WO2022168398A1 - Head-mounted display device - Google Patents

Head-mounted display device Download PDF

Info

Publication number
WO2022168398A1
WO2022168398A1 PCT/JP2021/042311 JP2021042311W WO2022168398A1 WO 2022168398 A1 WO2022168398 A1 WO 2022168398A1 JP 2021042311 W JP2021042311 W JP 2021042311W WO 2022168398 A1 WO2022168398 A1 WO 2022168398A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
light
lcos
image display
head
Prior art date
Application number
PCT/JP2021/042311
Other languages
French (fr)
Japanese (ja)
Inventor
雅孝 杉田
Original Assignee
株式会社日立エルジーデータストレージ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立エルジーデータストレージ filed Critical 株式会社日立エルジーデータストレージ
Publication of WO2022168398A1 publication Critical patent/WO2022168398A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/64Constructional details of receivers, e.g. cabinets or dust covers

Definitions

  • the present invention relates to a head-mounted display device (HMD: Head Mount Display, hereinafter referred to as HMD) that projects and displays a virtual image.
  • HMD Head Mount Display
  • An HMD is a device that generates a virtual image and displays an image through glasses-like or goggle-like light guide elements.
  • liquid crystal on silicon for example, is known as a video display device that modulates light incident from an illumination system based on a video signal to generate an image.
  • LCOS has a liquid crystal between the pixel electrode for image generation and the common electrode, and by controlling the electric field between the electrodes for each pixel based on the image signal, the polarization corresponding to the change in the phase difference of the light that has passed through the liquid crystal It displays images by generating brightness and darkness depending on the angle. Due to the variation in the polarization angle, contrast (luminance ratio of all white/all black) deteriorates.
  • Patent Document 1 discloses a first image forming apparatus, a first polarizing beam splitter through which illumination light passes to reach the first image forming apparatus, the first image forming apparatus, and a first polarized beam splitter. a first retardation element interposed between the beam splitter and attached to the first imaging device for substantially enhancing contrast in image light passing through the first polarizing beam splitter from the first imaging device; and a bias controller for biasing the pixels in the dark state to maximize the intensity.
  • An object of the present invention is to provide an HMD that can adjust and improve contrast deterioration with a simple configuration.
  • the present invention provides an image display device having a liquid crystal layer that changes the polarization angle between 90° and 0°, and an illumination system that supplies illumination light to the image display device. and a polarization optical element that guides irradiation light to the image display device and selects transmission/reflection according to the polarization angle of the light that varies depending on the image display device, wherein the polarization optical element and the image display device and the polarization function element is arranged between them.
  • FIG. 1 is a schematic configuration diagram of an image display unit in a conventional HMD;
  • FIG. It is a figure explaining the structure of the conventional LCOS. It is a figure explaining the operation
  • FIG. 10 is a diagram for explaining the operation of the LCOS and the PBS when the conventional video signal is all black; It is a figure explaining the subject in the case of the conventional HMD for one eye. It is a figure explaining the subject in the case of the conventional HMD for one eye. It is a figure explaining the subject in the case of the conventional HMD for one eye. It is a figure explaining the subject in the case of the conventional HMD for one eye. It is a figure explaining the subject in the case of the conventional HMD for one eye. It is a figure explaining the subject in the case of the conventional HMD for one eye. It is a figure explaining the subject in the case of the conventional HMD for one eye.
  • FIG. 1 is a schematic configuration diagram of a reflective image display unit using LCOS in Example 1.
  • FIG. 1 is a schematic configuration diagram of a transmissive image display unit using an LCD in Example 1.
  • FIG. 5 is a processing flowchart of contrast adjustment in Embodiment 1.
  • FIG. 10 is a simulation result of contrast with respect to polarization angle variation of LCOS without rotational adjustment in Example 1.
  • FIG. FIG. 10 is a simulation result of contrast with respect to polarization angle variation of LCOS with rotation adjustment in Example 1.
  • FIG. FIG. 10 is a diagram illustrating the configuration of a video display device according to Example 2;
  • FIG. 1 is a schematic configuration diagram of a video display unit in a conventional HMD. Note that if one structure of FIG. 1 is provided, it becomes a monocular HMD, and if it is provided with two structures, it becomes a binocular HMD.
  • an image display unit 100 includes an illumination system 10, a polarizing optical element PBS (Polarizing Beam Splitter) 20, an image display device 30, a projection system 40, and a light guide unit 50. ing.
  • PBS Polarizing Beam Splitter
  • the illumination system 10 has a light source 11 and a light source 13 which are light source units, condenser lenses 12 and 14, a dichroic mirror 15, a microlens array 16, a total reflection mirror 17, and an imaging lens . Note that some components may be omitted from the illumination system 10 as long as the image display device 30 can be illuminated via the PBS 20 .
  • the light source 11 in the light source unit emits green light (G light)
  • the light source 13 includes a red light source and a blue light source mounted in the same package, and emits red light and blue light (R light). and B light).
  • FIG. 1 shows the light source 13 in which two color light sources are mounted in the same package as an example, but each of the three color light sources may be mounted in an independent package. Colored light sources may be integrated and implemented in one package.
  • the light emitted from the light source 11 enters the condensing lens 12 .
  • the condensing lens 12 is arranged so that the light source 11 is positioned substantially at its synthetic focal position.
  • a light beam emitted from the light source 11 enters the condenser lens 12 and becomes collimated light. Collimated light from light source 11 is emitted toward dichroic mirror 15 .
  • the light emitted from the light source 13 enters the condensing lens 14 to become collimated light and is emitted toward the dichroic mirror 15 .
  • the dichroic mirror 15 aligns the optical axes of the R light, the B light, and the G light, synthesizes them, and synthesizes and emits the collimated light of each color.
  • the microlens array 16 receives substantially collimated light beams emitted from the dichroic mirror 15 .
  • the approximately collimated light is generated by the condensing lenses 12 and 14, and is a collimated light beam having a spread of light corresponding to the light emitting area of the light source section. Therefore, when the light is condensed by a lens provided on the incident side of the microlens array 16, an image of the light source is formed on the lens on the outgoing side of the microlens array 16.
  • FIG. A lens provided on the exit side of the microlens array emits a light beam having a light distribution corresponding to the aperture shape of the lens provided on the incidence side of the microlens array.
  • the light flux emitted from the microlens array 16 is totally reflected by the total reflection mirror 17, bends its course at a substantially right angle, and enters the imaging lens 18.
  • the imaging lens 18 emits the collimated light toward the PBS 20 while condensing it.
  • the PBS 20 is an optical material made of a transparent material and having an incident surface, a reflecting surface, and an exit surface.
  • the reflective surface is inclined with respect to the optical axis of the imaging lens 18 and has polarization-selective reflective performance. That is, S-polarized light is reflected, but P-polarized light is transmitted. Therefore, when the light flux from the imaging lens 18 is P-polarized light, the light flux from the imaging lens 18 is transmitted through the reflecting surface and illuminates the image display device 30 . Details will be described later.
  • the image display device 30 modulates the light incident from the illumination system 10 based on the image signal to generate an image.
  • the image light generated by the image display device 30 becomes image light and enters the projection system 40 via the PBS 20 .
  • the projection system 40 projects the image of the video display device 30 .
  • the projection system 40 provides the image of the video display device 30 as a virtual image in order to form the image of the video display device 30 on the retina so that it exists at a desired distance from the user. Therefore, the image light from the projection system 40 is emitted to the light guide section 50 .
  • the light guide unit 50 takes in the image light generated by the image display device 30 from the projection system 40, internally reflects it, and guides it to the front of the user.
  • FIG. 2 is a diagram for explaining the configuration of the video display device 30.
  • the image display device 30 is an LCOS, and is composed of a cover glass 31, a liquid crystal layer 32, and a display panel 33.
  • the LCOS has a liquid crystal layer 32 in front of the display panel 33, and the liquid crystal layer 32 electrically manipulates the polarized light and changes the polarization angle to adjust the color and control the contrast. That is, the display panel 33 reflects illumination light incident from the illumination system 10 .
  • the liquid crystal layer 32 modulates and manipulates the polarization of the illumination light incident from the illumination system 10 on the basis of the video signal, thereby controlling the emitted light. Accordingly, the image display device 30 modulates the light incident from the illumination system 10 based on the image signal to generate image light.
  • FIG. 3A and 3B are diagrams for explaining the operation of the video display device 30 and the PBS 20.
  • the image display device 30 is an LCOS
  • S-polarized light is defined as a vertical polarization direction
  • P-polarized light is defined as a horizontal polarization direction
  • FIG. 4 is a diagram for explaining that light emitted from the image display device 30 is incident on the projection system 40 via the PBS 20 when is all white.
  • FIG. 3A when the video signal is all white, the liquid crystal layer 32 rotates the polarization of the overall video signal by 90 degrees.
  • FIG. 3B is a diagram for explaining the relationship between the light emitted from the image display device 30 and the light incident on the projection system 40 when the image signal is completely black.
  • the liquid crystal layer 32 does not polarize the video signal in general. Therefore, when the luminous flux from the imaging lens 18 is P-polarized light, the emitted light from the image display device 30 is also P-polarized light, and is transmitted through the reflecting surface of the PBS 20 and does not enter the projection system 40 .
  • the polarization angle of the liquid crystal layer 32 of the LCOS in the image display device 30 varies from component to component, and the actual range of variation is about several degrees. Therefore, even if the video signal is completely black, if the polarization angle deviates from 90 degrees, a small amount of light will enter the projection system. Therefore, in that case, there is a problem that deterioration of contrast is caused.
  • the HMD attitude adjustment mechanism 80 is required.
  • FIG. 5 is a diagram for explaining problems in the case of a binocular HMD. As shown in FIG. 5, if the LCOS itself is adjusted by rotating in order to absorb the variation in the polarization angle of the LCOS for the left eye and the right eye, the image shifts between the two eyes. Therefore, it is necessary to adjust the rotation of the LCOS so that the images of both eyes match, and to adjust the contrast by another method.
  • FIG. 6 shows the reflectance simulation results of LCOS illumination light.
  • FIG. 6 shows the reflectance (absolute value) and reflection change rate (change rate) of the LCOS with respect to the polarization angle shift of the LCOS when the video signal is all white and all black. Note that the rate of change is defined as 100% when the deviation of the polarization angle is 0 degrees. As can be seen from the graph of the rate of change, the shift in the polarization angle of the LCOS slightly reduces the amount of light in full white, but the effect is large in the case of full black, which has a low reflectance. Therefore, it is all black that has a large effect on the contrast (all white/all black ratio).
  • CR overall contrast
  • CRp contrast of light reflected by the LCOS (all white/all black)
  • CP1 contrast of the LCOS part itself (this time: calculated by 250).
  • the contrast is adjusted so that the contrast becomes 200 or more with respect to the variation in the polarization angle of the LCOS, the variation in the polarization angle of the LCOS can be absorbed and the contrast performance can be stabilized. can.
  • FIG. 7 is a schematic configuration diagram of an image display unit for one eye and for both eyes in this embodiment.
  • the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
  • the difference from FIG. 1 is that a ⁇ /2 wavelength plate 35, which is a polarization function element, is added between the image display device 30 (LCOS) and the PBS 20, and the ⁇ /2 wavelength plate 35 is rotated. The point is that the contrast is adjusted.
  • LCOS image display device 30
  • FIG. 8 is a schematic configuration diagram when using a video display device 60 that is a transmissive LCD (Liquid Crystal Display).
  • the illumination system 10 and the imaging lens 18 are the same as those in FIG. 7 using LCOS, the total reflection mirror 17 is eliminated, and the line from the image display device 60 (LCD) to the light guide section 50 is made straight, and the image is displayed.
  • This is an example of an optical system in which the display unit 100 is made compact so as to fit on the frame of spectacles. Since the ⁇ /2 wavelength plate 35 is arranged between the image display device 60 (LCD) and the PBS 20, the contrast can be adjusted in the same manner as in FIG.
  • FIG. 9 is a processing flowchart of contrast adjustment in this embodiment.
  • the contrast adjustment is performed in the LCOS adjustment (focus, position, rotation) process of the HMD manufacturing process. That is, in FIG. 9, LCOS adjustment is started (S101), and conventional LCOS adjustment is completed (S102). Then, the contrast is checked (S103). For example, if the contrast is 200 or less, the ⁇ /2 wavelength plate is rotated to adjust the contrast (S104). Then, returning to S103, the ⁇ /2 wavelength plate is rotated to adjust the contrast until the contrast exceeds 200. When the contrast exceeds 200, the contrast adjustment is completed (S105).
  • FIGS. 10A and 10B are diagrams for explaining the effect of contrast adjustment in this embodiment, and are simulation results of contrast with respect to variations in polarization angle of LCOS.
  • FIG. 10A shows the case without rotation adjustment by the ⁇ /2 waveplate, and is similar to the contrast simulation result of FIG.
  • FIG. 10B shows a case where rotation adjustment is performed using a ⁇ /2 wavelength plate, and the contrast can be stabilized by absorbing variations in the polarization angle of the LCOS.
  • the video display device 30 (LCOS) or the video display device 60 (LCD) has been described, but the present invention is not limited to the LCOS or LCD. Any image display device made of a liquid crystal layer that changes the angle to 100° can be used.
  • the polarization function element is not limited to this, and may be, for example, a retardation plate, or, for example, two ⁇ /4 wavelength plates.
  • a combination may be used, or a combination of a plurality of wave plates may be used.
  • an optical rotator which is an element that rotates polarized light itself, may be used in addition to an element that rotates polarized light using a phase difference, such as a wave plate.
  • FIG. 11 is a diagram for explaining the configuration of the image display device 30 (LCOS) in this embodiment.
  • LCOS image display device 30
  • the same components as those in FIG. 2 are denoted by the same reference numerals, and description thereof will be omitted.
  • 11 differs from FIG. 2 in that a liquid crystal layer 38, which is a polarization function element for changing the polarization angle, is added to the LCOS.
  • the liquid crystal layer 38 is a liquid crystal layer whose polarization angle can be arbitrarily changed.
  • the variation in the polarization angle can be adjusted and the contrast can be stabilized. can.
  • HMD HMD
  • 10 Illumination system
  • 20 PBS
  • 30 Image display device (LCOS)
  • 31 Cover glass
  • 32 Liquid crystal layer
  • 33 Display panel
  • 35 ⁇ /2 wavelength plate
  • 38 Liquid crystal layer
  • 40 projection system
  • 50 light guide section
  • 60 image display device (LCD)
  • 100 image display section

Abstract

The purpose of the present invention is to provide a head-mounted display with which contrast deterioration can be adjusted and improved with a simple configuration. To achieve the foregoing, provided is a head-mounted display device comprising: a video display device equipped with a liquid crystal layer that changes a polarization angle to 90° and 0°; an irradiation system that supplies irradiation light to the video display device; and a polarization optical element that guides the irradiation light to the video display device and selects transmission/reflection according to the polarization angle of the light which is changed by the video display device. A polarization functional element is disposed between the polarization optical element and the video display device.

Description

ヘッドマウントディスプレイ装置head mounted display device
 本発明は、虚像を投射して表示するヘッドマウントディスプレイ装置(HMD:Head Mount Display。以下、HMDと記す)に関する。 The present invention relates to a head-mounted display device (HMD: Head Mount Display, hereinafter referred to as HMD) that projects and displays a virtual image.
 HMDは、メガネ状やゴーグル状の導光素子を介して、虚像を発生させ映像を表示する装置である。HMDにおいて、映像信号に基づいて照明系から入射した光を変調して画像を生成する映像表示装置として、例えばLCOS(Liquid crystal on silicon)が知られている。 An HMD is a device that generates a virtual image and displays an image through glasses-like or goggle-like light guide elements. In HMDs, liquid crystal on silicon (LCOS), for example, is known as a video display device that modulates light incident from an illumination system based on a video signal to generate an image.
 LCOSは映像生成用の画素電極と共通電極の間に液晶が有り、映像信号に基づいて、画素ごとに電極間の電界を制御することにより、液晶を通過した光の位相差変化に応じた偏光角度により明暗を発生させ映像を表示するものである。その偏光角度のばらつきにより、コントラスト(全白/全黒の輝度比)の劣化が発生する。 LCOS has a liquid crystal between the pixel electrode for image generation and the common electrode, and by controlling the electric field between the electrodes for each pixel based on the image signal, the polarization corresponding to the change in the phase difference of the light that has passed through the liquid crystal It displays images by generating brightness and darkness depending on the angle. Due to the variation in the polarization angle, contrast (luminance ratio of all white/all black) deteriorates.
 本技術分野における背景技術として特許文献1がある。特許文献1には、第1の画像形成装置と、照明光が通って該第1の画像形成装置に至るようにした第1の偏光ビームスプリッタと、第1の画像形成装置と第1の偏光ビームスプリッタとの間に配置される第1のリターデーション要素と、第1の画像形成装置に取り付けられ、第1の画像形成装置から第1の偏光ビームスプリッタを通過した画像光でのコントラストを実質的に最大にするように暗状態の画素にバイアスを印加するバイアスコントローラとを含む、投影システムが開示されている。 There is Patent Document 1 as a background technology in this technical field. Patent Document 1 discloses a first image forming apparatus, a first polarizing beam splitter through which illumination light passes to reach the first image forming apparatus, the first image forming apparatus, and a first polarized beam splitter. a first retardation element interposed between the beam splitter and attached to the first imaging device for substantially enhancing contrast in image light passing through the first polarizing beam splitter from the first imaging device; and a bias controller for biasing the pixels in the dark state to maximize the intensity.
特表2009-518685号公報Japanese translation of PCT publication No. 2009-518685
 特許文献1では、偏光ビームスプリッタと画像形成装置と光学部品を用い、電気的に偏光をコントロールすることでコントラストを調整している。しかしながら、具体的な構成が不明であり、その実現性が困難である。 In Patent Document 1, contrast is adjusted by electrically controlling polarization using a polarizing beam splitter, an image forming device, and optical components. However, the specific configuration is unknown and its feasibility is difficult.
 本発明の目的は、簡単な構成でコントラストの劣化を調整し改善できるHMDを提供することである。 An object of the present invention is to provide an HMD that can adjust and improve contrast deterioration with a simple configuration.
 本発明は、上記背景技術及び課題に鑑み、その一例を挙げるならば、偏光角度を90°と0°に変える液晶層を備えた映像表示装置と、映像表示装置に照射光を供給する照射系と、照射光を前記映像表示装置に導き映像表示装置によって変わる光の偏光角度に応じ透過/反射を選択する偏光光学素子とを備えたヘッドマウントディスプレイ装置であって、偏光光学素子と映像表示装置との間に偏光機能素子を配置した構成とする。 In view of the above background art and problems, the present invention provides an image display device having a liquid crystal layer that changes the polarization angle between 90° and 0°, and an illumination system that supplies illumination light to the image display device. and a polarization optical element that guides irradiation light to the image display device and selects transmission/reflection according to the polarization angle of the light that varies depending on the image display device, wherein the polarization optical element and the image display device and the polarization function element is arranged between them.
 本発明によれば、簡単な構成でコントラストの劣化を調整し改善できるHMDを提供できる。 According to the present invention, it is possible to provide an HMD that can adjust and improve contrast deterioration with a simple configuration.
従来のHMDにおける映像表示部の概略構成図である。1 is a schematic configuration diagram of an image display unit in a conventional HMD; FIG. 従来のLCOSの構成を説明する図である。It is a figure explaining the structure of the conventional LCOS. 従来の映像信号が全白の場合のLCOSとPBSの動作を説明する図である。It is a figure explaining the operation|movement of LCOS and PBS when the conventional video signal is all white. 従来の映像信号が全黒の場合のLCOSとPBSの動作を説明する図である。FIG. 10 is a diagram for explaining the operation of the LCOS and the PBS when the conventional video signal is all black; 従来の片眼用HMDの場合の課題を説明する図である。It is a figure explaining the subject in the case of the conventional HMD for one eye. 従来の片眼用HMDの場合の課題を説明する図である。It is a figure explaining the subject in the case of the conventional HMD for one eye. 従来の片眼用HMDの場合の課題を説明する図である。It is a figure explaining the subject in the case of the conventional HMD for one eye. 従来の片眼用HMDの場合の課題を説明する図である。It is a figure explaining the subject in the case of the conventional HMD for one eye. 従来の片眼用HMDの場合の課題を説明する図である。It is a figure explaining the subject in the case of the conventional HMD for one eye. 従来の片眼用HMDの場合の課題を説明する図である。It is a figure explaining the subject in the case of the conventional HMD for one eye. 従来の両眼用HMDの場合の課題を説明する図である。It is a figure explaining the subject in the case of the conventional binocular HMD. LCOSの照明光の反射率シミュレーショ結果である。It is a reflectance simulation result of illumination light of LCOS. 実施例1におけるLCOSを用いた反射型映像表示部の概略構成図である。1 is a schematic configuration diagram of a reflective image display unit using LCOS in Example 1. FIG. 実施例1におけるLCDを用いた透過型映像表示部の概略構成図である。1 is a schematic configuration diagram of a transmissive image display unit using an LCD in Example 1. FIG. 実施例1におけるコントラスト調整の処理フローチャートである。5 is a processing flowchart of contrast adjustment in Embodiment 1. FIG. 実施例1における回転調整無の場合のLCOSの偏光角度ばらつきに対するコントラストのシミュレーション結果である。FIG. 10 is a simulation result of contrast with respect to polarization angle variation of LCOS without rotational adjustment in Example 1. FIG. 実施例1における回転調整有の場合のLCOSの偏光角度ばらつきに対するコントラストのシミュレーション結果である。FIG. 10 is a simulation result of contrast with respect to polarization angle variation of LCOS with rotation adjustment in Example 1. FIG. 実施例2における映像表示装置の構成を説明する図である。FIG. 10 is a diagram illustrating the configuration of a video display device according to Example 2;
 以下、本発明の実施例について、図面を用いて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 まず、本実施例の前提となる、従来のHMDの構成について説明する。 First, the configuration of a conventional HMD, which is the premise of this embodiment, will be described.
 図1は、従来のHMDにおける映像表示部の概略構成図である。なお、図1の構成を1つ備えると片眼式のHMDとなり、二つ備えると両眼式のHMDとなり、片眼/両眼の両方の方式のHMDに対応できる構成になっている。 FIG. 1 is a schematic configuration diagram of a video display unit in a conventional HMD. Note that if one structure of FIG. 1 is provided, it becomes a monocular HMD, and if it is provided with two structures, it becomes a binocular HMD.
 図1において、映像表示部100は、照明系10と、偏光光学素子であるPBS(Polarizing Beam Splitter:偏光ビームスプリッタ)20と、映像表示装置30と、投射系40と、導光部50を備えている。 In FIG. 1, an image display unit 100 includes an illumination system 10, a polarizing optical element PBS (Polarizing Beam Splitter) 20, an image display device 30, a projection system 40, and a light guide unit 50. ing.
 照明系10は、光源部である光源11と光源13、集光レンズ12、14、ダイクロイックミラー15、マイクロレンズアレイ16、全反射ミラー17、結像レンズ18を有している。なお、照明系10は、PBS20を介して映像表示装置30を照明できるのであれば、一部の部品が省略されていても良い。 The illumination system 10 has a light source 11 and a light source 13 which are light source units, condenser lenses 12 and 14, a dichroic mirror 15, a microlens array 16, a total reflection mirror 17, and an imaging lens . Note that some components may be omitted from the illumination system 10 as long as the image display device 30 can be illuminated via the PBS 20 .
 照明系10において、光源部の内の光源11は緑色の光(G光)を出射し、光源13は、赤色光源と青色光源が同一パッケージに実装されており、赤色と青色の光(R光とB光)を出射する。なお、図1では、2色の光源が同一のパッケージに実装されている光源13を例として示しているが、3色の光源の各々が独立したパッケージ内に実装されていても良いし、3色の光源が1つのパッケージ内に集積して実装されていても良い。 In the illumination system 10, the light source 11 in the light source unit emits green light (G light), and the light source 13 includes a red light source and a blue light source mounted in the same package, and emits red light and blue light (R light). and B light). Note that FIG. 1 shows the light source 13 in which two color light sources are mounted in the same package as an example, but each of the three color light sources may be mounted in an independent package. Colored light sources may be integrated and implemented in one package.
 光源11から出射した光は、集光レンズ12に入射する。集光レンズ12は、その略合成焦点位置に光源11が位置する関係で配置されている。光源11から出射した光束は、集光レンズ12に入射してコリメート光となる。光源11からのコリメート光は、ダイクロイックミラー15に向かって出射する。同様に、光源13から出射した光は、集光レンズ14に入射してコリメート光となり、ダイクロイックミラー15に向かって出射する。ダイクロイックミラー15は、R光とB光とG光の光軸を揃えて合成し、各色のコリメート光を合成して出射する。 The light emitted from the light source 11 enters the condensing lens 12 . The condensing lens 12 is arranged so that the light source 11 is positioned substantially at its synthetic focal position. A light beam emitted from the light source 11 enters the condenser lens 12 and becomes collimated light. Collimated light from light source 11 is emitted toward dichroic mirror 15 . Similarly, the light emitted from the light source 13 enters the condensing lens 14 to become collimated light and is emitted toward the dichroic mirror 15 . The dichroic mirror 15 aligns the optical axes of the R light, the B light, and the G light, synthesizes them, and synthesizes and emits the collimated light of each color.
 マイクロレンズアレイ16は、ダイクロイックミラー15から出射した略コリメート光束を受光する。略コリメート光は集光レンズ12、14で生成されていて、光源部の発光領域に応じた光の広がりを持つコリメート光束になっている。そのため、これをマイクロレンズアレイ16の入射側に備えられたレンズで集光すると、マイクロレンズアレイ16の出射側のレンズ上に光源部の像を結像する。マイクロレンズアレイの出射側に備えられたレンズは、マイクロレンズアレイの入射側に備えられたレンズの開口形状に応じた配光分布の光束を出射する。 The microlens array 16 receives substantially collimated light beams emitted from the dichroic mirror 15 . The approximately collimated light is generated by the condensing lenses 12 and 14, and is a collimated light beam having a spread of light corresponding to the light emitting area of the light source section. Therefore, when the light is condensed by a lens provided on the incident side of the microlens array 16, an image of the light source is formed on the lens on the outgoing side of the microlens array 16. FIG. A lens provided on the exit side of the microlens array emits a light beam having a light distribution corresponding to the aperture shape of the lens provided on the incidence side of the microlens array.
 マイクロレンズアレイ16から出射した光束は、全反射ミラー17で全反射して進路を略直角に曲げて結像レンズ18に入射する。結像レンズ18は、コリメート光を集光しながらPBS20に向かって出射する。 The light flux emitted from the microlens array 16 is totally reflected by the total reflection mirror 17, bends its course at a substantially right angle, and enters the imaging lens 18. The imaging lens 18 emits the collimated light toward the PBS 20 while condensing it.
 PBS20は、透明材質で構成され、入射面と反射面と出射面を有する光学材である。反射面は、結像レンズ18の光軸に対して傾斜しており、偏光選択性の反射性能を有する。すなわち、S偏光は反射するがP偏光は透過する。そのため、結像レンズ18からの光束がP偏光の場合、結像レンズ18からの光束は反射面を透過し映像表示装置30を照明する。詳細は後述する。 The PBS 20 is an optical material made of a transparent material and having an incident surface, a reflecting surface, and an exit surface. The reflective surface is inclined with respect to the optical axis of the imaging lens 18 and has polarization-selective reflective performance. That is, S-polarized light is reflected, but P-polarized light is transmitted. Therefore, when the light flux from the imaging lens 18 is P-polarized light, the light flux from the imaging lens 18 is transmitted through the reflecting surface and illuminates the image display device 30 . Details will be described later.
 映像表示装置30は、その詳細は後述するが、映像信号に基づいて照明系10から入射した光を変調して画像を生成する。映像表示装置30で生成した画像の光は映像光となり、PBS20を介して投射系40に入射する。 Although the details will be described later, the image display device 30 modulates the light incident from the illumination system 10 based on the image signal to generate an image. The image light generated by the image display device 30 becomes image light and enters the projection system 40 via the PBS 20 .
 投射系40は、映像表示装置30の像を投射する。映像表示装置30の像を利用者から所望の距離に存在しているように網膜に結像するために、投射系40は映像表示装置30の像を虚像として提供する。そのために、投射系40からの映像光は導光部50へ出射する。 The projection system 40 projects the image of the video display device 30 . The projection system 40 provides the image of the video display device 30 as a virtual image in order to form the image of the video display device 30 on the retina so that it exists at a desired distance from the user. Therefore, the image light from the projection system 40 is emitted to the light guide section 50 .
 導光部50は、映像表示装置30が生成した映像光を投射系40から取り込み、内部反射させて、利用者の眼前にまで導く。 The light guide unit 50 takes in the image light generated by the image display device 30 from the projection system 40, internally reflects it, and guides it to the front of the user.
 図2は、映像表示装置30の構成を説明する図である。図2において、映像表示装置30は、LCOSであって、カバーガラス31、液晶層32、表示パネル33で構成される。LCOSには表示パネル33の前に液晶層32があり、この液晶層32で偏光を電気的に操作し、偏光角度を変えることで色調整や、コントラストを制御している。すなわち、表示パネル33は、照明系10から入射した照明光を反射させる。液晶層32は、照明系10から入射した照明光の偏光を映像信号に基づいて変調し操作することで出射する光を制御する。これにより、映像表示装置30は、映像信号に基づいて照明系10から入射した光を変調して映像光を生成する。 FIG. 2 is a diagram for explaining the configuration of the video display device 30. As shown in FIG. In FIG. 2, the image display device 30 is an LCOS, and is composed of a cover glass 31, a liquid crystal layer 32, and a display panel 33. As shown in FIG. The LCOS has a liquid crystal layer 32 in front of the display panel 33, and the liquid crystal layer 32 electrically manipulates the polarized light and changes the polarization angle to adjust the color and control the contrast. That is, the display panel 33 reflects illumination light incident from the illumination system 10 . The liquid crystal layer 32 modulates and manipulates the polarization of the illumination light incident from the illumination system 10 on the basis of the video signal, thereby controlling the emitted light. Accordingly, the image display device 30 modulates the light incident from the illumination system 10 based on the image signal to generate image light.
 図3A、図3Bは、映像表示装置30とPBS20の動作を説明する図である。図3A、図3Bにおいて、映像表示装置30はLCOSであって、S偏光は図に対して垂直の偏光方向、P偏光は図に対して水平の偏光方向と定義し、図3Aは、映像信号が全白の場合の、映像表示装置30から出射する光がPBS20を介して投射系40に入射することを説明する図である。図3Aに示すように、映像信号が全白の場合は、液晶層32は、映像信号全般において偏光を90度回転させる。そのため、結像レンズ18からの光束がP偏光の場合、映像表示装置30からの出射光はS偏光となり、PBS20の反射面で反射されて映像光が投射系40に入射する。一方、図3Bは、映像信号が全黒の場合の、映像表示装置30から出射する光と投射系40に入射する光の関係を説明する図である。図3Bに示すように、映像信号が全黒の場合は、液晶層32は、映像信号全般において偏光は機能しない。そのため、結像レンズ18からの光束がP偏光の場合、映像表示装置30からの出射光もP偏光であり、PBS20の反射面では透過されて映像光は投射系40には入射しない。 3A and 3B are diagrams for explaining the operation of the video display device 30 and the PBS 20. FIG. 3A and 3B, the image display device 30 is an LCOS, S-polarized light is defined as a vertical polarization direction, P-polarized light is defined as a horizontal polarization direction, and FIG. 4 is a diagram for explaining that light emitted from the image display device 30 is incident on the projection system 40 via the PBS 20 when is all white. FIG. As shown in FIG. 3A, when the video signal is all white, the liquid crystal layer 32 rotates the polarization of the overall video signal by 90 degrees. Therefore, when the luminous flux from the imaging lens 18 is P-polarized light, the emitted light from the image display device 30 is S-polarized light and is reflected by the reflecting surface of the PBS 20 to enter the projection system 40 . On the other hand, FIG. 3B is a diagram for explaining the relationship between the light emitted from the image display device 30 and the light incident on the projection system 40 when the image signal is completely black. As shown in FIG. 3B, when the video signal is completely black, the liquid crystal layer 32 does not polarize the video signal in general. Therefore, when the luminous flux from the imaging lens 18 is P-polarized light, the emitted light from the image display device 30 is also P-polarized light, and is transmitted through the reflecting surface of the PBS 20 and does not enter the projection system 40 .
 ここで、映像表示装置30におけるLCOSの液晶層32の偏光角度は部品毎でばらつきを持っていて、その実力範囲は数度程度のばらつき範囲を持っている。そのため、映像信号が全黒の場合でも、偏光角度が90度からずれてしまうと、僅かに光が投射系に入射されてしまう。よって、その場合はコントラストの劣化を招くという課題がある。 Here, the polarization angle of the liquid crystal layer 32 of the LCOS in the image display device 30 varies from component to component, and the actual range of variation is about several degrees. Therefore, even if the video signal is completely black, if the polarization angle deviates from 90 degrees, a small amount of light will enter the projection system. Therefore, in that case, there is a problem that deterioration of contrast is caused.
 上記課題に対して、LCOSの液晶層で発生する偏光角度のばらつきを吸収するために、LCOS自身を回転させて調整することが考えられる。その場合、図4Aに示すように、偏光角度のズレ量が反時計方向にθ度である場合、図4Bに示すようにLCOS全体(映像表示装置30)を時計方向にθ度回転させる。すると、図4Cに示すように、コントラストの劣化は抑制できるものの、映像がHMD1に対して傾く為、図4Dに示すように、HMD1を逆に傾けて見ないと映像が真直ぐにみることができない。具体的には、図4Eに示すように、HMD1全体を傾ける必要がある。このため、HMD1を眼鏡の渕で固定する場合は、渕に対して映像が傾いて見える為、映像品質が悪くなるという課題がある。また、図4Fに示すように、HMD姿勢調整機構80のようなHMDを傾ける調整機構が必要となる。 To address the above issues, it is conceivable to rotate and adjust the LCOS itself in order to absorb the variations in polarization angle that occur in the liquid crystal layer of the LCOS. In this case, as shown in FIG. 4A, if the deviation of the polarization angle is θ degrees counterclockwise, the entire LCOS (image display device 30) is rotated θ degrees clockwise as shown in FIG. 4B. Then, as shown in FIG. 4C, deterioration of the contrast can be suppressed, but since the image is tilted with respect to the HMD 1, the image cannot be viewed straight unless the HMD 1 is tilted backwards as shown in FIG. . Specifically, as shown in FIG. 4E, the entire HMD 1 needs to be tilted. Therefore, when the HMD 1 is fixed at the edge of the glasses, the image appears to be tilted with respect to the edge, resulting in a problem of poor image quality. Also, as shown in FIG. 4F, an adjustment mechanism for tilting the HMD, such as the HMD attitude adjustment mechanism 80, is required.
 図5は、両眼用HMDの場合の課題を説明する図である。図5に示すように、左目用、右目用でそれぞれ、LCOSの偏光角度のばらつきを吸収するためにLCOS自身を回転させて調整すると、両目で映像ずれになってしまう。よって、LCOSの回転調整はあくまで両目の映像が一致するように調整し、コントラスト調整は別の方法で調整する必要がある。 FIG. 5 is a diagram for explaining problems in the case of a binocular HMD. As shown in FIG. 5, if the LCOS itself is adjusted by rotating in order to absorb the variation in the polarization angle of the LCOS for the left eye and the right eye, the image shifts between the two eyes. Therefore, it is necessary to adjust the rotation of the LCOS so that the images of both eyes match, and to adjust the contrast by another method.
 図6は、LCOSの照明光の反射率シミュレーション結果である。図6は、映像信号が全白と全黒の場合の、LCOSの偏光角度ずれに対するLCOSの反射率(絶対値)と反射変化率(変化率)を示している。なお、変化率は、偏光角度ずれ0度を100%としている。変化率のグラフから分るように、LCOSの偏光角度ずれで全白は若干光量が落ちるが、影響が大きいのは反射率が小さい全黒の場合である。そのため、コントラスト(全白/全黒比)で影響が大きいのは全黒である。コントラストをLCOSの反射率(絶対値)から算出すると、図6に示すようになる。ここで、コントラストCRは、下記式で算出される。
1/CR=1/CRp+1/CPl
ここで、CR:全体コントラスト、CRp:LCOSが反射した光のコントラスト(全白/全黒)、CPl:LCOSの部品自体が持っているコントラスト(今回:250で計算)である。
FIG. 6 shows the reflectance simulation results of LCOS illumination light. FIG. 6 shows the reflectance (absolute value) and reflection change rate (change rate) of the LCOS with respect to the polarization angle shift of the LCOS when the video signal is all white and all black. Note that the rate of change is defined as 100% when the deviation of the polarization angle is 0 degrees. As can be seen from the graph of the rate of change, the shift in the polarization angle of the LCOS slightly reduces the amount of light in full white, but the effect is large in the case of full black, which has a low reflectance. Therefore, it is all black that has a large effect on the contrast (all white/all black ratio). When the contrast is calculated from the reflectance (absolute value) of the LCOS, it becomes as shown in FIG. Here, the contrast CR is calculated by the following formula.
1/CR=1/CRp+1/CPl
Here, CR: overall contrast, CRp: contrast of light reflected by the LCOS (all white/all black), and CP1: contrast of the LCOS part itself (this time: calculated by 250).
 図6から分るように、LCOSの偏光角度のばらつきに対して、コントラストが200以上となるようにコントラスト調整を行なえば、LCOSの偏光角度のばらつきを吸収してコントラスト性能を安定化させることができる。 As can be seen from FIG. 6, if the contrast is adjusted so that the contrast becomes 200 or more with respect to the variation in the polarization angle of the LCOS, the variation in the polarization angle of the LCOS can be absorbed and the contrast performance can be stabilized. can.
 図7は、本実施例における片眼用及び両眼用に対応した映像表示部の概略構成図である。図7において、図1と同じ構成は同じ符号を付し、その説明は省略する。図7において、図1と異なる点は、映像表示装置30(LCOS)とPBS20の間に偏光機能素子であるλ/2波長板35を追加して、λ/2波長板35を回転することでコントラスト調整を行う点である。 FIG. 7 is a schematic configuration diagram of an image display unit for one eye and for both eyes in this embodiment. In FIG. 7, the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted. In FIG. 7, the difference from FIG. 1 is that a λ/2 wavelength plate 35, which is a polarization function element, is added between the image display device 30 (LCOS) and the PBS 20, and the λ/2 wavelength plate 35 is rotated. The point is that the contrast is adjusted.
 図8は、透過型のLCD(Liquid Crystal Display)である映像表示装置60を用いた場合の概略構成図である。照明系10と結像レンズ18はLCOSを使用している図7と同じであるが、全反射ミラー17を削除し、映像表示装置60(LCD)から導光部50までをストレートにして、映像表示部100を眼鏡のフレームに添わせるようにコンパクトにする光学系の一例である。映像表示装置60(LCD)とPBS20の間に、λ/2波長板35を配置する構成の為、コントラスト調整は図7と同様に行うことができる点は同じである。 FIG. 8 is a schematic configuration diagram when using a video display device 60 that is a transmissive LCD (Liquid Crystal Display). Although the illumination system 10 and the imaging lens 18 are the same as those in FIG. 7 using LCOS, the total reflection mirror 17 is eliminated, and the line from the image display device 60 (LCD) to the light guide section 50 is made straight, and the image is displayed. This is an example of an optical system in which the display unit 100 is made compact so as to fit on the frame of spectacles. Since the λ/2 wavelength plate 35 is arranged between the image display device 60 (LCD) and the PBS 20, the contrast can be adjusted in the same manner as in FIG.
 図9は、本実施例におけるコントラスト調整の処理フローチャートである。図9において、コントラスト調整は、HMDの製造工程のLCOS調整(フォーカス、位置、回転)の工程で行う。すなわち、図9において、LCOS調整を開始し(S101)、従来のLCOS調整を完了する(S102)。そして、コントラストをチェックし(S103)、例えばコントラストが200以下であれば、λ/2波長板を回転しコントラスト調整を行う(S104)。そして、S103に戻り、コントラストが200超となるまでλ/2波長板を回転しコントラスト調整を行ない、コントラストが200超となれば、コントラスト調整を完了する(S105)。 FIG. 9 is a processing flowchart of contrast adjustment in this embodiment. In FIG. 9, the contrast adjustment is performed in the LCOS adjustment (focus, position, rotation) process of the HMD manufacturing process. That is, in FIG. 9, LCOS adjustment is started (S101), and conventional LCOS adjustment is completed (S102). Then, the contrast is checked (S103). For example, if the contrast is 200 or less, the λ/2 wavelength plate is rotated to adjust the contrast (S104). Then, returning to S103, the λ/2 wavelength plate is rotated to adjust the contrast until the contrast exceeds 200. When the contrast exceeds 200, the contrast adjustment is completed (S105).
 図10A、図10Bは、本実施例におけるコントラスト調整の効果を説明する図であり、LCOSの偏光角度のばらつきに対するコントラストのシミュレーション結果である。図10Aは、λ/2波長板による回転調整がない場合を示し、図6のコントラストのシミュレーション結果と同様である。これに対して、図10Bはλ/2波長板による回転調整を行った場合を示し、LCOSの偏光角度のばらつきを吸収してコントラストを安定化させることができる。 FIGS. 10A and 10B are diagrams for explaining the effect of contrast adjustment in this embodiment, and are simulation results of contrast with respect to variations in polarization angle of LCOS. FIG. 10A shows the case without rotation adjustment by the λ/2 waveplate, and is similar to the contrast simulation result of FIG. On the other hand, FIG. 10B shows a case where rotation adjustment is performed using a λ/2 wavelength plate, and the contrast can be stabilized by absorbing variations in the polarization angle of the LCOS.
 なお、本実施例では、映像表示装置30(LCOS)、または映像表示装置60(LCD)を用いて説明したが、LCOSまたはLCDに限定されるものではなく、例えば、偏光角度を90°と0°に変える液晶層からなる映像表示装置であればよい。 In this embodiment, the video display device 30 (LCOS) or the video display device 60 (LCD) has been described, but the present invention is not limited to the LCOS or LCD. Any image display device made of a liquid crystal layer that changes the angle to 100° can be used.
 また、本実施例では、λ/2波長板により回転調整を行うとして説明したが、これに限定されない偏光機能素子でよく、例えば位相差板でもよく、また、例えばλ/4波長板を2つ組合せてもよいし、複数の波長板の組合せでもよい。または、波長板のような位相差によって偏光を回す素子とは別に、偏光そのものを回す素子である旋光子でもよい。 Further, in the present embodiment, it was explained that rotation adjustment was performed using a λ/2 wavelength plate, but the polarization function element is not limited to this, and may be, for example, a retardation plate, or, for example, two λ/4 wavelength plates. A combination may be used, or a combination of a plurality of wave plates may be used. Alternatively, an optical rotator, which is an element that rotates polarized light itself, may be used in addition to an element that rotates polarized light using a phase difference, such as a wave plate.
 以上のように、本実施例によれば、簡単な構成でコントラストの劣化を調整し改善できるHMDを提供できる。 As described above, according to this embodiment, it is possible to provide an HMD that can adjust and improve contrast deterioration with a simple configuration.
 本実施例では、LCOSの偏光角度のばらつきによるコントラストの劣化をλ/2波長板による調整以外で行う構成について説明する。 In the present embodiment, a configuration will be described in which deterioration of contrast due to variations in polarization angle of LCOS is performed by means other than adjustment using a λ/2 wavelength plate.
 図11は、本実施例における映像表示装置30(LCOS)の構成を説明する図である。図11において、図2と同じ構成は同じ符号を付し、その説明は省略する。図11において、図2と異なる点は、LCOSに偏光角度を変える為の偏光機能素子である液晶層38を追加した点である。 FIG. 11 is a diagram for explaining the configuration of the image display device 30 (LCOS) in this embodiment. In FIG. 11, the same components as those in FIG. 2 are denoted by the same reference numerals, and description thereof will be omitted. 11 differs from FIG. 2 in that a liquid crystal layer 38, which is a polarization function element for changing the polarization angle, is added to the LCOS.
 図11において、液晶層38は、偏光角度を任意に変更できる液晶層であって、例えば、モニタなどに使用している電圧で偏光角度を変更できるタイプの液晶であればよい。 In FIG. 11, the liquid crystal layer 38 is a liquid crystal layer whose polarization angle can be arbitrarily changed.
 このように、本実施例によれば、LCOSの液晶層32の偏光角度のばらつきを吸収する液晶層38をLCOSに追加することで、偏光角度のばらつきを調整でき、コントラストを安定化させることができる。 As described above, according to this embodiment, by adding the liquid crystal layer 38 that absorbs the variation in the polarization angle of the liquid crystal layer 32 of the LCOS to the LCOS, the variation in the polarization angle can be adjusted and the contrast can be stabilized. can.
 なお、本実施例は、映像表示装置60(LCD)を用いて同様な構成で実施できる。 Note that this embodiment can be implemented with a similar configuration using the image display device 60 (LCD).
 以上実施例について説明したが、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。 Although the embodiments have been described above, the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
1:HMD、10:照明系、20:PBS、30:映像表示装置(LCOS)、31:カバーガラス、32:液晶層、33:表示パネル、35:λ/2波長板、38:液晶層、40:投射系、50:導光部、60:映像表示装置(LCD)、100:映像表示部 1: HMD, 10: Illumination system, 20: PBS, 30: Image display device (LCOS), 31: Cover glass, 32: Liquid crystal layer, 33: Display panel, 35: λ/2 wavelength plate, 38: Liquid crystal layer, 40: projection system, 50: light guide section, 60: image display device (LCD), 100: image display section

Claims (5)

  1.  偏光角度を90°と0°に変える液晶層を備えた映像表示装置と、前記映像表示装置に照射光を供給する照射系と、前記照射光を前記映像表示装置に導き該映像表示装置によって変わる光の偏光角度に応じ透過/反射を選択する偏光光学素子とを備えたヘッドマウントディスプレイ装置であって、
     前記偏光光学素子と前記映像表示装置との間に偏光機能素子を配置したことを特徴とするヘッドマウントディスプレイ装置。
    An image display device having a liquid crystal layer that changes the polarization angle between 90° and 0°, an irradiation system that supplies irradiation light to the image display device, and an irradiation system that guides the irradiation light to the image display device and changes depending on the image display device A head-mounted display device comprising a polarization optical element that selects transmission/reflection according to the polarization angle of light,
    A head-mounted display device comprising a polarizing functional element disposed between the polarizing optical element and the image display device.
  2.  請求項1に記載のヘッドマウントディスプレイ装置において、
     前記偏光機能素子は、位相差板または旋光子であることを特徴とするヘッドマウントディスプレイ装置。
    In the head mounted display device according to claim 1,
    A head-mounted display device, wherein the polarization function element is a retardation plate or an optical rotator.
  3.  請求項1に記載のヘッドマウントディスプレイ装置において、
     前記映像表示装置はLCOSまたはLCDであり、
     前記偏光光学素子はPBSであることを特徴とするヘッドマウントディスプレイ装置。
    In the head mounted display device according to claim 1,
    The image display device is an LCOS or LCD,
    A head-mounted display device, wherein the polarizing optical element is a PBS.
  4.  請求項1に記載のヘッドマウントディスプレイ装置において、
     前記偏光機能素子は、前記映像表示装置と一体であり、偏光角度を任意に変更できる液晶層であることを特徴とするヘッドマウントディスプレイ装置。
    In the head mounted display device according to claim 1,
    A head-mounted display device according to claim 1, wherein said polarization function element is integrated with said image display device and is a liquid crystal layer capable of arbitrarily changing a polarization angle.
  5.  請求項4に記載のヘッドマウントディスプレイ装置において、
     前記映像表示装置はLCOSまたはLCDであり、
     前記偏光光学素子はPBSであり、
     前記偏光機能素子は、前記LCOSまたはLCDに追加された液晶層であることを特徴とするヘッドマウントディスプレイ装置。
    In the head mounted display device according to claim 4,
    The image display device is an LCOS or LCD,
    the polarizing optical element is PBS;
    A head-mounted display device, wherein the polarization function element is a liquid crystal layer added to the LCOS or LCD.
PCT/JP2021/042311 2021-02-05 2021-11-17 Head-mounted display device WO2022168398A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021017551A JP2022120575A (en) 2021-02-05 2021-02-05 Head mount display device
JP2021-017551 2021-02-05

Publications (1)

Publication Number Publication Date
WO2022168398A1 true WO2022168398A1 (en) 2022-08-11

Family

ID=82741080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042311 WO2022168398A1 (en) 2021-02-05 2021-11-17 Head-mounted display device

Country Status (2)

Country Link
JP (1) JP2022120575A (en)
WO (1) WO2022168398A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009063846A (en) * 2007-09-06 2009-03-26 Fujifilm Corp Polarization control system and projector
JP2015059979A (en) * 2013-09-17 2015-03-30 株式会社Jvcケンウッド Image display element
WO2018135193A1 (en) * 2017-01-20 2018-07-26 ソニー株式会社 Optical device and display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009063846A (en) * 2007-09-06 2009-03-26 Fujifilm Corp Polarization control system and projector
JP2015059979A (en) * 2013-09-17 2015-03-30 株式会社Jvcケンウッド Image display element
WO2018135193A1 (en) * 2017-01-20 2018-07-26 ソニー株式会社 Optical device and display device

Also Published As

Publication number Publication date
JP2022120575A (en) 2022-08-18

Similar Documents

Publication Publication Date Title
JP7408629B2 (en) Head-mounted display (HMD) with spatially varying retarder optics
EP1160617B1 (en) Liquid crystal display projector with improved contrast
KR101244062B1 (en) Liquid crystal projector
US5283600A (en) LCD projector
US7675684B1 (en) Compact optical system
US7042535B2 (en) Optical display system and optical shifter
US9316898B2 (en) Projection apparatus
WO2015012138A1 (en) Scanning-type projection device
US6130728A (en) Single panel color projection LCD having a plurality of reflectors
US20140063466A1 (en) Projection apparatus
JP5803114B2 (en) projector
US20230350247A1 (en) Liquid crystal display with external retarder
US20180246398A1 (en) Projector
WO2020026706A1 (en) Optical module, projection type image display device, and method for manufacturing optical module
US20120242916A1 (en) Projector
EP2362264A1 (en) Reflection type liquid crystal device and projector
WO2022168398A1 (en) Head-mounted display device
JP2006514319A (en) Optical core and projection system comprising optical core
JP2007304607A (en) Projection type display device
JP2725606B2 (en) LCD projector device
JP3151771B2 (en) Image display device
US20220050367A1 (en) Optical element and projection-type display device
JP2007133195A (en) Projector and method for manufacturing projector
JP2011059461A (en) Projection display device
JP2022120574A (en) head mounted display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924784

Country of ref document: EP

Kind code of ref document: A1