例中,液晶層306的延遲長度Γ被加在外部延遲器200的延遲長度Γ以實現為0.25的結合的相位延遲φ。為了實現對於給定的顏色大於2000的對比度,根據本發明的例如為一矽基液晶空間光調變器的一空間光調變器以一像素驅動電壓317驅動。根據本發明所述之矽基液晶空間光調變器的像素驅動電壓317係為或接近在電光曲線中近於零的通過率最小值發生處之電壓,以實現一暗像素(例如一停止狀態)。在本發明的一實施例中,像素驅動電壓317被增加至斷開狀態電壓之上以實現增加亮度的像素灰度等級。In the embodiment of FIG. 11 and FIG. 15 of the present invention, the retardation length Γ of the liquid crystal layer 306 is added to the retardation length Γ of the external retarder 200 to achieve a combined phase retardation φ of 0.25. In order to achieve a contrast greater than 2000 for a given color, a spatial light modulator such as a liquid crystal on silicon spatial light modulator according to the present invention is driven with a pixel driving voltage 317. The pixel driving voltage 317 of the silicon-based liquid crystal spatial light modulator according to the present invention is at or near the voltage at which the minimum pass rate in the electro-optical curve occurs, so as to realize a dark pixel (for example, a stopped state). ). In an embodiment of the present invention, the pixel driving voltage 317 is increased above the off-state voltage to achieve a pixel gray level with increased brightness.

在本發明圖9和圖13的實施例中,液晶層306的延遲長度Γ從外部延遲器200的延遲長度Γ減去以得為0.25的結合的相位延遲φ。為了實現對於給定的顏色大於或等於2000的對比度,矽基液晶顯示器10以一像素驅動電壓317驅動。像素驅動電壓317係為或接近對應一空間光調變器的電光性能在電光曲線中近於零的通過率最小值發生處之電壓,以實現一暗像素(亦即一停止狀態)。像素驅動電壓317被增加至此斷開狀態電壓之上以實現增加亮度的像素灰度等級(亦即一運作狀態)。In the embodiment of FIG. 9 and FIG. 13 of the present invention, the retardation length Γ of the liquid crystal layer 306 is subtracted from the retardation length Γ of the external retarder 200 to obtain a combined phase retardation φ of 0.25. In order to achieve a contrast greater than or equal to 2000 for a given color, the silicon-based liquid crystal display 10 is driven with a pixel driving voltage 317. The pixel driving voltage 317 is a voltage corresponding to or close to the voltage at which the minimum pass rate of the electro-optical performance of a spatial light modulator occurs near zero in the electro-optical curve to realize a dark pixel (that is, a stopped state). The pixel driving voltage 317 is increased above the off-state voltage to achieve an increased brightness of the pixel gray level (that is, an operating state).

具有固定相位延遲的外部延遲器External retarder with fixed phase delay

上述本發明的實施例包含具有不同的166奈米和107奈米延遲長度Γ的外部延遲器200。為了模擬,這些延遲長度Γ假定與波長不相關,其可透過由聚乙烯醇製成的延遲器200來近似。然而,如圖7所示,這些延遲器的相位延遲φ係與波長相關的。其是因為相位延遲φ是給定為φ = Γ/λ。因為延遲長度Γ為定值,相位延遲φ為波長的一函數。The above-described embodiment of the present invention includes an external retarder 200 with different retardation lengths Γ of 166 nm and 107 nm. For simulation, these retardation lengths Γ are assumed to be independent of the wavelength, which can be approximated by the retarder 200 made of polyvinyl alcohol. However, as shown in Figure 7, the phase retardation φ of these retarders is wavelength dependent. This is because the phase delay φ is given as φ = Γ/λ. Because the retardation length Γ is a constant value, the phase retardation φ is a function of wavelength.

圖16和圖17根據本發明一實施例的繪製於線性和對數刻度的模擬的電光曲線,其中外部延遲器200具有固定為0.26的相位延遲φ且其慢軸220定向為垂直於垂直配向模式空間光調變器300的慢軸340.為對數刻度的圖17示出在電光曲線中對於全部三個顏色近於零的通過率最小值為小於0.0001。在一實施例中,對於一給定顏色之大於2000的對比度可透過以一像素驅動電壓317驅動空間光調變器300來實現。像素驅動電壓317被設定為或接近在電光曲線中近於零的通過率最小值發生處之電壓以實現一暗像素。像素驅動電壓317被增加至該值之上以實現增加亮度的像素灰度等級。16 and 17 are simulated electro-optical curves drawn on linear and logarithmic scales according to an embodiment of the present invention, in which the external retarder 200 has a fixed phase delay φ of 0.26 and its slow axis 220 is oriented perpendicular to the vertical alignment mode space The slow axis 340 of the optical modulator 300 is a logarithmic scale, Fig. 17 shows that in the electro-optical curve for all three colors, the minimum pass rate is less than 0.0001. In one embodiment, a contrast ratio greater than 2000 for a given color can be achieved by driving the spatial light modulator 300 with a pixel driving voltage 317. The pixel driving voltage 317 is set at or close to the voltage at which the minimum pass rate in the electro-optical curve occurs to realize a dark pixel. The pixel driving voltage 317 is increased above this value to achieve pixel gray levels with increased brightness.

比較圖8中的電光曲線(本發明使用具有為166奈米的延遲長度Γ的一延遲器200的實施例)與圖16中對應的電光曲線(本發明使用具有固定為0.26的一相位延遲φ的延遲器200延遲器200的慢軸220垂直空間光調變器的慢軸340的實施例)示出藍和綠光波長的電光曲線較陡且在驅動電壓317為高於電光曲線具有近於零的最小值處以實現較高通過率。具有固定的相位延遲φ的一外部延遲器200可優於具有延遲長度Γ的一外部延遲器,特別是在因空間光調變器300的像素電路設計下使驅動電壓限制在較低值的案例中。Compare the electro-optical curve in FIG. 8 (the present invention uses an embodiment of a retarder 200 with a retardation length Γ of 166 nm) and the corresponding electro-optical curve in FIG. 16 (the present invention uses a phase delay φ fixed to 0.26 The retarder 200 slow axis 220 of the retarder 200 is perpendicular to the slow axis 340 of the spatial light modulator) shows that the electro-optical curves of blue and green wavelengths are steeper and the driving voltage 317 is higher than the electro-optical curve. The minimum value of zero is used to achieve a higher pass rate. An external retarder 200 with a fixed phase delay φ may be better than an external retarder with a delay length Γ, especially in the case where the driving voltage is limited to a lower value due to the pixel circuit design of the spatial light modulator 300 in.

類似地,使用具有固定為0.24的相位延遲φ且其慢軸220與空間光調變器的慢軸320平行定向的一延遲器200的一實施例示例的模擬示出了幾乎相同於圖16和圖17之電光曲線的電光曲線。Similarly, a simulation using an example of an embodiment of a retarder 200 with a phase delay φ fixed to 0.24 and whose slow axis 220 is oriented parallel to the slow axis 320 of the spatial light modulator shows that it is almost the same as in FIGS. 16 and 16 Figure 17 shows the electro-optical curve of the electro-optical curve.

使用於這些示例的相位延遲φ並非要完全固定才能實現具有高通過率的陡的電光曲線。根據本發明之具有近乎固定為0.26之相位延遲的一延遲器200例如以S. Pancharatnam, Part I and Part II, in The Proceedings of the Indian Academy of Sciences, Vol. XLI, No. 4, Sec. A, pages 130-144, 1955所教示的方式結合具有不同延遲長度Γ和定向角的三個外部延遲器。The phase delay φ used in these examples does not have to be completely fixed to achieve a steep electro-optical curve with high throughput. According to the present invention, a retarder 200 with a phase delay almost fixed to 0.26 is, for example, S. Pancharatnam, Part I and Part II, in The Proceedings of the Indian Academy of Sciences, Vol. XLI, No. 4, Sec. A , pages 130-144, 1955 combines three external retarders with different retardation lengths Γ and orientation angles.

方法method

參照圖18,說明了根據本發明一示例性實施例的一示例性方法500。根據一第一步驟510,確定一組照光波長。該組照光波長包含至少三個不同色光譜中的每個至少一照光波長。舉例來說,至少一照光波長從一625~740奈米紅色波長帶、一500~565奈米綠色波長帶和一450~485奈米藍色波長帶的每個中確定。Referring to Figure 18, an exemplary method 500 according to an exemplary embodiment of the present invention is illustrated. According to a first step 510, a set of illumination wavelengths is determined. The group of illumination wavelengths includes at least one illumination wavelength in each of at least three different color spectra. For example, at least one illuminating wavelength is determined from each of a 625-740 nanometer red wavelength band, a 500-565 nanometer green wavelength band, and a 450-485 nanometer blue wavelength band.

根據一第二步驟520a,相對於一最小延遲性選取具有一延遲性的外部延遲器。延遲性使得相位延遲對於該組照光波長中的各波長為大於0.25。詳細來說,最小延遲性係計算為最長波長的四分之一(如為上述示例中紅色帶中之波長)。According to a second step 520a, an external retarder with a delay is selected relative to a minimum delay. The retardation makes the phase retardation greater than 0.25 for each of the wavelengths of the illumination light. In detail, the minimum retardation is calculated as a quarter of the longest wavelength (such as the wavelength in the red band in the above example).

根據一第三步驟530a,具有選定延遲性的外部延遲器的慢軸相對於空間光調變器的慢軸定向。延遲器的慢軸定向為垂直於空間光調變器的慢軸。According to a third step 530a, the slow axis of the external retarder with the selected retardation is oriented relative to the slow axis of the spatial light modulator. The slow axis of the retarder is oriented perpendicular to the slow axis of the spatial light modulator.

做為其他方式,根據在第一步驟510之後的一第二步驟520b,相對於一最大延遲性選取具有一延遲性的一外部延遲器。延遲性使得相位延遲對於該組照光波長中的各波長為小於0.25。詳細來說,最大延遲性係計算為最短波長的四分之一(如為上述示例中藍色帶中之波長)。As another way, according to a second step 520b after the first step 510, an external retarder with a delay is selected relative to a maximum delay. The retardation makes the phase retardation less than 0.25 for each of the wavelengths of the illumination light. In detail, the maximum retardation is calculated as a quarter of the shortest wavelength (such as the wavelength in the blue band in the above example).

根據一第三步驟530b,具有選定延遲性的外部延遲器的慢軸相對於空間光調變器的慢軸定向。延遲器的慢軸定向為平行於空間光調變器的慢軸。According to a third step 530b, the slow axis of the external retarder with the selected retardation is oriented relative to the slow axis of the spatial light modulator. The slow axis of the retarder is oriented parallel to the slow axis of the spatial light modulator.

上述實施例僅是為了清楚地理解原理而闡述的實施方式的示例性說明。在不脫離申請專利範圍的情況下,可以對上述實施例進行變化、修改和組合。所有這些變化、修改和組合在本文中都包括在本發明和所附申請專利範圍內。The above-mentioned embodiments are merely exemplary illustrations of implementations set forth in order to clearly understand the principle. Without departing from the scope of the patent application, changes, modifications and combinations can be made to the above-mentioned embodiments. All these changes, modifications and combinations are included in the scope of the present invention and the appended application patents herein.

10:空間光調變器顯示系統 100:線性偏光器 110:抗反射塗層 120:照光 140:反射的光 160:光軸 180:反射光 200:外部延遲器 220、340、320:慢軸 300:反射式空間光調變器 302:第一對準層 304:第二對準層 306:液晶材料層、液晶層 308:表面接觸液晶指向矢 309:非表面接觸液晶指向矢 310:預傾角 311:傾角 312:第一電極 314:第二電極 316:電壓源 317:電壓 318:基板層 319:基板層 400:光源 Γ:延遲長度 500:顯示系統的形成方法 510:第一步驟 520a、520b:第二步驟 530a、530b:第三步驟10: Spatial light modulator display system 100: Linear polarizer 110: Anti-reflective coating 120: Illumination 140: Reflected Light 160: optical axis 180: reflected light 200: external retarder 220, 340, 320: slow axis 300: Reflective spatial light modulator 302: first alignment layer 304: second alignment layer 306: liquid crystal material layer, liquid crystal layer 308: Surface contact liquid crystal director 309: Non-surface contact liquid crystal director 310: pretilt angle 311: inclination 312: first electrode 314: second electrode 316: voltage source 317: Voltage 318: substrate layer 319: substrate layer 400: light source Γ: Delay length 500: display system formation method 510: first step 520a, 520b: second step 530a, 530b: third step

圖1為根據本發明所述的空間光調變器顯示系統的立體展開示意圖。 圖2繪示先前技術之寬帶四分之一波片的相位延遲φ的波長分布曲線。 圖3為使用先前技術具有垂直配向模式且其中延遲器的慢軸與空間光調變器的慢軸彼此垂直的空間光調變器的寬帶四分之一波片模擬453奈米藍光波長、513奈米綠光波長和628奈米紅光波長繪製於線性刻度的電光曲線。 圖4為使用先前技術具有垂直配向模式且其中延遲器的慢軸與空間光調變器的慢軸彼此垂直的空間光調變器的寬帶四分之一波片模擬453奈米藍光波長、513奈米綠光波長和628奈米紅光波長繪製於對數刻度的電光曲線。 圖5為使用先前技術具有垂直配向模式且其中延遲器的慢軸與空間光調變器的慢軸彼此平行的空間光調變器的寬帶四分之一波片模擬453奈米藍光波長、513奈米綠光波長和628奈米紅光波長繪製於線性刻度的電光曲線。 圖6為使用先前技術具有垂直配向模式且其中延遲器的慢軸與空間光調變器的慢軸彼此平行的空間光調變器的寬帶四分之一波片模擬453奈米藍光波長、513奈米綠光波長和628奈米紅光波長繪製於對數刻度的電光曲線。 圖7繪示根據本發明一示例性實施例之166奈米延遲器的相位延遲的波長分布曲線以及根據本發明一示例性實施例之107奈米延遲器的相位延遲的波長分布曲線。 圖8為根據本發明一示例性實施例之具有垂直配向模式的空間光調變器使用166奈米延遲器模擬之453奈米藍光波長、513奈米綠光波長和628奈米紅光波長繪製於線性刻度的電光曲線。 圖9為根據本發明一示例性實施例之具有垂直配向模式的空間光調變器使用166奈米延遲器模擬之453奈米藍光波長、513奈米綠光波長和628奈米紅光波長繪製於對數刻度的電光曲線。 圖10為根據本發明一示例性實施例之具有垂直配向模式的空間光調變器使用107奈米延遲器模擬之453奈米藍光波長、513奈米綠光波長和628奈米紅光波長繪製於線性刻度的電光曲線。 圖11為根據本發明一示例性實施例之具有垂直配向模式的空間光調變器使用107奈米延遲器模擬之453奈米藍光波長、513奈米綠光波長和628奈米紅光波長繪製於對數刻度的電光曲線。 圖12為根據本發明一示例性實施例之具有90度扭轉垂直配向模式的空間光調變器使用166奈米延遲器模擬之453奈米藍光波長、513奈米綠光波長和628奈米紅光波長繪製於線性刻度的電光曲線。 圖13為根據本發明一示例性實施例之使用在具有90度扭轉垂直配向模式的空間光調變器中的166奈米延遲器模擬之453奈米藍光波長、513奈米綠光波長和628奈米紅光波長繪製於對數刻度的電光曲線。 圖14為根據本發明一示例性實施例之使用在具有90度扭轉垂直配向模式的空間光調變器中的107奈米延遲器模擬之453奈米藍光波長、513奈米綠光波長和628奈米紅光波長繪製於線性刻度的電光曲線。 圖15為根據本發明一示例性實施例之使用在具有90度扭轉垂直配向模式的空間光調變器中的107奈米延遲器模擬之453奈米藍光波長、513奈米綠光波長和628奈米紅光波長繪製於對數刻度的電光曲線。 圖16為根據本發明一示例性實施例之使用在垂直配向模式的空間光調變器中相位延遲φ固定為0.26的延遲器模擬之453奈米藍光波長、513奈米綠光波長和628奈米紅光波長繪製於線性刻度的電光曲線。 圖17為根據本發明一示例性實施例之使用在垂直配向模式的空間光調變器中相位延遲φ固定為0.26的延遲器模擬之453奈米藍光波長、513奈米綠光波長和628奈米紅光波長繪製於對數刻度的電光曲線。 圖18為根據本發明一示例性實施例繪示一示例性之顯示系統的形成方法之流程圖。FIG. 1 is a three-dimensional expanded schematic diagram of the display system of the spatial light modulator according to the present invention. Fig. 2 shows the wavelength distribution curve of the phase retardation φ of the broadband quarter wave plate of the prior art. Figure 3 is a broadband quarter wave plate simulation of a 453nm blue light wavelength, 513 nm using a prior art broadband quarter wave plate of a spatial light modulator with a vertical alignment mode in which the slow axis of the retarder and the slow axis of the spatial light modulator are perpendicular to each other. The wavelength of green light at nanometers and the wavelength of red light at 628 nanometers are plotted on a linear scale electro-optic curve. Fig. 4 is a broadband quarter-wave plate simulation of a spatial light modulator with a vertical alignment mode in which the slow axis of the retarder and the slow axis of the spatial light modulator are perpendicular to each other using the prior art. The wavelength of green light at nanometers and the wavelength of red light at 628 nanometers are plotted on a logarithmic scale electro-optic curve. Fig. 5 is a broadband quarter-wave plate simulation of a 453nm blue light wavelength, 513 using a prior art broadband quarter-wave plate of a spatial light modulator in which the slow axis of the retarder and the slow axis of the spatial light modulator are parallel to each other with a vertical alignment mode. The wavelength of green light at nanometers and the wavelength of red light at 628 nanometers are plotted on a linear scale electro-optic curve. Fig. 6 is a broadband quarter-wave plate simulation of a spatial light modulator with a vertical alignment mode in which the slow axis of the retarder and the slow axis of the spatial light modulator are parallel to each other using the prior art to simulate 453 nm blue wavelength, 513 The wavelength of green light at nanometers and the wavelength of red light at 628 nanometers are plotted on a logarithmic scale electro-optic curve. FIG. 7 shows a wavelength distribution curve of the phase retardation of a 166 nm retarder according to an exemplary embodiment of the present invention and a wavelength distribution curve of the phase retardation of a 107 nm retarder according to an exemplary embodiment of the present invention. Fig. 8 is a plot of 453 nm blue light wavelength, 513 nm green light wavelength and 628 nm red light wavelength simulated by a spatial light modulator with a vertical alignment mode using a 166 nm retarder according to an exemplary embodiment of the present invention Electro-optical curve on a linear scale. Figure 9 is a plot of a 453nm blue wavelength, 513nm green wavelength and 628nm red wavelength simulated by a spatial light modulator with a vertical alignment mode using a 166nm retarder according to an exemplary embodiment of the present invention The electro-optical curve on a logarithmic scale. Figure 10 is a plot of 453nm blue wavelength, 513nm green wavelength and 628nm red wavelength simulated by a spatial light modulator with a vertical alignment mode using a 107nm retarder according to an exemplary embodiment of the present invention Electro-optical curve on a linear scale. Figure 11 is a plot of 453nm blue wavelength, 513nm green wavelength and 628nm red wavelength simulated by a spatial light modulator with a vertical alignment mode using a 107nm retarder according to an exemplary embodiment of the present invention The electro-optical curve on a logarithmic scale. Figure 12 is a simulation of 453nm blue wavelength, 513nm green wavelength and 628nm red using a 166nm retarder in a spatial light modulator with a 90-degree twist vertical alignment mode according to an exemplary embodiment of the present invention The light wavelength is plotted on the electro-optical curve on a linear scale. Figure 13 is a simulation of 453nm blue wavelength, 513nm green wavelength and 628nm using a 166nm retarder in a spatial light modulator with a 90-degree twist vertical alignment mode according to an exemplary embodiment of the present invention The wavelength of nanored light is plotted on a logarithmic scale electro-optic curve. Figure 14 is a simulation of 453nm blue wavelength, 513nm green wavelength and 628nm using a 107nm retarder in a spatial light modulator with a 90-degree twist vertical alignment mode according to an exemplary embodiment of the present invention The wavelength of nano red light is plotted on the electro-optic curve on a linear scale. 15 is a simulation of 453nm blue wavelength, 513nm green wavelength and 628nm using a 107nm retarder in a spatial light modulator with a 90-degree twist vertical alignment mode according to an exemplary embodiment of the present invention The wavelength of nanored light is plotted on a logarithmic scale electro-optic curve. Fig. 16 is a simulation of 453nm blue wavelength, 513nm green wavelength and 628nm using a retarder with a fixed phase delay φ of 0.26 in a spatial light modulator in a vertical alignment mode according to an exemplary embodiment of the present invention The wavelength of red light is plotted on the electro-optical curve on a linear scale. Figure 17 is a simulation of 453 nm blue wavelength, 513 nm green wavelength and 628 nm using a retarder with a fixed phase delay φ of 0.26 in a spatial light modulator in a vertical alignment mode according to an exemplary embodiment of the present invention The wavelength of red light is plotted on the electro-optic curve on a logarithmic scale. FIG. 18 is a flowchart illustrating an exemplary method of forming a display system according to an exemplary embodiment of the present invention.

10:空間光調變器顯示系統 10: Spatial light modulator display system

100:線性偏光器 100: Linear polarizer

110:抗反射塗層 110: Anti-reflective coating

120:照光 120: Illumination

140:反射的光 140: Reflected Light

160:光軸 160: optical axis

180:反射光 180: reflected light

200:外部延遲器 200: external retarder

220、340、320:慢軸 220, 340, 320: slow axis

300:反射式空間光調變器 300: Reflective spatial light modulator

302:第一對準層 302: first alignment layer

304:第二對準層 304: second alignment layer

306:液晶材料層、液晶層 306: liquid crystal material layer, liquid crystal layer

308:表面接觸液晶指向矢 308: Surface contact liquid crystal director

309:非表面接觸液晶指向矢 309: Non-surface contact liquid crystal director

310:預傾角 310: pretilt angle

311:傾角 311: inclination

312:第一電極 312: first electrode

314:第二電極 314: second electrode

316:電壓源 316: voltage source

317:電壓 317: Voltage

318:基板層 318: substrate layer

319:基板層 319: substrate layer

400:光源 400: light source

Claims (22)

一種顯示系統,包含: 一空間光調變器,包含一第一基板、一第二基板以及位於該第一基板和該第二基板之間的一液晶層,其中該空間光調變器具有一第一延遲長度以及一第一相位延遲之特徵,其中該空間光調變器具有用於光傳播的一第一慢軸;以及 一延遲器,位於該空間光調變器外部,其中該延遲器具有一第二延遲長度以及一第二相位延遲之特徵,該延遲器包含垂直於該第一慢軸且用於光傳播的一第二慢軸,其中該第二延遲長度具有一值使得該延遲器對於一組照光波長中的所有照光波長具有0.25以上的一相位延遲值,其中該組照光波長包含至少三個不同色光譜的每個中的至少一照光波長。A display system that includes: A spatial light modulator includes a first substrate, a second substrate, and a liquid crystal layer located between the first substrate and the second substrate, wherein the spatial light modulator has a first retardation length and a first A feature of phase delay, wherein the spatial light modulator has a first slow axis for light propagation; and A retarder is located outside the spatial light modulator, wherein the retarder has the characteristics of a second delay length and a second phase delay, and the retarder includes a first retarder perpendicular to the first slow axis and used for light propagation Two slow axes, wherein the second retardation length has a value such that the retarder has a phase retardation value of 0.25 or more for all the illuminating wavelengths in a set of illuminating wavelengths, wherein the set of illuminating wavelengths includes each of at least three different color spectra At least one of the illuminating wavelengths. 如請求項1所述之顯示系統,包含具有一偏光軸的一偏光器,其中該延遲器在該偏光器和該空間光調變器之間,其中該第二慢軸相對於該偏光軸旋轉45度。The display system according to claim 1, comprising a polarizer having a polarization axis, wherein the retarder is between the polarizer and the spatial light modulator, and wherein the second slow axis rotates relative to the polarization axis 45 degree. 如請求項1所述之顯示系統,其中該第二延遲長度具有一值其大於該組照光波長的一最長照光波長的四分之一。The display system according to claim 1, wherein the second delay length has a value greater than a quarter of a longest illuminating wavelength of the group of illuminating wavelengths. 如請求項1所述之顯示系統,包含一電壓源,其用以對該空間光調變器施加一驅動電壓,其中該空間光調變器的該第一延遲長度為該驅動電壓的一函數;其中,對於在該組照光波長中的各該照光波長,用於一斷開狀態的該驅動電壓被設置為一斷開狀態驅動電壓,其中該第一相位延遲和該第二相位延遲的組合的值等於或接近0.25,以使一對比度大於2000。The display system according to claim 1, comprising a voltage source for applying a driving voltage to the spatial light modulator, wherein the first delay length of the spatial light modulator is a function of the driving voltage Wherein, for each of the illumination wavelengths in the set of illumination wavelengths, the driving voltage for an off state is set to an off state driving voltage, wherein the first phase delay and the second phase delay are combined The value of is equal to or close to 0.25 to make a contrast greater than 2000. 如請求項4所述之顯示系統,其中在大於該斷開狀態驅動電壓的一導通狀態驅動電壓下,在各自的一電光曲線中存在各照光波長的一最大通過率。The display system according to claim 4, wherein at an on-state drive voltage greater than the off-state drive voltage, there is a maximum pass rate of each illuminating wavelength in a respective electro-optical curve. 如請求項1所述之顯示系統,其中該空間光調變器用以接收入射光且輸出一影像,其中該影像包含對應該組照光波長中各該照光波長的至少三種不同顏色,且其中對於各該三種不同顏色的一對比度大於2000。The display system according to claim 1, wherein the spatial light modulator is used for receiving incident light and outputting an image, wherein the image includes at least three different colors corresponding to each of the illumination wavelengths in the group of illumination wavelengths, and wherein each A contrast ratio of the three different colors is greater than 2000. 如請求項1所述之顯示系統,其中該至少三個不同色光譜包含紅色、綠色和藍色光譜。The display system according to claim 1, wherein the at least three different color spectra include red, green and blue spectra. 如請求項1所述之顯示系統,其中該延遲器產生對於所有照光波長的一相位延遲φ,其對於所有該照光波長具有範圍在0.26至0.40的一值。The display system according to claim 1, wherein the retarder generates a phase retardation φ for all illumination wavelengths, which has a value in the range of 0.26 to 0.40 for all illumination wavelengths. 如請求項1所述之顯示系統,其中該顯示系統為一矽基液晶顯示器,其以一垂直配向模式和一扭轉垂直配向模式中之至少一者運行。The display system according to claim 1, wherein the display system is a silicon-based liquid crystal display that operates in at least one of a vertical alignment mode and a twisted vertical alignment mode. 如請求項1所述之顯示系統,其中該延遲器包含多個延遲器。The display system according to claim 1, wherein the delay device includes a plurality of delay devices. 一種顯示系統,包含: 一空間光調變器,包含一第一基板、一第二基板以及位於該第一基板和該第二基板之間的一液晶層,其中該空間光調變器具有一第一延遲長度以及一第一相位延遲之特徵,其中該空間光調變器具有用於光傳播的一第一慢軸;以及 一延遲器,位於該空間光調變器外部,其中該延遲器具有一第二延遲長度以及一第二相位延遲之特徵,該延遲器包含平行於該第一慢軸且用於光傳播的一第二慢軸,其中該第二延遲長度具有一值使得該延遲器對於一組照光波長中的所有照光波長具有0.25以下的一相位延遲值,其中該組照光波長包含至少三個不同色光譜的每個中的至少一照光波長。A display system that includes: A spatial light modulator includes a first substrate, a second substrate, and a liquid crystal layer located between the first substrate and the second substrate, wherein the spatial light modulator has a first retardation length and a first A feature of phase delay, wherein the spatial light modulator has a first slow axis for light propagation; and A retarder is located outside the spatial light modulator, wherein the retarder has the characteristics of a second delay length and a second phase delay, and the retarder includes a first slow axis parallel to the first slow axis and used for light propagation. Two slow axes, where the second retardation length has a value such that the retarder has a phase retardation value of less than 0.25 for all illuminating wavelengths in a set of illuminating wavelengths, wherein the set of illuminating wavelengths includes each of at least three different color spectra At least one of the illuminating wavelengths. 如請求項11所述之顯示系統,包含具有一偏光軸的一偏光器,其中該延遲器在該偏光器和該空間光調變器之間,其中該第二慢軸相對於該偏光軸旋轉45度。The display system of claim 11, comprising a polarizer having a polarization axis, wherein the retarder is between the polarizer and the spatial light modulator, and the second slow axis rotates relative to the polarization axis 45 degree. 如請求項11所述之顯示系統,其中該第二延遲長度具有一值其小於該組照光波長的一最短照光波長的四分之一。The display system according to claim 11, wherein the second delay length has a value which is less than a quarter of a shortest illuminating wavelength of the group of illuminating wavelengths. 如請求項11所述之顯示系統,包含一電壓源,其用以對該空間光調變器施加一驅動電壓,其中該空間光調變器的該第一延遲長度為該驅動電壓的一函數;其中,對於在該組照光波長中的各該照光波長,用於一斷開狀態的該驅動電壓被設置為一斷開狀態驅動電壓,其中該第一相位延遲和該第二相位延遲的組合的值等於或接近0.25,以使一對比度大於2000。The display system of claim 11, comprising a voltage source for applying a driving voltage to the spatial light modulator, wherein the first delay length of the spatial light modulator is a function of the driving voltage Wherein, for each of the illumination wavelengths in the set of illumination wavelengths, the driving voltage for an off state is set to an off state driving voltage, wherein the first phase delay and the second phase delay are combined The value of is equal to or close to 0.25 to make a contrast greater than 2000. 如請求項14所述之顯示系統,其中在各該斷開狀態驅動電壓下,對於各該照光波長,在一電光曲線中存在零或接近零的一最小值。The display system according to claim 14, wherein at each off-state driving voltage, for each light wavelength, there is a minimum value of zero or close to zero in an electro-optical curve. 如請求項11所述之顯示系統,其中該空間光調變器用以接收入射光且輸出一影像,其中該影像包含對應該組照光波長中各該照光波長的至少三種不同顏色,且其中對於各該三種不同顏色的一對比度大於2000。The display system according to claim 11, wherein the spatial light modulator is used to receive incident light and output an image, wherein the image includes at least three different colors corresponding to each of the illumination wavelengths in the group of illumination wavelengths, and wherein each A contrast ratio of the three different colors is greater than 2000. 如請求項11所述之顯示系統,其中該至少三個不同色光譜包含紅色、綠色和藍色光譜。The display system according to claim 11, wherein the at least three different color spectra include red, green and blue spectra. 如請求項11所述之顯示系統,其中該延遲器產生對於所有照光波長的一相位延遲φ,其對於所有該照光波長具有範圍在0.10至0.24的一值。The display system according to claim 11, wherein the retarder generates a phase delay φ for all illumination wavelengths, which has a value in the range of 0.10 to 0.24 for all illumination wavelengths. 一種顯示系統的形成方法,包含: 判斷一組照光波長,其中該組照光波長包含至少三個不同色光譜的每個中的至少一照光波長;以及 選取具有一延遲性的一外部延遲器,其中該延遲性使得: 一相位延遲對於該組照光波長中各該照光波長為大於0.25;或者 一相位延遲對於該組照光波長中各該照光波長為小於0.25。A method for forming a display system, including: Determining a set of illumination wavelengths, where the set of illumination wavelengths includes at least one illumination wavelength in each of at least three different color spectra; and Select an external retarder with a delay, where the delay is such that: A phase retardation is greater than 0.25 for each of the illumination wavelengths in the group of illumination wavelengths; or A phase retardation is less than 0.25 for each of the illumination wavelengths in the group of illumination wavelengths. 如請求項19所述之顯示系統的形成方法,包含將該外部延遲器的一慢軸與一空間光調變器的一慢軸定向,其中: 若該相位延遲對於該組照光波長中的各該照光波長為大於0.25時,該延遲器的該慢軸被定向為垂直於該空間光調變器的該慢軸;或者 若該相位延遲對於該組照光波長中的各該照光波長為小於0.25時,該延遲器的該慢軸被定向為平行於該空間光調變器的該慢軸。The method for forming a display system according to claim 19, comprising orienting a slow axis of the external retarder and a slow axis of a spatial light modulator, wherein: If the phase retardation is greater than 0.25 for each of the illumination wavelengths in the group of illumination wavelengths, the slow axis of the retarder is oriented perpendicular to the slow axis of the spatial light modulator; or If the phase retardation is less than 0.25 for each of the illumination wavelengths in the group of illumination wavelengths, the slow axis of the retarder is oriented parallel to the slow axis of the spatial light modulator. 一種空間光調變器系統,包含: 一空間光調變器,包含一第一基板、一第二基板以及位於該第一基板和該第二基板之間的一液晶層,其中該空間光調變器具有用於光傳播的一空間光調變器慢軸;以及 一延遲器,沿在該空間光調變器和該延遲器之間的一光路位於該空間光調變器的外部,使得該系統接收的光沿該光路從該空間光調變器被傳輸至該延遲器,且其中該延遲器具有一延遲器相位延遲之特徵,且其中該延遲器相位延遲大於0.25,且其中該延遲器的位置是配置為使得用於光傳播的該延遲器慢軸是垂直於該空間光調變器慢軸。A spatial light modulator system, including: A spatial light modulator includes a first substrate, a second substrate, and a liquid crystal layer located between the first substrate and the second substrate, wherein the spatial light modulator has a spatial light for light propagation Modulator slow axis; and A retarder is located outside the spatial light modulator along an optical path between the spatial light modulator and the retarder, so that the light received by the system is transmitted from the spatial light modulator to the optical path along the optical path The retarder, and wherein the retarder has the characteristics of a retarder phase delay, and wherein the retarder phase delay is greater than 0.25, and wherein the position of the retarder is configured such that the retarder slow axis for light propagation is vertical On the slow axis of the spatial light modulator. 如請求項21所述之系統,更包含沿一光路配置且具有一偏光軸的一偏光器,且其中該延遲器位於該偏光器和該空間光調變器之間,且其中該延遲器慢軸相對於該偏光軸定位為成45度角。The system according to claim 21, further comprising a polarizer arranged along an optical path and having a polarization axis, and wherein the retarder is located between the polarizer and the spatial light modulator, and wherein the retarder is slow The axis is positioned at an angle of 45 degrees with respect to the polarization axis.
TW108144770A 2018-12-07 2019-12-06 Display system, spatial light modulator system and method of forming display system TWI826607B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862776794P 2018-12-07 2018-12-07
US62/776,794 2018-12-07

Publications (2)

Publication Number Publication Date
TW202028835A true TW202028835A (en) 2020-08-01
TWI826607B TWI826607B (en) 2023-12-21

Family

ID=71522282

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108144770A TWI826607B (en) 2018-12-07 2019-12-06 Display system, spatial light modulator system and method of forming display system

Country Status (7)

Country Link
US (2) US11782315B2 (en)
EP (1) EP3891555A4 (en)
JP (1) JP7337313B2 (en)
KR (1) KR102562650B1 (en)
CN (1) CN113196154A (en)
TW (1) TWI826607B (en)
WO (1) WO2020146072A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220050332A1 (en) 2018-12-07 2022-02-17 Compound Photonics U.S. Corporation Liquid crystal display with external retarder
TWI769735B (en) * 2020-11-18 2022-07-01 廖正興 Spatial light modulator for suppressing fringe field effect

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB202204235D0 (en) * 2022-03-25 2022-05-11 Vividq Ltd Holographic displays and methods

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576854A (en) 1993-11-12 1996-11-19 Hughes-Jvc Technology Corporation Liquid crystal light valve projector with improved contrast ratio and with 0.27 wavelength compensation for birefringence in the liquid crystal light valve
JP3410665B2 (en) 1997-12-26 2003-05-26 シャープ株式会社 Liquid crystal display
GB2335755A (en) 1998-03-26 1999-09-29 Sharp Kk Liquid crystal device
JP3406242B2 (en) * 1998-10-15 2003-05-12 シャープ株式会社 Liquid crystal display
KR100367280B1 (en) * 2000-05-08 2003-01-09 엘지.필립스 엘시디 주식회사 Method for fabricating transflective LCD
JP4343419B2 (en) 2000-11-15 2009-10-14 キヤノン株式会社 Liquid crystal device
US6836309B2 (en) * 2000-11-30 2004-12-28 Hana Microdisplay Technologies, Inc. High contrast reflective light valve
JP4997582B2 (en) 2001-08-06 2012-08-08 Nltテクノロジー株式会社 Reflective liquid crystal display
US7041998B2 (en) * 2003-03-24 2006-05-09 Photon Dynamics, Inc. Method and apparatus for high-throughput inspection of large flat patterned media using dynamically programmable optical spatial filtering
US7345723B2 (en) 2004-05-24 2008-03-18 Colorlink, Inc. LC panel compensators
JP3972371B2 (en) * 2005-03-15 2007-09-05 ソニー株式会社 Phase difference compensation plate, phase difference compensator, liquid crystal display device and projection type image display device
TW200728830A (en) * 2005-10-18 2007-08-01 Jds Uniphase Corp Electronically compensated LCD assembly
US20090002579A1 (en) 2007-06-29 2009-01-01 Jds Uniphase Corporation Near Halfwave Retarder For Contrast Compensation
JP2009075459A (en) 2007-09-21 2009-04-09 Fujifilm Corp Method for manufacturing biaxial birefringent material, biaxial birefringent material and liquid crystal projector
JP5720687B2 (en) 2010-08-21 2015-05-20 コニカミノルタ株式会社 Retardation film, polarizing plate using the same, and liquid crystal display device
US9234987B2 (en) * 2010-09-24 2016-01-12 Akron Polymer Systems, Inc. Wide-view multilayer optical films
CN102914906B (en) 2012-10-19 2015-02-25 京东方科技集团股份有限公司 Liquid crystal display panel and display device
TWI494664B (en) 2013-05-14 2015-08-01 Au Optronics Corp Display device
WO2018180867A1 (en) 2017-03-28 2018-10-04 シャープ株式会社 Retardation substrate and liquid crystal display device
US10802343B2 (en) * 2018-03-12 2020-10-13 Sharp Kabushiki Kaisha Low reflectivity LCD with COP retarder and COP matching RM
TWI826607B (en) 2018-12-07 2023-12-21 美商思娜公司 Display system, spatial light modulator system and method of forming display system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220050332A1 (en) 2018-12-07 2022-02-17 Compound Photonics U.S. Corporation Liquid crystal display with external retarder
US11782315B2 (en) 2018-12-07 2023-10-10 Snap Inc. Liquid crystal display with external retarder
TWI769735B (en) * 2020-11-18 2022-07-01 廖正興 Spatial light modulator for suppressing fringe field effect

Also Published As

Publication number Publication date
US11782315B2 (en) 2023-10-10
TWI826607B (en) 2023-12-21
EP3891555A4 (en) 2022-07-20
KR102562650B1 (en) 2023-08-03
KR20210119387A (en) 2021-10-05
EP3891555A2 (en) 2021-10-13
WO2020146072A2 (en) 2020-07-16
WO2020146072A3 (en) 2020-11-05
CN113196154A (en) 2021-07-30
JP7337313B2 (en) 2023-09-04
US20220050332A1 (en) 2022-02-17
US20230350247A1 (en) 2023-11-02
JP2022511034A (en) 2022-01-28

Similar Documents

Publication Publication Date Title
JP4059066B2 (en) projector
JP4309177B2 (en) Projection display using wire grid polarization beam splitter with compensator
US7982828B2 (en) Polarization switching liquid crystal element and image display apparatus having the same
JP4661510B2 (en) Projection display device and three-plate liquid crystal projector
JP5071553B2 (en) Projection display
US20230350247A1 (en) Liquid crystal display with external retarder
JP4805130B2 (en) Reflective liquid crystal display element and reflective liquid crystal projector
JPH05203915A (en) Display device
JP2011253191A (en) Vertical orientation nematic mode liquid crystal display apparatus with large tilt angle and high contrast
US20130100376A1 (en) Liquid crystal device, electronic apparatus, and projection type display apparatus
JP4798366B2 (en) Reflective liquid crystal display element and projection display device
TW201229650A (en) Projector
US20030058385A1 (en) Liquid crystal display device
JP3641708B2 (en) Reflective color LCD
JP4055465B2 (en) projector
US7333157B2 (en) Image display device
JP2004198650A (en) Optically compensated element and manufacturing method therefor, liquid crystal display element, and liquid crystal display device
JP2002532754A (en) Colorless inverter for liquid crystal display
JP2009075460A (en) Phase-shift compensation device, liquid crystal display device, and projector
WO2022168398A1 (en) Head-mounted display device
JP2006293341A (en) Image display device
JP2010097184A (en) Projection-type display device
JPH08265803A (en) Projection stereoscopic image display system
JP2915376B2 (en) Projection display device
JP3783920B2 (en) Liquid crystal display